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ABSTRACT

We study the impact of algorithmic trading in the foreign exchange market using a long time series

of high-frequency data that identify computer-generated trading activity. We find that algorithmic

trading causes an improvement in two measures of price efficiency: the frequency of triangular

arbitrage opportunities and the autocorrelation of high-frequency returns. We show that the re-

duction in arbitrage opportunities is associated primarily with computers taking liquidity. This

result is consistent with the view that AT improves informational efficiency by speeding up price

discovery, but that it may also impose higher adverse selection costs on slower traders. In contrast,

the reduction in the autocorrelation of returns owes more to the algorithmic provision of liquidity.

We also find evidence consistent with the strategies of algorithmic traders being highly correlated.

This correlation, however, does not appear to cause a degradation in market quality, at least not

on average.
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The use of algorithmic trading (AT), where computers monitor markets and manage the trading pro-

cess at high frequency, has become common in major financial markets in recent years, beginning in

the U.S. equity market in the 1990s. Since the introduction of AT, there has been widespread inter-

est in understanding the potential impact it may have on market dynamics, particularly recently

following several trading disturbances in the equity market blamed on computer-driven trading.

While some have highlighted the potential for more efficient price discovery, others have expressed

concern that it may lead to higher adverse selection costs and excess volatility.1 In this paper,

we analyze the effect that algorithmic (“computer”) trades and non-algorithmic (“human”) trades

have on the informational efficiency of foreign exchange prices. This is the first formal empirical

study on the subject in the foreign exchange market.

We rely on a novel data set consisting of several years (September 2003 to December 2007) of

minute-by-minute trading data from Electronic Broking Services (EBS) in three currency pairs:

euro-dollar, dollar-yen, and euro-yen. The data represent a large share of spot interdealer transac-

tions across the globe in these exchange rates, with EBS widely considered to be the primary site

of price discovery in these currency pairs during our sample period. A crucial feature of the data is

that the volume and direction of human and computer trades are explicitly identified, allowing us

to measure their respective impacts at high frequency. Another useful feature of the data is that

they span the introduction and rapid growth of AT in an important market where it had not been

previously allowed.

The theoretical literature highlights two main differences between computer and human traders.

First, computers are faster than humans, both in processing information and in acting on that

information. Second, there is the potential for higher correlation in computers’ trading actions

than in those of humans, as computers need to be pre-programmed and may react similarly to a

given signal. There is no agreement, however, on the impact that these features of AT may have

on the price discovery process.

Biais, Foucault, and Moinas (2011) and Martinez and Roşu (2011) argue that the speed advan-

tage of algorithmic traders over humans – specifically, their ability to react more quickly to public

information – should have a positive effect on the informativeness of prices. In their theoretical

models, algorithmic traders are better informed than humans and use market orders to exploit their

information. Given these assumptions, the authors show that the presence of algorithmic traders

makes asset prices more informationally efficient, but, importantly, their trades are a source of

adverse selection for those who provide liquidity. The authors argue that algorithmic traders con-

tribute to price discovery because, once price inefficiencies arise, AT quickly makes them disappear

by trading on posted quotes. Similarly, in the context of traders who implement “convergence

trade” strategies (i.e., strategies taking long-short positions in assets with identical underlying cash

flows that temporarily trade at different prices), Oehmke (2009) and Kondor (2009) argue that the

higher the number of traders who implement those strategies, the more efficient prices will be. One

could also argue, as does Hoffman (2013), that better-informed algorithmic traders who specialize

in providing liquidity make prices more informationally efficient by posting quotes that reflect new
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information quickly, thus preventing arbitrage opportunities from occurring in the first place.

In contrast to these mostly positive views on AT and price efficiency, Foucault, Hombert and

Roşu (2013) argue that, in a world with no asymmetric information, the speed advantage of al-

gorithmic traders would not increase the informativeness of prices but would still increase adverse

selection costs. In their survey article, Biais and Woolley (2011) point out that the potential com-

monality of trading actions amongst computers may have a negative effect on the informativeness

of prices. Khandani and Lo (2007, 2011), who analyze the large losses that occurred for many

quantitative long-short equity strategies at the beginning of August 2007, highlight the possible

adverse effects on the market of such commonality in behavior across market participants (algo-

rithmic or not) and provide empirical support for this concern.2 Kozhan and Tham (2012), in

contrast to Oehmke’s (2009) and Kondor’s (2009) more standard notion that competition improves

price efficiency, argue that computers entering the same trade at the same time to exploit an ar-

bitrage opportunity could cause a crowding effect that pushes prices away from their fundamental

values. Stein (2009) also highlights this potential crowding effect in the context of hedge funds

simultaneously implementing “convergence trade” strategies.

Guided by this literature, our paper studies the impact of algorithmic trading on the price

discovery process in the foreign exchange market. Besides giving us a measure of the relative par-

ticipation of computers and humans in trades, our data also allows us to study more precisely how

AT affects price discovery. In particular, we study separately the impact of trades where comput-

ers are providing liquidity to the market and trades where computers are taking liquidity from the

market, addressing one of the questions posed in the literature. We also look at how the share of the

market’s order flow generated by algorithmic traders impacts price discovery. Finally, to address

another concern highlighted in the literature— namely, that the trading strategies used by com-

puters are more correlated than those used by humans, potentially creating excessive volatility—

we propose a novel way of indirectly inferring the correlation among computer trading strategies

from our trading data. The primary idea behind the measure we design is that traders who follow

similar trading strategies trade less with each other than those who follow less correlated strategies.

We first use our data to study the impact of AT on the frequency of triangular arbitrage

opportunities amongst the euro-dollar, dollar-yen, and euro-yen currency pairs. These arbitrage

opportunities are a clear example of prices not being informationally efficient in the foreign exchange

market. We document that the introduction and growth of algorithmic trading coincided with

a substantial reduction in triangular arbitrage opportunities. We then continue with a formal

analysis of whether AT activity causes a reduction in triangular arbitrage opportunities, or whether

the relationship is merely coincidental, possibly due to a concurrent increase in trading volume or

decrease in price volatility. To that end, we formulate a high-frequency vector autoregression (VAR)

specification that models the interaction between triangular arbitrage opportunities and AT (the

overall share of algorithmic trading and the various facets of algorithmic activity discussed above).

In the VAR specification, we control for time trends, trading volume, and exchange rate return

volatility in each currency pair. We estimate both a reduced-form of the VAR and a structural
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VAR that uses the heteroskedasticity identification approach developed by Rigobon (2003), and

Rigobon and Sack (2003, 2004).3 In contrast to the reduced-form Granger causality tests, which

essentially measure predictive relationships, the structural VAR estimation allows for identification

of the contemporaneous causal impact of AT on triangular arbitrage opportunities.

Both the reduced-form and structural-form VAR estimations show that AT activity causes a

reduction in the number of triangular arbitrage opportunities. In addition, we find that algorithmic

traders reduce arbitrage opportunities more by acting on the quotes posted by non-algorithmic

traders than by posting quotes that are then traded upon. This result is consistent with the

view that AT improves informational efficiency by speeding up price discovery, but it increases the

adverse selection costs to slower traders, as suggested by the theoretical models of Biais, Foucault,

and Moinas (2011) and Martinez and Roşu (2011). We also find that a higher degree of correlation

amongst AT strategies reduces the number of arbitrage opportunities over our sample period. Thus,

contrary to Kozhan and Tham (2012), in this particular example commonality in trading strategies

appears to be beneficial to the efficiency of the price discovery process.

The impact of AT on the frequency of triangular arbitrage opportunities is, however, only one

facet of how computers may affect the price discovery process. More generally, we investigate

whether algorithmic trading contributes to the temporary deviation of asset prices from their fun-

damental values, resulting in excess volatility, particularly at high frequencies. To investigate the

effect of AT on this aspect of informational efficiency, we study the autocorrelation of high-frequency

returns in our three exchange rates.4 We again estimate both a reduced-form and a structural VAR

and find that, on average, an increase in AT participation in the market causes a reduction in the

degree of autocorrelation of high-frequency returns. Interestingly, we find that the improvement

in the informational efficiency of prices now seems to come predominantly from an increase in the

trading activity of algorithmic traders when they are providing liquidity— that is, posting quotes

that are hit— not from an increase in the trading activity of algorithmic traders who hit posted

quotes. In other words, in this case, in contrast to the study of triangular arbitrage, algorithmic

traders appear to increase the informational efficiency of prices by posting quotes that reflect new

information more quickly, consistent with Hoffman (2013).

Also in contrast to the triangular arbitrage case, we do not find a statistically significant as-

sociation between a higher correlation of algorithmic traders’ actions and high-frequency return

autocorrelation. The difference between the autocorrelation results and those for triangular arbi-

trage may offer some support for one of the conclusions of Foucault (2011), namely that the effect

of AT on the informativeness of prices may ultimately depend on the type of strategies used by

algorithmic traders rather than on the presence of AT per se.

