
<>

15.1. Background
Open MPI [GFB+04] is an open source software implementation of The Message Passing Interface (MPI)
standard. Before the architecture and innards of Open MPI will make any sense, a little background on
the MPI standard must be discussed.

The Message Passing Interface (MPI)
The MPI standard is created and maintained by the MPI Forum, an open group consisting of parallel
computing experts from both industry and academia. MPI defines an API that is used for a specific type
of portable, high-performance inter-process communication (IPC): message passing. Specifically, the MPI
document describes the reliable transfer of discrete, typed messages between MPI processes. Although
the definition of an "MPI process" is subject to interpretation on a given platform, it usually corresponds
to the operating system's concept of a process (e.g., a POSIX process). MPI is specifically intended to be
implemented as middleware, meaning that upper-level applications call MPI functions to perform
message passing.

MPI defines a high-level API, meaning that it abstracts away whatever underlying transport is actually
used to pass messages between processes. The idea is that sending-process X can effectively say "take
this array of 1,073 double precision values and send them to process Y". The corresponding receiving-
process Y effectively says "receive an array of 1,073 double precision values from process X." A miracle
occurs, and the array of 1,073 double precision values arrives in Y's waiting buffer.

Notice what is absent in this exchange: there is no concept of a connection occurring, no stream of bytes
to interpret, and no network addresses exchanged. MPI abstracts all of that away, not only to hide such
complexity from the upper-level application, but also to make the application portable across different
environments and underlying message passing transports. Specifically, a correct MPI application is
source-compatible across a wide variety of platforms and network types.

MPI defines not only point-to-point communication (e.g., send and receive), it also defines other
communication patterns, such as collective communication. Collective operations are where multiple
processes are involved in a single communication action. Reliable broadcast, for example, is where one
process has a message at the beginning of the operation, and at the end of the operation, all processes
in a group have the message. MPI also defines other concepts and communications patterns that are not
described here. (As of this writing, the most recent version of the MPI standard is MPI-2.2 [For09]. Draft
versions of the upcoming MPI-3 standard have been published; it may be finalized as early as late 2012.)

Uses of MPI
There are many implementations of the MPI standard that support a wide variety of platforms, operating
systems, and network types. Some implementations are open source, some are closed source. Open
MPI, as its name implies, is one of the open source implementations. Typical MPI transport networks
include (but are not limited to): various protocols over Ethernet (e.g., TCP, iWARP, UDP, raw Ethernet
frames, etc.), shared memory, and InfiniBand.

MPI implementations are typically used in so-called "high-performance computing" (HPC) environments.
MPI essentially provides the IPC for simulation codes, computational algorithms, and other "big number
crunching" types of applications. The input data sets on which these codes operate typically represent
too much computational work for just one server; MPI jobs are spread out across tens, hundreds, or even
thousands of servers, all working in concert to solve one computational problem.

That is, the applications using MPI are both parallel in nature and highly compute-intensive. It is not
unusual for all the processor cores in an MPI job to run at 100% utilization. To be clear, MPI jobs
typically run in dedicated environments where the MPI processes are the only application running on the
machine (in addition to bare-bones operating system functionality, of course).

As such, MPI implementations are typically focused on providing extremely high performance, measured
by metrics such as:

Open MPI
Jeffrey M. Squyres

http://www.mpi-forum.org/

Extremely low latency for short message passing. As an example, a 1-byte message can be sent
from a user-level Linux process on one server, through an InfiniBand switch, and received at the
target user-level Linux process on a different server in a little over 1 microsecond (i.e., 0.000001
second).
Extremely high message network injection rate for short messages. Some vendors have MPI
implementations (paired with specified hardware) that can inject up to 28 million messages per
second into the network.
Quick ramp-up (as a function of message size) to the maximum bandwidth supported by the
underlying transport.
Low resource utilization. All resources used by MPI (e.g., memory, cache, and bus bandwidth)
cannot be used by the application. MPI implementations therefore try to maintain a balance of low
resource utilization while still providing high performance.

Open MPI
The first version of the MPI standard, MPI-1.0, was published in 1994 [Mes93]. MPI-2.0, a set of
additions on top of MPI-1, was completed in 1996 [GGHL+96].

