
Comparative Analysis of Open-Source Log Management Solutions for Security
Monitoring and Network Forensics

Risto Vaarandi, Paweł Nizi�ski
NATO Cooperative Cyber Defence Centre of Excellence, Tallinn, Estonia
risto.vaarandi@ccdcoe.org
pawel.nizinski@ccdcoe.org

Abstract: Nowadays, centralised event log management plays a crucial role in security monitoring and network
forensics. While commercial log management solutions are regularly reviewed and compared by independent
organisations (e.g. Gartner Magic Quadrant reports), such comparisons are often hard to find for open-source
tools, especially for recently created solutions. However, many institutions are using open-source tools for
monitoring and forensics, since they allow for implementation of incident detection and analysis frameworks in a
cost-efficient way. Furthermore, recently appeared open-source solutions have started a new architectural trend,
where the log management system consists of independent and replaceable modules which interact through
well-defined interfaces and protocols. In contrast, most commercial systems are essentially monolithic solutions
where individual components (such as the GUI or event collector service) cannot be changed for a component
from another vendor. In this paper, we will focus on widely used open-source solutions for log management and
discuss their recent developments. We will also cover novel technologies and tools which have appeared during
the last 2-3 years.

Keywords: log management, network forensics, security monitoring

1. Introduction

Centralised event log management plays a crucial role in security monitoring and network forensics, since it
allows for gathering events from thousands of nodes to a few dedicated servers where central analysis is carried
out. The analysis can be a real-time process, where security incidents are detected from incoming events
through event correlation and other advanced monitoring techniques; it can also be an off-line forensics activity,
where past events are investigated in order to study security incidents that have already occurred.

Figure 1: An architectural overview of an event log management framework.

Without event log collection to central location(s), monitoring and forensics activities would have to be carried out

at individual network nodes, which is time-consuming and prevents the timely resolution of security incidents.
Furthermore, the attacker may erase events from the local log in order to remove any traces of his/her malicious
activities. For the above reasons, a number of commercial and open-source solutions have been created for log
collection and centralised analysis. Figure 1 provides an overview of the essential components of an event log
management framework.

As depicted in Figure 1, nodes of the IT system are using protocols like IETF syslog for sending events to the
collector service(s) at the central log server(s). Collector services use various techniques for filtering and
normalising events and store preprocessed events into some means of storage (e.g. a database or a flat file).
Human analysts can access stored data through a GUI for carrying out searches, creating reports, and other
analytical tasks.

In this paper, we will focus on most prominent open-source log management solutions. The first contribution of
this paper is an analytical comparison of presented tools; the second contribution is a detailed comparative
performance evaluation of the tools. For this purpose, we conducted a set of experiments for assessing their
resource consumption and event processing speed under a heavy load (all experiments were carried out in
December 2012). To the best of our knowledge, such performance evaluations have not been conducted
recently for state-of-the-art open-source log management solutions.

The remainder of this paper is organised as follows: section 2 provides an overview of log collection protocols
and log storing techniques, section 3 provides a discussion and performance evaluation for leading open-source
syslog servers, section 4 presents an overview and performance assessment of graphical log management
systems, and section 5 concludes the paper.

2. Log collection and storing

Until the 1980s, event logging was mostly accomplished by writing events to a file on a local disk. In the 1990s,
UDP-based BSD syslog protocol became widely used for log collection (Lonvick 2001). The protocol defines 24
message facility (sender type) and 8 severity values which range from 0 to 23 and 0 to 7 respectively. For
reasons of convenience, textual acronyms are often used instead of numerals, e.g. daemon denotes facility 3
and warning denotes severity 4. According to BSD syslog, the payload of the UDP packet carrying the message
must have the format <Priority>Timestamp Hostname MSG, where Priority is defined as a numeral
8*facility_value + severity_value. For example, the following message represents a warning “ids[1299]: port scan
from 192.168.1.102” for daemon facility which was issued on November 17 at 12:33:59 by the network node
myhost2:

<28>Nov 17 12:33:59 myhost2 ids[1299]: port scan from 192.168.1.102

By convention, the alphanumerals that start the MSG field are regarded as the Tag subfield which represents the
name of the sending program (“ids” in the above example), while the remainder of the MSG field is regarded as
the Content subfield (“[1299]: port scan from 192.168.1.102” in the above example).