The paper proceeds as follows. In Section I, we briefly discuss the related empirical literature on

the effect of algorithmic trading on market quality. Section II introduces the high-frequency data

used in this study, including a short description of the structure of the market and an overview

of the growth of AT in the foreign exchange market over time. In Section III, we present our

measures of the various aspects of AT, including whether actions by computer traders appear to
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be more correlated than those of human traders. In Sections IV and V, we test whether there

is evidence that AT activity has a causal impact on the informativeness of prices, looking first

at triangular arbitrage and then at high-frequency return autocorrelation. Finally, Section VI

concludes. Additional clarifying and technical material is found in Appendices A to C.

I. Related Empirical Literature

Our study contributes to the new empirical literature on the impact of AT on various measures

of market quality, with the vast majority of the studies focusing on equity markets. A number

of these studies use proxies to measure the share of AT in the market. Hendershott, Jones, and

Menkveld (2011), in one of the earliest studies, use the flow of electronic messages on the NYSE

after the implementation of Autoquote as a proxy for AT. They find that AT improves standard

measures of liquidity (the quoted and effective bid-ask spreads). They attribute the decline in

spreads to a decline in adverse selection — a decrease in the amount of price discovery associated

with trading activity and an increase in the amount of price discovery that occurs without trading.

The authors’ interpretation of the empirical evidence is that computers enhance the informativeness

of quotes by more quickly resetting their quotes after news arrivals. Boehmer, Fong, and Wu (2012)

use an identification strategy that is similar to that of Hendershott, Jones, and Menkveld (2011).

However, rather than using the implementation of Autoquote, they use the first availability of co-

location facilities around the world to identify the effect that AT activity has on liquidity, short-term

volatility, and the informational efficiency of stock prices. Hendershott, and Riordan (2012) use one

month of AT data in the 30 DAX stocks traded on the Deutsche Boerse and find that algorithmic

traders improve market liquidity by providing liquidity when it is scarce and consuming it when it

is plentiful.

Some recent studies focus more specifically on the impact of high-frequency trading (HFT),

generally viewed as a subset of algorithmic trading (not all algorithmic traders trade at extremely

high frequency). For instance, Brogaard, Hendershott, and Riordan (2012) use NASDAQ data from

2008 and 2009 and find that high-frequency traders (HFTs) facilitate price efficiency by trading in

the direction of permanent price changes during macroeconomic news announcement times and at

other times. Using data similar to those of Brogaard, Hendershott, and Riordan (2012), Hirschey

(2011) finds that aggressive purchases (sales) by HFTs predict future aggressive purchases (sales)

by non-HFTs. Both of these studies suggest that HFTs are the “informed” traders. Hasbrouck and

Saar (2012) develop an algorithm to proxy for overall HFT activity and conclude that HFT activity

reduces short-term volatility and bid-ask spreads, and increases displayed depth in the limit order

book. Menkveld (2011) analyzes the trading strategy of one large HFT in the Chi-X market and

concludes that the HFT behaves like a fast version of the classic market maker. Kirilenko et al.

(2011) study the role HFTs played during the May 6, 2010 “flash crash” and conclude that HFTs

did not trigger the crash, but that they contributed to the crash by pulling out of the market as

market conditions became challenging.
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Our work complements these studies along several dimensions. First, we study a different asset

class, foreign exchange, which is traded in a very large global market.5 Second, we have a long data

set that clearly identifies computer-generated trades without appealing to proxies, and that spans

the introduction of AT in the market. Third, the data also permits us to differentiate the effects of

certain features of AT, separating, for instance, trades initiated by a computer and trades initiated

by a human, which in turn allows us to address recently-developed theories on how AT impacts

price discovery. Fourth, we have data on three interrelated exchange rates, and thus can analyze

the impact of computer trades on the frequency of a very obvious type of arbitrage opportunity.

Finally, we study the correlation of AT strategies and its impact on the informational efficiency of

prices, also relating our findings to the recent theoretical literature.

II. Data Description

A. Market Structure

Over our 2003 to 2007 sample period, two electronic platforms processed a majority of global

interdealer spot trading in the major currency pairs, one offered by Reuters and one offered by

Electronic Broking Services (EBS). Both of these trading platforms are electronic limit order books.

Importantly, trading in each major currency pair is highly concentrated on only one of the two

systems. Of the most traded currency pairs (exchange rates), the top two, euro-dollar and dollar-

yen, trade primarily on EBS, while the third, sterling-dollar, trades primarily on Reuters. As a

result, price discovery for the spot euro-dollar, for instance, occurs on the EBS system, and dealers

across the globe base their spot and derivative quotes on that price. EBS controls the network and

each of the terminals on which the trading is conducted. Traders can enter trading instructions

manually, using an EBS keyboard, or, upon approval, via a computer directly interfacing with the

system. The type of trader (human or computer) behind each trading instruction is recorded by

EBS, allowing for our study.

The EBS system is an interdealer system accessible to foreign exchange dealing banks and, under

the auspices of dealing banks (via prime brokerage arrangements), to hedge funds and commodity

trading advisors (CTAs). As it is a “wholesale” trading system, the minimum trade size over our

sample period is one million of the “base” currency, and trade sizes are only allowed in multiples

of millions of the base currency. We analyze data in the three most traded currency pairs on EBS,

euro-dollar, dollar-yen, and euro-yen.6

B. Quote and Transaction Data

Our data consist of both quote data and transactions data. The quote data, at the one-second

frequency, consist of the highest bid quote and the lowest ask quote on the EBS system in our

three currency pairs. The quote data are available from 1997 through 2007. All the quotes are

executable and therefore truly represent the market price at that instant. From these data, we

construct mid-quote series from which we compute exchange rate returns at various frequencies.
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The transactions data, available from October 2003 through December 2007, are aggregated by

EBS at the one-minute frequency. Throughout the subsequent analysis, we focus on data sampled

between 3am and 11am New York time, which represent the most active trading hours of the day

(see Berger et al. (2008) for further discussion on trading activity on the EBS system). That is,

each day in our sample is made up of the intradaily observations between 3am and 11am New York

time.7

The transaction data provide detailed information on the volume and direction of trades that

can be attributed to computers and humans in each currency pair. Specifically, each minute we

observe trading volume and order flow for each of the four possible pairs of human and computer

makers and takers: human maker/human taker (HH), computer maker/human taker (CH), human

maker/computer taker (HC), and computer maker/computer taker (CC).8 Order flow is defined,

as is common, as the net of buyer-initiated trading volume minus seller-initiated trading volume,

with traders buying or selling the base currency. We denote the trading volume and order flow

attributable to any maker taker pair as V ol (·) and OF (·), respectively.

Figure 1 shows for each currency pair over the 2003 to 2007 period, the percent of trading

volume where at least one of the two counterparties is an algorithmic trader. We label this variable

V AT = 100 × V ol(CH+HC+CC)
V ol(HH+CH+HC+CC) . The fraction of trading volume involving AT for at least one

of the counterparties grows from zero in 2003 to near 60% in 2007 for euro-dollar and dollar-yen

trading, and to nearly 80% for euro-yen trading.

[Figure 1 here]

Figure 2 shows the evolution over time of the four types of trades, V ol(HH), V ol(CH),

V ol(HC), and V ol(CC), as fractions of total volume. By the end of 2007, in the euro-dollar

and dollar-yen markets, human to human trades (the solid lines) account for slightly less than half

of the volume, and computer to computer trades (the dotted lines) for about 10% to 15%. In these

two currency pairs, V ol(CH) is often close to V ol(HC), that is, computers take prices posted by hu-

mans (the dashed lines) about as often as humans take prices posted by market-making computers

(the dotted-dashed lines). The story is different for the cross-rate, the euro-yen currency pair. By

the end of 2007, there are more computer-to-computer trades than human-to-human trades. But

the most common type of trade in euro-yen is computers trading on prices posted by humans. We

believe this reflects computers taking advantage of short-lived triangular arbitrage opportunities,

where prices set in the euro-dollar and dollar-yen markets, the primary sites of price discovery, are

very briefly out of line with the euro-yen cross-rate. Detecting and trading on triangular arbitrage

opportunities is widely thought to have been one of the first strategies implemented by algorithmic

traders in the foreign exchange market, which is consistent with the more rapid growth in algo-

rithmic activity in the euro-yen market documented in Figure 1. We discuss the evolution of the

frequency of triangular arbitrage opportunities in Section IV of the paper.

[Figure 2 here]
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III. Measuring Various Features of Algorithmic Trading

A. Inferring The Correlation of Algorithmic Strategies from Trade Data: The R-Measure

There is little solid information, and certainly no data, about the precise mix of strategies

used by algorithmic traders in the foreign exchange market, as traders and EBS keep what they

know confidential. From conversations with market participants, however, we believe that over

our sample period, about half of the AT volume on EBS comes from traditional foreign exchange

dealing banks, with the other half coming from other financial firms, including hedge funds and

CTAs. Those other financial firms, which access EBS under prime-brokerage arrangements, can

only trade algorithmically over our sample period. Some of the banks’ computer trading in our

sample is related to activity on their own customer-to-dealer platforms, to automated hedging

activity, and to the optimal execution of large orders. But a sizable fraction (perhaps almost a

half) is believed to be proprietary trading using a mix of strategies similar to what hedge funds and

CTAs use. These strategies include various types of high-frequency arbitrage, including some across

different asset markets, a number of lower-frequency statistical arbitrage strategies (including carry

trades), and strategies designed to automatically react to news and data releases (still fairly rare

in the foreign exchange market as of 2007). Overall, market participants believe that the main

difference between the mix of algorithmic strategies used in the foreign exchange market and the

mix used in the equity market is that optimal execution algorithms are less prevalent in foreign

exchange than in equity.

