
Low Latency Performance Tuning

Guide for Red Hat Enterprise Linux 6

Jeremy Eder, Senior Software Engineer

Version 1.0

September 2012

1801 Varsity Drive™
Raleigh NC 27606-2072 USA
Phone: +1 919 754 3700
Phone: 888 733 4281
Fax: +1 919 754 3701
PO Box 13588
Research Triangle Park NC 27709 USA

Linux is a registered trademark of Linus Torvalds. Red Hat, Red Hat Enterprise Linux and the Red Hat
"Shadowman" logo are registered trademarks of Red Hat, Inc. in the United States and other
countries.

UNIX is a registered trademark of The Open Group.

Intel, the Intel logo and Xeon are registered trademarks of Intel Corporation or its subsidiaries in the
United States and other countries.

All other trademarks referenced herein are the property of their respective owners.

© 2012 by Red Hat, Inc. This material may be distributed only subject to the terms and conditions set
forth in the Open Publication License, V1.0 or later (the latest version is presently available at
http://www.opencontent.org/openpub/).

The information contained herein is subject to change without notice. Red Hat, Inc. shall not be liable
for technical or editorial errors or omissions contained herein.

Distribution of modified versions of this document is prohibited without the explicit permission of Red
Hat Inc.

Distribution of this work or derivative of this work in any standard (paper) book form for commercial
purposes is prohibited unless prior permission is obtained from Red Hat Inc.

The GPG fingerprint of the security@redhat.com key is:
CA 20 86 86 2B D6 9D FC 65 F6 EC C4 21 91 80 CD DB 42 A6 0E

Send feedback to refarch-feedback@redhat.com

www.redhat.com ii refarch-feedback@redhat.com

mailto:refarch-feedback@redhat.com?subject=Feedback%20on%20Low%20Latency%20Performance%20Brief
mailto:security@redhat.com
http://www.opencontent.org/openpub/

Table of Contents
1 Executive Summary... 1

2 Process Scheduling.. 1

2.1 Avoiding Interference... 1

2.2 Scheduler Tunables... 2

2.3 Perf.. 3

3 Memory.. 3

3.1 NUMA Topology... 3

3.2 Hugepages.. 4

3.3 Transparent Hugepages.. 4

4 Network.. 4

4.1 IRQ processing.. 4

4.2 Drivers... 5

4.3 Network Tunables.. 5

4.4 ethtool.. 5

5 Power... 6

5.1 Tuned... 6

5.2 BIOS Configuration.. 6

6 Kernel boot parameters.. 7

7 References... 7

8 Revision History... 9

refarch-feedback@redhat.com iii www.redhat.com

1 Executive Summary
This paper provides a tactical tuning overview of Red Hat Enterprise Linux 6 for latency-
sensitive workloads. In a sense, this document is a cheat-sheet for getting started on this
complex topic and is intended to complement existing Red Hat documentation.

It is very important to gain a deep understanding of these tuning suggestions before you apply
them in any production scenario, as your-mileage-will-vary. Note that certain features
mentioned in this paper may require the latest minor version of Red Hat Enterprise Linux 6.

2 Process Scheduling
Linux provides the user with a system of priorities and scheduler policies that influence the
task scheduler. A common trait of latency-sensitive tasks is that they should run continuously
on the CPU with as few interruptions as possible. If your application is being scheduled off
the CPU in favor of an unimportant task, try increasing its priority using nice. Another option
is to change the scheduler policy to FIFO with a priority of 1. The example command below
runs YOURPROC ahead of the userspace and some kernel threads. Note there are some
kernel threads that run FIFO policy. This has been met with mixed results, and often using
SCHED_OTHER via nice performs similarly.

chrt -f 1 ./YOURPROC
nice -20 ./YOURPROC

When using the SCHED_FIFO policy for your application, it is possible to introduce latency
spikes or other anomalies by blocking kernel threads that use SCHED_OTHER. All
SCHED_OTHER tasks are of lower priority than SCHED_FIFO. For this reason it is important
that you test extensively when using the FIFO scheduler. As an example, a kernel thread
relevant to networking is ksoftirqd. To determine if observed latency blips are priority-
related, try the below command. In the report, you might see ksoftirqd at the top of the
list, meaning it was likely blocked:

perf sched record -o /dev/shm/perf.data ./YOURPROC
perf sched -i /dev/shm/perf.data latency > /tmp/perf.latency.report