Despite its popularity, BSD syslog protocol has a number of drawbacks which are summarised below:
1) no support for reliable message transmission over TCP;
2) no support for encryption and authentication;
3) timestamps are not specific enough, lacking the timezone, year, and fractions of a second;
4) apart from Tag and Content subfields, the MSG field has no structure.

In order to make message transmission more reliable, a TCP flavor of BSD syslog protocol was proposed during
the previous decade, where a stream of newline-separated messages in BSD syslog format is sent over a TCP
connection. In 2009, more advanced IETF syslog protocol was introduced that addresses all drawbacks of BSD
syslog (Gerhards 2009; Miao, Ya and Salowey 2009; Okmianski 2009). The IETF syslog supports secure
message transmission over TLS, and uses a new message format with more detailed RFC3339 timestamps
(Klyne and Newman 2002) and structured data blocks. The following example depicts the previous sample
message in a new format:

<28>1 2012-11-17T12:33:59.223+02:00 myhost2 ids 1299 - [timeQuality tzKnown="1" isSynced="1"] port scan
from 192.168.1.102

The priority specification <28> is followed by the protocol version number (1). In addition, the sender is passing a
structured data block timeQuality to the receiver, indicating that sender’s clock is synchronised to an external
reliable time source.

Another currently ongoing effort to introduce structure to log messages is the Common Event Expression (CEE)
initiative. CEE has proposed JSON and XML formats for events, while also suggesting the use of BSD and IETF
syslog protocols for transporting JSON-formatted events (CEE 2012). In addition, there are some application-
specific protocols for structured logging, e.g. GELF.

When logs are collected to central server(s), they need to be written to a permanent storage. In many cases,
incoming log messages are written into flat files on the disk of the central server. While this consumes little CPU
time and allows for receiving large volumes of events per second, searching relevant events from flat files can be
time consuming and resource intensive. Therefore, log messages are often stored into SQL databases that
facilitate fast and efficient searching. However, each database table contains a fixed number of columns, with
each column representing a certain message field of a fixed type (e.g. integer or string). As a consequence, the
fields of a log message have to comply with the structure of a database table that is holding the log data. In order
to address this requirement, fields of all collected messages must be well known in advance, so that appropriate
database schema can be defined.

Unfortunately, if logs are received from a wide variety of sources, log messages in previously unseen formats are
likely to appear. In order to address this problem, document-oriented databases have emerged recently as
alternative log storage solutions. Although the implementations of document-oriented databases vary, they can
be viewed as a collection of documents, where each document is usually a record of fieldname-value pairs. It is
important to note that each inserted document can have a unique set of fields which do not need to be known in
advance.

During the last 1-2 years, Java-based elasticsearch has emerged as one of the most widely used document-
oriented database engines for storing log data (Elasticsearch 2013). Elasticsearch accepts new documents in
JSON format over a simple HTTP interface, inserting the incoming document into a given index and thus making
the document searchable for future queries. Support for distribution is built into the core of elasticsearch and
several instances of elasticsearch engines can be easily joined into a single cluster. Furthermore, each database
index can be split into so-called shards, which can be located at different cluster members. Also, each index can
have one or more replicas for implementing a fault tolerant cluster.

3. Syslog servers

In this section, we will cover leading open-source syslog servers rsyslog (Rsyslog 2013), syslog-ng (Syslog-ng
2013) and nxlog (Nxlog 2013). The discussion and experiments presented in this section are based on rsyslog
7.2.3, syslog-ng 3.3.7 and nxlog ce-2.0.927.

3.1 Rsyslog, syslog-ng and nxlog

Rsyslog, syslog-ng and nxlog have been designed to overcome the weaknesses of traditional UNIX syslogd
server which supports only BSD syslog protocol, and is able to match and process messages by facility and
severity. Rsyslog, syslog-ng and nxlog support not only such simple message matching, but advanced message
recognition with regular expressions, conversion of messages from one format to another, authenticated and
encrypted communications over IETF syslog protocol, etc. Syslog-ng and nxlog have also a commercial edition
with extended functionality. Rsyslog and syslog-ng run on UNIX platforms, while nxlog is also able to work on
Windows.

