
ar
X

iv
:1

40
7.

73
15

v1
  [

q-
fi

n.
PR

] 
 2

8 
Ju

l 2
01

4

TRANSACTIONS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 00, Number 0, Pages 000–000
S 0002-9947(XX)0000-0

EFFECTIVE AND SIMPLE VWAP OPTIONS PRICING MODEL

ALEXANDER BURYAK AND IVAN GUO

Abstract. Volume weighted average price (VWAP) options are a popular se-
curity type in many countries, but despite their popularity very few pricing
models have been developed so far for VWAP options. This can be explained
by the fact that the VWAP pricing problem is set in an incomplete market
since there is no underlying with which to hedge the volume risk, and hence
there is no uniquely defined price. Any price, which is obtained will include a
market price of volume risk which must be determined from the correspond-
ing volume statistics. Our analysis strongly supports the hypothesis that the
empirical volume statistics of ASX equities can be described reasonably well
by fitted gamma distributions. Based on this observation we suggest a sim-
ple gamma process-based model that allows for the exact analytic pricing of
VWAP options in a rather straightforward way.

equity option, volume weighting, analytic pricing

1. Introduction

The volume weighted average price (VWAP) occurs frequently in finance. It is
an average price which gives more weight to periods of high trading than to periods
of low trading in its calculation. A broker’s daily performance is frequently mea-
sured against the VWAP and it is becoming increasingly popular for institutional
investors to place buy and sell orders at the VWAP. The VWAP also appears in
Australian taxation law as part of determining the prices of share buy-backs in
publicly listed companies (Woellner et al. (2009)).

Most of the existing literature on VWAP focuses on strategies and algorithms
to execute orders as close as possible to the VWAP price (see e.g. Konishi (2002),
Bialkowski et al. (2008), Fuh et al. (2010), Frei & Westray (2013)). On the other
hand, surprisingly few results on actual pricing methodologies related to VWAP
options have been published (Stace (2007), Novikov et al. (2014)). This can be
explained by pointing out that the VWAP pricing problem is set in an incomplete
market since there is no underlying with which to hedge the volume risk, and hence
there is no uniquely defined price. Any price obtained will include a market price
of volume risk which must be determined from the corresponding volume statistics.

In this paper, we propose a new model to price VWAP options in which the
volume data is modelled by a gamma process. Exact closed-form expressions are
derived for the first two moments of the VWAP, which may be used price VWAP
options via well-known moment matching techniques. We then compare our re-
sults against the technique suggested by Stace (2007) as well as with Monte Carlo
modelling results.

The rest of this paper is organised as follows. Section 2 briefly describes some
of the previously suggested models for volume data. Section 3 justifies our choice
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of the gamma process as the preferred volume model by presenting goodness-of-fit
results and other analyses of volume data. Section 4 formally introduces our model
for both stock price (lognormal) and stock volume (gamma). Section 5 presents
the main results of the paper, which include closed-form expressions for the VWAP
moments and option prices (based on a moment matching technique) as well as a
comparison to Monte Carlo results. Section 6 contains some concluding remarks.
Detailed derivations of VWAP moments, for both discrete and continuous-time
cases, can be found in Appendix A.

2. Previously suggested models for volume process.

It is common to model the underlying stock price St using the standard geometric
Brownian motion. On the other hand, the choice of model for the volume traded
Vt is far less obvious. A few versions of the volume process Vt have been suggested
in the literature. We shall briefly outline some of these existing approaches before
selecting our own.

For example, Stace (2007) has considered the following mean reverting volume
process:

dVt = λ(Vmean − Vt)dt+ βV f
t dW,(1)

where Vt=0 is given, λ is the speed of mean reversion, Vmean is the long term average
of the volume process, β is the volatility of the volume process, W is a standard
Brownian motion (which may be partially correlated to the stock price process
Brownian motion), and f is either 1 or 0.5.

In the more recent work of Novikov et al. (2014) a different class of volume
processes has been suggested:

Vt = X2
t + δ, dXt = λ(Xmean −Xt)dt+ βdW,(2)

whereX is a standard Ornstein-Uhlenbeck (OU) process with λ, Xmean and β being
its speed of mean-reversion, level of mean-reversion and OU volatility, respectively.