 Task | Runtime ms | Switches | Average delay ms
--
 ksoftirqd/2:23 | 0.000 ms | 26 | avg: 3388.621 ms

2.1 Avoiding Interference
To elaborate further on process priorities and scheduling, it is important to streamline the
system such that only essential tasks are scheduled, for example, by ensuring that you have
disabled all unnecessary services. There is limited flexibility with regard to kernel threads as
compared to userspace threads. Here are some options for task affinity and isolation to
reduce jitter and latency:

refarch-feedback@redhat.com 1 www.redhat.com

isolcpus
Isolate CPU cores from userspace tasks. This can be done with i.e.
isolcpus=1,3,5,7,9,11. isolcpus requires a reboot, and there will continue to be
kernel threads on isolated cores. isolcpus sets the affinity of the init task to the inverse
bitmask of that specified by isolcpus. All userspace tasks will inherit from init, including
any new tasks. To land a task on one of the isolated cores, you need to explicitly ask for it via
taskset/numactl or sched_setaffinity.

See the Tuna User Guide for a flexible isolation tool (part of the Red Hat MRG Realtime
product).

Isolate sockets from userspace processes, eventually pushing them to socket 0:

tuna -S1 -i ; tuna -S2 -i ; tuna -S3 -i

Push YOURPROC to core 1 using tuna and set sched/prio to fifo:1

tuna -t `pgrep YOURPROC` -C -p fifo:1 -S 1 -m -P | head -5
cgroups can provide a user-friendly way of grouping NUMA resources. An example is
/etc/cgconfig.conf:

group node0 {
 cpuset {
 cpuset.cpus = “0,2,4,6,8,10”;

 cpuset.cpu_exclusive = 1;
 cpuset.mems = 0;
 }
}

group node1 {
 cpuset {
 cpuset.cpus = “1,3,5,7,9,11”;

 cpuset.cpu_exclusive = 1;
 cpuset.mems = 1 ;
 }
}

To launch a task within the node1 cgroup, use:

cgexec -g cpuset:node1 ./YOURPROC

See the Resource Management Guide for more information, including how to use
/etc/cgrules.conf to write rules that automatically place new tasks in the desired cgroup.

2.2 Scheduler Tunables
The following scheduler tunables have been found to impact latency-sensitive workloads and
can be adjusted by the user:

sched_min_granularity_ns

Set it to a lower value for latency-sensitive tasks (or huge thread-count). Set it to a higher
value for compute-bound/throughput oriented workloads. Adjust by a factor of 2-10x.

sched_migration_cost

www.redhat.com 2 refarch-feedback@redhat.com

mailto:refarch-feedback@redhat.com?subject=Low%20Latency%20Tuning
https://access.redhat.com/knowledge/docs/en-US/Red_Hat_Enterprise_Linux/6/html-single/Resource_Management_Guide/index.html
http://docs.redhat.com/docs/en-US/Red_Hat_Enterprise_MRG/2/html-single/Tuna_User_Guide/index.html

Specifies the amount of time after the last execution during which a task is considered to be
“cache hot” in migration decisions. Increasing the value of this variable reduces task
migrations. Adjust by a factor of 2-10x. Task migrations may be irrelevant depending on the
specific task affinity settings you've configured.

2.3 Perf
Perf is a utility to read performance counters in both hardware (CPU) and kernel tracepoints.

When optimizing for better latency, you may be concerned with CPU counters such as cache-
misses, cpu-migrations, page-faults. Software events such as scheduler, network, the VM, or
timers can also be tracked and reported using perf.

Documentation is available in the Developer Guide, man pages, or in the kernel source.

Here are some brief examples to get you started:

Find out what capabilities the CPU/kernel can provide. CPUs may differ:

perf list

Find out what the CPU is currently spending cycles on. (i.e. hot code paths/functions:):

perf top

Profile YOURPROC with regard to block, ext4, and sched kernel tracepoints:

perf stat -e kmem:* -e block:* -e ext4:* -e sched:* ./YOURPROC

To view the hardware cache-misses counter triggered by the command ls:

perf stat -e cache-misses ls

3 Memory
Recent server platforms are physically wired up in a NUMA configuration. When you pin a
process to a specific CPU or core there are going to be certain combinations that will perform
faster than others, because memory banks and/or PCIe slots are local to certain CPU
sockets.