The configuration of all servers is stored in one or more textual configuration files. Syslog-ng uses a highly
flexible and readable configuration language which is not compatible with UNIX syslogd. The message sources,
matching conditions and destinations are defined with named blocks, with each definition being reusable in other
parts of the configuration. Syslog-ng is also well documented, featuring a detailed administrator's manual
consisting of hundreds of pages. This makes it easy to create fairly complex configurations, even for
inexperienced users.

Rsyslog is an efficient syslog server that was specifically designed for handling heavy message loads (Gerhards
2010). Rsyslog uses a quite different configuration language that supports UNIX syslogd constructs. This allows
for easy migration of old syslogd setups to rsyslog platform. Also, there are many additional features in the
rsyslog configuration language. Unfortunately, over time, several different syntaxes have been included in the
language which has introduced inconsistencies (Gerhards 2012). Functionality-wise, rsyslog supports several
highly useful features not present in open-source versions of syslog-ng and nxlog. Firstly, it is possible to set up
temporary message buffering to local disk for log messages which were not sent successfully over the network.
The buffering is activated when the connection with a remote peer is disrupted, and when the peer becomes
available again, all buffered messages are retransmitted. Secondly, the latest stable release of rsyslog has an
efficient support for elasticsearch database (Rsyslog-ver7 2012).

Nxlog uses the Apache style configuration language. As with syslog-ng, message sources, destinations and
other entities are defined with named blocks which allows them to be reused easily. Also, nxlog has a solid user
manual. The advantages of nxlog over other syslog servers include native support for Windows platform and
Windows Eventlog. Also, nxlog is able to accept input events from various sources not directly supported by
other servers, including SQL databases and text files in custom formats. Finally, nxlog is able to produce output
messages in the GELF format, allowing for seamless integration with the Graylog2 log visualisation solution.

In order to illustrate the differences between the configuration languages of syslog-ng, rsyslog and nxlog, we
have provided configuration statements in three languages for the same log processing scenario:

configuration for syslog-ng

@version:3.3

source netmsg { udp(port(514)); };
filter ntpmsg { program('^ntp') and level(warning..emerg); };
destination ntplog { file("/var/log/ntp-faults.log"); };

log { source(netmsg); filter(ntpmsg); destination(ntplog); };

configuration for rsyslog

$ModLoad imudp
$UDPServerRun 514

if re_match($programname, '^ntp') and $syslogseverity <= 4 then {
 action(type="omfile" file="/var/log/ntp-faults.log")
}

configuration for nxlog

<Input netmsg>
 Module im_udp
 Host 0.0.0.0
 Port 514
 Exec parse_syslog_bsd();
</Input>

<Output ntplog>
 Module om_file
 File "/var/log/ntp-faults.log"
 Exec if $SourceName !~ /^ntp/ or $SyslogSeverityValue > 4 drop();
</Output>

<Route ntpfaults>
 Path netmsg => ntplog
</Route>

First, the above configurations tell syslog servers to accept BSD syslog messages from UDP port 514 (in the
case of syslog-ng and nxlog, the name netmsg is assigned to this message source). Then, the message filtering
condition is defined for detecting messages with the Tag field matching the regular expression ^ntp (in other
words, the name of the sending program begins with the string “ntp”), and with the message severity falling
between warning (code 4) and emerg (code 0). Note that for nxlog, the inverse filter is actually used for
dropping irrelevant messages. Finally, the file /var/log/ntp-faults.log is used as a destination for storing messages
that have passed the filter (in the case of syslog-ng and nxlog, the name ntplog is assigned to this destination).

