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Abstract

Figure 1: "Empirical evidence that the boat is safe", or how we tend to be fooled by
silent risks. Factum stultus cognoscit (The fool only understand risks after the harm). Risk is
both precautionary (fragility based) and evidentiary (statistical based); it is too serious a business
to be left to mechanistic users of probability theory.
This figure encapsulates the scientific "nonsucker" approach to risk and probability. Courtesy
George Nasr.

***

This book provides a mathematical framework for decision making and the analysis
of (consequential) hidden risks, those tail events undetected or improperly detected by
statistical machinery; and substitutes fragility as a more reliable measure of exposure.
Model error is mapped as risk, even tail risk.1

Risks are seen in tail events rather than in the variations; this necessarily links them
mathematically to an asymmetric response to intensity of shocks, convex or concave.

The difference between "models" and "the real world" ecologies lies largely in an ad-
ditional layer of uncertainty that typically (because of the same asymmetric response
by small probabilities to additional uncertainty) thickens the tails and invalidates all
probabilistic tail risk measurements � models, by their very nature of reduction, are
vulnerable to a chronic underestimation of the tails.

So tail events are not measurable; but the good news is that exposure to tail events
is. In "Fat Tail Domains" (Extremistan), tail events are rarely present in past data:
their statistical presence appears too late, and time series analysis is similar to sending

1This is a polite way to say No-BS approach to probability.
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troops after the battle. Hence the concept of fragility is introduced: is one vulnerable
(i.e., asymmetric) to model error or model perturbation (seen as an additional layer of
uncertainty)?

Part I looks at the consequences of fat tails, mostly in the form of slowness of conver-
gence of measurements under the law of large number: some claims require 400 times
more data than thought. Shows that much of the statistical techniques used in social
sciences are either inconsistent or incompatible with probability theory. It also explores
some errors in the social science literature about moments (confusion between probability
and first moment, etc.)

Part II proposes a more realistic approach to risk measurement: fragility as nonlinear
(concave) response, and explores nonlinearities and their statistical consequences. Risk
management would consist in building structures that are not negatively asymmetric,
that is both "robust" to both model error and tail events. Antifragility is a convex
response to perturbations of a certain class of variables.
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Chapter Summaries

1 Outline of the project of the codification of Risk and decision theory as related
to the real world (that is "no BS"). Introduces the main fallacies treated
in the project. What can be mathematized. Presents the central principles
of risk bearing. Introduces the idea of fragility as a response to volatility,
the associated notion of convex heuristic, the problem of invisibility of the
probability distribution and the spirit of the book. Explains why risk is in the
tails not in the variations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 Introducing mathematical formulations of fat tails. Shows how the problem of
induction gets worse. Empirical risk estimator. Introduces different heuristics
to "fatten" tails. Where do the tails start? Sampling error and convex payoffs. 45

3 Using the asymptotic Radon-Nikodym derivatives of probability measures, we
construct a formal methodology to avoid the "masquerade problem" namely
that standard "empirical" tests are not empirical at all and can be fooled by fat
tails, though not by thin tails, as a fat tailed distribution (which requires a lot
more data) can masquerade as a low-risk one, but not the reverse. Remarkably
this point is the statistical version of the logical asymmetry between evidence
of absence and absence of evidence. We put some refinement around the notion
of "failure to reject", as it may misapply in some situations. We show how
such tests as Kolmogorov Smirnoff, Anderson-Darling, Jarque-Bera, Mardia
Kurtosis, and others can be gamed and how our ranking rectifies the problem. 87

4 The Spectrum Between Uncertainty and Risk. There has been a bit of dis-
cussions about the distinction between "uncertainty" and "risk". We believe
in gradation of uncertainty at the level of the probability distribution itself (a
"meta" or higher order of uncertainty.) One end of the spectrum, "Knightian
risk", is not available for us mortals in the real world. We show how the effect
on fat tails and on the calibration of tail exponents and reveal inconsistencies
in models such as Markowitz or those used for intertemporal discounting (as
many violations of "rationality" aren’t violations . . . . . . . . . . . . . . . . . 99

5 The Law of Large Numbers and The Central Limit Theorem are the foundation
of statistical knowledge: The behavior of the sum of random variables allows us
to get to the asymptote and use handy asymptotic properties, that is, Platonic
distributions. But the problem is that in the real world we never get to the
asymptote, we just get "close" Some distributions get close quickly, others very
slowly (even if they have finite variance). We examine how fat tailedness slows
down the process. Further, in some cases the LLN doesn’t work at all. . . . . . 109

6 We apply the results of the previous chapter on the slowness of the LLN and
list misapplication of statistics in social science, almost all of them linked to
misinterpretation of the effects of fat-tailedness (and often from lack of aware-
ness of fat tails), and how by attribute substitution researchers can substitute
one measure for another. Why for example, because of chronic small-sample
effects, the 80/20 is milder in-sample (less fat-tailed) than in reality and why
regression rarely works. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
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7 We map payoffs in order to analyze various claims in decision-making. . . . . . 151

8 There are serious statistical differences between predictions, bets, and expo-
sures that have a yes/no type of payoff, the “binaries”, and those that have
varying payoffs, which we call standard, multi-payoff (or "variables"). Real
world exposures tend to belong to the multi-payoff category, and are poorly
captured by binaries. Yet much of the economics and decision making litera-
ture confuses the two. variables exposures are sensitive to Black Swan effects,
model errors, and prediction problems, while the binaries are largely immune
to them. The binaries are mathematically tractable, while the variables are
much less so. Hedging variables exposures with binary bets can be disastrous–
and because of the human tendency to engage in attribute substitution when
confronted by difficult questions,decision-makers and researchers often confuse
the variable for the binary. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

9 Error about Errors. Probabilistic representations require the inclusion of
model (or representation) error (a probabilistic statement has to have an error
rate), and, in the event of such treatment, one also needs to include second,
third and higher order errors (about the methods used to compute the errors)
and by a regress argument, to take the idea to its logical limit, one should be
continuously reapplying the thinking all the way to its limit unless when one has
a reason to stop, as a declared a priori that escapes quantitative and statistical
method. We show how power laws emerge from nested errors on errors of the
standard deviation for a Gaussian distribution. We also show under which
regime regressed errors lead to non-power law fat-tailed distributions. . . . . . 165

10 We present case studies around the point that, simply, some models depend
quite a bit on small variations in parameters. The effect on the Gaussian is
easy to gauge, and expected. But many believe in power laws as panacea. Even
if one believed the r.v. was power law distributed, one still would not be able
to make a precise statement on tail risks. Shows weaknesses of calibration of
Extreme Value Theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

11 Much of the work concerning martingales and Brownian motion has been ide-
alized; we look for holes and pockets of mismatch to reality, with consequences.
Infinite (or undefined) higher moments are not compatible with Ito calculus
�outside the asymptote. Path dependence as a measure of fragility. . . . . . . 187

12 A less technical demarcation between Black Swan Domains and others . . . . . 191

13 Standard economic theory makes an allowance for the agency problem, but
not the compounding of moral hazard in the presence of informational opacity,
particularly in what concerns high-impact events in fat tailed domains (under
slow convergence for the law of large numbers). Nor did it look at exposure as
a filter that removes nefarious risk takers from the system so they stop harming
others. (In the language of probability, skin in the game creates an absorbing
state for the agent, not just the principal). But the ancients did; so did many
aspects of moral philosophy. We propose a global and morally mandatory
heuristic that anyone involved in an action which can possibly generate harm
for others, even probabilistically, should be required to be exposed to some
damage, regardless of context. While perhaps not sufficient, the heuristic is
certainly necessary hence mandatory. It is supposed to counter voluntary and
involuntary risk hiding � and risk transfer � in the tails. . . . . . . . . . . . . 193

14 Deeper into the conflation between a random variable and exposure to it. . . . 207
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15 We provide a mathematical definition of fragility and antifragility as negative
or positive sensitivity to a semi-measure of dispersion and volatility (a variant
of negative or positive "vega") and examine the link to nonlinear effects. We
integrate model error (and biases) into the fragilefragile or antifragile context.
Unlike risk, which is linked to psychological notions such as subjective prefer-
ences (hence cannot apply to a coffee cup) we offer a measure that is universal
and concerns any object that has a probability distribution (whether such dis-
tribution is known or, critically, unknown). We propose a detection of fragility,
robustness, and antifragility using a single "fast-and-frugal", model-free, prob-
ability free heuristic that also picks up exposure to model error. The heuristic
lends itself to immediate implementation, and uncovers hidden risks related to
company size, forecasting problems, and bank tail exposures (it explains the
forecasting biases). While simple to implement, it improves on stress testing
and bypasses the common flaws in Value-at-Risk. . . . . . . . . . . . . . . . . . 219

16 The literature of heavy tails starts with a random walk and finds mechanisms
that lead to fat tails under aggregation. We follow the inverse route and show
how starting with fat tails we get to thin-tails from the probability distribution
of the response to a random variable. We introduce a general dose-response
curve show how the left and right-boundedness of the reponse in natural things
leads to thin-tails, even when the “underlying” variable of the exposure is fat-
tailed. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

17 We extract the effect of size on the degradation of the expectation of a random
variable, from nonlinear response. The method is general and allows to show the
"small is beautiful" or "decentralized is effective" or "a diverse ecology is safer"
effect from a response to a stochastic stressor and prove stochastic diseconomies
of scale and concentration (with as example the Irish potato famine and GMOs).
We apply the methodology to environmental harm using standard sigmoid dose-
response to show the need to split sources of pollution across independent . . . 249

18 Information is convex to noise. The paradox is that increase in sample size
magnifies the role of noise (or luck); it makes tail values even more extreme.
There are some problems associated with big data and the increase of variables
available for epidemiological and other "empirical" research. . . . . . . . . . . . 261

19 The one percent of the one percent has tail properties such that the tail wealth
(expectation

R1
K

x p(x) dx) depends far more on inequality than wealth. . . . . 265
20 Explains why the fragilefragile is necessarily in the nonlinear. Examines non-

linearities in medicine /iatrogenics as a risk management problem. . . . . . . . 269
21 As an application of the model-error-heuristic to a financial problem. American

Options have hidden optionalities. Using a European option as a baseline we
heuristically add the difference. . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
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Preamble/ Notes on the text

This author travelled two careers in the opposite of the usual directions:
1) From risk taking to probability: I came to deepening my studies
of probability and did doctoral work during and after trading derivatives
and volatility packages and maturing a certain bottom-up organic view of
probability and probability distributions. The episode lasted for 21 years,
interrupted in its middle for doctoral work. Indeed, volatility and derivatives
(under the condition of skin in the game) are a great stepping stone into
probability: much like driving a car at a speed of 600 mph (or even 6,000
mph) is a great way to understand its vulnerabilities.
But this book goes beyond derivatives as it addresses probability problems
in general, and only those that are generalizable,
and
2) From practical essays (under the cover of "philosophical") to
specialized work: I only started publishing technical approaches (outside
specialized option related matters) after publishing nontechnical "philosoph-
ical and practical" ones, though on the very same subject.