As mentioned previously, a concern expressed by the literature about algorithmic traders is that

their strategies, which have to be pre-programmed, may be less diverse and hence more correlated

than those of humans.9 Computers could then react in the same fashion, at the same time, to the

same information, creating excess volatility in the market, particularly at high frequency. While we

do not observe the trading strategies of our market participants, we can derive some information

about the correlation of algorithmic strategies from the trading activity of computers and humans.

The idea is as follows. Traders who follow similar trading strategies and therefore send similar

trading instructions at the same time will trade less with each other than those who follow less

correlated strategies. Therefore, the extent to which computers trade (or do not trade) with each

other should contain information about how correlated their algorithmic strategies are.

To extract this information, we first consider a simple benchmark model that assumes random

and independent matching of traders. This is a reasonable assumption given the lack of discrimi-

nation between manual traders and algorithmic traders in the EBS matching process, that is, EBS

does not differentiate in any way between humans and computers when matching buy and sell

orders in its electronic order book. Traders also do not know the identity and type of trader they

have been matched with until after the full trade is complete. The model allows us to determine the

theoretical probabilities of the four possible types of trades: human maker/human taker, computer

maker/human taker, human maker/computer taker, and computer maker/computer taker. We then

compare these theoretical probabilities to those observed in the actual trading data. The bench-
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mark model is fully described in Appendix B. Below we outline the main concepts and empirical

results.

Under our random and independent matching assumption, computers and humans, both of

which are indifferent ex-ante between making and taking, trade with each other in proportion to

their relative presence in the market. For instance, in a world with more human trading activity

than computer trading activity (which is the case in the vast majority of our sample), we should

observe that computers take more liquidity from humans than from other computers. That is,

the probability of observing human maker/computer taker trades, Prob(HC), should be larger

than the probability of observing computer maker/computer taker trades, Prob(CC). We label

the ratio of the two, Prob(HC)/Prob(CC), the computer taker ratio, RC. Similarly, under our

assumption, in such a world one would expect humans to take more liquidity from other humans

than from computers, that is, Prob(HH) should be larger than Prob(CH). We label this ratio,

Prob(HH)/Prob(CH), the human taker ratio, RH. In summary, in our data with more human

trading activity than computer trading activity, one would expect to find that RC > 1 and RH > 1.

Importantly, however, irrespective of the relative prevalence of human and computer trading

activity, the benchmark model predicts that the ratio of these two ratios, the computer taker ratio

divided by the human taker ratio, should be equal to one. That is, under random matching,

the model predicts R = RC/RH = 1, with computers taking liquidity from humans in the same

proportion that humans take liquidity from other humans.

The R-measure described above implicitly takes into account the commonality of trading di-

rection to the extent that the matching process of the electronic limit order book takes it into

account. For instance, two computers sending instructions to buy the euro at the same time will

obviously not be matched by the electronic order book. In contrast, if about half of the algorithmic

traders are buying and about half are selling, algorithmic traders will have a high probability of

being matched with each other. Still, the buying and selling behavior of computers is an additional

variable our data allows us to condition on when we infer whether computers’ trading actions are

highly correlated.10 Hence, in Appendix B, we also describe in detail a model that explicitly takes

the trading direction of computers into account. Using notation similar to the model without trad-

ing direction, this model yields the ratio of the buy ratios, RB = RCB/RHB, and the ratio of the

sell ratios, RS = RCS/RHS . Again, under random matching, the benchmark model predicts that

these ratios are both equal to one.

Based on the model described above, we calculate R, RS , and RB for the three currency pairs

in our 2003 to 2007 sample period at one-minute, five-minute, and daily frequencies. Specifically,

the realized values of RH and RC are given by R̂H = V ol(HH)
V ol(CH) and R̂C = V ol(HC)

V ol(CC) , where, for

instance, V ol (HC) is either the one-minute, five-minute or daily trading volume between human

makers and computer takers, following the notation described in Section II. Similarly, we define

R̂HS =
V ol(HHS)
V ol(CHS)

, R̂HB =
V ol(HHB)
V ol(CHB)

, R̂CS =
V ol(HCS)
V ol(CCS)

, and R̂CB =
V ol(HCB)
V ol(CCB)

, where V ol
(
HHB

)
is the buy volume between human makers and human takers (i.e., the trading volume that involves

buying of the base currency by the taker), V ol
(
HHS

)
is the sell volume between human makers
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and human takers, and so forth.

Table I shows the means of the natural log of the one-minute, five-minute, and daily ratios

of ratios, ln R̂ = ln( R̂C
R̂H

), ln R̂S = ln( R̂C
S

R̂HS
), and ln R̂B = ln( R̂C

B

R̂HB
), calculated for each currency

pair in our data.11 In contrast to the benchmark predictions that R ≡ 1, RB ≡ 1 and RS ≡ 1, or

equivalently, that lnR ≡ 0, lnRB ≡ 0 and lnRS ≡ 0, we find that, for all three currency pairs, at all

frequencies, ln R̂ , ln R̂B and ln R̂S are substantially and significantly greater than zero. The table

also shows the number of periods in which the statistics are above zero. At the daily frequency,

ln R̂ , ln R̂B, and ln R̂S are above zero for more than 95% of the days for all currencies. At all

frequencies, the readings are highest for the euro-yen currency pair.12

[Table I here]

Table I provides clear evidence that the pattern of trading among humans and computers is

different from that predicted by a random matching model. In particular, our finding that R is

greater than one indicates that computers do not trade with each other as much as a random

matching model would predict. This finding is consistent with the trading strategies of computers

being correlated, which is the interpretation that we propose. However, we note that a finding of

R > 1 is not unambiguous proof that computer strategies are correlated. Indeed, as a consequence

of market clearing, R > 1 must also imply that humans do not trade with each other as much as

the random matching model predicts, which could also reasonably be viewed as consistent with

correlated human strategies. In each case, there could be an endogenous response from one group

(humans or computers) to the correlated strategies of the other group, such that trading within

each group is diminished. The fundamental cause that forces R to deviate from one is therefore

not identified.

Still, we believe that the interpretation of R > 1 as evidence of correlated AT strategies is

the most plausible. From conversations with market participants, there is widespread anecdotal

evidence that in the very first years of AT in this market, a fairly limited number of strategies were

being implemented, with triangular arbitrage among the most prominent. As mentioned above,

Table I shows that the estimates of R are always highest for the euro-yen currency pair. This

is consistent with the view that a large fraction of computer traders in the cross-rate were often

attempting to take advantage of the same short-lived triangular arbitrage opportunities, and thus

were more likely to send the same trading instructions at the same time in this currency pair,

trading little with each other.13 Furthermore, human participation remains higher than computer

participation in almost all of our sample and it seems less plausible that a larger number of market

participants could use the same strategies and react at the very same time.14

We next describe the other variables that we create to measure certain features of AT activity

that we use in our analysis.

B. Measuring Other Features of Algorithmic Trading Activity

With our trading data providing minute-by-minute information on the volume of trade, direction

of trade, and whether the trade is attributed to algorithmic (computer) or nonalgorithmic (human)
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traders, we can study not just the overall impact of the presence of AT in the market but also

the mechanism through which AT affects the market. To this end, we create several variables at

the minute-by-minute frequency to use in the analysis. First, we measure overall AT activity as

the fraction of total volume where at least one of the two counterparties of a trade is a computer.

As explained above, we label this variable V AT = 100 × V ol(HC)+V ol(CH)+V ol(CC)
V ol(HH)+V ol(HC)+V ol(CH)+V ol(CC) and

show its evolution over time in Figure 1. This is a more precise measure of AT activity than

proxies used in recent studies, and is equivalent to what has been used in studies that had access

to actual data on the fraction of AT in the market. Second, we measure the fraction of the

overall trading volume where a computer is the aggressor in a trade, trading on an existing quote,

in other words, the relative taking activity of computers. We label this variable V Ct = 100 ×
V ol(HC)+V ol(CC)

V ol(HH)+V ol(HC)+V ol(CH)+V ol(CC) . Third, we measure the fraction of the overall trading volume

where a computer provides the quote hit by another trader, in other words, the relative making

activity of computers. We label this variable V Cm = 100 × V ol(CH)+V ol(CC)
V ol(HH)+V ol(HC)+V ol(CH)+V ol(CC) .