Yet another Vt model, also based on presence of a second Brownian motion in
underlying dynamics was suggested in Fuh et al. (2010). However, all these and
many other VWAP-related publications are predominantly concentrated on the
description of their pricing or trading algorithms, with little attention given to any
justification of the corresponding volume process model choice or any comprehensive
empirical analysis of volume statistics. A notable exception is Frei & Westray
(2013), in which a considerable amount of attention is paid to such a justification,
as well as to outlining of useful approaches for empirical checks. Importantly, Frei
& Westray (2013) argues that there is substantial empirical evidence to suggest
that Vt can be modelled by i.i.d. gamma random noises. This choice may look
unusual for a financial model, but as Brody et al. (2008) demonstrates, gamma
processes actually have a broad range of applications in many areas of insurance
and finance, where cumulative processes are involved. These include the modelling
of aggregative claims, credit portfolio losses, defined benefit pension schemes and
so on.

3. Empirical analysis of volume data.

In this section we present our empirical analysis justifying the use of gamma
variables to model underlying dynamics of traded volume. This, in turn, allows
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us to progress with the development of a VWAP option pricing model in the next
section. In particular, we analyse the price and the volume data series for a few
ASX stocks.

Data for our analysis is obtained from Bloomberg and covers the period from
15/02/2013 until 28/08/2013. Each original data point represents a traded volume
and the corresponding VWAP price for a 10 minute interval. Typically 38 traded
volume data points Vi per day are available (6 per hour for 6 hours, plus one pre-
market trading [10 am] point and one post-market [4.10 pm] point). Thus, on
average, we have about 5130 data points per stock. This number varies slightly
from stock to stock, because occasionally some data points are missing (e.g., due
to the lack of trading within certain 10 min intervals).

For each equity volume data set we construct 4 secondary sets V
(L)
i by combin-

ing volumes of L consecutive points (and thus amalgamating the original L-point
groups to single points in the newly derived data sets), where L = 5, 10, 20 and
40, corresponding to approximately 1/8, 1/4, 1/2 and 1 day incremental volumes,
respectively. Then gamma distributions are fitted to these newly constructed amal-
gamated volume data sets. We recall that the standard gamma distribution Γ(α, θ)
has a mean αθ and variance αθ2 (see e.g., Brody et al. (2008) for a detailed dis-
cussion of gamma distribution properties and additional relevant references).

Due to properties of the gamma distribution, if the original (non-amalgamated)
volume data follows a true gamma distribution, then its θ parameter would stay
constant with respect to L, its α parameter would scale so that α(L)/L is constant,
and all time series and autocorrelation coefficients would satisfy Cauto(L) ≪ 1. In
addition to the analysis of θ(L), α(L) and Cauto(L), we perform two goodness-of-
fit tests: Anderson-Darling (A-D) and Kolmogorov-Smirnov (K-S), based on the

hypothesis of V
(L)
i having gamma distribution. The A-D and K-S goodness-of-

fit analysis was conducted using the Mathematica 9.0 software package and below
we only report the corresponding P -values (with higher values meaning higher
probability of the hypothesis being correct).

Our results for CBA, WDC and FMG stocks are presented in Table 1 (all these
stocks are part of the ASX 200 index). These results typically display significant
deviations from true gamma distribution behaviours for smaller bucket size L, but

strongly support the hypothesis of V
(L)
i having gamma distributions for L ≥ 20

(i.e., with half a day or longer averaging).
For the sake of giving the reader a better feel of how close our stock volume

statistics hypothesis is to reality, we use the algorithm of Press et al. (2007) to
generate the same number of sample points of “true” gamma-distributed noise
(5130 points) and repeat our analysis. The corresponding results are also included
in Table 1.

Finally we note that some other tests suggested by Frei &Westray (2013) are also
performed. The most important one being a test demonstrating a low correlation

between cumulative (
∑i

j=1 Vj) and incremental volumes (Vi) within the same time

period of a trading day [ti, ti+∆t] (i.e. day-to-day independence of
∑i

j=1 Vj and Vi;

see Frei & Westray (2013) for details). Figure 1 shows the corresponding intra-day
correlations for CBA, WDC and FMG stocks, which are indeed reasonably low.