But the philosophical (or practical) essays and the technical derivations were written
synchronously, not in sequence, largely in an idiosyncratic way, what the mathematician
Marco Avellaneda called "private mathematical language", of which this is the translation
– in fact the technical derivations for The Black Swan[72] and Antifragile[73] were started
long before the essay form. So it took twenty years to mature the ideas and techniques of
fragility and nonlinear response, the notion of probability as less rigorous than "exposure"
for decision making, and the idea that "truth space" requires different types of logic than
"consequence space", one built on asymmetries.
Risk takers view the world very differently from most academic users of probability and

industry risk analysts, largely because the notion of "skin in the game" imposes a certain
type of rigor and skepticism about we call further down cosmetic "job-market" science.
Risk is a serious business and it is high time that those who learned about it via risk-

taking have something not "anecdotal" to say about the subject.
The text is not entirely that of the author. Four chapters contain recycled text written

with collaborators in standalone articles: the late Benoit Mandelbrot (section of slowness
of LLN under power laws, even with finite variance), Elie Canetti and the stress-testing
staff at the International Monetary Fund (for the heuristic to detect tail events), Phil
Tetlock (binary vs variable for forecasting), Constantine Sandis (skin in the game) and
Raphael Douady (mathematical mapping of fragility). But it is the latter paper that
represents the biggest debt: as the central point of this book is convex response (or, more
generally, nonlinear effects which subsume tail events), the latter paper is the result of
18 years of mulling that single idea, as an extention of Dynamic Hedging [70] applied
outside the options domain, with 18 years of collaborative conversation with Raphael
before the actual composition!

15
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This book is in debt to three persons who left us. In addition to Benoit Mandelbrot,
this author feels deep gratitude to the late David Freedman, for his encouragements
to develop a rigorous model-error based, real-world approach to statistics, grounded in
classical skeptical empiricism, and one that could circumvent the problem of induction:
and the method was clear, of the "don’t use statistics where you can be a sucker" or
"figure out where you can be the sucker". There was this "moment" in the air, when
a group composed of the then unknown John Ioannidis, Stan Young, Philip Stark, and
others got together –I was then an almost unpublished and argumentative "volatility"
trader (Dynamic Hedging was unreadable to nontraders) and felt that getting David
Freedman’s attention was more of a burden than a blessing, as it meant some obligations.

Indeed this exact book project was born from a 2012 Berkeley statistics department
commencement lecture, given in the honor of David Freedman, with the message: "statis-
tics is the most powerful weapon today, it comes with responsibility" (since numerical
assessments increase risk taking) and the corrolary:

"Understand the model’s errors before you understand the model".

leading to the theme of this book, that all one needs to do is figure out the answer to
the following question:

Are you convex or concave to model errors?

It was a very sad story to get a message from the statistical geophysicist Albert Taran-
tola linking to the electronic version of his book Inverse Problem Theory: Methods for
Data Fitting and Model Parameter Estimation [74]. He had been maturing an idea on
dealing with probability with his new work taking probability ab ovo. Tarantola had been
piqued by the "masquerade" problem in The Black Swan presented in Chapter 4 and the
notion that most risk methods "predict the irrelevant". Tragically, he passed away before
the conference he was organizing took place, and while I ended up never meeting him, I
felt mentored by his approach –along with the obligation to deliver technical results of
the problem in its applications to risk management.

Sections of this text were presented in many places –as I said it took years to ma-
ture the point. Some of these chapters are adapted from lectures on hedging with Paul
Wilmott and from my course "Risk Management in the Real World" at NYU which as
I discuss in the introduction is an absurd (but necessary) title. Outside of risk practi-
tioners, in the first stage, I got invitations from statistical and mathematics departments
initially to satisfy their curiosity about the exoticism of "outsider" and strange "volatil-
ity" trader or "quant" wild animal. But they soon got disappointed that the animal
was not much of a wild animal but an orthodox statistician, actually overzealous about
a nobullshit approach. I thank Wolfgang Härtle for, before this book was started in
the following form, a full-day seminar at Humboldt University and Pantula Sastry for
providing the inaugurating lecture of the International Year of Statistics at the National
Science Foundation.

Carl Tony Fakhry has taken the thankless task of diligently rederiving every equation
(at the time of writing he has just reached Chapter 3). I also thank Wenzhao Wu and
Mian Wang for list of typos.
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To the Reader

The text can be read by (motivated) non-quants: everything mathematical in the text is
accompanied with a "literary" commentary, so in many sections the math can be safely
skipped. Its mission, to repeat, is to show a risk-taker perspective on risk management,
integrated into the mathematical language, not to lecture on statistical concepts.
On the other hand, when it comes to math, it assumes a basic "quant level" advanced

or heuristic knowledge of mathematical statistics, and is written as a monograph; it is
closer to a longer research paper or old fashioned treatise. As I made sure there is little
overlap with other books on the subject, I calibrated this text to the textbook by A.
Papoulis Probability, Random Variables, and Stochastic Processes [54]: there is nothing
basic discussed in this text that is not defined in Papoulis.
For more advanced, more mathematical, or deeper matters such as convergence theo-

rems, the text provides definitions, but the reader is recommended to use Loeve’s two
volumes Probability Theory [45] and [46] for a measure theoretic approach, or Feller’s
two volumes, [28] and [27] and, for probability bounds, Petrov[56]. For extreme value
theory, Embrecht et al [21] is irreplaceable.

Notes for Reviewers

This is a first draft for general discussion, not for equation-wise verification. There
are still typos, errors and problems progressively discovered by readers thanks to the
dissemination on the web. The bibliographical references are not uniform, they are in
the process of being integrated into bibtex.
Note that there are redundancies that will be removed at the end of the composition.
Below is the list of the incomplete sections.

Incomplete Sections in Part I (mostly concerned with limitations
of measurements of tail probabilities)

i Every chapter will need to have some arguments fleshed out (more English), for about
10% longer text.

ii A list of symbols.
iii Chapter 3 proposes a measure of fattailedness based on ratio of Norms for all( su-

perexponential, subexponential, and powerlaws with tail exponent >2); it is more
powerful than Kurtosis since we show it to be unstable in many domains. It lead us
to a robust heuristic derivation of fat tails. We will add an Appendix comparing it
to the Hill estimator.

iv An Appendix on the misfunctioning of maximum likelihood estimators (extension of
the problem of Chapter 3).

v In the chapter on pathologies of stochastic processes, a longer explanation of why a
stochastic integral "in the real world" requires 3 periods not 2 with examples (event
information for computation of exposureXt ! order Xt+�

t ! execution Xt+2�t).
vi The "Weron" effect of recovered ↵ from estimates higher than true values.
vii A lengthier (and clearer) exposition of the variety of bounds: Markov–Chebychev–

Lusin–Berhshtein–Lyapunov –Berry-Esseen – Chernoff bounds with tables.
viii A discussion of the Von Mises condition. A discussion of the Cramér condition.

Connected: Why the research on large deviations remains outside fat-tailed domains.
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ix A discussion of convergence (and nonconvergence) of random matrices to the Wigner
semicirle, along with its importance with respect to Big Data

x A section of pitfalls when deriving slopes for power laws, with situations where we
tend to overestimate the exponent.

Incomplete Sections in Part II (mostly concerned with building
exposures and convexity of payoffs: What is and What is Not
"Long Volatility")

i A discussion of gambler’s ruin. The interest is the connection to tail events and
fragility. "Ruin" is a better name because the idea of survival for an aggregate, such
as probability of ecocide for the planet.

ii An exposition of the precautionary principle as a result of the fragility criterion.
iii A discussion of the "real option" literature showing connecting fragility to the nega-

tive of "real option".
iv A link between concavity and iatrogenic risks (modeled as short volatility).
v A concluding chapter.

Best Regards,
Nassim Nicholas Taleb
August 2014



1 "Real World" Rigor

Chapter Summary 1: Outline of the project of the codification of Risk
and decision theory as related to the real world (that is "no BS"). In-
troduces the main fallacies treated in the project. What can be mathe-
matized. Presents the central principles of risk bearing. Introduces the
idea of fragility as a response to volatility, the associated notion of con-
vex heuristic, the problem of invisibility of the probability distribution
and the spirit of the book. Explains why risk is in the tails not in the
variations.