In the first decade after MPI-1 was published, a variety of MPI implementations sprung up. Many were
provided by vendors for their proprietary network interconnects. Many other implementations arose from
the research and academic communities. Such implementations were typically "research-quality,"
meaning that their purpose was to investigate various high-performance networking concepts and provide
proofs-of-concept of their work. However, some were high enough quality that they gained popularity and
a number of users.

Open MPI represents the union of four research/academic, open source MPI implementations: LAM/MPI,
LA/MPI (Los Alamos MPI), and FT-MPI (Fault-Tolerant MPI). The members of the PACX-MPI team
joined the Open MPI group shortly after its inception.

The members of these four development teams decided to collaborate when we had the collective
realization that, aside from minor differences in optimizations and features, our software code bases were
quite similar. Each of the four code bases had their own strengths and weaknesses, but on the whole,
they more-or-less did the same things. So why compete? Why not pool our resources, work together,
and make an even better MPI implementation?

After much discussion, the decision was made to abandon our four existing code bases and take only the
best ideas from the prior projects. This decision was mainly predicated upon the following premises:

Even though many of the underlying algorithms and techniques were similar among the four code
bases, they each had radically different implementation architectures, and would be incredible difficult
(if not impossible) to merge.
Each of the four also had their own (significant) strengths and (significant) weaknesses. Specifically,
there were features and architecture decisions from each of the four that were desirable to carry
forward. Likewise, there were poorly optimized and badly designed code in each of the four that
were desirable to leave behind.
The members of the four developer groups had not worked directly together before. Starting with an
entirely new code base (rather than advancing one of the existing code bases) put all developers on
equal ground.

Thus, Open MPI was born. Its first Subversion commit was on November 22, 2003.

15.2. Architecture
For a variety of reasons (mostly related to either performance or portability), C and C++ were the only
two possibilities for the primary implementation language. C++ was eventually discarded because
different C++ compilers tend to lay out structs/classes in memory according to different optimization
algorithms, leading to different on-the-wire network representations. C was therefore chosen as the
primary implementation language, which influenced several architectural design decisions.

When Open MPI was started, we knew that it would be a large, complex code base:

In 2003, the current version of the MPI standard, MPI-2.0, defined over 300 API functions.
Each of the four prior projects were large in themselves. For example, LAM/MPI had over 1,900 files
of source code, comprising over 300,000 lines of code (including comments and blanks).
We wanted Open MPI to support more features, environments, and networks than all four prior
projects put together.

We therefore spent a good deal of time designing an architecture that focused on three things:

1. Grouping similar functionality together in distinct abstraction layers.
2. Using run-time loadable plugins and run-time parameters to choose between multiple different

implementations of the same behavior.
3. Not allowing abstraction to get in the way of performance.

Abstraction Layer Architecture
Open MPI has three main abstraction layers, shown in Figure 15.1:

Open, Portable Access Layer (OPAL): OPAL is the bottom layer of Open MPI's abstractions. Its

abstractions are focused on individual processes (versus parallel jobs). It provides utility and glue
code such as generic linked lists, string manipulation, debugging controls, and other mundane—yet
necessary—functionality.
OPAL also provides Open MPI's core portability between different operating systems, such as
discovering IP interfaces, sharing memory between processes on the same server, processor and
memory affinity, high-precision timers, etc.

Open MPI Run-Time Environment (ORTE) (pronounced "or-tay"): An MPI implementation must
provide not only the required message passing API, but also an accompanying run-time system to
launch, monitor, and kill parallel jobs. In Open MPI's case, a parallel job is comprised of one or more
processes that may span multiple operating system instances, and are bound together to act as a
single, cohesive unit.
In simple environments with little or no distributed computational support, ORTE uses rsh or ssh
to launch the individual processes in parallel jobs. More advanced, HPC-dedicated environments
typically have schedulers and resource managers for fairly sharing computational resources between
many users. Such environments usually provide specialized APIs to launch and regulate processes
on compute servers. ORTE supports a wide variety of such managed environments, such as (but not
limited to): Torque/PBS Pro, SLURM, Oracle Grid Engine, and LSF.

Open MPI (OMPI): The MPI layer is the highest abstraction layer, and is the only one exposed to
applications. The MPI API is implemented in this layer, as are all the message passing semantics
defined by the MPI standard.
Since portability is a primary requirement, the MPI layer supports a wide variety of network types and
underlying protocols. Some networks are similar in their underlying characteristics and abstractions;
some are not.