All results reported in this section strongly support the hypothesis that at least
for the averaging interval of half a day or longer the stock volume dynamics can
indeed be described as the standard gamma process: if the volume traded within



4 ALEXANDER BURYAK AND IVAN GUO

Intra-day points

C
o

rr
e

la
ti

o
n

Figure 1. Correlation between cumulative volume V
(c)
i =

∑i

j=1 Vj and the corresponding relative trading volume Vi for
CBA, WDC and FMG. Each correlation point is calculated for
data sets obtained for the same time period [ti, ti+∆t] of available
trading days.

the time period [ti, ti +∆t] is given by Vi, then we assume that it has the gamma
distribution Γ(α, θ), with mean αθ and variance αθ2, where α depends linearly on
the averaging period ∆t. Due to the independent increment property of the gamma
process, volumes traded in disjoint time intervals of equal length are i.i.d. gamma
variables.

4. Model for VWAP option pricing.

We now formally define a new model for the VWAP option pricing using a
gamma process for volume dynamics. We work under the filtered probability space
(Ω,F ,F,Q). The filtration F = {Ft} represents the flow of information avail-
able to market participants. In particular, it is the augmented filtration gener-
ated by a standard Brownian motion Wt and a sequence of i.i.d. gamma vari-
ables V1, . . . , VN ∼ Γ(α, θ). For every i = 1, . . . , N , the gamma variable Vi is
Fti-measurable where ti := i∆t for some fixed time increment ∆t. Note that the
process Wt and the random variables {Vi} are assumed to be independent. For con-
venience we choose Wt to be the Brownian motion under the risk-neutral pricing
measure. So the measure Q is the product of the risk-neutral pricing measure and
the real-world measure associated with {Vi}.

To summarise: the stock price process St is given by the standard geometric
Brownian motion

dSt = rStdt+ σStdWt,(3)

where r is the risk-free interest rate and σ is the volatility. Note that the discounted
stock price e−rtSt is a martingale under Q.
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The volumes traded Vti traded during the time periods [ti−1, ti] (where ti = i∆t)
are directly modelled by the i.i.d. gamma variables,

Vti := Vi ∼ Γ(α, θ),(4)

with mean αθ and variance αθ2.
Now we can define the VWAP on a time interval [0, T = N∆t] as

S(VWAP) =

∑N

i=1 SiVi
∑N

i=1 Vi

.(5)

This paper will focus on the discrete-time formulation of VWAP (5) which is a
weighted average of N incremental trade volumes as opposed to a weighted integral
over time. For completeness, the results for the continuous-time limit can be found
in Appendix A. Note that we will consider the standard call and put VWAP options:

C = max(S(VWAP) −K, 0),(6)

P = max(K − S(VWAP), 0).(7)

5. Closed-form pricing formulas for VWAP options

It is natural to start further analysis with a brief description of currently known
approaches (Stace (2007), Novikov & Kordzakhia (2013), Novikov et al. (2014)). for
VWAP option pricing. Note that two of these works (Stace (2007), Novikov et al.

(2014)) utilise a well-known moment-matching technique, which works reasonably
well for problems such as pricing Asian options (see e.g., Hull (2006)). In this
technique, we match the first two moments of the VWAP to the corresponding
moments of the standard lognormal process (for which all pricing formulas are
well-known) which have the following form (see, e.g., Glasserman (2003)):

M
(LN)
1 = E[St] = S0 exp (rt),(8)

M
(LN)
2 = Var[St] = S2

0 [exp (σ
2t)− 1] exp (2rt),(9)

where all notations are the same as (3). After matching calculated VWAP mo-

ments to the lognormal moments (i.e. taking M
(LN)
1 = M

(VWAP )
1 and M

(LN)
2 =

M
(VWAP )
2 ), one can use the standard Black formulas for options pricing with the

forward F0 = M1 and the volatility σ2 = ln (M2/M
2
1 + 1)/T (see, e.g., Hull (2006)).

The approach is known to work very well for low volatilities (σ ≤ 0.2) and reason-
ably well for higher volatility levels (0.2 < σ ≤ 0.4).

In the work of Stace (2007) the standard moment matching approach (described
above) is supplemented by further approximations during the calculation of the
VWAP moments, utilising the following expressions:

E

(

Y

Z

)

≈
E (Y )

E (Z)
−

Cov (Y, Z)

[E (Z)]2
+

E (Y )

[E (Z)]3
Var(Z),(10)

Var

(

Y

Z

)

≈

(

E (Y )

E (Z)

)2
(

Var (Y )

[E (Y )]
2 +

Var (Z)

[E (Z)]
2 − 2

Cov (Y, Z)

E (Y )E (Z)

)

,(11)

where all terms may be computed explicitly after lengthy, but rather straightfor-
ward calculations. Note that these approximations are rather well-known (see e.g.,
Mood et al. (1974), p. 181).
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Another possible approach for VWAP option pricing was recently outlined in
Novikov & Kordzakhia (2013) and is essentially based on an upper/lower bounds
approach, which is also well-known for Asian options (see, e.g., Curran (1994),
Rogers & Shi (1995), Thompson (2000), Lord (2006) to name a few). Although more
accurate than the moment-matching approach for higher volatility values (σ > 0.2),
this approach typically does not allow closed-form analytical representations (some
numerical search for minimum/maximum values over one or more parameters is
present).