We start with our negative definition, or the definition of a negative:

Definition 1. Via Negativa. Consists in defining decision making by substraction, via
the identification of errors. In theology and philosophy, it is the focus on what something
is not, an indirect defi nition. In action, it is a recipe for what to avoid, what not to do
–subtraction, not addition, say, in medicine.
Clearly, risk management is a via negativa endeavor, avoiding a certain class of adverse

events.

Table 1.1: Via Negativa: Major Errors and Fallacies in This Book

Fallacy Description Section(s)

Central Risk Fallacies

Evidentiary fallacy
Requiring evidence of risk particularly in
fat-tailed domains, violation of inferential
asymmetries (evidence comes after risk ).

Best Map Fallacy Belief that a false map is unconditionally
better than no map.

Triffat Fallacy Mistaking the inverse problem for the prob-
lem, finding the problem to fit the math.

Counter of Triffat
Fallacy

Rejection of mathematical statements with-
out showing mathematical flaw; rejection of
mathematical rigor on grounds of failures in
some domains or inverse problems.

19
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Table 1.1: (continued from previous page)

Fallacy Description Section(s)

Knightian Risk Fal-
lacy

Belief that probability is ever computable
with 0 error rate, without having any model
or parameter uncertainty.

Convex Payoff Fal-
lacy

Belief that loss function and required sam-
ple size in estimator for x is the same for
f(x) when f is convex.

LLN Fallacy Belief that LLN works naively with fat tails.

Binary/Vanilla
Conflation

Crossing the Street
Fallacy Conflating systemic and local risk.

Fallacy of Silent Ev-
idence

Survivorship bias has large effects on small
probabilities.

CLT Error

Fallacy of Silent Ev-
idence

Survivorship bias has large effects on small
probabilities.

Inferential Fallacies

Froot Insurance fal-
lacy/Pisano biotech
fallacy (Harvard
professors)

Making inference about mean in left/right
skewed fat tailed domains by overestimat-
ing/underestimating it respectively owing
to insufficience sample

Pinker Fallacy, 1
(another Harvard
professor1)

Mistaking fact-checking for statistical esti-
mation.

Pinker Fallacy, 2
Underestimating the tail risk and needed
sample size for thick-tailed variables from
inference from similar thin-tailed ones.

The "n=1" Fallacy

Ignoring the effect of maximum divergence
(Lévy, Kolmogorov) in disconfirmatory em-
piricism. (Counterfallacy is "n large" for
confirmatory empiricism)

1Harvard University, because of the pressure to maintain a high status for a researcher in the academic
community, which conflicts with genuine research, provides a gold mine for those of us searching for
example of fooled by randomness effects.
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Table 1.1: (continued from previous page)

Fallacy Description Section(s)

The powerlaw fal-
lacy

Rejecting powerlaw behavior from Log-Log
plot or similar.

1.1 A Course With an Absurd Title

This author is currently teaching a course with the absurd title "risk management and
decision-making in the real world", a title he has selected himself; this is a total absurdity
since risk management and decision making should never have to justify being about the
real world, and what’ s worse, one should never be apologetic about it.

In "real" disciplines, titles like "Safety in the Real World", "Biology and Medicine in
the Real World" would be lunacies. But in social science all is possible as there is no exit
from the gene pool for blunders, nothing to check the system, no skin in the game for
researchers. You cannot blame the pilot of the plane or the brain surgeon for being "too
practical", not philosophical enough; those who have done so have exited the gene pool.
The same applies to decision making under uncertainty and incomplete information.
The other absurdity in is the common separation of risk and decision making, since risk
taking requires reliability, hence our guiding principle in the next section.
Indeed something is completely broken in risk management.
And the real world is about incompleteness : incompleteness of understanding, repre-

sentation, information, etc., what one does when one does not know what’ s going on,
or when there is a non - zero chance of not knowing what’ s going on. It is based on
focus on the unknown, not the production of mathematical certainties based on weak
assumptions; rather measure the robustness of the exposure to the unknown, which can
be done mathematically through metamodel (a model that examines the effectiveness
and reliability of the model by examining robustness to perturbation), what we call
metaprobability, even if the meta-approach to the model is not strictly probabilistic.

1.1.1 Risk Needs to be Far More Rigorous Than "Science"

Most people claiming a "scientific" approach to risk management do not quite understand
what "science" means and how applicable it is for probabilistic decision making. Science
consists in a body of rigorously verifiable, replicable, and generalizable claims and state-
ments –and those statements only, nothing that doesn’t satisfy these constraints. Science
scorns the particular. It never aimed at covering all manner of exposure management,
and never about opaque matters. It is just a subset of our field of decision making. We
need to survive by making decisions that do not satisfy scientific methodologies, and
cannot wait a hundred years or so for these to be established. So phronetic approaches
or a broader class of matters we can call "wisdom" and precautionary actions are neces-
sary. But not abiding by naive "evidentiary science", we embrace a larger set of human
endeavors; it becomes necessary to build former protocols of decision akin to legal codes:
rigorous, methodological, precise, adaptable, but certainly not standard "science" per se.
Indeed the rigor of the 12

th Century legal philosopher Pierre Jean de Olivi is as close
to our model as that of Kolmogorov and Paul Lévy. It is a fact that stochastic concepts
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Figure 1.1: Wrong! The
unhappy merger of theory
and practice. Most aca-
demics and practitioners
of risk and probability
do not understand what
"intersection" means.
This explains why Wall
Street "quants" blow up.
It is hard trying to explain
that yes, it is very mathe-
matical but bringing what
we call a math genius or
acrobat won’t do. It is
jointly mathematical and
practical.
"Math/Logic" includes
probability theory, logic,
philosophy.
"Practice" includes an-
cestral heuristics, inherited
tricks and is largely con-
vex, precautionary and via
negativa .

Science/Evidentiary (A)

Practice
Real Life

(B)
Math/Logic (C)

(A � B � C) � (A � B)' � (B � C)' � (A � C)'

"Evidence" without
rigor

Math without
subtance

Fooled by 
Randomness 

Figure 1.2: The Right
Way: Intersection is
Not Sum The rigorous
way to formalize and teach
probability and risk (though
not to make decisions).
"Evidentiary" science is
not robust enough in deal-
ing with the unknown com-
pared to heuristic decision-
making. So this is about
what we can talk about
in words/print and lec-
ture about, i.e., an ex-
plicit methodology.
The progress to "rigorify"
practice consists in expand-
ing the intersection by for-
malizing as much of B (i.e.
learned rules of thumb) as
possible.

Science (A)

Practice (B) Math (C)

(B � C) � (A�B�C)

��������	
��
Formalize/
Expand 
Intersection. 
B � (B�C) 
not reverse
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such as probability, contingency, risk, hazard, and harm found an extreme sophistica-
tion in philosophy and legal texts, from Cicero onwards, way before probability entered
our vocabulary –and of course probability was made poorer by the mental gymnastics
approach and the ludic version by Fermat-Pascal-Huygens-De Moivre ...
Which brings us to our central principles:

Principle 1. Risk management is less about understanding random events as much as
what they can do to us.
We will examine in great details in the discussion of the "conflation of events and

exposure".
Hence:

Principle 2. It is more rigorous to take risks one understands than try to understand
risks one is taking.
And the associated fallacy:

Definition 2. The Best Map Fallacy: Violation of Principle 1 by unconditionally
preferring a false map to no map at all.
The fallacy is explained in The Black Swan [72]:

I know few people who would board a plane heading for La Guardia airport in
New York City with a pilot who was using a map of Atlanta’s airport "because
there is nothing else." People with a functioning brain would rather drive, take
the train, or stay home. Yet once they get involved in economics, they all prefer
professionally to use a wrong measure, on the ground that "we have nothing else."
The idea, well accepted by grandmothers, that one should pick a destination for
which one has a good map, not travel and then find "the best" map, is foreign to
PhDs in social science.

This is not a joke: the "give us something better" has been a recurring problem this
author has had to deal with for a long time.
There has been a lot of trivial commentary, a recurring critique of theoretical risk

management, (with the person feeling that he has just discovered it): things are "too
mathematical", "mathematics does not work in the real world", or lists of what does
or does not constitute "mathematical charlatanry".2 But little or nothing seems to be
done to figure out where math works and is needed; where standard methods ascribed to
science, whether evidentiary (statistics) or analytical (mathematics/logic) do not apply
in Risk management and decision making under opacity –since one doesn’t have the
whole story– except as constraints.
Figure 1 shows how and where mathematics imparts a necessary rigor in some places,

at the intersection of theory and practice; and these are the areas we can discuss in this
book. And the notion of intersection is not to be taken casually, owing to the inverse
problem explained in section 1.1.3.

2It has been fashionable to invoke the vague idea of mathematical "charlatanry" in the history of
economics, first with Alfred Marshall famous procedure "(1) Use mathematics as shorthand language,
rather than as an engine of inquiry. (2) Keep to them till you have done. (3) Translate into English. (4)
Then illustrate by examples that are important in real life (5) Burn the mathematics. (6) If you can’t
succeed in 4, burn 3. This I do often.".
Similarly, J.M. Keynes: "(...)we will endeavour to discredit the mathematical charlatanry by which, for
a hundred years past, the basis of theoretical statistics have been greatly undermined", in A Treatise
On Probability [39]. As one can see, these types of warnings proved ineffectual owing to citation rings.
So our tack is different, largely constrained by the idea of skin in the game that would bring things to
the missing link of reality.
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Figure 1.3: The Triffat Fallacy,
or the way academic decision theory
and mathematical statistics view de-
cision, probability, and risk.a

aFor an example of Byzantine con-
cerns about probability so detailed and
diverted from planet earth that they
miss everything of relevance to risk, see
the works of David Aldous on the cen-
tral difference between "finite additiv-
ity" or "countable additivity", which
can be classified as the hijacking of the
most important discipline in the world,
probability, by scholastic distinctions
without (or with relatively minor) real-
world difference.