3.2 Experiments for evaluating the performance of rsyslog, syslog-ng and nxlog

In order to evaluate how well each server is suited for the role of a central syslog server, we conducted a number
of experiments for assessing their performance. During the experiments we used three benchmarks for stress-
testing the servers, and measured the CPU time consumption and overall execution time of each server during
every test run. We call the benchmarks BSD-Throughput, IETF-Throughput and Filter-Throughput, and define
them as follows:

1) BSD-Throughput – 1 client sends 10,000,000 plain-text BSD syslog messages to the syslog server over TCP.
The messages are written to one log file without filtering.
2) IETF-Throughput – 1 client sends 10,000,000 encrypted IETF syslog messages to the syslog server over
TCP. The messages are written to one log file without filtering.
3) Filter-Throughput – there are 5 clients, each sending 2,000,000 plain-text BSD syslog messages to the syslog
server over TCP. The messages are identical to messages of the BSD-Throughput benchmark which allows for
making performance comparisons between two benchmarks. The server is configured to process incoming log
data with 5 filters and to write messages into 5 log files. All filters include regular expression match conditions for
the message text (Content field) and/or program name (Tag field), and some filters also have additional match
conditions for message facility and severity.

Table 1: Comparative performance of rsyslog, syslog-ng and nxlog.

 rsyslog syslog-ng nxlog

BSD-Throughput
maximum, minimum and
average CPU time
consumption (seconds)

17.994
14.601
16.024

97.094
88.942
94.090

86.809
83.929
85.100

BSD-Throughput
maximum, minimum and
average execution time
(seconds)

12.778
10.736
11.853

98.961
90.715
96.079

54.261
52.253
53.281

IETF-Throughput
maximum, minimum and
average CPU time
consumption (seconds)

47.190
41.448
43.883

115.684
106.813
111.823

166.455
161.536
164.605

IETF-Throughput
maximum, minimum and
average execution time
(seconds)

33.268
30.184
31.337

128.055
108.911
115.084

71.605
69.434
70.404

Filter-Throughput
maximum, minimum and
average CPU time
consumption (seconds)

50.265
45.626
47.661

216.093
211.143
213.683

2237.954
2191.502
2216.758

Filter-Throughput
maximum, minimum and
average execution time
(seconds)

44.389
39.941
41.624

60.496
58.886
59.792

715.320
701.210
707.933

Note that rsyslog and nxlog always run in multi-threading mode, while for syslog-ng this mode has to be enabled
manually. During the testing we discovered that for BSD-Throughput and IETF-Throughput syslog-ng
performance decreased in multi-threading mode (according to the syslog-ng manual, this mode yields
performance benefits in the presence of many clients, filters and message destinations). Therefore, we ran
syslog-ng in a default single-threaded mode for BSD-Throughput and IETF-Throughput tests. Also, we
discovered that the tested nxlog version was not able to handle IETF syslog messages as required by RFC5425
– in a stream of incoming messages, only the first syslog frame was properly recognised. Also, the tested
version was not able to parse some timezone specifications in RFC3339 timestamps. For these reasons, we
modified the IETF-Throughput benchmark for nxlog, so that instead of proper RFC5425 frames, a stream of
newline-separated IETF messages was sent to nxlog over TLS connection (this unofficial data transmission
mode is supported by all tested servers as an extension to standard modes). The tests were carried out on a
Fedora Linux node with 8GB of memory and an Intel Core i5 650 processor. We repeated each test 10 times,
and the results are presented in Table 1.

The results reveal several interesting aspects of server performances. Firstly, the performance of rsyslog is
superior to other servers, both in terms of raw message throughput from single client and efficiency of message
filtering for multiple clients. Also, rsyslog is able to share its workload between several CPU cores with multi-
threading, and thus the execution times are less than overall consumed CPU times. Multi-threading is used very
efficiently by nxlog, resulting in execution times being 1.5-3 times lower than used CPU time. Unfortunately, the
performance of nxlog filters is poor – compared with the BSD-Throughput test, the average CPU time
consumption increased about 26 times. In contrast, CPU time consumption for syslog-ng increased only 2.27
times, while the average execution time actually decreased by almost a half due to the manually enabled multi-
threading mode.

4. Log visualisation and preprocessing applications

While the use of databases for storing log messages facilitates fast searching with flexible query language, it is
tedious and time-consuming for the user to write separate queries for each search, report or other analytical
task. Furthermore, the output from database queries is textual and the user would have to use a separate tool, or
even programming language, for visualising this output. For solving this problem, several open-source log
visualisation applications have been developed during the last 2-3 years, which are all using elasticsearch as
their main database engine. In this section, we will review and conduct performance evaluation experiments for
logstash (version 1.1.5), Graylog2 (version 0.9.6) and Kibana (version 0.2.0).