3.1 NUMA Topology
Use hwloc to visualize hardware topology. hwloc uses the BIOS SLIT table, and this table
may or may not be fully populated depending on your server's BIOS. You may need to
determine this experimentally. See hardware vendor documentation.

numactl: Bind apps to sockets and local memory banks. i.e. CPU socket 0/memory bank 0:

numactl -N0 -m0 ./YOURPROC

refarch-feedback@redhat.com 3 www.redhat.com

https://access.redhat.com/knowledge/solutions/62879
https://access.redhat.com/knowledge/docs/en-US/Red_Hat_Enterprise_Linux/6/html-single/Performance_Tuning_Guide/index.html#s-cpu-numa-topology
https://access.redhat.com/knowledge/sources/source_rpms/kernel-2.6.32-279.el6/tree/tools/perf/Documentation/
https://access.redhat.com/knowledge/docs/en-US/Red_Hat_Enterprise_Linux/6/html-single/Developer_Guide/index.html#perf

taskset: Bind apps to cores. Kernel best-effort for memory locality.

taskset -c 3 ./YOURPROC

View current CPU/memory pinning done with either numactl or taskset:

grep -i allowed /proc/PID/status

• Adjust the VM's tendency to swap by setting vm.swappiness=0
• Consider disabling the ksm daemon.
• Use the numastat or numa_faults.stp systemtap script to troubleshoot

NUMA misses.
• Use Intel Performance Counter Monitor to track QPI link usage.
• Both network and storage performance can benefit from PCI slot locality and IRQ

affinity.

3.2 Hugepages
The default 4KB page size in Linux can introduce a performance hit in systems with a large
memory footprint. 2 MB hugepages reduce the number of pages by a factor of 512. Here is
one way to configure hugepages.

Getting information about hugepages:

egrep -i 'thp|trans|huge' /proc/meminfo /proc/vmstat

3.3 Transparent Hugepages
Transparent hugepages (THP) is an abstraction layer that automates most aspects of
creating, managing, and using hugepages. THP instantiates a background kernel thread
called khugepaged that scans memory for merging candidates. THP is enabled by default.
Depending on your tolerance, these scans may introduce jitter. To disable THP:

transparent_hugepage=never on the kernel cmdline (requires reboot)
echo never > /sys/kernel/mm/redhat_transparent_hugepage/enabled

4 Network
When tuning network performance for low latency, the goal is to have IRQs land on the same
core or socket that is currently executing the application that is interested in the network
packet. This increases CPU cache hit-rate (see section on perf) and avoids using the inter-
processor link.

4.1 IRQ processing
Red Hat has published an in-depth whitepaper on IRQ affinity tuning.

An automated way to achieve affinity (requires Red Hat Enterprise Linux 6.2 or later), is to
enable Receive Flow Steering (RFS). RFS (and its transmit counterpart XPS) are highly

www.redhat.com 4 refarch-feedback@redhat.com

mailto:refarch-feedback@redhat.com?subject=Low%20Latency%20Tuning
https://access.redhat.com/knowledge/solutions/62885
https://access.redhat.com/knowledge/techbriefs/optimizing-red-hat-enterprise-linux-performance-tuning-irq-affinity
https://access.redhat.com/knowledge/docs/en-US/Red_Hat_Enterprise_Linux/6/html-single/Performance_Tuning_Guide/index.html#s-memory-transhuge
https://access.redhat.com/knowledge/solutions/33613
https://access.redhat.com/knowledge/sources/source_rpms/kernel-2.6.32-279.el6/tree/Documentation/vm/hugetlbpage.txt

dependent on hardware and driver capabilities. Certain drivers steer in hardware.

4.2 Drivers
Certain NIC vendors provide low-latency tuning guidelines, which you should read and test.

They may also provide scripts that line up IRQs with cores, i.e. a 1:1 relationship. Others
have the ability to vary the number of RX/TX queues. Consider using those scripts, or try:

irqbalance --oneshot

4.3 Network Tunables
tcp_low_latency

Demonstrated minimal impact (1us range).