Fourth, we measure the share of order flow in the market coming from computer traders, relative to

the order flow of both computer and human traders. This variable, which by the definition of order

flow takes into account the sign of the trades initiated by computers, can be viewed as a measure

of the relative “directional intensity” of computer-initiated trades in the market. We label this

variable OFCt = 100× |OF (C−Take)|
|OF (C−Take)|+|OF (H−Take)| , where OF (C − Take) = OF (HC) +OF (CC)

and OF (H − Take) = OF (HH) +OF (CH).15

We use these variables in addition to our R-measure to study more precisely how AT affects

the process of price discovery. For instance, in our analysis of triangular arbitrage reported be-

low, a finding that V Ct is more strongly (negatively) related to triangular arbitrage opportunities

than V Cm would lead us to conclude that the empirical evidence provides some support for the

conclusions of Biais, Foucault, and Moinas (2011), that algorithmic traders contribute to market

efficiency by aggressively trading on existing arbitrage opportunities, therefore taking liquidity. An

opposite finding would be evidence that algorithmic traders who specialize in providing liquidity are

the ones who make prices more informationally efficient, by posting quotes that reflect information

more quickly in the first place.

IV. Triangular Arbitrage and Algorithmic Trading

In this section we analyze the effects of AT on the frequency of triangular arbitrage opportunities

in the foreign exchange market. We begin by providing graphical evidence suggesting that the

introduction and growth of AT coincides with a reduction in triangular arbitrage opportunities,

and then proceed with a more formal causal analysis.

A. Preliminary Graphical Evidence

Our data contain second-by-second bid and ask quotes on three related exchange rates (euro-

dollar, dollar-yen, and euro-yen), allowing us to estimate the frequency with which these exchange
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rates are “out of alignment.” More precisely, each second we evaluate whether a trader, starting

with a dollar position, could profit from purchasing euros with dollars, purchasing yen with euros,

and purchasing dollars with yen, all simultaneously at the relevant bid and ask prices. An arbitrage

opportunity is recorded for any instance in which such a strategy (or a “round trip” in the other

direction) yields a strictly positive profit. In Figure 3 (top panel) we show the daily frequency

of such triangular arbitrage opportunities from 2003 through 2007 as well as the frequency of

triangular arbitrage opportunities that yield a profit of one basis point or more (bottom panel).16

[Figure 3 here]

The frequency of arbitrage opportunities clearly drops over our sample. For arbitrage opportu-

nities yielding a profit of one basis point or more (Figure 3 bottom panel), the decline is particularly

noticeable around 2005, when the rate of growth in AT is highest. In fact, by 2005 we begin to see

entire days without arbitrage opportunities of that magnitude. On average in 2003 and 2004, the

frequency of such arbitrage opportunities is about 0.5%. By 2007, at the end of our sample, the

frequency is 0.03%. As seen in the top panel of Figure 3, the decline in the frequency of arbitrage

opportunities with a profit strictly greater than zero is, as we would expect, more gradual, and the

frequency does not approach zero by the end of our sample. In 2003 and 2004, these opportunities

occur with a frequency of about 3%; by 2007, their frequency is about 1.5%. This simple analysis

highlights the potentially important impact of AT in this market, but obviously does not prove

that AT caused the decline, as other factors could have contributed to, or even driven, the drop in

arbitrage opportunities. However, the findings line up well with (i) the anecdotal (but widespread)

evidence that one of the first strategies implemented by algorithmic traders in the foreign exchange

market aimed to detect and profit from triangular arbitrage opportunities and (ii) the view that,

as more arbitrageurs attempt to take advantage of these opportunities, their observed frequency

declines (Oehmke (2009) and Kondor (2009)).

B. Formal Analysis

We now attempt to more formally identify the relationship between AT and the frequency of

triangular arbitrage opportunities, controlling for changes in the total volume of trade and market

volatility, as well as general time trends in the data. We use the second-by-second quote data

to construct a minute-by-minute measure of the frequency of triangular arbitrage opportunities.

Specifically, following the approach described in the preceding section, for each second we calculate

the maximum profit achievable from a “round trip” triangular arbitrage trade in either direction,

starting with a dollar position. A minute-by-minute measure of the frequency of triangular arbitrage

opportunities is then calculated as the number of seconds within each minute with a strictly positive

profit.

AT and triangular arbitrage opportunities are likely determined simultaneously, in the sense that

both variables have a contemporaneous impact on each other. OLS regressions of contemporaneous

triangular arbitrage opportunities on contemporaneous AT activity are therefore likely biased and

misleading. To overcome these potential difficulties, we estimate a VAR system that allows for both
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Granger causality tests as well as contemporaneous identification through heteroskedasticity in the

data over the sample period (Rigobon (2013) and Rigobon and Sack (2003, 2004)). Let Arbt be the

minute-by-minute measure of triangular arbitrage opportunities and AT avgt be average AT activity

across the three currency pairs; AT avgt is used to represent the five previously defined measures of

AT activity. Define Yt = (Arbt, AT
avg
t ). The structural VAR system is

AYt = Φ (L)Yt + ΛXt−1:t−20 + ΨGt + εt. (1)

Here, A is a 2×2 matrix specifying the contemporaneous effects, normalized such that all diagonal

elements are equal to one, Φ (L) is a lag-function that controls for the effects of the lagged endoge-

nous variables, Xt−1:t−20 consists of lagged control variables not modelled in the VAR (specifically,

Xt−1:t−20 includes the sum of the volume of trade in each currency pair over the past 20 minutes

and the volatility in each currency pair over the past 20 minutes, calculated as the sum of ab-

solute returns over these 20 minutes), and Gt represent a set of deterministic functions of time

t, capturing individual trends and intradaily patterns in the variables in Yt (in particular, Gt =(
I{t∈1st month of sample}, ..., I{t∈last month of sample}, I{t∈1st half-hour of day}, ..., I{t∈last half-hour of day}

)
, which

captures long-term secular trends in the data by year-month dummy variables as well as intradaily

patterns accounted for by half-hour dummy variables). The structural shocks to the system are

given by εt, which, in line with standard structural VAR assumptions, are assumed to be indepen-

dent of each other and serially uncorrelated at all leads and lags. The number of lags included

in the VAR is set to 20. Equation (1) thus provides a very general specification, allowing for full

contemporaneous interactions between triangular arbitrage opportunities and AT activity.

Before describing the estimation of the structural system, we begin the analysis with the

reduced-form system,

Yt = A−1Φ (L)Yt +A−1ΛXt−1:t−20 +A−1ΨGt +A−1εt. (2)

The reduced-form is estimated equation-by-equation using ordinary least squares, and Granger

causality tests are performed to assess the effect of AT on triangular arbitrage opportunities (and

vice versa). In particular, we test whether the sum of the coefficients on the lags of the causing

variable is equal to zero. Since the sum of the coefficients on the lags of the causing variable is

proportional to the long-run impact of that variable, the test can be viewed as a long-run Granger

causality test. Importantly, the sum of the coefficients also indicates the estimated direction of the

(long-run) relationship, such that the test is associated with a clear direction in the causation.

Table II shows the results, where the first five rows in each subpanel provide the Granger

causality results. The first three rows show the sum of the coefficients on the lags of the causing

variable, along with the corresponding χ2 statistic and p-value. The fourth and fifth rows in each

subpanel provide the results of the standard Granger causality test,where all of the coefficients on

the lags of the causing variable are jointly equal to zero.17 The top panel shows tests of whether

AT causes triangular arbitrage opportunities, whereas the bottom panel shows tests of whether
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triangular arbitrage opportunities cause algorithmic trading.

[Table II here]

We first note that the relative presence of AT in the market (V AT ) one minute has a sta-

tistically significant negative effect on triangular arbitrage the next minute: AT Granger causes a

reduction in triangular arbitrage opportunities.18 As seen in the lower half of the table, there is also

strong evidence that an increase in triangular arbitrage opportunities Granger causes an increase

in algorithmic trading activity. These relationships are seen even more clearly (judging by the size

of the test statistics) when focusing on the taking activity of computers (V Ct and OFCt), where

there is very strong dual Granger causality between these measures of AT activity and triangular

arbitrage. The making activity of computers (V Cm), on the other hand, does not seem to be

impacted by triangular arbitrage opportunities in a Granger-causal sense, and computer making

actually Granger causes an increase in abitrage opportunities (this result is reversed, however, in

the contemporaneous identification, so we do not lend it much weight). One interpretation of these

results is thus that increased AT activity this period (representing trading, of course, but probably

also a higher level of monitoring) makes it less likely that prices will deviate from being arbitrage-

free at the beginning of next period. Conversely, if prices are further away from arbitrage-free

this period, arbitrage opportunities are more likely to exist at the beginning of next period, and

algorithmic traders are more likely to enter the market by taking liquidity on the relevant side to

exploit those opportunities.

In summary, these findings suggest that algorithmic traders improve the informational efficiency

of prices by taking advantage of arbitrage opportunities and making them disappear quickly, rather

than by posting quotes that prevent these opportunities from occurring (as would be indicated by

a strong negative effect of V Cm on reducing triangular arbitrage opportunities). These results are

also in line with the theoretical models of Biais, Foucault, and Moinas (2011), Martinez and Roşu

(2011), Oehmke (2009), and Kondor (2009).