At this point we choose to follow the simpler and more tractable moment match-
ing method of pricing, aiming to get a simple closed-form analytical result at the
end. Thus we need to calculate the first and the second moments for S(VWAP)

which is given by Eq. (5), where evolution of St and Vt are defined by Eq. (3) and
Eq. (4), respectively.

It is important to note that, in contrast to lognormal volume dynamics models,
the system (3)–(4) allows us to obtain a closed-form moment matching-based pric-
ing solution, both with and without using an additional approximation (10)–(11).
Detailed derivation of the solution to the system (3)–(4) can be found in Appen-
dix A. Here we only present some final expressions for the volatility correction

factor R(VWAP) ≡ σ
(VWAP)
D /σ

(AA)
D , (where σ

(AA)
D represents the standard moment

matching-based implied volatility result for arithmetic averaging Asian options)
noting that compact closed-form asymptotic expansion formulas are available in
the limit T/N ≪ 1:

R
(VWAP)
Exact =

√

N(3 + α+ 2αN)

(1 + 2N)(1 + αN)
+O(T/N),(12)

R
(VWAP)
Stace =

√

(3 + α+ 2αN)

(α+ 2αN)
+O(T/N).(13)

Also note that for our gamma-process model F (VWAP) = F (AA), i.e., no VWAP
forward correction is required in comparison to the corresponding arithmetic aver-
aging Asian result.

A few observations can be made from the analysis of (12)–(13):
(i) the parameter θ is not present in the result (due to its absence in the relative
variance formula for the gamma distribution: Var(Γ)/E(Γ)2 = 1/α),
(ii) in case of daily (T/N = 1/252) or more frequent averaging, all the extra terms
O(T/N) are negligible in comparison to the leading order terms for any value of T ,
(iii) for up to T/N ∼ 0.5, the dependence of RVWAP on T is weak (in comparison
with its dependence on α or N) and may be ignored, at least as a first approxima-
tion.

We may now check the quality of the results (12)–(13) by comparing them to
direct Monte-Carlo (MC) simulations. The results are presented in Table 2.

The parameter values in Table 2 are as follows: σ = 0.2, r = 0.05, θ = 0.00067,
MC number of paths = 10000000, T = 2/52 (with N = 10 averaging points, i.e. a

two-week term with daily averaging). More specifically: the R
(VWAP)
Exact column gives

a ratio σ
(VWAP)
ExactD /σ

(AA)
D result based on the discrete-time exact formulas of Appendix

A; the R
(VWAP)
Stace column gives σ

(VWAP)
StaceD /σ

(AA)
D result based on the discrete-time

“Stace-like” formulas of Appendix A; R
(VWAP)
MC column gives the corresponding
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result of direct MC modelling σ
(VWAP)
MC /σ

(AA)
MC ; and the last column provides an

error estimate for the “Stace-like” ratio result (R
(VWAP)
Stace − 1)/(R

(VWAP)
MC − 1). Note

that we omit a similar comparison for R
(VWAP)
Exact ratio as it perfectly matches the

MC result (i.e. is always within MC error margin).
We see a substantial disagreement of Stace approximation (13) with numerics,

whereas the exact solution (12) matches MC results perfectly (within MC error
bounds).

Table 3 provides the comparison of VWAP implied volatilities (based on the
gamma model considered in this Section) and the corresponding vanilla option
prices with their arithmetic Asian option counterparts. For all examples, the pa-
rameters are σ = 0.2, r = 0.05 and S = K = $100.00.

The last three columns of Table 3 report arithmetic Asian and VWAP option
prices and their relative difference for a typical for ASX stocks (α = 10.0) and lowest
observed (α = 5.0) values of the parameter α. Clearly this relative difference is quite
noticeable for some examples.