Science/Evidentiary (A)

Practice
Real Life

(B)
Math/Logic (C)

C � A' � B'

Principle 3. Mathematical "charlatanry" and fallacies in probabilities should be de-
bunked using mathematics and mathematical arguments first.

1.1.2 The Triffat Fallacy

An illustration of our nighmare for risk management –and an explanation of why we
can’t accept current methods in economics for anything to do with the real world – is as
follows. From Antifragile[73]:

Modern members of the discipline of decision theory, alas, travel a one- way road
from theory to practice. They characteristically gravitate to the most complicated
but most inapplicable problems, calling the process "doing science."

There is an anecdote about one Professor Triffat (I am changing the name be-
cause the story might be apocryphal, though from what I have witnessed, it is
very characteristic). He is one of the highly cited academics of the field of decision
theory, wrote the main textbook and helped develop something grand and useless
called "rational decision making," loaded with grand and useless axioms and shmax-
ioms, grand and even more useless probabilities and shmobabilities. Triffat, then at
Columbia University, was agonizing over the decision to accept an appointment at
Harvard –many people who talk about risk can spend their lives without encoun-
tering more difficult risk taking than this type of decision. A colleague suggested
he use some of his Very Highly Respected and Grandly Honored and Decorated
academic techniques with something like "maximum expected utility," as, he told
him, "you always write about this." Triffat angrily responded, "Come on, this is
serious!"

Definition 3. The Triffat Fallacy. Consists in confusing the problem and the inverse
problem, going from theory to practice, at the intersection C \ A0 \ B0 according to
definitions in 1.1.3.
Next we present the opposition between problems and inverse problems.

1.1.3 Problems and Inverse Problems

Definition 4. The inverse problem. There are many more degrees of freedom (hence
probability of making a mistake) when one goes from a model to the real world than when
one goes from the real world to the model.
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From Antifragile [73]:There is such a
thing as "real world" applied mathemat-
ics: find a problem first, and look for the
mathematical methods that works for it
(just as one acquires language), rather
than study in a vacuum through theo-
rems and artificial examples, then find
some confirmatory representation of real-
ity that makes it look like these examples.

From The Black Swan, [72]

Operation 1 (the melt-
ing ice cube): Imagine an
ice cube and consider how
it may melt over the next
two hours while you play
a few rounds of poker with
your friends. Try to envi-
sion the shape of the re-
sulting puddle.

Operation 2 (where
did the water come from?):
Consider a puddle of water on the floor. Now try to reconstruct in your mind’s eye
the shape of the ice cube it may once have been. Note that the puddle may not
have necessarily originated from an ice cube.

One can show probabilistically the misfitness of mathematics to many problems where
it is used. It is much more rigorous and safer to start with a disease then look at the
classes of drugs that can help (if any, or perhaps consider that no drug can be a potent
alternative), than to start with a drug, then find some ailment that matches it, with the
serious risk of mismatch. Believe it or not, the latter was the norm at the turn of last
century, before the FDA got involved. People took drugs for the sake of taking drugs,
particularly during the snake oil days.

What we are saying here is now accepted logic in healthcare but people don’t get
it when we change domains. In mathematics it is much better to start with a real
problem, understand it well on its own terms, then go find a mathematical tool (if any,
or use nothing as is often the best solution) than start with mathematical theorems
then find some application to these. The difference (that between problem and inverse
problem) is monstrous as the degrees of freedom are much narrower in the foreward
than the backward equation, sort of). To cite Donald Geman (private communication),
there are tens of thousands theorems one can elaborate and prove, all of which may
seem to find some application in the real world, particularly if one looks hard (a process
similar to what George Box calls "torturing" the data). But applying the idea of non-
reversibility of the mechanism: there are very, very few theorems that can correspond to
an exact selected problem. In the end this leaves us with a restrictive definition of what
"rigor" means. But people don’t get that point there. The entire fields of mathematical
economics and quantitative finance are based on that fabrication. Having a tool in your
mind and looking for an application leads to the narrative fallacy. The point will be
discussed in Chapter 7 in the context of statistical data mining.

Nevertheless, once one got the math for it, stay with the math. Probabilistic prob-
lems can only be explained mathematically. We discovered that it is impossible
to explain the difference thin tails/fat tails (Mediocristan/Extremistan) without
mathematics. The same with the notion of "ruin".

This also explains why schooling is dangerous as it gives the illusion of the arrow theory
! practice. Replace math with theory and you get an idea of what I call the green lumber
fallacy in Antifragile.
An associated result is to ignore reality. Simply, risk management is about precaution-

ary notes, cannot be separated from effect, the payoff, again, in the "real world", so the
saying "this works in theory" but not in practice is nonsensical. And often people claim
after a large blowup my model is right but there are "outliers" not realizing that we
don’t care about their model but the blowup.
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De Finetti introducing his course "On Probability":
The course, with a deliberately generic title will deal with the conceptual and

controversial questions on the subject of probability: questions which it is necessary
to resolve, one way or another, so that the development of reasoning is not reduced
to a mere formalistic game of mathematical expressions or to vacuous and simplistic
pseudophilosophical statements or allegedly practical claims. (emph. mine.)

1.2 Citation Rings and Cosmetic Job Market Science

Subdiscipline of Bullshit-
tology I am being polite here.
I truly believe that a scary
share of current discussions of
risk management and prob-
ability by nonrisktakers fall
into the category called ob-
scurantist, partaking of the
"bullshitology" discussed in
Elster: "There is a less polite
word for obscurantism: bull-
shit. Within Anglo-American
philosophy there is in fact
a minor sub-discipline that
one might call bullshittology."
[20]. The problem is that,
because of nonlinearities with
risk, minor bullshit can lead
to catastrophic consequences,
just imagine a bullshitter pi-
loting a plane. My angle
is that the bullshit-cleaner in
the risk domain is skin-in-the-
game, which eliminates those
with poor understanding of
risk.

How I came about citation rings? At a cer-
tain university a fellow was being evaluated
for tenure. Having no means to gauge his im-
pact on the profession and the quality of his
research, they checked how many "top publi-
cations" he had. Now, pray, what does consti-
tute a "top publication"? It turned out that
the ranking is exclusively based on the cita-
tions the journal gets. So people can form of
group according to the Latin expression asinus
asimum fricat (donkeys rubbing donkeys), cite
each other, and call themselves a discipline of
triangularly vetted experts.
Detecting a "clique" in network theory is how

terrorist cells and groups tend to be identified
by the agencies.
Now what if the fellow got citations on his

own? The administrators didn’t know how to
handle it.
Looking into the system revealed quite a bit

of arbitrage-style abuse by operators.

Definition 5. Higher order self-referential
system. Ai references Aj 6=i, Aj references
Az 6=j, · · ·, Az references Ai.

Definition 6. Academic Citation Ring A
legal higher-order self-referential collection of
operators who more or less "anonymously"
peer-review and cite each other, directly, triangularly, or in a network manner, con-
stituting a clique in a larger network, thus creating so-called academic impact ("highly
cited") for themselves or their journals.
Citation rings become illegal when operators use fake identities.
The mark of such system is engagement in incremental science in a given direction,

calling each other’s results "innovative". Example of dangerous citation ring: Markowitz
mean-variance, GARCH, Value-At-Risk and more general risk management, some tradi-
tions of behavioral economics.

Definition 7. Job Market Science A paper that follows recipes and tricks to attain
higher ranking in a certain community. It seems a "contribution" but it is explained by
connection to other parts which are triangularly self-referential ; it is otherwise substance-
free.
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Take GARCH methods (Rob Engle [25]): we know that, in practice, GARCH is totally
useless to predict volatility; it is an academic PR machine. And, analytically, it is
unsound under the structure of fat tails in the markets, as we will see in Chapter 3 and
section 7.11 But the "Nobel" plus an active citation ring deems it a "successful" theory.
It is clear that, with rare exceptions articles published Econometrica are either substance-

free or pure distortion (use of variance as measure of variability).
How do we break away from substance-free statistical science? Skin in the game, of

course, reestablishes contact with reality, with details in Chapter 14 . The central idea
is that survival matters in risk, people not truly exposed to harm can continue operating
permanently.

Pseudo-Rigor and Lack of skin in the game

The disease of pseudo-rigor in the application of probability to real life by people
who are not harmed by their mistakes can be illustrated as follows, with a very sad
case study. One of the most "cited" document in risk and quantitative methods is
about "coherent measures of risk", which set strong rules on how to compute tail
risk measures, such as the "value at risk" and other methods. Initially circulating in
1997, the measures of tail risk �while coherent� have proven to be underestimating
risk at least 500 million times (sic). We have had a few blowups since, including
Long Term Capital Management fiasco �and we had a few blowups before, but
departments of mathematical probability were not informed of them. As we are
writing these lines, it was announced that J.-P. Morgan made a loss that should
have happened every ten billion years. The firms employing these "risk minds"
behind the "seminal" paper blew up and ended up bailed out by the taxpayers.
But we now now about a "coherent measure of risk". This would be the equivalent
of risk managing an airplane flight by spending resources making sure the pilot
uses proper grammar when communicating with the flight attendants, in order to
"prevent incoherence". Clearly the problem, just as similar fancy "science" under
the cover of the discipline of Extreme Value Theory is that tail events are very
opaque computationally, and that such misplaced precision leads to confusion.a

aThe "seminal" paper: Artzner, P., Delbaen, F., Eber, J. M., & Heath, D. (1999), Coherent
measures of risk. [1]

1.2.1 Good News: Five General Rules for Real World Decision
Theory

Table 1.2 provides a robust approach to the problem.