Use TCP_NODELAY socket option where applicable.

4.4 ethtool
Many statistics (ethtool -S) are hardware/driver dependent. Some NICs track stats in
firmware, others in-kernel. When tracking is done in firmware, it is difficult to understand the
true meaning of stats (i.e. what causes an error counter to increment). Consult your hardware
vendor documentation.

Coalescing: (ethtool -cC)

Quantity of packets the NIC will accept before triggering an interrupt. Experiment with a
coalesce value of 0 or 1. Verify you have enough remaining CPU cycles to handle bursts.

Ring buffers: (ethtool -gG)
Set of buffers that provide a very small amount of memory to deal with cases when the CPU
is not available to process packets. Driver-dependent, output may be in slots or bytes. There
has been a move to Byte Queue Limits, which avoids a head-of-line blocking problem caused
by the slots technique. Increase the value to deal with drops, but watch for added latency.

Offload Capabilities: (ethtool -kK)
Network adapter may provide some amount of offload capabilities, such as TCP
Segmentation Offload (TSO), Large Receive Offload (LRO) etc. Offloads move some of the
network processing out of the kernel and onto the NIC. These generally save CPU cycles,
but can be a mixed bag in terms of latency performance as many are designed to increase
throughput and decrease CPU utilization through batching techniques. For example, Generic
Receive Offload (GRO) may aggregate packets up to 64KB. Note that since offloads occur
between the OS and the wire, their properties are generally not observable with tcpdump on
sender/receiver; use a port-mirror or equivalent tap device to see what the wire traffic looks
like. Offloads will modify your packet quantity/frame size and flow characteristics. These may
vary considerably from the MTU configured in the OS or on the network switch.

refarch-feedback@redhat.com 5 www.redhat.com

https://access.redhat.com/knowledge/solutions/19758
https://access.redhat.com/knowledge/solutions/19758

Consider:
ethtool -K ethX lro off gro off tso off gso off

Make the ethtool configuration persistent using udev rules, your application's startup scripts,
or the ETHTOOL_OPTS variable in /etc/sysconfig/network-scripts.

5 Power
Newer CPUs may alter their performance based on a workload heuristic in order to save
power. This is at odds with latency-sensitive workload requirements, causing sub-optimal
performance/jitter. Here is an example script to lock the system into certain c-states, that
uses the kernel's /dev/cpu_dma_latency interface documented here.

Use the example script along with the values returned by the below command to lock CPU
cores into particular C-states. C0 provides the lowest latency, at cost of higher power,
temperature, and cooling costs. Depending on latency requirements, C1 may also be usable.
C3 and deeper show measurable performance impact, but should be fine for off-hours
workloads.

find /sys/devices/system/cpu/cpu0/cpuidle -name latency \

 -o -name name | xargs cat
Use powertop in Red Hat Enterprise Linux or turbostat (in upstream kernel) to view current
c-states.

5.1 Tuned
Consider using the latency-performance tuned profile. Currently, tuned profiles also set the
I/O scheduler to deadline. If you use one of these profiles, (or clone one and add your site-
specific tuning) the kernel command-line option elevator=deadline may be redundant.
Most tuned profiles also change the cpuspeed governor to performance, ensuring the highest
clock frequency. Alternatively, disable the cpuspeed service, or modify
/etc/sysconfig/cpuspeed and set GOVERNOR=performance. To find current frequency,
execute:

find /sys -name cpuinfo_cur_freq | xargs cat

5.2 BIOS Configuration
Many server vendors have published BIOS configuration settings geared for lowlatency which
must be carefully followed. Ensure you are running the latest BIOS version.