6. Conclusions and discussion

In conclusion, we suggest a VWAP option pricing model based on modelling
the underlying volume as the standard gamma process - an assumption which is
backed by our empirical analysis of volume statistics of a few ASX-traded stocks.
Our model allows us to obtain simple closed-form formulas for implied volatility
adjustments (with no forward adjustments needed) for Black-Scholes-style pricing
formulas. These formulas are excellent approximations to the VWAP gamma model
exact results, obtained by Monte Carlo simulations. In addition we have demon-
strated that some rather conventional approximations (see Eqs. (10)–(11)), which
our model can avoid, should be used with a great deal of care since they may lead
to substantial pricing errors.

It is also reasonably clear how one could further improve on our results. One
should aim to derive a more sophisticated model for the volume process which
should have a richer parameter space to better fit the empirical stock volume data,
than the simple gamma distribution utilised in this work and/or take into account
the partial correlation between volume and stock processes. Another possible di-
rection is to obtain upper/lower bound results based on the gamma distributed
volume model.

Appendix A

We model the volumes Vi traded within [ti−1, ti] time interval (where ti = i∆t)
by i.i.d. gamma variables Vi ∼ Γ(α, θ), independent of the underlying stock process
St. Note that the parameter α depends linearly on the choice of ∆t.

The vector of scaled increments Xi = Vi/
∑N

j=1 Vj are given by

(X1, . . . , XN ) =

(

V1
∑N

j=1 Vj

, . . . ,
VN

∑N
j=1 Vj

)

∼ D(α, . . . , α),
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where D is a Dirichlet distribution. The following formulas for various expectations
are well-known:

E(Xi) =
1

N
=

∆t

T
, E(X2

i ) =
α+ 1

N(αN + 1)
, Var(Xi) =

N − 1

N2(αN + 1)
,

E(XiXj) =
α

N(αN + 1)
, Cov(Xi, Xj) =

−1

N2(αN + 1)
, i 6= j.

Discrete-time case. In the discrete-time case, the VWAP is defined to be

S := S(VWAP) =

∑N

i=1 SiVi
∑N

i=1 Vi

=

N
∑

i=1

SiXi

where Si = Si∆t. The first two moments can then be computed using Fubini’s
Theorem, Fubini (1958):

M1 = ES =

N
∑

i=1

ESiEXi = E

(

1

N

N
∑

i=1

Si

)

,

ES2 =

N
∑

i=1

ES2
i EX

2
i + 2

∑

i<j

E(SiSj)E(XiXj)

=
α+ 1

N(αN + 1)

N
∑

i=1

ES2
i +

2α

N(αN + 1)

∑

i<j

E(SiSj)

= E

(

1

N

N
∑

i=1

Si

)2

+
1

αN + 1



E

(

1

N

N
∑

i=1

S2
i

)

− E

(

1

N

N
∑

i=1

Si

)2


 ,

M2 = ES2 −M2
1

= Var

(

1

N

N
∑

i=1

Si

)

+
1

αN + 1



E

(

1

N

N
∑

i=1

S2
i

)

− E

(

1

N

N
∑

i=1

Si

)2


 .

Note that instead of solving gamma process VWAP problem exactly as above,
we can adopt the “Stace-like” approach as well, by utilising the approximations

(10)–(11). In this case M
(Stace)
1 = M1, but the final expression for M2 changes

into:

M
(Stace)
2 = Var

(

1

N

N
∑

i=1

Si

)

+
1

αN



E

(

1

N

N
∑

i=1

S2
i

)

−

[

E

(

1

N

N
∑

i=1

Si

)]2


 .

Now let us recall that St is a geometric Brownian motion with drift r and volatil-

ity σ, all terms in the expressions for M1, M2 and M
(Stace)
2 can all be explicitly



EFFECTIVE AND SIMPLE VWAP OPTIONS PRICING MODEL 9

calculated:

E

(

1

N

N
∑

i=1

Si

)

=
S0

N

N
∑

i=1

eri∆t,

E

(

1

N

N
∑

i=1

S2
i

)

=
S2
0

N

N
∑

i=1

e(2r+σ2)i∆t,

E

(

1

N

N
∑

i=1

Si

)2

=
S2
0

N2





N
∑

i=1

e(2r+σ2)i∆t + 2

N
∑

j=1

j−1
∑

i=1

er(i+j)∆t+σ2i∆t



 .