Figure 15.1: Abstraction layer architectural view of Open MPI showing its three main layers: OPAL,
ORTE, and OMPI
Although each abstraction is layered on top of the one below it, for performance reasons the ORTE and
OMPI layers can bypass the underlying abstraction layers and interact directly with the operating system
and/or hardware when needed (as depicted in Figure 15.1). For example, the OMPI layer uses OS-
bypass methods to communicate with certain types of NIC hardware to obtain maximum networking
performance.

Each layer is built into a standalone library. The ORTE library depends on the OPAL library; the OMPI
library depends on the ORTE library. Separating the layers into their own libraries has acted as a
wonderful tool for preventing abstraction violations. Specifically, applications will fail to link if one layer
incorrectly attempts to use a symbol in a higher layer. Over the years, this abstraction enforcement
mechanism has saved many developers from inadvertently blurring the lines between the three layers.

Plugin Architecture
Although the initial members of the Open MPI collaboration shared a similar core goal (produce a
portable, high-performance implementation of the MPI standard), our organizational backgrounds,
opinions, and agendas were—and still are—wildly different. We therefore spent a considerable amount of
time designing an architecture that would allow us to be different, even while sharing a common code
base.

Run-time loadable components were a natural choice (a.k.a., dynamic shared objects, or "DSOs", or
"plugins"). Components enforce a common API but place few limitations on the implementation of that
API. Specifically: the same interface behavior can be implemented multiple different ways. Users can then
choose, at run time, which plugin(s) to use. This even allows third parties to independently develop and
distribute their own Open MPI plugins outside of the core Open MPI package. Allowing arbitrary
extensibility is quite a liberating policy, both within the immediate set of Open MPI developers and in the
greater Open MPI community.

This run-time flexibility is a key component of the Open MPI design philosophy and is deeply integrated
throughout the entire architecture. Case in point: the Open MPI v1.5 series includes 155 plugins. To list
just a few examples, there are plugins for different memcpy() implementations, plugins for how to

launch processes on remote servers, and plugins for how to communicate on different types of underlying
networks.

One of the major benefits of using plugins is that multiple groups of developers have freedom to
experiment with alternate implementations without affecting the core of Open MPI. This was a critical
feature, particularly in the early days of the Open MPI project. Sometimes the developers didn't always
know what was the right way to implement something, or sometimes they just disagreed. In both cases,
each party would implement their solution in a component, allowing the rest of the developer community
to easily compare and contrast. Code comparisons can be done without components, of course, but the
component concept helps guarantee that all implementations expose exactly the same external API, and
therefore provide exactly the same required semantics.

As a direct result of the flexibility that it provides, the component concept is utilized heavily throughout all
three layers of Open MPI; in each layer there are many different types of components. Each type of
component is enclosed in a framework. A component belongs to exactly one framework, and a
framework supports exactly one kind of component. Figure 15.2 is a template of Open MPI's architectural
layout; it shows a few of Open MPI's frameworks and some of the components that they contain. (The
rest of Open MPI's frameworks and components are laid out in the same manner.) Open MPI's set of
layers, frameworks, and components is referred to as the Modular Component Architecture (MCA).

Figure 15.2: Framework architectural view of Open MPI, showing just a few of Open MPI's frameworks
and components (i.e., plugins). Each framework contains a base and one or more components. This
structure is replicated in each of the layers shown in Figure 15.1. The sample frameworks listed in this
figure are spread across all three layers: btl and coll are in the OMPI layer, plm is in the ORTE
layer, and timer is in the OPAL layer.
Finally, another major advantage of using frameworks and components is their inherent composability.
With over 40 frameworks in Open MPI v1.5, giving users the ability to mix-n-match different plugins of
different types allows them to create a software stack that is effectively tailored to their individual system.

Plugin Frameworks
Each framework is fully self-contained in its own subdirectory in the Open MPI source code tree. The
name of the subdirectory is the same name as the framework; for example, the memory framework is in
the memory directory. Framework directories contain at least the following three items:

1. Component interface definition: A header file named <framework>.h will be located in the top-level
framework directory (e.g., the Memory framework contains memory/memory.h). This well-known
header file defines the interfaces that each component in the framework must support. This header
includes function pointer typedefs for the interface functions, structs for marshaling these function
pointers, and any other necessary types, attribute fields, macros, declarations, etc.