The rdmsr utility from the msr-tools package is used to read Machine State Registers off
of a CPU. For example, on certain newer generation Intel CPUs:

./rdmsr -d 0x34
97

This means 97 SMIs have fired since boot. After implementing low-latency tuning guidelines
from your server vendor, this counter should rarely (if ever) increment after boot. It would be
useful to query this value before and after a test run to verify if any SMIs have fired.

www.redhat.com 6 refarch-feedback@redhat.com

mailto:refarch-feedback@redhat.com?subject=Low%20Latency%20Tuning
http://www.kernel.org/pub/linux/utils/cpu/msr-tools/
http://git.kernel.org/?p=linux/kernel/git/torvalds/linux.git;a=tree;f=tools/power/x86/turbostat;h=f74ba384500e5fbc9a5091e7e31341d87a99c094;hb=HEAD
https://access.redhat.com/knowledge/sources/source_rpms/kernel-2.6.32-279.el6/tree/Documentation/power/pm_qos_interface.txt
http://git.fedorahosted.org/cgit/tuned.git/tree/libexec/pmqos-static.py?h=1.0

6 Kernel boot parameters
Click here for kernel documentation for Red Hat Enterprise Linux. An example low-latency
command line:
nosoftlockup mce=ignore_ce

• nosoftlockup disables logging of backtraces when a process executes on a CPU for
longer than the softlockup threshold (default 120 seconds). Typical low-latency
programming and tuning techniques might involve spinning on a core or modifying
scheduler priorities/policies, which can lead to a task reaching this threshold. If a task
has not relinquished the CPU for 120 seconds, the kernel will print a backtrace for
diagnostic purposes. Note that adding nosoftlockup to the cmdline will simply disable
the printing of this backtrace and does not in itself reduce latency.

• mce=ignore_ce ignores corrected errors and associated scans that can cause
periodic latency spikes.

• Consider audit=0 to disable the kernel components of the audit subsystem which
have been measured at about 1-3% CPU utilization when under heavy load. Also
ensure to chkconfig auditd off.

Missing from this list are idle, processor.max_cstate, intel_idle.max_cstate and
idle. These options require a reboot to adjust, and thus we recommend the
/dev/cpu_dma_latency interface as it achieves an equivalent performance improvement
without the reboot requirement. You can save considerably in power and cooling costs by
locking c-states only as necessary (i.e. during trading hours).

• Consider disabling SELinux using /etc/selinux/config (measured 1-3% CPU overhead)

• Use tuned profiles (i.e. enterprise-storage) to control I/O elevator, rather than cmdline.

7 References
• Performance Tuning Guide:

https://access.redhat.com/knowledge/docs/en-US/Red_Hat_Enterprise_Linux/6/html-
single/Performance_Tuning_Guide/index.html

• Realtime Tuning Guide:

https://access.redhat.com/knowledge/docs/en-US/Red_Hat_Enterprise_MRG/2/html-
single/Realtime_Tuning_Guide/index.html

• Resource Management Guide:

https://access.redhat.com/knowledge/docs/en-US/Red_Hat_Enterprise_Linux/6/html-
single/Resource_Management_Guide/index.html

• Developer Guide:

https://access.redhat.com/knowledge/docs/en-US/Red_Hat_Enterprise_Linux/6/html-
single/Developer_Guide/index.html#perf

refarch-feedback@redhat.com 7 www.redhat.com

https://access.redhat.com/knowledge/docs/en-US/Red_Hat_Enterprise_Linux/6/html-single/Developer_Guide/index.html#perf
https://access.redhat.com/knowledge/docs/en-US/Red_Hat_Enterprise_Linux/6/html-single/Developer_Guide/index.html#perf
https://access.redhat.com/knowledge/docs/en-US/Red_Hat_Enterprise_Linux/6/html-single/Resource_Management_Guide/index.html
https://access.redhat.com/knowledge/docs/en-US/Red_Hat_Enterprise_Linux/6/html-single/Resource_Management_Guide/index.html
https://access.redhat.com/knowledge/docs/en-US/Red_Hat_Enterprise_MRG/2/html-single/Realtime_Tuning_Guide/index.html
https://access.redhat.com/knowledge/docs/en-US/Red_Hat_Enterprise_MRG/2/html-single/Realtime_Tuning_Guide/index.html
https://access.redhat.com/knowledge/docs/en-US/Red_Hat_Enterprise_MRG/2/html-single/Realtime_Tuning_Guide/index.html
https://access.redhat.com/knowledge/docs/en-US/Red_Hat_Enterprise_Linux/6/html-single/Performance_Tuning_Guide/index.html
https://access.redhat.com/knowledge/docs/en-US/Red_Hat_Enterprise_Linux/6/html-single/Performance_Tuning_Guide/index.html
https://access.redhat.com/knowledge/docs/en-US/Red_Hat_Enterprise_Linux/6/html-single/Security-Enhanced_Linux/index.html#sect-Security-Enhanced_Linux-Enabling_and_Disabling_SELinux-Disabling_SELinux
https://access.redhat.com/knowledge/sources/source_rpms/kernel-2.6.32-279.el6/tree/Documentation/x86/x86_64/boot-options.txt