The good news is that the real world is about exposures, and exposures are asymmetric,
leading us to focus on two aspects: 1) probability is about bounds, 2) the asymmetry
leads to convexities in response, which is the focus of this text. Note that, thanks to
inequalities and bounds (some tight, some less tight), the use of the classical theorems
of probability theory can lead to classes of qualitative precautionary decisions that,
ironically, do not rely on the computation of specific probabilities.
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Figure 1.4: The way naive "empir-
ical", say pro-GMOs science view
nonevidentiary risk. In fact the real
meaning of "empirical" is rigor in
focusing on the unknown, hence the
designation "skeptical empirical".
Empiricism requires logic (hence
skepticism) but logic does not re-
quire empiricism.
The point becomes dicey when we
look at mechanistic uses of statis-
tics –parrotlike– and evidence by so-
cial scientists. One of the mani-
festation is the inability to think in
nonevidentiary terms with the clas-
sical "where is the evidence?" mis-
take.

Science/Evidentiary (A)

Practice
Real Life

(B)
Math/Logic (C)

Table 1.2: General Rules of Risk Engineering

Rules Description
R1 Dutch Book Probabilities need to add up to 1* � but cannot ex-

ceed 1
R1

0
Inequalities It is more rigorous to work with probability inequal-

ities and bounds than probabilistic estimates.
R2 Asymmetry Some errors have consequences that are largely, and

clearly one sided.**
R3 Nonlinear Response Fragility is more measurable than probability***
R4 Conditional Pre-

cautionary Princi-
ple

Domain specific precautionary, based on fat tailed-
ness of errors and asymmetry of payoff.

R5 Decisions Exposures (f(x))can be more reliably modified, in-
stead of relying on computing probabilities of x.

* The Dutch book can be expressed, using the spirit of quantitative finance, as a no arbitrage
situation, that is, no linear combination of payoffs can deliver a negative probability or one
that exceeds 1. This and the corrollary that there is a non-zero probability of visible and
known states spanned by the probability distribution adding up to <1 confers to probability
theory, when used properly, a certain analytical robustness.

** Consider a plane ride. Disturbances are more likely to delay (or worsen) the flight than
accelerate it or improve it. This is the concave case. The opposite is innovation and tinkering,
the convex case.

*** The errors in measuring nonlinearity of responses are more robust and smaller than those
in measuring responses. (Transfer theorems).
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The Supreme Scientific Rigor of The Russian School of Prob-
ability

One can believe in the rigor of mathematical statements about probability without
falling into the trap of providing naive computations subjected to model error. If
this author were to belong to a school of thought designated by a nationality, the

{Nationality} school of {discipline},
it would be the Russian school of probability.
Members across three generations: P.L. Chebyshev, A.A. Markov, A.M. Lyapunov,

S.N. Bernshtein (ie. Bernstein), E.E. Slutskii, N.V. Smirnov, L.N. Bol’shev, V.I.
Romanovskii, A.N. Kolmogorov, Yu.V. Linnik, and the new generation: V. Petrov,
A.N. Nagaev, A. Shyrayev, and a few more.
They had something rather potent in the history of scientific thought: they thought

in inequalities, not equalities (most famous: Markov, Chebyshev, Bernstein, Lya-
punov). They used bounds, not estimates. Even their central limit version was
a matter of bounds, which we exploit later by seeing what takes place outside the
bounds. They were world apart from the new generation of users who think in terms
of precise probability –or worse, mechanistic social scientists. Their method accom-
modates skepticism, one-sided thinking: "A is > x, AO(x) [Big-O: "of order" x],
rather than A = x.
For those working on integrating the mathematical rigor in risk bearing they pro-

vide a great source. We always know one-side, not the other. We know the lowest
value we are willing to pay for insurance, not necessarily the upper bound (or vice
versa).a

aThe way this connects to robustness, which we will formalize next section, is as follows. Is
robust what does not change across perturbation of parameters of the probability distribution; this
is the core of the idea in Part II with our focus on fragility and antifragility. The point is refined
with concave or convex to such perturbations.

1.3 Fragility, not Just Statistics, For Hidden Risks

Let us start with a sketch of the general solution to the problem of risk and probability,
just to show that there is a solution (it will take an entire book to get there). The
following section will outline both the problem and the methodology.
This reposes on the central idea that an assessment of fragility �and control of such

fragility�is more ususeful, and more reliable,than probabilistic risk management and
data-based methods of risk detection.
In a letter to Nature about the book Antifragile[73]: Fragility (the focus of Part

II of this volume) can be defined as an accelerating sensitivity to a harmful stressor:
this response plots as a concave curve and mathematically culminates in more harm
than benefit from the disorder cluster: (i) uncertainty, (ii) variability, (iii) imperfect,
incomplete knowledge, (iv) chance, (v) chaos, (vi) volatility, (vii) disorder, (viii) entropy,
(ix) time, (x) the unknown, (xi) randomness, (xii) turmoil, (xiii) stressor, (xiv) error,
(xv) dispersion of outcomes, (xvi) unknowledge.
Antifragility is the opposite, producing a convex response that leads to more benefit

than harm. We do not need to know the history and statistics of an item to measure its
fragility or antifragility, or to be able to predict rare and random (’Black Swan’) events.
All we need is to be able to assess whether the item is accelerating towards harm or
benefit.
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Figure 1.5: The risk of breaking
of the coffee cup is not necessar-
ily in the past time series of the
variable; in fact surviving ob-
jects have to have had a "rosy"
past. Further, fragilefragile ob-
jects are disproportionally more
vulnerable to tail events than or-
dinary ones –by the concavity
argument.

Same with model errors –as we subject models to additional layers of uncertainty.

The relation of fragility, convexity and sensitivity to disorder is thus mathematical
and not derived from empirical data.

The problem with risk management is that "past" time series can be (and actually
are) unreliable. Some finance journalist was commenting on the statement in Antifragile
about our chronic inability to get the risk of a variable from the past with economic time
series, with associated overconfidence. "Where is he going to get the risk from since
we cannot get it from the past? from the future?", he wrote. Not really, it is staring
at us: from the present, the present state of the system. This explains in a way why
the detection of fragility is vastly more potent than that of risk –and much easier to
do. We can use the past to derive general statistical statements, of course, coupled with
rigorous probabilistic inference but it is unwise to think that the data unconditionally
yields precise probabilities, as we discuss next.

Asymmetry and Insufficiency of Past Data. Our focus on fragility does
not mean you can ignore the past history of an object for risk management, it is just
accepting that the past is highly insufficient.

The past is also highly asymmetric. There are instances (large deviations) for which
the past reveals extremely valuable information about the risk of a process. Something
that broke once before is breakable, but we cannot ascertain that what did not break is
unbreakable. This asymmetry is extremely valuable with fat tails, as we can reject some
theories, and get to the truth by means of negative inference, via negativa.

This confusion about the nature of empiricism, or the difference between empiricism
(rejection) and naive empiricism (anecdotal acceptance) is not just a problem with jour-
nalism. As we will see in Chapter x, it pervades social science and areas of science
supported by statistical analyses. Yet naive inference from time series is incompatible
with rigorous statistical inference; yet many workers with time series believe that it is
statistical inference. One has to think of history as a sample path, just as one looks
at a sample from a large population, and continuously keep in mind how representative
the sample is of the large population. While analytically equivalent, it is psychologically
hard to take what Daniel Kahneman calls the "outside view", given that we are all part
of history, part of the sample so to speak.
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Table 1.3: The Difference Between Statistical/Evidentiary and Fragility-Based Risk Management

Evidentiary Risk
Management Analytical Risk Management

Statistical/Actuarial
Based Model Based Fragility Based

Relies on past

Relies on theo-
retical model
(with statistical
backup/backtesting)

Relies on present at-
tributes of object

Probabilistic? Probabilistic Probabilistic

Nonprobabilistic
or indirectly prob-
abilistic (only
reasoning is proba-
bilistic)

Typical
Methods

Times series statis-
tics, etc.

Use of estimated
probability distri-
bution Forecasting
models

Detection of non-
linearity through
heuristics

Expression Variance, Value at
Risk

Variance, Value at
Risk, Tail exposure,
(Shortfall)

Fragility Indicator,
Heuristics

Characteristic
Dependence on
both past sample
and parameters

Dependence on pa-
rameters

Dependence on de-
tection of second or-
der effects

Performance Erratic, Unreliable
for tails

Erratic, Unreliable
for tails

Robust, Focused on
tails

Let us now look at the point more formally, as the difference between an assessment of
fragility and that of statistical knowledge can be mapped into the difference between x
and f(x)

This will ease us into the "engineering" notion as opposed to other approaches to
decision-making.

1.4 The Conflation of Events and Exposures

Take x a random or nonrandom variable, and f(x) the exposure, payoff, the effect of x on
you, the end bottom line. Practitioner and risk takers observe the following disconnect:
people (nonpractitioners) talking x (with the implication that we practitioners should
care about x in running our affairs) while practitioners think about f(x), nothing but
f(x). And the straight confusion since Aristotle between x and f(x) has been chronic.
The mistake is at two level: one, simple confusion; second, in the decision-science litera-
ture, seeing the difference and not realizing that action on f(x) is easier than action on
x.
An explanation of the rule "It is preferable to take risks one under- stands than try

to understand risks one is taking." It is easier to modify f(x) to the point where one
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Figure 1.6: The conflation of x and
f(x): mistaking the statistical prop-
erties of the exposure to a variable
for the variable itself. It is easier
to modify exposure to get tractable
properties than try to understand x.
This is more general confusion of
truth space and consequence space.