The Granger causality results point to a strong dual causal relationship between AT (taking)

activity and triangular arbitrage, namely, an increase in AT causes a reduction in arbitrage op-

portunities and an increase in arbitrage opportunities causes an increase in AT activity. Although

Granger causality tests are informative, they are based on the reduced-form of the VAR, and do not

explicitly identify the contemporaneous causal economic relationships in the model. We therefore

also estimate the structural version of the model, using a version of the heteroskedasticity identifi-

cation approach developed by Rigobon (2003) and Rigobon and Sack (2003, 2004). The basic idea

of this identification scheme is that heteroskedasticity in the error terms can be used to identify

simultaneous equation systems. If there are two distinct variance regimes for the error terms, this

is sufficient for identification of the simultaneous structural VAR system defined in equation (1).

In particular, if the covariance matrices under the two regimes are not proportional to each other,

this is a sufficient condition for identification (Rigobon (2003)).

We rely on the observation that the variance of the different measures of AT participation in

the market that we use in our analysis changes over time.19 To capitalize on this fact, we split our
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sample into two equal-sized subsamples, simply the first and second halves of the sample period.

Although the variances of the shocks are surely not constant within these two subsamples, this

is not crucial for the identification mechanism to work, as long as there is a clear distinction in

(average) variance over the two subsamples, as discussed in detail in Rigobon (2003). Rather,

the crucial identifying assumption, as Stock (2010) points out, is that the structural parameters

determining the contemporaneous impact between the variables (that is, A in equation (1) above)

are constant across the two variance regimes.20 This is not an innocuous assumption, although it

seems reasonable in our context as we have no reason to suspect (and certainly no evidence) that

the underlying structural impact of the variables in our model changed over our sample period.

Appendix C describes the mechanics of the actual estimation, which is performed via GMM, and

also provides a more extensive discussion of the method. Appendix C also lists estimates of the

covariance matrices across the two different regimes (subsamples). The estimates show that there

is strong heteroskedasticity between the first and second halves of the sample, and that the shift in

the covariance matrices between the two regimes is not proportional, which is the key identifying

condition mentioned above. Furthermore, we are reassured by the fact that in the vast majority of

the statistically significant cases, the heteroskedasticity identification results are confirmed by the

Granger causality analysis.

Estimates of the relevant contemporaneous structural parameters in equation (1) are shown in

the sixth row of each subpanel in Table II, with Newey-West standard errors given in parentheses

below. The eighth row in the table, shown in bold, provides a measure of the economic magnitude of

the coefficients, obtained by multiplying the estimated contemporaneous effect for a given variable

by its standard deviation.21 The magnitude of these estimates can be compared directly across the

different measures of AT.

Overall, the contemporaneous effects are generally in line with those found in the Granger

causality tests (with the exception of the sign of the impact of V Cm, which switches). An increase

in the presence of AT activity has a contemporaneous negative effect on triangular arbitrage oppor-

tunities, and an increase in triangular arbitrage simultaneously causes an increase in AT activity.

The making activity (V Cm) of algorithmic traders is now also associated with a reduction in arbi-

trage opportunities but, judging by the economic magnitude of the coefficients, OFCt and ln(R)

have by far the biggest impact on arbitrage opportunities. In other words, high relative levels of

computer order flow and high correlation of algorithmic strategies result in the largest reductions

in this type of informational inefficiency. The results are not unexpected, as together, they likely

indicate that the correlated taking activity of computers in a similar direction plays an important

role in extinguishing triangular arbitrage opportunities. It is also interesting to note that the eco-

nomic impact of ln(R) is even higher than that of OFCt. Since a high value of ln(R) indicates

that computers trade predominantly with humans, this is consistent with the view advanced by

Biais, Foucault, and Moinas (2011) and Martinez and Roşu (2011) — namely, that AT contributes

positively to price discovery, but that it may also increase the adverse selection costs of slower

traders.
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In terms of the actual absolute level of economic significance, the estimated relationships are

fairly large. For instance, consider the estimated contemporaneous impact of relative computer

taking activity in the same direction (OFCt) on triangular arbitrage. The contemporaneous effect

is roughly −0.03, and the scaled economic effect is roughly −0.5. AT activity (including OFCt)

is measured in percent and triangular arbitrage is measured as the number of seconds in a minute

with an arbitrage opportunity. Thus, a one percentage point increase in the relative directional

intensity of computer trading (OFCt) would, on average, reduce the number of seconds with a

triangular arbitrage in a given minute by 0.03. This sounds like a small effect, but the (VAR

residual) standard deviation of OFCt is around 17%, which suggests that a typical one standard

deviation move in OFCt results in a 0.5 second decrease in arbitrage opportunities in each minute;

this is the estimated economic effect shown in the table. As seen in the top panel of Figure 3,

in any given minute, there are typically only between one and two seconds with an arbitrage

opportunity (that is, between 1.5% and 3% of the time), so a reduction of 0.5 seconds is quite

sizeable. A one-standard deviation increase in “computer correlation” (that is, in ln (R)) causes

an even larger estimated effect, with a resulting average reduction in arbitrage opportunities of 1.5

seconds per minute. A typical increase in overall AT participation (V AT ) leads to a 0.2 second

reduction in triangular arbitrage opportunities each minute. Going the other direction, the causal

impact of triangular arbitrage opportunities on AT activity is also fairly large. A typical increase

in triangular arbitrage opportunities results in an increase in computer taking intensity (OFCt) of

approximately 4% and an increase in overall computer participation (V AT ) of 2%.

In summary, both the Granger causality tests and the heteroskedasticity identification approach

point to the same conclusion: AT causes a reduction in the frequency of triangular arbitrage oppor-

tunities. The taking activity of algorithmic traders seems to be an important mechanism through

which this is accomplished, that is, by computers hitting existing quotes in the system, with most

of these quotes posted by human traders. Intervals of highly correlated computer trading activity

also lead to a reduction in arbitrage opportunities, presumably as computers react simultaneously

and in the same fashion to the same price data. Finally, the presence of triangular arbitrage oppor-

tunities causes an increase in AT activity, presumably as computers dedicated to detect this type

of opportunity “lay in wait” until they detect a profit opportunity and then begin to place trading

instructions.22

V. High-Frequency Return Autocorrelation and Algorithmic

Trading

The impact of AT on the frequency of triangular arbitrage opportunities is only one facet of how

computers affect the price discovery process. More generally, an often-cited concern is that AT may

contribute to the temporary deviation of asset prices from their fundamental values, resulting in

excess volatility, particularly at high frequencies. We thus investigate the effect algorithmic traders

have on a more general measure of prices not being informationally efficient: the autocorrelation of
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high-frequency currency returns.23 Specifically, we study the impact of AT on the absolute value

of the first-order autocorrelation of five-second returns.24 In Figure 4 we plot the 50-day moving

average of the absolute value of the autocorrelation of high-frequency (that is, five-second) returns

estimated on a daily basis. Over time, the absolute value of autocorrelation in the least liquid

currency pair, euro-yen, has declined drastically from an average value of 0.3 in 2003 to 0.03 in

2007, and the sharp decline in 2005 coincides with the growth of AT participation. Again, this is

only suggestive evidence of the impact of AT. The decline in the absolute value of autocorrelation

in dollar-yen is also notable, from 0.14 in 2003 to 0.04 in 2007, but there is no systematic change

in the absolute value of autocorrelation in the most liquid currency pair traded, euro-dollar. The

graphical evidence suggests that it is possible that algorithmic trading may have a greater effect

on the informational efficiency of asset prices in less liquid markets.

[Figure 4 here]

In this section, we adopt the same identification approach that we used for triangular arbitrage

opportunities, using a five-minute frequency VAR (that is, we estimate the autocorrelation of five-

second returns each five-minute interval) that allows for both Granger causality tests as well as

contemporaneous identification through the heteroskedasticity in the data over the sample period.25

However, since autocorrelation is measured separately for each currency pair (unlike the overall

frequency of triangular arbitrage opportunities), we fit a separate VAR for each currency pair. AT

activity is measured in the same five ways as before. We study the overall impact of the share of AT

activity in the market, V AT , and also that of the relative taking activity of computers, V Ct, the

relative making activity of computers, V Cm, the relative presence of computer order flow, OFCt,

and the degree of correlation in computer trading activity (and therefore strategies), ln(R).