• Tuna User Guide:

https://access.redhat.com/knowledge/docs/en-US/Red_Hat_Enterprise_MRG/2/html-
single/Tuna_User_Guide/index.html

• NUMA Overview:

https://access.redhat.com/knowledge/docs/en-US/Red_Hat_Enterprise_Linux/6/html-
single/Performance_Tuning_Guide/index.html#s-cpu-numa-topology

• NUMA Topology Visualization Tool, hwloc:
https://access.redhat.com/knowledge/solutions/62879

• Hugepages Overview:
https://access.redhat.com/knowledge/sources/source_rpms/kernel-2.6.32-
279.el6/tree/Documentation/vm/hugetlbpage.txt

• Hugepages Howto:

https://access.redhat.com/knowledge/solutions/33613

• Hugepages/Transparent Hugepages Overview:

https://access.redhat.com/knowledge/docs/en-US/Red_Hat_Enterprise_Linux/6/html-
single/Performance_Tuning_Guide/index.html#s-memory-transhuge

• Optimizing Red Hat Enterprise Linux Performance Tuning IRQ Affinity:
https://access.redhat.com/knowledge/techbriefs/optimizing-red-hat-enterprise-linux-
performance-tuning-irq-affinity

• Receive Flow Steering (RFS) Howto:
https://access.redhat.com/knowledge/solutions/62885

• C-state Lock Example Script **unsupported**:
http://git.fedorahosted.org/cgit/tuned.git/tree/libexec/pmqos-static.py?h=1.0

• /dev/cpu_dma_latency documentation:
https://access.redhat.com/knowledge/sources/source_rpms/kernel-2.6.32-
279.el6/tree/Documentation/power/pm_qos_interface.txt

• turbostat **unsupported**:

http://git.kernel.org/?
p=linux/kernel/git/torvalds/linux.git;a=tree;f=tools/power/x86/turbostat;h=f74ba384500e
5fbc9a5091e7e31341d87a99c094;hb=HEAD

• Kernel command line parameter documentation:
https://access.redhat.com/knowledge/sources/source_rpms/kernel-2.6.32-
279.el6/tree/Documentation/x86/x86_64/boot-options.txt

• SELinux Documentation:

https://access.redhat.com/knowledge/docs/en-US/Red_Hat_Enterprise_Linux/6/html-
single/Security-Enhanced_Linux/index.html#sect-Security-Enhanced_Linux-
Enabling_and_Disabling_SELinux-Disabling_SELinux