2. Base code: The base subdirectory contains the glue code that provides the core functionality of the
framework. For example, the memory framework's base directory is memory/base . The base is
typically comprised of logistical grunt work such as finding and opening components at run-time,
common utility functionality that may be utilized by multiple components, etc.

3. Components: All other subdirectories in the framework directory are assumed to be components. Just
like the framework, the names of the components are the same names as their subdirectories (e.g.,
the memory/posix subdirectory contains the POSIX component in the Memory framework).

Similar to how each framework defines the interfaces to which its components must adhere, frameworks
also define other operational aspects, such as how they bootstrap themselves, how they pick components
to use, and how they are shut down. Two common examples of how frameworks differ in their setup are
many-of-many versus one-of-many frameworks, and static versus dynamic frameworks.

Many-of-many frameworks.

Some frameworks have functionality that can be implemented multiple different ways in the same
process. For example, Open MPI's point-to-point network framework will load multiple driver plugins to
allow a single process to send and receive messages on multiple network types.

Such frameworks will typically open all components that they can find and then query each component,
effectively asking, "Do you want to run?" The components determine whether they want to run by

examining the system on which they are running. For example, a point-to-point network component will
look to see if the network type it supports is both available and active on the system. If it is not, the
component will reply "No, I do not want to run", causing the framework to close and unload that
component. If that network type is available, the component will reply "Yes, I want to run", causing the
framework to keep the component open for further use.

One-of-many frameworks.

Other frameworks provide functionality for which it does not make sense to have more than one
implementation available at run-time. For example, the creation of a consistent checkpoint of a parallel
job—meaning that the job is effectively "frozen" and can be arbitrarily resumed later—must be performed
using the same back-end checkpointing system for each process in the job. The plugin that interfaces to
the desired back-end checkpointing system is the only checkpoint plugin that must be loaded in each
process—all others are unnecessary.

Dynamic frameworks.

Most frameworks allow their components to be loaded at run-time via DSOs. This is the most flexible
method of finding and loading components; it allows features such as explicitly not loading certain
components, loading third-party components that were not included in the main-line Open MPI
distribution, etc.

Static frameworks.

Some one-of-many frameworks have additional constraints that force their one-and-only-one component
to be selected at compile time (versus run time). Statically linking one-of-many components allows direct
invocation of its member functions (versus invocation via function pointer), which may be important in
highly performance-sensitive functionality. One example is the memcpy framework, which provides
platform-optimized memcpy() implementations.

Additionally, some frameworks provide functionality that may need to be utilized before Open MPI is fully
initialized. For example, the use of some network stacks require complicated memory registration models,
which, in turn, require replacing the C library's default memory management routines. Since memory
management is intrinsic to an entire process, replacing the default scheme can only be done pre- main .
Therefore, such components must be statically linked into Open MPI processes so that they can be
available for pre- main hooks, long before MPI has even been initialized.

Plugin Components
Open MPI plugins are divided into two parts: a component struct and a module struct. The component
struct and the functions to which it refers are typically collectively referred to as "the component."
Similarly, "the module" collectively refers to the module struct and its functions. The division is somewhat
analogous to C++ classes and objects. There is only one component per process; it describes the overall
plugin with some fields that are common to all components (regardless of framework). If the component
elects to run, it is used to generate one or more modules, which typically perform the bulk of the
functionality required by the framework.

Throughout the next few sections, we'll build up the structures necessary for the TCP component in the
BTL (byte transfer layer) framework. The BTL framework effects point-to-point message transfers; the
TCP component, not surprisingly, uses TCP as its underlying transport for message passing.

Component struct.

Regardless of framework, each component contains a well-known, statically allocated and initialized
component struct. The struct must be named according to the template
mca_<framework>_<component>_component . For example, the TCP network driver component's struct

in the BTL framework is named mca_btl_tcp_component .

Having templated component symbols both guarantees that there will be no name collisions between
components, and allows the MCA core to find any arbitrary component struct via dlsym(2) (or the
appropriate equivalent in each supported operating system).