This, in turn, allows the calculation of the corresponding implied volatilities by
moment matching. For example, for equidistant spacing of averaging points, the
following expressions can be obtained:

σ
(VWAP)
ExactD = σ

√

(1 +N)(3 + α+ 2αN)

6N(1 + αN)
+O(T/N),

or (if taken relative to σ
(AA)
D ):

σ
(VWAP)
ExactD

σ
(AA)
D

=

√

N(3 + α+ 2αN)

(1 + 2N)(1 + αN)
+O(T/N),

and

σ
(VWAP)
StaceD = σ

√

(1 +N)(3 + α+ 2αN)

6αN2
+O(T/N),

or (if taken relative to σ
(AA)
D ):

σ
(VWAP)
StaceD

σ
(AA)
D

=

√

(3 + α+ 2αN)

(α+ 2αN)
+O(T/N),

Continuous-time case. The continuous-time VWAP is the limit of the discrete-
time case as N → ∞ or ∆t → 0:

S̃ := S(VWAP) =

∫ T

0
St dZt

ZT

= lim
N→∞

N
∑

i=1

S(i−1)∆tXi.

where the aggregate volume traded Zt is a gamma process Γ(t; α̃, θ). Here we use
the parameter α̃ which relates to the discrete-time case parameter via α̃ = α/∆t
or α̃T = αN . Using arguments similar to the discrete-time case, as well as the
dominated convergence theorem, the first two exact moments are:

M1 = E

(

1

T

∫ T

0

St dt

)

,

ES̃2 = E

(

1

T

∫ T

0

St dt

)2

+
1

α̃T + 1



E

(

1

T

∫ T

0

S2
t dt

)

− E

(

1

T

∫ T

0

St dt

)2


 ,

M2 = Var

(

1

T

∫ T

0

St dt

)

+
1

α̃T + 1



E

(

1

T

∫ T

0

S2
t dt

)

− E

(

1

T

∫ T

0

St dt

)2


 .
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And again we can use (10)–(11) to obtain a Stace-like approximation,

M
(Stace)
2 = Var

(

1

T

∫ T

0

St dt

)

+
1

α̃T



E

(

1

T

∫ T

0

S2
t dt

)

−

[

E

(

1

T

∫ T

0

St dt

)]2


 .

The terms involving the stock process St are given by:

E

(

1

T

∫ T

0

St dt

)

=
S0

T

(

erT − 1

r

)

,

E

(

1

T

∫ T

0

St dt

)2

=
2S2

0

(r + σ2)T 2

(

e(2r+σ2)T − 1

2r + σ2
−

erT − 1

r

)

,

E

(

1

T

∫ T

0

S2
t dt

)

=
S2
0

T

(

e(2r+σ2)T − 1

2r + σ2

)

.

Finally the corresponding implied volatilities for the continuous limit can also be
calculated:

σ
(VWAP)
Exact

σ(AA)
=

√

(3 + 2α̃)

(2 + 2α̃)
+

(6(1 + α̃)r2 + 3(1 + α̃)rσ2 + α̃σ4)T

24(1 + α̃)2σ2
+O(T 2),

and

σ
(VWAP)
Stace

σ(AA)
=

√

(3 + 2α̃)

2α̃
+

(2α̃r2 + α̃rσ2 − 3σ4 − α̃σ4)T

8α̃2σ2
+O(T 2).
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Table 1. Statistical analysis of CBA, WDC and FMG stock vol-
ume data (data source: Bloomberg) and its comparison with anal-
ysis of synthetic (computer-generated) data sample (with gamma
distribution parameters α = 1.0 and θ = 0.2 × 106). For stock
data each original data point represents a traded volume and the
corresponding VWAP price for a 10 minute interval (approx. 5130
points are available for each stock; for synthetic data we also gen-

erate 5130 points). Then 4 secondary sets V
(L)
i are constructed

by combining volumes of L consecutive points (L = 5, 10, 20, 40).
Then gamma distributions are fitted to these amalgamated vol-
ume data sets (i.e., we obtain fitted gamma distribution parame-
ter values θ(L) and α(L) for each set) and autocorrelation coeffi-
cients Cauto(L) are also calculated. In addition, we perform two
goodness-of-fit tests: Anderson-Darling (A-D) and Kolmogorov-

Smirnov (K-S), based on the hypothesis of V
(L)
i having a gamma

distribution and report the corresponding P -values (with higher
values meaning higher probability of the hypothesis being correct).