Probability Distribution of x Probability Distribution of f!x"

can be satisfied with the reliability of the risk properties than understand the statistical
properties of x, particularly under fat tails.3

Examples The variable x is unemployment in Senegal, f
1

(x) is the effect on the
bottom line of the IMF, and f

2

(x)is the effect on your grandmother’s well-being (which
we assume is minimal).

The variable x can be a stock price, but you own an option on it, so f(x) is your
exposure an option value for x, or, even more complicated the utility of the exposure to
the option value.

The variable x can be changes in wealth, f(x) the convex-concave value function of
Kahneman-Tversky, how these “affect” you. One can see that f(x) is vastly more stable
or robust than x (it has thinner tails).

In general, in nature, because f(x) the response of entities and organisms to random
events is generally thin-tailed while x can be fat-tailed, owing to f(x) having the
sigmoid "S" shape convex-concave (some type of floor below, progressive saturation
above). This explains why the planet has not blown-up from tail events. And this
also explains the difference (Chapter 17) between economic variables and natural
ones, as economic variables can have the opposite effect of accelerated response at
higher values of x (right-convex f(x)) hence a thickening of at least one of the tails.

1.4.1 The Solution: Convex Heuristic

Next we give the reader a hint of the methodology and proposed approach with a semi-
informal technical definition for now.

Definition 8. Rule. A rule is a decision-making heuristic that operates under a broad
set of circumtances. Unlike a theorem, which depends on a specific (and closed) set
of assumptions, it holds across a broad range of environments – which is precisely the
point. In that sense it is more rigorous than a theorem for decision-making, as it is in
consequence space, concerning f(x), not truth space, the properties of x.

In his own discussion of the Borel-Cantelli lemma (the version popularly known as
"monkeys on a typewriter")[8], Emile Borel explained that some events can be considered
mathematically possible, but practically impossible. There exists a class of statements
that are mathematically rigorous but practically nonsense, and vice versa.

3The reason decision making and risk management are inseparable is that there are some exposure
people should never take if the risk assessment is not reliable, which, as we saw with the best map
fallacy, is something people understand in real life but not when modeling.
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If, in addition, one shifts from "truth space" to consequence space", in other words
focus on (a function of) the payoff of events in addition to probability, rather than just
their probability, then the ranking becomes even more acute and stark, shifting, as we
will see, the discussion from probability to the richer one of fragility. In this book we
will include costs of events as part of fragility, expressed as fragility under parameter
perturbation. Chapter 5 discusses robustness under perturbation or metamodels (or
metaprobability). But here is the preview of the idea of convex heuristic, which in plain
English, is at least robust to model uncertainty.

Definition 9. Convex Heuristic. In short it is required to not produce concave re-
sponses under parameter perturbation.

Summary of a Convex Heuristic (from Chapter 16) Let {fi} be the family
of possible functions, as "exposures" to x a random variable with probability mea-
sure ���

(x), where �� is a parameter determining the scale (say, mean absolute
deviation) on the left side of the distribution (below the mean). A decision rule is
said "nonconcave" for payoff below K with respect to �� up to perturbation � if,
taking the partial expected payoff

EK
��(fi) =

Z K

�1
fi(x) d���

(x),

fi is deemed member of the family of convex heuristics Hx,K,��,�,etc.:

⇢

fi :
1

2

✓

EK
����(fi) + EK

��
+�

(fi)

◆

� EK
��(fi)

�

Note that we call these decision rules "convex" in H not necessarily because they have
a convex payoff, but also because, thanks to the introduction of payoff f , their payoff
ends up comparatively "more convex" than otherwise. In that sense, finding protection
is a convex act.

Outline of Properties (nonmathematical) of Convex Heuristics Their aim
is not to be "right" and avoid errors, but to ensure that errors remain small in
consequences.
A convex heuristic has the following properties:
(1) Compactness: It is easy to remember, implement, use, and transmit.
(2) Consequences, not truth: It is about what it helps you do, not whether it is

true or false. It should be judged not in "truth space" but in "consequence space."
(3) Antifragility: It is required to have a benefit when it is helpful larger than the

loss when it is harmful. Thus it will eventually deliver gains from disorder.
(4) Robustness: It satisfies the fragility-based precautionary principle.
(5) Opacity: You do not need to understand how it works.
(6) Survivability of populations: Such a heuristic should not be judged solely on its

intelligibility (how understandable it is), but on its survivability, or on a combination
of intelligibility and survivability. Thus a long-surviving heuristic is less fragilefragile
than a newly emerging one. But ultimately it should never be assessed in its survival
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against other ideas, rather on the survival advantage it gave the populations who
used it.

The idea that makes life easy is that we can capture model uncertainty (and model
error) with simple tricks, namely the scale of the distribution.

1.5 Fragility and Model Error

Crucially, we can gauge the nonlinear response to a parameter of a model using the same
method and map "fragility to model error". For instance a small perturbation in the
parameters entering the probability provides a one-sided increase of the likelihood of
event (a convex response), then we can declare the model as unsafe (as with the assess-
ments of Fukushima or the conventional Value-at-Risk models where small parameters
variance more probabilities by 3 orders of magnitude). This method is fundamentally
option-theoretic.

1.5.1 Why Engineering?

[Discussion of the problem- A personal record of the difference between measurement
and working on reliability. The various debates.]

1.5.2 Risk is not Variations

On the common confustion between risk and variations. Risk is tail events, necessarily.

1.5.3 What Do Fat Tails Have to Do With This?

The focus is squarely on "fat tails", since risks and harm lie principally in the high-
impact events, The Black Swan and some statistical methods fail us there. But they
do so predictably. We end Part I with an identification of classes of exposures to these
risks, the Fourth Quadrant idea, the class of decisions that do not lend themselves to
modelization and need to be avoided � in other words where x is so reliable that one
needs an f(x) that clips the left tail, hence allows for a computation of the potential
shortfall. Again, to repat, it is more, much more rigorous to modify your decisions.

1.6 Detecting How We Can be Fooled by Statistical
Data

Principle 4. In the real world one sees time series of events, not the generator of events,
unless one is himself fabricating the data.

This section will illustrate the general methodology in detecting potential model error
and provides a glimpse at rigorous "real world" decision-making.

The best way to figure out if someone is using an erroneous statistical technique is
to apply such a technique on a dataset for which you have the answer. The best way
to know the exact properties ex ante to generate it by Monte Carlo. So the technique
throughout the book is to generate fat-tailed data, the properties of which we know with
precision, and check how standard and mechanistic methods used by researchers and
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1 2 3 4
x

Pr!x"

10 20 30 40
x

Pr!x"

Additional Variation

Apparently 

degenerate case

More data shows

 nondegeneracy

Figure 1.7: The Masquerade Problem (or Central Asymmetry in Inference). To the
left, a degenerate random variable taking seemingly constant values, with a histogram producing
a Dirac stick. One cannot rule out nondegeneracy. But the right plot exhibits more than one
realization. Here one can rule out degeneracy. This central asymmetry can be generalized and
put some rigor into statements like "failure to reject" as the notion of what is rejected needs to
be refined. We produce rules in Chapter 4.

practitioners detect the true properties, then show the wedge between observed and true
properties.

The focus will be, of course, on the effect of the law of large numbers.
The example below provides an idea of the methodolody, and Chapter 4 produces a

formal "hierarchy" of statements that can be made by such an observer without violating
a certain inferential rigor. For instance he can "reject" that the data is Gaussian, but
not accept it as easily. And he can produce inequalities or "lower bound estimates" on,
say, variance, never "estimates" in the standard sense since he has no idea about the
generator and standard estimates require some associated statement about the generator.

Definition 10. Arbitrage of Probability Measure. A probability measure µA can be
arbitraged if one can produce data fitting another probability measure µB and systemati-
cally fool the observer that it is µA based on his metrics in assessing the validity of the
measure.

Chapter 4 will rank probability measures along this arbitrage criterion.

Example of Finite Mean and Infinite Variance This example illustrates
two biases: underestimation of the mean in the presence of skewed fat-tailed data, and
illusion of finiteness of variance (sort of underestimation).
Let us say that x follows a version of Pareto Distribution with density p(x),

p(x) =

8

<

:

↵k�1/�

(�µ�x)
1

�

�1

⇣
(

k

�µ�x

)

�1/�

+1

⌘�↵�1

� µ+ x  0

0 otherwise
(1.1)

By generating a Monte Carlo sample of size N with parameters ↵ = 3/2, µ = 1, k =

2, and � = 3/4 and sending it to a friendly researcher to ask him to derive the properties,
we can easily gauge what can "fool" him. We generate M runs of N -sequence random
variates ((xj

i )
N
i=1

)

M
j=1

The expected "true" mean is:

E(x) =
(

k �(�+1)�(↵��)
�(↵) + µ ↵ > �

Indeterminate otherwise
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Figure 1.8: "The probabilistic veil". Taleb and Pilpel (2000,2004) cover the point from
an epistemological standpoint with the "veil" thought experiment by which an observer is
supplied with data (generated by someone with "perfect statistical information", that is,
producing it from a generator of time series). The observer, not knowing the generating
process, and basing his information on data and data only, would have to come up with
an estimate of the statistical properties (probabilities, mean, variance, value-at-risk, etc.).
Clearly, the observer having incomplete information about the generator, and no reliable
theory about what the data corresponds to, will always make mistakes, but these mistakes
have a certain pattern. This is the central problem of risk management.

and the "true" variance:

V (x) =

(

k2

(

�(↵)�(2�+1)�(↵�2�)��(�+1)

2

�(↵��)2
)

�(↵)2 ↵ > 2�

Indeterminate otherwise
(1.2)

which in our case is "infinite". Now a friendly researcher is likely to mistake the mean,
since about 6̃0% of the measurements will produce a higher value than the true mean,
and, most certainly likely to mistake the variance (it is infinite and any finite number is
a mistake).