The base component struct contains some logistical information, such as the component's formal name,
version, framework version adherence, etc. This data is used for debugging purposes, inventory listing,
and run-time compliance and compatibility checking.

struct mca_base_component_2_0_0_t {

 /* Component struct version number */

 int mca_major_version, mca_minor_version, mca_release_version;

 /* The string name of the framework that this component belongs to,

 and the framework's API version that this component adheres to */

 char mca_type_name[MCA_BASE_MAX_TYPE_NAME_LEN + 1];

 int mca_type_major_version, mca_type_minor_version,

 mca_type_release_version;

 /* This component's name and version number */

 char mca_component_name[MCA_BASE_MAX_COMPONENT_NAME_LEN + 1];

 int mca_component_major_version, mca_component_minor_version,

 mca_component_release_version;

 /* Function pointers */

 mca_base_open_component_1_0_0_fn_t mca_open_component;

 mca_base_close_component_1_0_0_fn_t mca_close_component;

 mca_base_query_component_2_0_0_fn_t mca_query_component;

 mca_base_register_component_params_2_0_0_fn_t

 mca_register_component_params;

};

The base component struct is the core of the TCP BTL component; it contains the following function
pointers:

Open. The open call is the initial query function invoked on a component. It allows a component to
initialize itself, look around the system where it is running, and determine whether it wants to run. If a
component can always be run, it can provide a NULL open function pointer.
The TCP BTL component open function mainly initializes some data structures and ensures that
invalid parameters were not set by the user.

Close. When a framework decides that a component is no longer needed, it calls the close function
to allow the component to release any resources that it has allocated. The close function is invoked
on all remaining components when processes are shutting down. However, close can also be
invoked on components that are rejected at run time so that they can be closed and ignored for the
duration of the process.
The TCP BTL component close function closes listening sockets and frees resources (e.g., receiving
buffers).

Query. This call is a generalized "Do you want to run?" function. Not all frameworks utilize this
specific call—some need more specialized query functions.
The BTL framework does not use the generic query function (it defines its own; see below), so the
TCP BTL does not fill it in.

Parameter registration. This function is typically the first function called on a component. It allows the
component to register any relevant run-time, user-settable parameters. Run-time parameters are
discussed further below.
The TCP BTL component register function creates a variety of user-settable run-time parameters,
such as one which allows the user to specify which IP interface(s) to use.

The component structure can also be extended on a per-framework and/or per-component basis.
Frameworks typically create a new component struct with the component base struct as the first member.
This nesting allows frameworks to add their own attributes and function pointers. For example, a
framework that needs a more specialized query function (as compared to the query function provided on
the basic component) can add a function pointer in its framework-specific component struct.

The MPI btl framework, which provides point-to-point MPI messaging functionality, uses this
technique.

struct mca_btl_base_component_2_0_0_t {

 /* Base component struct */

 mca_base_component_t btl_version;

 /* Base component data block */

 mca_base_component_data_t btl_data;

 /* btl-framework specific query functions */

 mca_btl_base_component_init_fn_t btl_init;

 mca_btl_base_component_progress_fn_t btl_progress;

};

As an example of the TCP BTL framework query functions, the TCP BTL component btl_init function
does several things:

Creates a listening socket for each "up" IPv4 and IPv6 interface.
Creates a module for each "up" IP interface.
Registers the tuple (IP address, port) for each "up" IP interface with a central repository so
that other MPI processes know how to contact it.

Similarly, plugins can extend the framework-specific component struct with their own members. The
tcp component in the btl framework does this; it caches many data members in its component

struct.

struct mca_btl_tcp_component_t {

 /* btl framework-specific component struct */

 mca_btl_base_component_2_0_0_t super;

 /* Some of the TCP BTL component's specific data members */

 /* Number of TCP interfaces on this server */

 uint32_t tcp_addr_count;

 /* IPv4 listening socket descriptor */

 int tcp_listen_sd;

 /* ...and many more not shown here */

};

This struct-nesting technique is effectively a simple emulation of C++ single inheritance: a pointer to an
instance of a struct mca_btl_tcp_component_t can be cast to any of the three types such that it
can be used by an abstraction layer than does not understand the "derived" types.

That being said, casting is generally frowned upon in Open MPI because it can lead to incredibly subtle,
difficult-to-find bugs. An exception was made for this C++-emulation technique because it has well-
defined behaviors and helps enforce abstraction barriers.

Module struct.

Module structs are individually defined by each framework; there is little commonality between them.
Depending on the framework, components generate one or more module struct instances to indicate that
they want to be used.