4.1 Logstash

Logstash is a Java-based utility where a graphical user interface and embedded elasticsearch engine are
encapsulated into a standalone jar-file (Logstash 2013). This eases the installation of logstash since the user
does not have to download and install all product components separately. One advantage of logstash is its
support for many different input and output types. Currently, there are input plugins for accepting syslog
messages over TCP and UDP, but also for many other messaging protocols like AMPQ, RELP, GELF, IRC,
XMPP, twitter, etc. Among outputs, other monitoring and visualisation systems are supported, including Nagios,
Zabbix, Loggly, Graphite and Graylog2.

Another advantage of logstash is a number of different message filter types which allow for flexible recognition,
filtering, parsing and conversion of messages. For instance, it is possible to convert multi-line messages into
single line format, filter out messages with regular expressions, add new fields to messages from external
queries and accomplish many other advanced message manipulation tasks.

One of the most commonly used logstash filter types is grok. While most log management tools use regular
expression language for message matching and parsing, grok filters employ many predefined patterns that
represent regular expressions for common matching tasks (GrokPatterns 2013). For instance, the pattern PROG
is defined as the regular expression (?:[\w._/%-]+) and is designed to match the name of the logging program.
Using predefined grok patterns, a person who is not familiar with the regular expression language can
accomplish event parsing tasks in an easier way.

In order to use the GUI of logstash, it must be configured to insert events into its embedded elasticsearch

database. With the GUI it is possible to carry out basic searches from log messages in the embedded database.
Unfortunately, compared with other log visualisation tools, the GUI of logstash has quite limited functionality.
However, since logstash has powerful event filtering and conversion capabilities, it is used mostly as an event
preprocessor for different systems, including other log visualisation systems.

4.2 Graylog2

Graylog2 (Graylog2 2013) is a log management system which consists of a Java-based server and a web
interface written in Ruby-on-Rails. Graylog2 server can receive BSD syslog messages over UDP and TCP, but it
also features its own GELF protocol that facilitates structured logging (GELF 2013). In addition, Graylog2 can
accept syslog and GELF messages over the AMPQ messaging protocol. Unfortunately, Graylog2 is not able to
parse structured IETF syslog messages and recognise already defined fieldname-value pairs. For BSD syslog
messages, Graylog2 can recognise the standard Priority, Timestamp, Hostname and MSG fields, but cannot by
default parse the unstructured MSG field.

The parsing problem for unstructured messages can be overcome in several ways. First, Graylog2 server
supports message parsing and rewriting through Drools Expert rules and regular expressions (Graylog2-Drools
2013). Second, many sites use logstash for receiving syslog messages, parsing out relevant message fields with
grok filters, and finally sending the parsed messages in structured GELF format to Graylog2. Finally, since the
nxlog syslog server supports the GELF protocol, it can be used as a frontend for receiving both encrypted and
plain-text syslog messages and converting them into GELF messages.

For storing parsed messages, Graylog2 uses elasticsearch as its main backend. Unfortunately, all log messages
are stored into a single index, which might cause performance issues as many log messages are inserted into it
over time. This issue can be addressed with creating a separate elasticsearch index for each week or day (the
latter technique is used by logstash). Fortunately, the developers of Graylog2 are aware of this problem and it is
supposed to be fixed in the next version.

Figure 2: Graphical user interface of Graylog2.

In order to visualise collected log data, Graylog2 provides a well-written and comprehensive web interface. For
accessing the interface, different password-protected user accounts can be set up, with each user having either
full or limited rights (the remainder of the discussion will concern the user interface with full admin rights). The
interface is divided into several parts. The message view (see Figure 2) allows for getting an overview of stored
log messages, presenting the messages in a browser with the most recent messages coming first. In the
browser, the timestamp, host, severity, facility and message text fields are displayed. By clicking on an individual
message, a detailed view of the message is provided which contains all fieldnames with values (see the right-
hand part of Figure 2). Clicking on each individual value will carry out a search for messages with the same

fieldname-value pair, and discovered messages will be displayed in the main message browser. Message search
can also be initiated through a separate ‘Quickfilter’ button in the message view which allows for specifying more
than one search condition. For searching a message text field, the Apache Lucene query syntax can be used
(Lucene 2012). It supports searches for individual strings, approximate string matching based on Levenshtein
distance, proximity searches (e.g. find two strings which have up to 10 words in between), and combining
individual search conditions with Boolean operators. Figure 2 depicts an example search for Snort IDS alarms.