Further, about 73% of observations fall above the true mean. The CDF= 1 �

✓

⇣

�(�+1)�(↵��)
�(↵)

⌘

1

�

+ 1

◆�↵

where � is the Euler Gamma function �(z) =
R1
0

e�ttz�1 dt.
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Figure 1.9: The "true" distribution
as expected from the Monte Carlo
generator
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Figure 1.10: A typical realization,
that is, an observed distribution for
N = 103
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Figure 1.11: The Recovered Stan-
dard Deviation, which we insist, is
infinite. This means that every run
j would deliver a different average
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Figure 1.12: Metaprobability: we
add another dimension to the prob-
ability distributions, as we consider
the effect of a layer of uncertainty
over the probabilities. It results in
large effects in the tails, but, visually,
these are identified through changes
in the "peak" at the center of the dis-
tribution.

Figure 1.13: Fragility: Can be seen
in the slope of the sensitivity of pay-
off across metadistributions

As to the expected shortfall, S(K) ⌘

R
K

�1 x p(x) dx
R

K

�1 p(x) dx
, close to 67% of the observations

underestimate the "tail risk" below 1% and 99% for more severe risks. This exercise
was a standard one but there are many more complicated distributions than the ones we
played with.

1.7 Risk, Uncertainty, and Layering

I owe this to a long discussion with Paul Boghossian.

Principle 5. The Necessity of Layering. No probability without metaprobability.
One cannot make a probabilistic statement without considering the probability of a state-
ment being from an unreliable source, or subjected to measurement errors.

Definition 11. Metadistribution/Metaprobability. the two statements 1) "the prob-
ability of Rand Paul winning the election is 15.2%" and 2) the probability of getting n
odds numbers in N throws of a fair die is q %" are different in the sense that the first
statement has higher undertainty about its probability, and you know (with some proba-
bility) that it may change under an alternative analysis or over time.

Rule 1. There is no such thing as "Knightian risk" in the real world, but gradations of
computable risk.



I Fat Tails: The LLN Under Real

World Ecologies
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2 Fat Tails and The Larger World

Main point of Part I. Model uncertainty (or, within models, parameter uncertainty),
or more generally, adding layers of randomness, cause fat tails. The main effect is
slower operation of the law of large numbers.

Part I of this volume presents a mathematical approach for dealing with errors in con-
ventional probability models For instance, if a "rigorously" derived model (say Markowitz
mean variance, or Extreme Value Theory) gives a precise risk measure, but ignores the
central fact that the parameters of the model don’ t fall from the sky, but have some
error rate in their estimation, then the model is not rigorous for risk management, deci-
sion making in the real world, or, for that matter, for anything. So we may need to add
another layer of uncertainty, which invalidates some models but not others. The mathe-
matical rigor is therefore shifted from focus on asymptotic (but rather irrelevant because
inapplicable) properties to making do with a certain set of incompleteness and preasymp-
totics. Indeed there is a mathematical way to deal with incompletness. Adding disorder
has a one-sided effect and we can deductively estimate its lower bound. For instance
we can figure out from second order effects that tail probabilities and risk measures are
understimated in some class of models.

Savage’s Difference Between The Small and Large World

The problem of formal probability theory is that it necessarily covers narrower situations
(small world ⌦S) than the real world (⌦L), which produces Procrustean bed effects. ⌦S

⇢ ⌦L. The "academic" in the bad sense approach has been to assume that ⌦L is smaller
rather than study the gap. The problems linked to incompleteness of models are largely
in the form of preasymptotics and inverse problems.

Real world and "academic" don’t necessarily clash Luckily there is a
profound literature on satisficing and various decision-making heuristics, starting with
Herb Simon and continuing through various traditions delving into ecological rationality,
[66], [33], [76]: in fact Leonard Savage’s difference between small and large worlds will
be the basis of Part I, which we can actually map mathematically. Method: We cannot
probe the Real World but we can get an idea (via perturbations) of relevant directions
of the effects and difficulties coming from incompleteness, and make statements s.a. "in-
completeness slows convergence to LLN by at least a factor of n↵”, or "increases the
number of observations to make a certain statement by at least 2x".
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Figure 2.1: A Version of Savage’s Small World/Large World Problem. In statistical domains
assume Small World= coin tosses and Large World = Real World. Note that measure
theory is not the small world, but large world, thanks to the degrees of freedom it confers.

So adding a layer of uncertainty to the representation in the form of model error, or
metaprobability has a one-sided effect: expansion of ⌦S with following results:

i) Fat tails:
i-a)- Randomness at the level of the scale of the distribution generates fat tails.
(Multi-level stochastic volatility).
i-b)- Model error in all its forms generates fat tails.
i-c) - Convexity of probability measures to uncertainty causes fat tails.
ii) Law of Large Numbers(weak): operates much more slowly, if ever at all. "P-
values" are biased lower.
iii) Risk is larger than the conventional measures derived in ⌦S , particularly for
payoffs in the tail.
iv) Allocations from optimal control and other theories (portfolio theory) have a
higher variance than shown, hence increase risk.
v) The problem of induction is more acute.(epistemic opacity).
vi)The problem is more acute for convex payoffs, and simpler for concave ones.

Now i) ) ii) through vi).

Risk (and decisions) require more rigor than other applications of statistical inference.

Coin tosses are not quite "real world" probability In his wonderful
textbook [10], Leo Breiman referred to probability as having two sides, the left side
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represented by his teacher, Michel Loève, which concerned itself with formalism and
measure theory, and the right one which is typically associated with coin tosses and
similar applications. Many have the illusion that the "real world" would be closer to
the coin tosses. It is not: coin tosses are fake practice for probability theory, artificial
setups in which people know the probability (what is called the ludic fallacy in The
Black Swan), and where bets are bounded, hence insensitive to problems of extreme fat
tails. Ironically, measure theory, while formal, is less constraining and can set us free
from these narrow structures. Its abstraction allows the expansion out of the small box,
all the while remaining rigorous, in fact, at the highest possible level of rigor. Plenty of
damage has been brought by the illusion that the coin toss model provides a "realistic"
approach to the discipline, as we see in Chapter x, it leads to the random walk and the
associated pathologies with a certain class of unbounded variables.

General Classification of Problems Related To Fat Tails

The Black Swan Problem Incomputability of Small Probalility: It is is not
merely that events in the tails of the distributions matter, happen, play a large role, etc.
The point is that these events play the major role for some classes of random variables
and their probabilities are not computable, not reliable for any effective use. And the
smaller the probability, the larger the error, affecting events of high impact. The idea
is to work with measures that are less sensitive to the issue (a statistical approch), or
conceive exposures less affected by it (a decision theoric approach). Mathematically, the
problem arises from the use of degenerate metaprobability.

In fact the central point is the 4

th quadrant where prevails both high-impact and non-
measurability, where the max of the random variable determines most of the properties
(which to repeat, has not computable probabilities).

We will rank probability measures along this arbitrage criterion.

Associated Specific "Black Swan Blindness" Errors (Applying Thin–
Tailed Metrics to Fat Tailed Domains) These are shockingly common, aris-
ing from mechanistic reliance on software or textbook items (or a culture of bad statistical
insight).We skip the elementary "Pinker" error of mistaking journalistic fact - checking
for scientific statistical "evidence" and focus on less obvious but equally dangerous ones.

1. Overinference: Making an inference from fat-tailed data assuming sample size
allows claims (very common in social science). Chapter 3.

2. Underinference: Assuming N=1 is insufficient under large deviations. Chapters
1 and 3.

(In other words both these errors lead to refusing true inference and accepting
anecdote as "evidence")

3. Asymmetry: Fat-tailed probability distributions can masquerade as thin tailed
("great moderation", "long peace"), not the opposite.

4. The econometric ( very severe) violation in using standard deviations and variances
as a measure of dispersion without ascertaining the stability of the fourth moment
(F .F ) . This error alone allows us to discard everything in economics/econometrics
using � as irresponsible nonsense (with a narrow set of exceptions).
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Problem Description Chapters

1 Preasymptotics,
Incomplete Conver-
gence

The real world is before the asymptote.
This affects the applications (under fat
tails) of the Law of Large Numbers and
the Central Limit Theorem.

?

2 Inverse Problems a) The direction Model ) Reality pro-
duces larger biases than Reality )

Model
b) Some models can be "arbitraged" in
one direction, not the other .

1,?,?

3 Degenerate
Metaprobability*

Uncertainty about the probability dis-
tributions can be expressed as addi-
tional layer of uncertainty, or, simpler,
errors, hence nested series of errors on
errors. The Black Swan problem can be
summarized as degenerate metaproba-
bility.1

?,?

*Degenerate metaprobability is a term used to indicate a single layer of stochasticity,
such as a model with certain parameters.

5. Making claims about "robust" statistics in the tails. Chapter 3.

6. Assuming that the errors in the estimation of x apply to f(x) ( very severe).

7. Mistaking the properties of "Bets" and "digital predictions" for those of Vanilla
exposures, with such things as "prediction markets". Chapter 9.

8. Fitting tail exponents power laws in interpolative manner. Chapters 2, 6

9. Misuse of Kolmogorov-Smirnov and other methods for fitness of probability distri-
bution. Chapter 3.

10. Calibration of small probabilities relying on sample size and not augmenting the
total sample by a function of 1/p , where p is the probability to estimate.