For example, in the BTL framework, one module usually corresponds to a single network device. If an
MPI process is running on a Linux server with three "up" Ethernet devices, the TCP BTL component will
generate three TCP BTL modules; one corresponding to each Linux Ethernet device. Each module will
then be wholly responsible for all sending and receiving to and from its Ethernet device.

Tying it all together.

Figure 15.3 shows the nesting of the structures in the TCP BTL component, and how it generates one
module for each of the three Ethernet devices.

Figure 15.3: The left side shows the nesting of structures in the TCP BTL component. The right side
shows how the component generates one module struct for each "up" Ethernet interface.
Composing BTL modules this way allows the upper-layer MPI progression engine both to treat all
network devices equally, and to perform user-level channel bonding.

For example, consider sending a large message across the three-device configuration described above.
Assume that each of the three Ethernet devices can be used to reach the intended receiver (reachability
is determined by TCP networks and netmasks, and some well-defined heuristics). In this case, the
sender will split the large message into multiple fragments. Each fragment will be assigned—in a round-
robin fashion—to one of the TCP BTL modules (each module will therefore be assigned roughly one third
of the fragments). Each module then sends its fragments over its corresponding Ethernet device.

This may seem like a complex scheme, but it is surprisingly effective. By pipelining the sends of a large
message across the multiple TCP BTL modules, typical HPC environments (e.g., where each Ethernet
device is on a separate PCI bus) can sustain nearly maximum bandwidth speeds across multiple
Ethernet devices.

Run-Time Parameters
Developers commonly make decisions when writing code, such as:

Should I use algorithm A or algorithm B?
How large of a buffer should I preallocate?
How long should the timeout be?
At what message size should I change network protocols?
…and so on.

Users tend to assume that the developers will answer such questions in a way that is generally suitable
for most types of systems. However, the HPC community is full of scientist and engineer power users
who want to aggressively tweak their hardware and software stacks to eke out every possible compute
cycle. Although these users typically do not want to tinker with the actual code of their MPI
implementation, they do want to tinker by selecting different internal algorithms, choosing different

resource consumption patterns, or forcing specific network protocols in different circumstances.

Therefore, the MCA parameter system was included when designing Open MPI; the system is a flexible
mechanism that allows users to change internal Open MPI parameter values at run time. Specifically,
developers register string and integer MCA parameters throughout the Open MPI code base, along with
an associated default value and descriptive string defining what the parameter is and how it is used. The
general rule of thumb is that rather than hard-coding constants, developers use run-time-settable MCA
parameters, thereby allowing power users to tweak run-time behavior.

There are a number of MCA parameters in the base code of the three abstraction layers, but the bulk of
Open MPI's MCA parameters are located in individual components. For example, the TCL BTL plugin has
a parameter that specifies whether only TCPv4 interfaces, only TCPv6 interfaces, or both types of
interfaces should be used. Alternatively, another TCP BTL parameter can be set to specify exactly which
Ethernet devices to use.

Users can discover what parameters are available via a user-level command line tool (ompi_info).
Parameter values can be set in multiple ways: on the command line, via environment variables, via the
Windows registry, or in system- or user-level INI-style files.

The MCA parameter system complements the idea of run-time plugin selection flexibility, and has proved
to be quite valuable to users. Although Open MPI developers try hard to choose reasonable defaults for
a wide variety of situations, every HPC environment is different. There are inevitably environments where
Open MPI's default parameter values will be unsuitable—and possibly even detrimental to performance.
The MCA parameter system allows users to be proactive and tweak Open MPI's behavior for their
environment. Not only does this alleviate many upstream requests for changes and/or bug reports, it
allows users to experiment with the parameter space to find the best configuration for their specific
system.

15.3. Lessons Learned
With such a varied group of core Open MPI members, it is inevitable that we would each learn
something, and that as a group, we would learn many things. The following list describes just a few of
these lessons.

Performance
Message-passing performance and resource utilization are the king and queen of high-performance
computing. Open MPI was specifically designed in such a way that it could operate at the very bleeding
edge of high performance: incredibly low latencies for sending short messages, extremely high short
message injection rates on supported networks, fast ramp-ups to maximum bandwidth for large
messages, etc. Abstraction is good (for many reasons), but it must be designed with care so that it does
not get in the way of performance. Or, put differently: carefully choose abstractions that lend themselves
to shallow, performant call stacks (versus deep, feature-rich API call stacks).