stock/ L θ(L)/106 α(L) α/L Cauto(L) P (A−D) P (K−S)

synthetic

CBA 5 0.33 3.23 0.65 39% 0.01% 0.11%
CBA 10 0.54 3.95 0.39 21% 5.0% 4.6%
CBA 20 0.73 5.84 0.29 8% 59.1% 49.4%
CBA 40 0.77 11.07 0.28 45% 90.8% 74.8%

WDC 5 0.95 2.19 0.44 21% 0.00% 0.00%
WDC 10 1.46 2.87 0.29 2% 2.8% 1.9%
WDC 20 1.77 4.73 0.24 -14% 54.6% 31.6%
WDC 40 1.55 10.82 0.27 48% 99.7% 98.7%

FMG 5 2.58 2.82 0.56 40% 1.7% 42.3%
FMG 10 3.88 3.75 0.38 25% 37.4% 32.3%
FMG 20 5.14 5.66 0.28 10% 73.1% 58.4%
FMG 40 5.29 10.99 0.27 33% 93.9% 95.9%

synthetic 5 0.20 4.99 1.00 2% 93.2% 90.4%
synthetic 10 0.21 9.50 0.95 0% 99.9% 94.0%
synthetic 20 0.22 17.65 0.88 2% 90.7% 89.6%
synthetic 40 0.20 38.18 0.98 4% 84.2% 76.2%
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Table 2. Comparison of the gamma model effective volatility re-
sults with the corresponding MC results for the following param-
eter values: σ = 0.2, r = 0.05, θ = 0.00067, MC number of paths
= 10000000, T = 2/52 (with N = 10 averaging points). We

note that the R
(VWAP)
Exact column gives a ratio σ

(VWAP)
ExactD /σ

(AA)
D re-

sult based on the discrete-time exact formulas of Appendix A; the

R
(VWAP)
Stace column gives σ

(VWAP)
StaceD /σ

(AA)
D result based on the discrete-

time “Stace-like” formulas of Appendix A; R
(VWAP)
MC column gives

the corresponding result of direct MC modelling σ
(VWAP)
MC /σ

(AA)
MC ;

and the last column provides an error estimate for the “Stace-like”

ratio result (R
(VWAP)
Stace − 1)/(R

(VWAP)
MC − 1).

1/α R
(VWAP)
Exact R

(VWAP)
Stace R

(VWAP)
MC

(R
(VWAP)
Stace −1)

(R
(VWAP)
MC −1)

0.00 1.0000 1.0000 1.0000 ± 0.0002 -
0.02 1.0004 1.0014 1.0004 ± 0.0002 3.40
0.20 1.0042 1.0142 1.0042 ± 0.0002 3.36
0.50 1.0102 1.0351 1.0102 ± 0.0002 3.43
0.75 1.0148 1.0351 1.0150 ± 0.0002 3.49
1.00 1.0193 1.0522 1.0194 ± 0.0002 3.56
1.20 1.0227 1.0823 1.0228 ± 0.0002 3.62
1.50 1.0276 1.1019 1.0276 ± 0.0002 3.69
1.80 1.0322 1.1212 1.0322 ± 0.0002 3.76
2.00 1.0351 1.1339 1.0352 ± 0.0002 3.80
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Table 3. Comparison of VWAP implied volatilities σ
(VWAP)
D and

VWAP option prices P
(VWAP)
D with the corresponding arithmetic

Asian volatilities σ
(AA)
D and option prices P

(AA)
D for some typical

values of gamma parameter α, option tenor T and number of av-
eraging points N . For all examples, the parameters are σ = 0.2,
r = 0.05 and S = K = $100.00.

Type T α N σ
(AA)
D σ

(VWAP)
D P

(AA)
D P

(VWAP)
D

P
(VWAP)
D

P
(AA)
D

− 1

[years] [%] [%] [$] [$] [%]

put 0.317 10 80 11.68 11.69 2.217 2.217 0.04
call 0.317 10 80 11.68 11.69 3.012 3.012 0.03
put 0.079 10 20 11.99 12.00 1.242 1.242 0.12
call 0.079 10 20 11.99 12.00 1.450 1.450 0.11
put 0.020 10 5 13.27 13.32 0.716 0.718 0.37
call 0.020 10 5 13.27 13.32 0.775 0.778 0.34
put 0.020 5 5 13.27 13.36 0.716 0.721 0.73
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