Apart from viewing all messages, the user can configure streams that are collections of messages satisfying
some message filtering condition. Streams are updated with matching incoming messages in real-time.
Messages under each stream can be viewed separately, and also it is possible to configure thresholding and
alarming conditions for each stream (e.g. send an alarm to a security administrator if more than 10 messages
have appeared under the stream during 1 minute). In order to define a filtering condition for a stream, message
field values can be compared with fixed values, but in the case of some fields, also with regular expressions. In
addition to streams, Graylog2 also contains a so called analytics shell which supports a flexible query language
for finding individual messages and for creating various reports. Unfortunately, currently all reports are text-
based, although in the future releases support for graphical reporting might be added.

During our experiments, we attempted to establish the performance of Graylog2 in terms of event throughput.
We expected the performance of Graylog2 to be significantly slower than for syslog servers tested in the
previous section. First, both Graylog2 server and elasticsearch database engine are written in Java, while
rsyslog, syslog-ng and nxlog are coded in C. Second, Graylog2 server has to insert log messages into
elasticsearch index, which requires considerably more CPU time than writing messages into flat files. During the
tests, we ran Graylog2 on a Fedora Linux node with 8GB of memory and an Intel Core i5 650 processor. We set
up one client for Graylog2, which was issuing large amounts of BSD syslog messages over TCP. The combined
performance of Graylog2 server and elasticsearch backend was measured in terms of message transmission
throughput observed at the client side. During several tests, we were able to reach a throughput of 3,500
messages per second. This illustrates that one Graylog2 server instance is not scalable to very large
environments with many thousands of logging hosts and heavy message loads. Fortunately, the developers are
planning to add support into Graylog2 for multiple server instances, which should substantially increase its
overall scalability.

4.3 Kibana

Kibana is another application for visualising collected log data (Kibana 2013). Unlike Graylog2, Kibana consists
only of a Ruby-based web interface which uses elasticsearch as a backend, and there is no server to receive log
messages over the network and store them into a database. For this reason, Kibana cannot run as a standalone
system, but has to be used with an application that receives, parses, and stores log messages into
elasticsearch. Many sites are employing logstash for this task, and Kibana's default configuration is logstash-
compliant. Also, Kibana expects that log messages in elasticsearch database have some fields that are created
by logstash (for example, @timestamp and @message). However, if another application is configured to insert
log messages into elasticsearch database with these fieldname-value pairs, Kibana is able to work on stored log
data.

In order to search log messages, Kibana supports full Apache Lucene query syntax for all message fields (Figure
3 depicts an example search for Snort IDS alarm data). One advantage of Kibana over Graylog2 is the support
for the creation of various graphical reports. Reports can be created based on a selected message field and time
frame, either for all messages or for some message matching criteria. Kibana supports the creation of pie charts
which reflect the distribution of field values, trend analysis reports and count reports for field values. By selecting
some value from the report form, the user can go to relevant log messages. Reports can also be created directly
from searches – for example, the query @fields.srcip=10.1.1.1 selects all messages where the field
@fields.srcip (source IP address) has the value 10.1.1.1, while the query

@fields.srcip=10.1.1.1 | terms @fields.dstip

creates a pie graph about the distribution of @fields.dstip (destination IP address) values for source IP 10.1.1.1.

Figure 3: Graphical user interface of Kibana.