Let |ACjt | and AT jt be the five-minute measures of the absolute value of autocorrelation in

five-second returns and AT activity, respectively, in currency pair j, j = 1, 2, 3; as before, AT jt is

used to represent either of the five measures of AT activity. The autocorrelations are expressed in

percent. Define Y j
t =

(
|ACjt |, AT

j
t

)
. The structural form of the system is given by

AjY j
t = Φj (L)Y j

t + ΛjXj
t−1:t−20 + ΨjGt + εjt , (3)

where Aj is the 2 × 2 matrix specifying the contemporaneous effects, normalized such that all

diagonal elements are equal to 1. For currency pair j, Xj
t−1:t−20 includes the sum of the volume of

trade over the past 20 minutes and the volatility over the past 20 minutes, calculated as the sum

of absolute returns over these 20 minutes. Similar to our previous specification, Gt controls for

secular trends and intradaily patterns in the data by year-month dummy variables and half-hour

dummy variables, respectively. The structural shocks εjt are assumed to be independent of each

other and serially uncorrelated at all leads and lags. The number of lags included in the VAR is

set to 20. The corresponding reduced-form equation is

Yt =
(
Aj
)−1

Φj (L)Y j
t +

(
Aj
)−1

ΛjXj
t−1:t−20 +

(
Aj
)−1

ΨjGt +
(
Aj
)−1

εjt (4)
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Table III shows the estimation results for both the reduced-form (equation (4)) and structural-

form (equation (3)) VARs. The left-hand panels show the results for tests of whether AT has

a causal impact on the absolute value of autocorrelations in five-second returns, and the right-

hand panels show tests of whether the level of absolute autocorrelation has a causal impact on

AT activity. The results are laid out in the same manner as for the triangular arbitrage case,

with the only difference that each currency pair now corresponds to a separate VAR regression. In

particular, the first five rows in each panel show the results from Granger causality tests based on

the reduced-form of the VAR in equation (4). The sixth, seventh, and eighth rows in each panel

show the results from the contemporaneous identification of the structural form. Identification

is again provided by the heteroskedasticity approach of Rigobon (2003) and Rigobon and Sack

(2003, 2004). The estimation is performed in the same way as for the triangular arbitrage system,

described in Appendix C. Appendix C also shows and discusses the estimates of the covariance

matrices for the two subsamples used in the estimation.

[Table III here]

The results in the right-hand panels do not reveal a clear pattern for the impact of higher

absolute autocorrelation on AT activity. In particular, the contemporaneous coefficients do not

show a strong pattern of statistical significance and there is disagreement in some cases between

the Granger causality results and the contemporaneous results.

The results in the left-hand panels of Table III are far more consistent across currencies and

between the two estimation methods. First, the estimates clearly show that an increase in the

share of AT participation (V AT ) causes a decrease in the absolute autocorrelation of returns. As

it did for triangular arbitrage, AT also appears to improve this measure of market efficiency. The

Granger causality results show a role for both computer taking activity (V Ct) and computer making

activity (V Cm) in the reduction of high-frequency autocorrelation, although the making results

appear statistically stronger based on the significance and size of the test statistics. The results

from the structural estimation show more clearly that the contemporaneous effect is much stronger

for computer making than for computer taking. This is seen both in the statistical significance of

the estimates and in the economic magnitude of the relationships. The structural evidence clearly

indicates that, in contrast to the triangular arbitrage opportunity case, the improvement in the

informational efficiency of prices now predominantly comes from an increase in the trading activity

of algorithmic traders who provide liquidity (i.e., those who post quotes that are hit), and not from

an increase in the trading activity of algorithmic traders who hit quotes posted by others.

In terms of economic magnitude, the causal relationship between AT (making) activity and

autocorrelation in returns seems somewhat less important than that between AT (taking) activity

and triangular arbitrage, but still not insignificant. Recall that autocorrelation entered the VAR

in a percentage format, and note that the scaled contemporaneous coefficients for V Cm (in the

left-hand V Cm panel of Table III) are roughly between −0.3 and −0.4. This suggests that a typical

(one standard deviation) change in AT making activity results in a drop of −0.3 to −0.4 percentage

points in the absolute autocorrelation of returns. As seen in Figure 4, the average autocorrelations
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towards the end of the sample period are in the neighborhood of 5% for all three currency pairs.

A third of a percentage point decrease in the autocorrelation is thus not a huge effect, but it does

not appear irrelevant either.

Finally, it is also worth noting that in contrast to the triangular arbitrage case, the degree of

correlation in computer trading strategies (ln(R)) and the relative presence of computer order flow

(OFCt), both measures of commonality in algorithmic activity, do not appear to have a clear causal

effect on autocorrelation.26 As a matter of fact, when looking at the effects of these two variables,

not one of the Granger or contemporaneous coefficients in our three currency pairs is statistically

significant. In particular, there is no evidence that, on average, the high correlation of algorithmic

strategies causes market inefficiencies, as measured by high-frequency autocorrelation.

VI. Conclusion

Our paper studies the impact of AT on the price discovery process in the global foreign exchange

market using a long times series of high-frequency trading data in three major exchange rates. After

describing the growth of AT in this market since its introduction in 2003, we study its effect on two

measures of price efficiency, the frequency of triangular arbitrage opportunities among our three

exchange rates, and the presence of excess volatility, which we measure as the autocorrelation of

high-frequency returns. Using reduced-form and structural VAR specifications, we show that, on

average, the presence of AT in the market causes both a reduction in the frequency of arbitrage

opportunities and a decrease in high-frequency excess volatility. Guided by the recent theoretical

literature on the subject, we also study the mechanism by which algorithmic traders affect price

discovery. We find evidence that algorithmic traders predominantly reduce arbitrage opportunities

by acting on the quotes posted by nonalgorithmic traders. This result is consistent with the view

that AT improves informational efficiency by speeding up price discovery, but that it may also

increase the adverse selection costs to slower traders, as suggested by the theoretical models of

Biais, Foucault, and Moinas (2011) and Martinez and Roşu (2011). In contrast, we show that the

impact of AT on excess volatility is more closely related to algorithmic trades that provide liquidity.

In this case, consistent with Hoffman (2013), the improvement in the informational efficiency of

prices may come from the fact that algorithmic quotes reflect new information more quickly. We

also provide evidence that is consistent with the actions and strategies of algorithmic traders being

less diverse, and more correlated, than those of nonalgorithmic traders. We find no evidence,

however, that a higher level of correlation among strategies leads to excess volatility. As a final

caution, we note that our study is about the average effect of AT on the price discovery process in

the foreign exchange market. Therefore, it cannot be ruled out that AT may, on rare but important

occasions, contribute to excess volatility.
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Appendix A Definition of Order Flow and Volume

The transactions data are broken down into categories specifying the maker and taker of the

trades (human or computer), and the direction of the trades (buy or sell the base currency), for a

total of eight different combinations. That is, the first transaction category may specify, say, the

minute-by-minute volume of trade that results from a computer taker buying the base currency by

“hitting” a quote posted by a human maker. We would record this activity as the human-computer

buy volume. The human-computer sell volume is defined analogously, as are the other six buy and

sell volumes that arise from the remaining combinations of computers and humans acting as makers

and takers.

From these eight types of buy and sell volumes, we can construct, for each minute, trading

volume and order flow measures for each of the four possible pairs of human and computer mak-

ers and takers: human maker/human taker (HH), computer maker/human taker (CH), human

maker/computer taker (HC), and computer maker/computer taker (CC). The sum of the buy and

sell volumes for each pair gives the volume of trade attributable to that particular combination of

maker and taker (denoted as V ol(HH) or V ol(HC), for example). The sum of the buy volume

for each pair gives the volume of trade attributable to that particular combination of maker and

taker, where the taker is buying (denoted as V ol(HHB) or V ol(HCB), for example). The sum of

the sell volume for each pair gives the volume of trade attributable to that particular combination

of maker and taker, where the taker is selling (denoted as V ol(HHS) or V ol(HCS), for example).

The difference between the buy and sell volume for each pair gives the order flow attributable to

that maker taker combination (denoted as OF (HH) or OF (HC), for example). The sum of the

four volumes, V ol(HH+CH+HC+CC), gives the total volume of trade in the market. The sum

of the four order flows, OF (HH) +OF (CH) +OF (HC) +OF (CC), gives the total (marketwide)

order flow.27

Throughout the paper, we use the expressions “volume” and “order flow” to refer to both

the marketwide volume and order flow and the volume and order flows from other possible de-

compositions, with the distinction clearly indicated. Importantly, the data allow us to consider

volume and order flow broken down by the type of trader who initiated the trade (human taker

(HH+CH) and computer taker (HC+CC)), by the type of trader who provided liquidity (human

maker (HH + HC) and computer maker (CH + CC)), and by whether there was any computer

participation (HC + CH + CC).

Appendix B How Correlated Are Algorithmic Trades and

Strategies?

In the benchmark model, there are Hm potential human makers (the number of humans standing

ready to provide liquidity), Ht potential human takers, Cm potential computer makers, and Ct

potential computer takers. For a given period of time, the probability of a computer providing
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liquidity to a trader is equal to Prob(computer−make) = Cm
Cm+Hm

, which we label for simplicity as

αm, and the probability of a computer taking liquidity from the market is Prob(computer−take) =
Ct

Ct+Ht
= αt. The remaining makers and takers are humans, in proportions (1− αm) and (1− αt),

respectively. Assuming that these events are independent, the probabilities of the four possible

trades, human maker/human taker, computer maker/human taker, human maker/computer taker,

and computer maker/computer taker, are

Prob(HH) = (1− αm)(1− αt)

Prob(HC) = (1− αm)αt

Prob(CH) = αm(1− αt)

Prob(CC) = αmαt.

These probabilities yield the identity

Prob(HH)× Prob(CC) ≡ Prob(HC)× Prob(CH),

which can be rewritten as
Prob(HH)

Prob(CH)
≡ Prob(HC)

Prob(CC)
.

We label the first ratio, RH ≡ Prob(HH)
Prob(CH) , the “human taker” ratio and the second ratio, RC ≡

Prob(HC)
Prob(CC) , the “computer taker” ratio. In a world with more human traders (both makers and

takers) than computer traders, each of these ratios will be greater than one, because Prob(HH) >

Prob(CH) and Prob(HC) > Prob(CC), that is, computers take liquidity more from humans

than from other computers, and humans take liquidity more from humans than from computers.