www.redhat.com 8 refarch-feedback@redhat.com

mailto:refarch-feedback@redhat.com?subject=Low%20Latency%20Tuning
https://access.redhat.com/knowledge/docs/en-US/Red_Hat_Enterprise_Linux/6/html-single/Security-Enhanced_Linux/index.html#sect-Security-Enhanced_Linux-Enabling_and_Disabling_SELinux-Disabling_SELinux
https://access.redhat.com/knowledge/docs/en-US/Red_Hat_Enterprise_Linux/6/html-single/Security-Enhanced_Linux/index.html#sect-Security-Enhanced_Linux-Enabling_and_Disabling_SELinux-Disabling_SELinux
https://access.redhat.com/knowledge/docs/en-US/Red_Hat_Enterprise_Linux/6/html-single/Security-Enhanced_Linux/index.html#sect-Security-Enhanced_Linux-Enabling_and_Disabling_SELinux-Disabling_SELinux
https://access.redhat.com/knowledge/docs/en-US/Red_Hat_Enterprise_Linux/6/html-single/Security-Enhanced_Linux/index.html#sect-Security-Enhanced_Linux-Enabling_and_Disabling_SELinux-Disabling_SELinux
https://access.redhat.com/knowledge/sources/source_rpms/kernel-2.6.32-279.el6/tree/Documentation/x86/x86_64/boot-options.txt
https://access.redhat.com/knowledge/sources/source_rpms/kernel-2.6.32-279.el6/tree/Documentation/x86/x86_64/boot-options.txt
http://git.kernel.org/?p=linux/kernel/git/torvalds/linux.git;a=tree;f=tools/power/x86/turbostat;h=f74ba384500e5fbc9a5091e7e31341d87a99c094;hb=HEAD
http://git.kernel.org/?p=linux/kernel/git/torvalds/linux.git;a=tree;f=tools/power/x86/turbostat;h=f74ba384500e5fbc9a5091e7e31341d87a99c094;hb=HEAD
http://git.kernel.org/?p=linux/kernel/git/torvalds/linux.git;a=tree;f=tools/power/x86/turbostat;h=f74ba384500e5fbc9a5091e7e31341d87a99c094;hb=HEAD
https://access.redhat.com/knowledge/sources/source_rpms/kernel-2.6.32-279.el6/tree/Documentation/power/pm_qos_interface.txt
https://access.redhat.com/knowledge/sources/source_rpms/kernel-2.6.32-279.el6/tree/Documentation/power/pm_qos_interface.txt
http://git.fedorahosted.org/cgit/tuned.git/tree/libexec/pmqos-static.py?h=1.0
https://access.redhat.com/knowledge/solutions/62885
https://access.redhat.com/knowledge/techbriefs/optimizing-red-hat-enterprise-linux-performance-tuning-irq-affinity
https://access.redhat.com/knowledge/techbriefs/optimizing-red-hat-enterprise-linux-performance-tuning-irq-affinity
https://access.redhat.com/knowledge/docs/en-US/Red_Hat_Enterprise_Linux/6/html-single/Performance_Tuning_Guide/index.html#s-memory-transhuge
https://access.redhat.com/knowledge/docs/en-US/Red_Hat_Enterprise_Linux/6/html-single/Performance_Tuning_Guide/index.html#s-memory-transhuge
https://access.redhat.com/knowledge/solutions/33613
https://access.redhat.com/knowledge/sources/source_rpms/kernel-2.6.32-279.el6/tree/Documentation/vm/hugetlbpage.txt
https://access.redhat.com/knowledge/sources/source_rpms/kernel-2.6.32-279.el6/tree/Documentation/vm/hugetlbpage.txt
https://access.redhat.com/knowledge/sources/source_rpms/kernel-2.6.32-279.el6/tree/Documentation/vm/hugetlbpage.txt
https://access.redhat.com/knowledge/solutions/62879
https://access.redhat.com/knowledge/docs/en-US/Red_Hat_Enterprise_Linux/6/html-single/Performance_Tuning_Guide/index.html#s-cpu-numa-topology
https://access.redhat.com/knowledge/docs/en-US/Red_Hat_Enterprise_Linux/6/html-single/Performance_Tuning_Guide/index.html#s-cpu-numa-topology
https://access.redhat.com/knowledge/docs/en-US/Red_Hat_Enterprise_Linux/6/html-single/Performance_Tuning_Guide/index.html#s-cpu-numa-topology
https://access.redhat.com/knowledge/docs/en-US/Red_Hat_Enterprise_MRG/2/html-single/Tuna_User_Guide/index.html
https://access.redhat.com/knowledge/docs/en-US/Red_Hat_Enterprise_MRG/2/html-single/Tuna_User_Guide/index.html
https://access.redhat.com/knowledge/docs/en-US/Red_Hat_Enterprise_MRG/2/html-single/Tuna_User_Guide/index.html

8 Revision History
Revision 1.0 Thursday, September 27, 2012 Jeremy Eder

Initial Release

refarch-feedback@redhat.com 9 www.redhat.com

	1 Executive Summary
	2 Process Scheduling
	2.1 Avoiding Interference
	2.2 Scheduler Tunables
	2.3 Perf

	3 Memory
	3.1 NUMA Topology
	3.2 Hugepages
	3.3 Transparent Hugepages

	4 Network
	4.1 IRQ processing
	4.2 Drivers
	4.3 Network Tunables
	4.4 ethtool

	5 Power
	5.1 Tuned
	5.2 BIOS Configuration

	6 Kernel boot parameters
	7 References
	8 Revision History

