What is FlexEthernet?

Mark Gustlin & Faisal Dada – Xilinx
Outline

- Background on Ethernet Speeds
- FlexEthernet use cases
- Overview of FlexEthernet
“Traditional” Ethernet

- Traditionally Ethernet went in steps of 10x, starting at 10Mb.
- That long held trend had a wrinkle with 100/40GbE in 2010.
- 40GbE was the first market optimized speed, for servers.
- 40GbE was the first time we realized that cost drivers would demand a speed optimization for a market.

<table>
<thead>
<tr>
<th>Speed (Mb)</th>
<th>Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>10Mb</td>
<td>1983</td>
</tr>
<tr>
<td>100Mb</td>
<td>1995</td>
</tr>
<tr>
<td>1Gb</td>
<td>1988</td>
</tr>
<tr>
<td>10Gb</td>
<td>2002</td>
</tr>
<tr>
<td>40Gb</td>
<td>2010</td>
</tr>
<tr>
<td>100Gb</td>
<td>2010</td>
</tr>
</tbody>
</table>
Today’s Ethernet

- There are many speeds being defined, even in between established rates
- New markets are demanding cost and power optimized solutions
- 2.5/5GbE are optimized for WAP and existing cable infrastructure
- 25GbE is for TOR to servers, optimizing cabling infrastructure
- There is also a consortium defined 50G speed
Tomorrow’s Ethernet

- Expect more speeds as new markets require optimized solutions
- Faster Ethernet becomes more and more difficult as technology is pushed
 - Don’t expect to see 10x jumps in speeds again
- FlexEthernet is one new area of Ethernet innovation
 - Rest of the presentation explores that area
Why FlexEthernet?

- Router and transport gear is now evolving at different rates
 - Expensive transport gear may not be optimally used with fixed rate interfaces
- Desire to support simple transport of n x Ethernet streams across a faster interface
- Provide a more efficient ‘LAG’ mechanism
This figure shows one prominent application for FlexEthernet

- This is a sub rate example
- One possibility is using a 400GbE IEEE PMD, and sub rate at 200G to match the transport capability

![Diagram showing router to transport interface with transports pipes smaller than PMD](image)
Matching Transport’s Flexibility

- Modern transport provides flexibility
- Clients need to scale to this flexibility
 - Trans-Pacific link maybe 50 Gb/s but client interface is 100G
 - Router must be told to only send 50G (pause is not good)
- Need a simple method to adjust client transport!

Source: Keynote_Layer0vsLayer1_SDN_Wellbrock.pdf @ POTE 2013 (Verizon; Glen Wellbrock)
Desire to support simple transport of n x Ethernet streams across a faster interface

One example is 10x10GbE across a 4x25G interface

A future example would be 16x25GbE across an 8x50G interface
 • Electrical or optical

Other options are mixing speeds across a single interface
Channelized Interfaces

- One example of mixing of speeds across a transport infrastructure
Super Rate FlexEthernet

- Link Aggregation (LAG) is often used to bundle multiple slower speed interfaces into a faster virtual interface.
- LAG has a drawback of uneven distribution of flows in some cases.
- There is an industry desire for an “improved” LAG.
- FlexEthernet can support aggregating multiple interfaces at a physical layer, no uneven distribution of flows.
With FlexEthernet, a 200G router to router connection could be supported, without an IEEE standard

In the future 800G, 500G etc. can all be supported
A 200G router to router connection through current transport equipment can be supported.
What is FlexEthernet?

- MAC become variable rate
- FlexEthernet adds in a shim layer
- Layer Functions:
 - MAC – Framing, addressing, error detection
 - PCS – Line coding, distribution
 - PMA – muxing, CDR
 - PMD – Physical drivers
 - FlexE – distribution, idle control
- Be flexible, support variable rate interfaces
- Support sub-rate operation
- Support distribution of packets to multiple interface
- Support multiplexing of multiple streams on a single interface
- Must be transparent to interfaces that it runs across
FlexEthernet adds in periodic overhead into the data stream to allow for striping, alignment etc., via a calendar mechanism.

Overhead is based on 66b blocks structure and looks like an a sequenced ordered set.
- Sequence ordered sets also carry link fault signaling.

Ethernet idles are deleted periodically to make room for the extra overhead.

IEEE overhead such as alignment markers can also be added later in order to traverse a given PMD without impacting FlexEthernet.
FlexEthernet adds in periodic overhead into the data stream to allow for striping, alignment etc., via a calendar mechanism.

- Overhead is based on 66b blocks structure and looks like an a sequenced ordered set:
 - Sequence ordered sets also carry link fault signaling.

- Ethernet idles are deleted periodically to make room for the extra overhead.

- IEEE overhead such as alignment markers can also be added later in order to traverse a given PMD without impacting FlexEthernet.
FlexEthernet’s Operation

FlexEthernet overhead is added in, and coexists with the standard Ethernet overhead.
You can re-use standard IEEE PCS implementations, and add on the FlexEthernet protocol and the FlexEthernet MAC.
The goal is to use IEEE PMDs as is for FlexEthernet
- For example a 100GBASE-LR4 or 100GBASE-SR4 optics module with accompanying PHY protocol stack can be re-used without modification
- MSA defined PMDs should also work without modification, for example CWDM4
- So no impact!

What this implies to the FlexEthernet protocol:
- Same per lane rate on the PMDs
- Therefore we must delete extra idles from the MAC stream to make room for the FlexEthernet overhead in addition to the normal overhead used for a given IEEE PHY
 - Normal IEEE overhead is Alignment Markers for multi-lane interfaces
- FlexEthernet must run transparently through the IEEE PHYs
Summary

- FlexEthernet won’t replace IEEE Ethernet standards
- It will supplement and fill in the gaps
 - Faster speeds of multiple interfaces instead of LAG
 - Nx transport of Ethernet
 - Enables efficient matching of transport rates
- FlexEthernet is being standardized in the OIF
 - Proposed schedule is to have an agreement in Q2 of 2016
Thanks for your attention!