However, under the baseline assumptions of our random-matching model, the identity shown above

states that the ratio of ratios, R ≡ RC
RH , will be equal to one. In other words, humans will take

liquidity from other humans in a similar proportion that computers take liquidity from humans.

Observing R 6= 1 therefore implies deviations from random matching. In particular, if computers

trade less with each other and more with humans than expected, RC becomes larger than under

random matching. By market clearing, this also implies that humans must trade less with each

other and more with computers than expected, such that RH becomes smaller than under random

matching. Therefore, R must be greater than one in this case. The economic interpretation of

R > 1 is discussed in detail in the main text.

To explicitly take into account the sign of trades, we amend the benchmark model as follows:

we assume that the probability of the taker buying an asset is αB and the probability of the taker

selling is 1 − αB. We can then write the probability of the following eight events (assuming each
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event is independent):

Prob(HHB) = (1− αm)(1− αt)αB
Prob(HCB) = (1− αm)αtαB

Prob(CHB) = αm(1− αt)αB
Prob(CCB) = αmαtαB

Prob(HHS) = (1− αm)(1− αt)(1− αB)

Prob(HCS) = (1− αm)αt(1− αB)

Prob(CHS) = αm(1− αt)(1− αB)

Prob(CCS) = αmαt(1− αB)

These probabilities yield the identities

Prob(HHB)× Prob(CCB) ≡ Prob(HCB)× Prob(CHB)

(1− αm)(1− αt)αBαmαtαB ≡ (1− αm)αtαBαm(1− αt)αB
and

Prob(HHS)× Prob(CCS) ≡ Prob(HCS)× Prob(CHS)

(1− αm)(1− αt)(1− αB)αmαt(1− αB) ≡ (1− αm)αt(1− αB)αm(1− αt)(1− αB),

which can be rewritten as

Prob(HHB)

Prob(CHB)
≡ Prob(HCB)

Prob(CCB)

and
Prob(HHS)

Prob(CHS)
≡ Prob(HCS)

Prob(CCS)

We label the RHB ≡ Prob(HHB)
Prob(CHB)

the “human taker buyer” ratio, RCB ≡ Prob(HCB)
Prob(CCB)

the “com-

puter taker buyer” ratio, RHS ≡ Prob(HHS)
Prob(CHS)

the “human taker seller” ratio, and RCS ≡ Prob(HCS)
Prob(CCS)

the “computer taker seller” ratio.

In a world with more human traders (both makers and takers) than computer traders, each

of these ratios will be greater than one, because Prob(HHB) > Prob(CHB), Prob(HHS) >

Prob(CHS), Prob(HCB) > Prob(CCB), and Prob(HCS) > Prob(CCS). That is, computers

take liquidity more from humans than from other computers, and humans take liquidity more from

humans than from computers. However, under the baseline assumptions of our random-matching

model, the identity shown above states that the ratio of ratios, RB ≡ RCB

RHB , will be equal to one,

and that RS ≡ RCS

RHS will also be equal to one. Observed values for RB or RS that deviate from one

again provide evidence against trading patterns following random matching, with the empirically
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relevant case of RS , RB > 1 discussed in the main text.

Appendix C Heteroskedasticity Identification

A. Methodology

Restate the structural equation,

AYt = Φ (L)Yt + ΛXt−1:t−20 + ΨGt + εt,

and the reduced-form,

Yt = A−1Φ (L)Yt +A−1ΛXt−1:t−20 +A−1ΨGt +A−1εt.

Let Ωs be the variance-covariance matrix of the reduced-form errors in variance regime s, s = 1, 2,

which can be directly estimated by Ω̂s = 1
Ts

∑
t∈s utu

′
t, where ut are the reduced-form residuals. Let

Ωε,s be the diagonal variance-covariance matrix of the structural errors and the following moment

conditions hold:

AΩsA
′ = Ωε,s.

The parameters in A and Ωε,s can then be estimated with GMM, using estimates of Ωs from the

reduced-form equation. Identification is achieved as long as the covariance matrices constitute a

system of equations that is linearly independent. In the case of two regimes, the system is exactly

identified. Standard errors are calculated using the Newey-West estimator.

It is useful to also provide additional intuitive discussion on the heteroskedasticity identification

approach. As mentioned, the basic idea is that if the variance of the shocks in the system changes

over time, but the structural parameters linking the variables to each other (that is, the parameters

in A in the current notation) remain constant, the system may be identified. An intuitive way of

thinking of the method is that the shift in variances provides that extra source of variation needed

for identification in the presence of endogeneity. In that sense, the method is similar in concept

to typical instrumental variables estimation and, as discussed in Rigobon and Sack (2004), the

heteroskedasticity identification approach can indeed be interpreted as an instrumental variable

method. Purely heuristically, one might think of the (nonproportional) shift in variances as a form

of relevance condition, and the condition that the structural relationship captured by A is constant

across variance regimes as a form of validity condition.28

As with the usual validity condition for instrumental variables, the stability of A is generally

not testable. Thus, provided that there is sufficient change in the variances of the shocks, which

is relatively straightforward to investigate, the key condition for the method to work is parameter

stability in A. This is not a trivial condition to satisfy. In cases where there is a perceived “structural

change,”it might be difficult to argue that the variance of the structural shocks changed but the

structural relationships remained constant. In other cases, where the shift in variances does not
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seem immediately associated with a “structural change,”the stability of the structural relationships

seems more easily defensible. Ideally, one can point to a specific exogenous event that is likely to

have affected the variances of the shocks but not the structural parameters in A; such events are,

of course, rare. Our case, it would seem, is somewhere in the middle of these scenarios. There is

not one specific exogenous event that is likely to have caused the observed heteroskedasticity in

our data, but there is also no obvious structural change that is likely to have triggered a shift in

structural relationships. A number of events on EBS during our sample period may have affected

the variance of our AT measures, including technological changes that allowed for faster electronic

monitoring and responses, and the fact that more and more nonbank participants gained access

to the system via prime-brokerage. But these changes were gradual and we cannot point to exact

dates when they began to have an important influence. Importantly, we do not believe that these

changes have influenced the fundamental way in which trades impact price discovery, such that the

assumption of a stable structural relationship seems reasonable.

As always, with issues of identification, it is nearly impossible to provide completely watertight

arguments in any given situation. A more agnostic interpretation is to view the results as conditional

on the structural relationship remaining constant. That is, provided the relationship is constant

over time, the method delivers consistent estimates of the causal effects.

B. Covariance Matrix Estimates Across Subsamples

The heteroskedasticity identification approach requires that there exist two linearly independent

variance regimes. This implies that the covariance matrices for the errors in the two regimes are not

proportional to each other. Table CI shows the estimates of the covariance matrix for the reduced-

form VAR residuals for Yt = (Arbt, AT
avg
t ), across the first and second halves of the sample.

As is clear, there is a strong increase in the variance of AT, measured as V AT, V Ct, V Cm, or

OFCt. In contrast, the variance in triangular arbitrage opportunities is almost constant across

the two subsamples and it is the change in the covariance matrix between the two subsamples is

not proportional. The variance of ln (R), which is the fifth measure of AT activity that we use, is

somewhat higher in the first subsample relative to the second subsample, although the distinction

is less sharp than for the other measures of algorithmic trading. Since ln (R) is only observed when

there are nonzero trades of all types, there are many missing observations (see footnote 12). During

the minutes when ln (R) is not missing, there is a fairly sharp decrease in the variance of triangular

arbitrage opportunities. The shift in the covariance matrix from the first subsample to the second

is therefore not proportional for (Arbt, ln (R)avgt ) either, although the identification does not appear

as strong as for the other AT measures.

[Table CI here]

Table CII shows the corresponding results for the VAR residuals from the specification with

AT and high-frequency autocorrelation, Y j
t =

(
|ACjt |, AT

j
t

)
. This specification is estimated sep-

arately for each currency pair, and the table reports results by currency pairs and by measures

of AT . The story is similar to that in Table CI, with strong evidence that the covariance matrix
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does not shift in a proportional manner from the first to the second subsample. For the euro-

dollar, the variance of the high-frequency autocorrelation increases somewhat from the first to the

second subsample, but nowhere near as sharply as for the V AT, V Ct, V Cm, and OFCt measures

of AT and the shift in the covariance matrix is not close to proportional. For the euro-yen and

dollar-yen, the variance in high-frequency autocorrelation actually decreases from the first to the

second subsample, whereas the variance of V AT, V Ct, V Cm, and OFCt all increase, so again there

seems to be strong identification. The variance of ln (R) decreases for all three currency pairs, and

does so proportionally with the variance in high-frequency autocorrelation for the euro-yen. There-

fore, there seems to be weak or no identification for the euro-yen specification using ln (R). For

the euro-dollar and dollar-yen, however, there is still identification for the ln (R) specifications.

[Table CII here]
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Notes

1Biais and Wooley (2011) and Foucault (2011) provide excellent surveys of the recent literature

on this topic.