Since rsyslog has had elasticsearch support since 2012, it can be used instead of logstash for receiving and
preparing log data for Kibana. In order to assess the performance of logstash and rsyslog, we installed Kibana
with elasticsearch on a Fedora Linux node with 8GB of memory and an Intel Core i5 650 processor, and set up
both rsyslog and logstash at this node. Both solutions were configured to insert messages into elasticsearch in
bulk mode (for rsyslog, the message batch size was 16, while for logstash a batch size of 100 was used). For
performance evaluation, we sent 100,000 BSD syslog messages over TCP to the receiver, and measured the
processing time of these messages. At the end of each test, a query was made to elasticsearch for verifying that
all messages were successfully inserted into the database. We repeated this test 100 times for rsyslog and
logstash, deleting all inserted messages between consecutive test runs. The results of our experiments are
presented in Table 2. For rsyslog, 100,000 messages were processed in an average of 17.066 seconds, yielding
the average processing speed of 5859.6 messages per second. In the case of logstash, the average processing
speed was 1732.952 messages per second. In other words, rsyslog is able to insert messages into elasticsearch
more than 3 times faster.

Table 2: Comparative performance of rsyslog and logstash for elasticsearch bulk insert operations.

 Minimum processing

time (seconds)
Maximum
processing time
(seconds)

Average processing
time (seconds)

Average event
processing speed
(events per second)

rsyslog 15.998 21.031 17.066 5859.604

logstash 56.084 73.695 57.705 1732.952

5. Summary

In this paper, we have reviewed a number of widely used and efficient open-source solutions for collecting log
data from IT systems. We have also described some novel technologies and setups for tackling the logging in
large networks. One of the major contributions of this paper is the performance evaluation of described solutions
through a series of benchmarks which mimic heavy workload in real-life environments. Through the experiments

conducted, we have been able to identify specific advantages and weaknesses of each tool (e.g. efficient multi-
threading or event filtering). Although our tests indicate that some tools have superior performance under
specific circumstances, each tool offers a unique set of features to the end user. Therefore, the selection of a log
management tool depends heavily on the specific nature of the environment. In order to automate the
experiments for evaluating log management tools, we have written a simple toolkit consisting of a few Perl and
UNIX shell scripts. For future work, we plan to elaborate our testing tools and release them to the public domain.

References

CEE (2012) Common Event Expression, version 1.0beta1, http://cee.mitre.org/language/1.0-beta1/
Elasticsearch (2013) http://www.elasticsearch.org
GELF (2013) http://www.graylog2.org/about/gelf/
Gerhards, R. (2009) The Syslog Protocol, RFC5424, http://www.ietf.org/rfc/rfc5424.txt
Gerhards, R. (2010) “Rsyslog: going up from 40K messages per second to 250K”, Linux Kongress 2010,
http://www.gerhards.net/download/LinuxKongress2010rsyslog.pdf
Gerhards, R. (2012) BSD-Style blocks will go away in rsyslog v7, http://blog.gerhards.net/2012/09/bsd-style-
blocks-will-go-away-in.html
Graylog2 (2013) http://graylog2.org
Graylog2-Drools (2013) https://github.com/Graylog2/graylog2-server/wiki/Message-processing-rewriting
GrokPatterns (2013) https://github.com/logstash/logstash/blob/master/patterns/grok-patterns
Kibana (2013) http://kibana.org
Klyne, G. and Newman, C. (2002) Date and Time on the Internet: Timestamps, RFC3339,
http://www.ietf.org/rfc/rfc3339.txt
Logstash (2013) http://logstash.net
Lonvick, C. (2001) The BSD syslog Protocol, RFC3164, http://www.ietf.org/rfc/rfc3164.txt
Lucene (2012) Apache Lucene – Query Parser Syntax,
 https://lucene.apache.org/core/old_versioned_docs/versions/3_5_0/queryparsersyntax.html
Miao F., Ya, M. and Salowey J. (2009) Transport Layer Security (TLS) Transport Mapping for Syslog, RFC5425,
http://www.ietf.org/rfc/rfc5425.txt
Nxlog (2013) http://http://nxlog-ce.sourceforge.net/
Okmianski, A. (2009) Transmission of Syslog Messages over UDP, RFC5426, http://www.ietf.org/rfc/rfc5426.txt
Rsyslog (2013) http://www.rsyslog.com
Rsyslog-ver7 (2012) Main Advantages of rsyslog v7 vs v5, http://www.rsyslog.com/main-advantages-of-rsyslog-
v7-vs-v5/
Syslog-ng (2013) http://www.balabit.com/network-security/syslog-ng/