That being said, we also had to accept that in some cases, abstraction—not architecture—must be
thrown out the window. Case in point: Open MPI has hand-coded assembly for some of its most
performance-critical operations, such as shared memory locking and atomic operations.

It is worth noting that Figures 15.1 and 15.2 show two different architectural views of Open MPI. They do
not represent the run-time call stacks or calling invocation layering for the high performance code
sections.

Lesson learned:

It is acceptable (albeit undesirable) and unfortunately sometimes necessary to have gross, complex code
in the name of performance (e.g., the aforementioned assembly code). However, it is always preferable
to spend time trying to figure out how to have good abstractions to discretize and hide complexity
whenever possible. A few weeks of design can save literally hundreds or thousands of developer-hours
of maintenance on tangled, subtle, spaghetti code.

Standing on the Shoulders of Giants
We actively tried to avoid re-inventing code in Open MPI that someone else has already written (when
such code is compatible with Open MPI's BSD licensing). Specifically, we have no compunctions about
either directly re-using or interfacing to someone else's code.

There is no place for the "not invented here" religion when trying to solve highly complex engineering
problems; it only makes good logistical sense to re-use external code whenever possible. Such re-use
frees developers to focus on the problems unique to Open MPI; there is no sense re-solving a problem
that someone else has solved already.

A good example of this kind of code re-use is the GNU Libtool Libltdl package. Libltdl is a small library
that provides a portable API for opening DSOs and finding symbols in them. Libltdl is supported on a
wide variety of operating systems and environments, including Microsoft Windows.

Open MPI could have provided this functionality itself—but why? Libltdl is a fine piece of software, is
actively maintained, is compatible with Open MPI's license, and provides exactly the functionality that
was needed. Given these points, there is no realistic gain for Open MPI developers to re-write this
functionality.

This work is made available under the Creative Commons Attribution 3.0 Unported license. Please see
the full description of the license for details.

Lesson learned:

When a suitable solution exists elsewhere, do not hesitate to integrate it and stop wasting time trying to
re-invent it.

Optimize for the Common Case
Another guiding architectural principle has been to optimize for the common case. For example, emphasis
is placed on splitting many operations into two phases: setup and repeated action. The assumption is
that setup may be expensive (meaning: slow). So do it once and get it over with. Optimize for the much
more common case: repeated operation.

For example, malloc() can be slow, especially if pages need to be allocated from the operating
system. So instead of allocating just enough bytes for a single incoming network message, allocate
enough space for a bunch of incoming messages, divide the result up into individual message buffers,
and set up a freelist to maintain them. In this way, the first request for a message buffer may be slow,
but successive requests will be much faster because they will just be de-queues from a freelist.

Lesson learned:

Split common operations into (at least) two phases: setup and repeated action. Not only will the code
perform better, it may be easier to maintain over time because the distinct actions are separated.

Miscellaneous
There are too many more lessons learned to describe in detail here; the following are a few more
lessons that can be summed up briefly:

We were fortunate to draw upon 15+ years of HPC research and make designs that have (mostly)
successfully carried us for more than eight years. When embarking on a new software project, look
to the past. Be sure to understand what has already been done, why it was done, and what its
strengths and weaknesses were.
The concept of components—allowing multiple different implementations of the same functionality—
has saved us many times, both technically and politically. Plugins are good.
Similarly, we continually add and remove frameworks as necessary. When developers start arguing
about the "right" way to implement a new feature, add a framework that fronts components that
implement that feature. Or when newer ideas come along that obsolete older frameworks, don't
hesitate to delete such kruft.

Conclusion
If we had to list the three most important things that we've learned from the Open MPI project, I think
they would be as follows:

One size does not fit all (users). The run-time plugin and companion MCA parameter system allow
users flexibility that is necessary in the world of portable software. Complex software systems cannot
(always) magically adapt to a given system; providing user-level controls allows a human to figure
out—and override—when the software behaves sub-optimally.
Differences are good. Developer disagreements are good. Embrace challenges to the status quo; do
not get complacent. A plucky grad student saying "Hey, check this out…" can lead to the basis of a
whole new feature or a major evolution of the product.
Although outside the scope of this book, people and community matter. A lot.

Back to top
Back to The Architecture of Open Source Applications.

http://creativecommons.org/licenses/by/3.0/legalcode
http://www.aosabook.org/en/intro1.html#license