2One could also argue that if algorithmic traders behave, as a group, like the positive-feedback

traders of DeLong, Shleifer, and Summers (1990), or the chartists described in Froot and Stein

(1992), or the short-term investors in Vives (1995), then their activity, in total, would likely create

excess volatility.

3To identify the parameters of the structural VAR, we use the heteroskedasticity in AT activity

over the sample.

4We use the term “excess volatility” to refer to any variation in prices that is not solely re-

flecting changes in the underlying efficient price process. Under the usual assumption that efficient

prices follow a random walk specification (see discussion in footnote 23), autocorrelation in re-

turns therefore imply some form of excess volatility and temporary deviations from the efficient

price. When discussing the empirical results, we use the terms autocorrelation and excess volatility

interchangeably.

5The structure of the wholesale spot foreign exchange market is obviously different from that of

the major equity markets, but some of the differences probably facilitate the analysis of the impact

of AT. In particular, while there are several platforms where one can trade foreign exchange in large

quantities, price discovery in the currency pairs we study occurs overwhelmingly on one platform,

EBS, the source of our data. Also, unlike a number of equity trading venues, traders do not get

rebates for providing liquidity on EBS, which may allow for a “cleaner” study of the role of AT

making and taking in price discovery. We note that, as this is a wholesale market, AT potentially

causes a smaller increase in adverse selection costs than it may cause in the equity market. The

minimum trade size is one million of the base currency, and thus there are no “small” market

participants.

6The euro-dollar currency pair is quoted as an exchange rate in dollars per euro, with the euro

the “base” currency. Similarly, the euro is also the base currency for euro-yen, while the dollar is

the base currency for the dollar-yen pair.

7We exclude data collected from Friday 17:00 through Sunday 17:00 New York time from our
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sample, as activity on the system during these “non-standard” hours is minimal and not encouraged

by the foreign exchange community. Trading is continuous outside of the weekend, but the value

date for trades, by convention, changes at 17:00 New York time, which therefore marks the end

of each trading day. We also drop certain holidays and days of unusually light volume: December

24-December 26, December 31-January 2, Good Friday, Easter Monday, Memorial Day, Labor Day,

Thanksgiving and the following day, and July 4 (or, if this is on a weekend, the day on which the

U.S. Independence Day holiday is observed).

8The naming convention for “maker” and “taker” reflects the fact that the “maker” posts quotes

before the “taker” chooses to trade at that price. Posting quotes is, of course, the traditional role

of the market-“maker.” The taker is also often viewed as the “aggressor” or the “initiator” of the

trade. We refer the reader to Appendix A1 for more details on how we calculate volume and order

flow for these four possible pairs of human and computer makers and takers.

9As pointed out by the referee, it is true that algorithms are necessarily rule-based at very high

execution frequencies, but at a somewhat lower frequency, human monitoring is still common for a

variety of algorithms.

10We thank an anonymous referee for this suggestion.

11We report summary statistics for the log-transformed variables because these results are invari-

ant to whether one defines the R-measures as above, with a value greater than one consistent with

correlated computer trading, or in the opposite direction (having Vol(CC) in the numerator), with

a value less than one consistent with correlated computer trading. That is, the mean estimate will

not be symmetric around one when inverting the R-measure, whereas the mean estimate of ln (R)

will be symmetric around zero when inverting the R-measure.

12Note that the fraction of missing observation increases in all currency pairs as the period of

observation over which the R-measure is calculated gets smaller. Missing observations arise mostly

when V ol(CC) = 0, that is when computers do not trade with each other at all in a given time

interval, which is more likely to occur in a shorter time interval. This can happen because computer

trading activity is very small, as it is early in the sample, reducing the probability of a CC match.

But it can also happen when there is more abundant computer trading activity but their strategies

are so highly correlated that no CC match occurs. Excluding the information contained in this

second type of missing observations means that, if anything, we may be underestimating the extent
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of the correlation of algorithmic strategies in the data.

13Euro-yen is the currency pair with the smallest trading volume in our sample. A given triangular

arbitrage trade, which automatically involves a similarly sized trade in our three exchange rates,

would therefore represent a larger fraction of the total trades in euro-yen.

14Human participation remains higher than computer participation throughout our sample for

euro-dollar and dollar-yen. In euro-yen, the cross rate, only the last few months of the 2003-2007

sample have a higher computer participation.

15One could also consider an analogously defined OFCm variable as a measure of how correlated

the actions of liquidity-making computers are. However, we chose not to add this variable to our

analysis because the interpretation of the results seems ambiguous. For instance, if one found that

an increase in OFCm led to an increase in high-frequency return autocorrelation, we would still be

hesitant to attribute this finding to the correlated actions of liquidity-making computers. Instead,

because of the empirical evidence which shows that order flow from the liquidity taker’s point of

view drives asset prices, it would be more likely that the finding is driven by traders taking liquidity

from computers in a correlated way.

16We take into account actual bid and ask prices in our triangular arbitrage calculations every

second, which implies that the largest component of the transactions costs is accounted for in the

calculations. But algorithmic traders likely incur other, more modest, costs, some fixed, some

variable, but with the additional variable costs certainly well below 1 basis point in this market.

We should not, however, expect all arbitrage opportunities with a positive profit to completely

disappear. In the formal analysis we use a straightforward zero minimum profit level to calculate

the frequency of arbitrage opportunities.

17Since the standard Granger causality test is not associated with a clear direction in causation,

we focus our discussion on the long-run test reported in the first through third rows of Table II,

which explicitly shows the direction of causation. Overall, the traditional Granger causality tests

yield very similar results to the long-run tests in terms of statistical significance.

18The first lag of the causing variable tends to be the primary driver of the Granger causality

relationship. Viewing the results as Granger causation from one minute to the next is therefore

reasonable.

19The variance of V AT, V Ct, V Cm, and OFCt increase over time as AT participation increases,
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while the variance of the trade correlation measure, R, decreases over the sample period. Appendix

C describes these results in detail.

20Stock (2010) provides an overview of the heteroskedasticity identification method, among other

methods, in his discussion of new “robust tools for inference,” classifying the heteroskedasticty

identification method as a “quasi-experiment” approach. Some examples of recent studies that

have used this method are Wright (2012), Ehrmann, Fratzscher, and Rigobon (2001), Lanne and

Lutkepohl (2008), and Primiceri (2005).

21The coefficient for a given variable is scaled by the standard deviation of the VAR residuals for

that variable, capturing the size of a typical innovation to the variable.

22The interpretation of our evidence is consistent with Ito et al. (2012)’s finding that in the

foreign exchange market the probability of triangular arbitrage opportunities disappearing within

a second has increased over time.

23The random walk, or martingale hypothesis, was traditionally linked to the efficient market hy-

pothesis (e.g., Samuelson (1965), and Fama (1965, 1970), among others) —implying that efficient

prices follow martingale processes and that returns exhibit no serial correlation, either positive

(momentum) or negative (mean-reversion). We now know that predictability in prices is not incon-

sistent with rational equilibria and price efficiency when risk premia are changing. However it is

highly unlikely that predictability in five-second returns reflects changing risk premia, and it seems

reasonable to view high-frequency autocorrelation as an indicator of market (in-)efficiency.

24Our choice of a five-second frequency of returns is driven by a trade-off between sampling at

a high enough frequency to estimate the effect algorithmic traders have on prices, but low enough

to have sufficiently many transactions to avoid biasing the auto-correlations towards zero due to

a high number of consecutive zero returns. Our results are qualitatively similar when we sample

prices at the 1-second frequency for the most liquid currency pairs, euro-dollar and dollar-yen, but

for the euro-yen the 1-second sampling frequency biases the return autocorrelations towards zero

due to lower activity at the beginning of the sample.

25Our choice of estimating the autocorrelation over a five-minute interval is driven by a trade-

off between a large enough window with sufficient observations to estimate the autocorrelation (12

observations in a one-minute window is too few observations) and small enough so that the Granger

causality specification is sensible. We also perform a 99% Winsorising of the absolute values of the
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autocorrelation estimates (that is, setting the largest 1% of the absolute autocorrelations equal to

the 99th percentile of the absolute estimates).

26As discussed in Appendix C, there appears to be weak or no contemporaneous identification

in the specification with ln (R) for the euro-yen currency pairs. All other specifications appear well

identified.

27There is a very high correlation in this market between trading volume per unit of time and

the number of transactions per unit of time, and the ratio between the two does not vary much

over our sample. Order flow measures based on amounts transacted and those based on number of

trades are therefore very similar.

28An instrumental variable is generally referred to as valid if it is exogenous and as relevant if it

is correlated with the endogenous regressor.
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Figure 1. 50-day moving averages of VAT, the percent of total volume with at least one algorithmic 
counterparty. 
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Figure 2. 50-day moving averages of the percent of total volume broken down into four  
maker-taker pairs 
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Figure 3. Percent of seconds with a triangular arbitrage opportunity with a profit strictly greater than zero 
basis point (top panel) and 1 basis point (bottom panel). 
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day using observations from 3:00 am ET to 11:00 am ET. 
Figure 4: 50-day moving averages of absolute value of 5-second return serial autocorrelation estimated each 
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