11. Considering ArrowDebreu State Space as exhaustive rather than sum of known
probabilities  1



3 Fat Tails and The Problem of Induction

Chapter Summary 2: Introducing mathematical formulations of fat tails.
Shows how the problem of induction gets worse. Empirical risk estimator.
Introduces different heuristics to "fatten" tails. Where do the tails start?
Sampling error and convex payoffs.

3.1 The Problem of (Enumerative) Induction

Turkey and Inverse Turkey (from the Glossary in Antifragile): The turkey is fed by
the butcher for a thousand days, and every day the turkey pronounces with increased
statistical confidence that the butcher "will never hurt it"�until Thanksgiving, which
brings a Black Swan revision of belief for the turkey. Indeed not a good day to be
a turkey. The inverse turkey error is the mirror confusion, not seeing opportunities�
pronouncing that one has evidence that someone digging for gold or searching for cures
will "never find" anything because he didn’t find anything in the past.

What we have just formulated is the philosophical problem of induction (more pre-
cisely of enumerative induction.) To this version of Bertrand Russel’s chicken we add:
mathematical difficulties, fat tails, and sucker problems.

3.2 Simple Risk Estimator

Let us define a risk estimator that we will work with throughout the book. We start
with a partial first moment.
Definition 12. Let X be, as of time T, a standard sequence of n+1 observations, X =

(xt
0

+i�t

)

0in (with xt 2 R, i 2 N), as the discretely monitored history of a stochastic
process Xt over the closed interval [t

0

, T ] (with realizations at fixed interval �t thus
T = t

0

+ n�t). 1

The empirical estimator MX
T (A, f) is defined as

MX
T (A, f) ⌘

Pn
i=0

1Af (xt
0

+i�t

)

Pn
i=0

1D0
(3.1)

1It is not necessary that �t follows strictly calendar time for high frequency observations, as calendar
time does not necessarily correspond to transaction time or economic time, so by a procedure used in
option trading called "transactional time" or "economic time", the observation frequency might need to
be rescaled in a certain fashion to increase sampling at some windows over others � a procedure not
dissimilar to seasonal adjustment, though more rigorous mathematically. What matters is that, if there
is scaling of �t, the scaling function needs to be fixed and deterministic. But this problem is mostly
present in high frequency. The author thanks Robert Frey for the discussion.

45



46 CHAPTER 3. FAT TAILS AND THE PROBLEM OF INDUCTION

Figure 3.1: A rolling window: to
estimate the errors of an estimator,it
is not rigorous to compute in-sample
properties of estimators, but compare
properties obtained at T with predic-
tion in a window outside of it. Max-
imum likelihood estimators should
have their variance (or other more
real-world metric of dispersion) esti-
mated outside the window.

In sample
out of 

sample

T

t

50

100

150

X

where 1A D ! {0, 1} is an indicator function taking values 1 if xt 2 A and 0 other-
wise, ( D

0 subdomain of domain D: A ✓ D

0
⇢ D ) , and f is a function of x. For

instance f(x) = 1, f(x) = x, and f(x) = xN correspond to the probability , the first
moment, and N th moment, respectively. A is the subset of the support of the distribu-
tion that is of concern for the estimation. Typically,

Pn
i=0

1D = n, the counting measure.

Let us stay in dimension 1 for now not to muddle things. Standard Estimators
tend to be variations about MX

t (A, f) where f(x) =x and A is defined as the domain
of the distribution of X, standard measures from x, such as moments of order z, etc.,
are calculated "as of period" T. Such measures might be useful for the knowledge of
some properties, but remain insufficient for decision making as the decision-maker may
be concerned for risk management purposes with the left tail (for distributions that are
not entirely skewed, such as purely loss functions such as damage from earthquakes,
terrorism, etc.), or any arbitrarily defined part of the distribution.

Standard Risk Estimators

Definition 13. The empirical risk estimator S for the unconditional shortfall S below
K is defined as, with A = (�1,K), f(x) = x

S ⌘

Pn
i=0

x1A
Pn

i=0

1D0
(3.2)

An alternative method is to compute the conditional shortfall:

S0 ⌘ E[M |X < K] =

Pn
i=0

x1A
Pn

i=0

1A

One of the uses of the indicator function 1A, for observations falling into a subsection
A of the distribution, is that we can actually derive the past actuarial value of an option
with X as an underlying struck as K as MX

T (A, x), with A = (�1,K] for a put and
A = [K,1) for a call, with f(x) = x�K or K � x.

Criterion 1. The measure M is considered to be an estimator over interval [ t- N �t, T]
if and only if it holds in expectation over a specific period XT+i�t

for a given i>0, that
is across counterfactuals of the process, with a threshold ✏ (a tolerated relative absolute
divergence; removing the absolute sign reveals the bias) so

⇠(MX
T (Az, f)) =

E
�

�MX
T (Az, f)�MX

>T (Az, f)
�

�

�

�MX
T (Az, f)

�

�

< ✏ (3.3)
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when MX
T (Az, f) is computed; but while working with the opposite problem, that is,

trying to guess the spread in the realizations of a stochastic process, when the process
is known, but not the realizations, we will use MX

>T (Az, 1) as a divisor.
In other words, the estimator as of some future time, should have some stability

around the "true" value of the variable and stay below an upper bound on the tolerated
bias.

We use the loss function ⇠(.) = |.| measuring mean absolute deviations to accom-
modate functions and exposures and that do not have finite second moment, even
if the process has such moments. Another reason is that in the real world gains and
losses are in straight numerical deviations.

So we skip the notion of "variance" for an estimator and rely on absolute mean
deviation so ⇠ can be the absolute value for the tolerated bias. And note that we use
mean deviation as the equivalent of a "loss function"; except that with matters related
to risk, the loss function is embedded in the subset A of the estimator.

This criterion makes our risk estimator compatible with standard sampling theory.
Actually, it is at the core of statistics. Let us rephrase:

Standard statistical theory doesn’t allow claims on estimators made in a given set
unless these are made on the basis that they can "generalize", that is, reproduce out of
sample, into the part of the series that has not taken place (or not seen), i.e., for time
series, for ⌧ >t.

This should also apply in full force to the risk estimator. In fact we need more, much
more vigilance with risks.

For convenience, we are taking some liberties with the notations, pending on context:
MX

T (A, f) is held to be the estimator, or a conditional summation on data but for
convenience, given that such estimator is sometimes called "empirical expectation", we
will be also using the same symbol, namely with MX

>T (A, f) for the textit estimated
variable for period > T (to the right of T, as we will see, adapted to the filtration T).
This will be done in cases M is the M -derived expectation operator E or EP under
real world probability measure P (taken here as a counting measure), that is, given a
probability space (⌦, F , P), and a continuously increasing filtration Ft, Fs ⇢ Ft if s <
t. the expectation operator (and other Lebesque measures) are adapted to the filtration
FT in the sense that the future is progressive and one takes a decision at a certain period
T +�t from information at period T , with an incompressible lag that we write as �t �in
the "real world", we will see in Chapter x there are more than one laging periods �t, as
one may need a lag to make a decision, and another for execution, so we necessarily need
> �t. The central idea of a cadlag process is that in the presence of discontinuities in
an otherwise continuous stochastic process (or treated as continuous), we consider the
right side, that is the first observation, and not the last.

3.3 Fat Tails, the Finite Moment Case

Fat tails are not about the incidence of low probability events, but the contributions of
events away from the "center" of the distribution to the total properties.2 As a useful

2The word "infinite" moment is a big ambiguous, it is better to present the problem as "undefined"
moment in the sense that it depends on the sample, and does not replicate outside. Say, for a two-tailed
distribution, the designation"infinite" variance might apply for the fourth moment, but not to the third.
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Figure 3.2: The difference between
the two weighting functions increases
for large values of x.

x
2

!x"

x

f(x)

heuristic, consider the ratio h

h =

p

E (X2

)

E(|X|)

where E is the expectation operator (under the probability measure of concern and x
is a centered variable such E(x) = 0); the ratio increases with the fat tailedness of the

distribution; (The general case corresponds to (

MX

T

(A,xn

)

)

1

n

MX

T

(A,|x|) , n > 1, under the condition
that the distribution has finite moments up to n, and the special case here n=2).

Simply, xnis a weighting operator that assigns a weight, xn�1 large for large values of
x, and small for smaller values.

The effect is due to the convexity differential between both functions, |x| is piecewise
linear and loses the convexity effect except for a zone around the origin.3

Proof : By Jensen’s inequality under the counting measure.

As a convention here, we write Lp for space, Lp for the norm in that space.

Let X ⌘ (xi)
n
i=1

, The L

p Norm is defined (for our purpose) as, with p 2 N , p � 1):

kXkp⌘

✓

Pn
i=1

|xi|
p

n

◆

1/p

The idea of dividing by n is to transform the norms into expectations,i.e., moments.
For the Euclidian norm, p = 2.

The norm rises with higher values of p, as, with a > 0.4,

 

1

n

n
X

i=1

|xi|
p+a

!

1/(p+a)

>
 

1

n

n
X

i=1

|xi|
p

!

1/p

3TK Adding an appendix "Quick and Robust Estimates of Fatness of Tails When Higher Moments
Don’t Exist" showing how the ratios STD/MAD (finite second moment) and MAD(MAD)/STD (finite
first moment) provide robust estimates and outperform the Hill estimator for symmetric power laws.

4An application of Hölder’s inequality,
⇣Pn

i=1 |xi|p+a
⌘ 1

a+p �
⇣
n

1

a+p

� 1

p

Pn
i=1 |xi|p

⌘1/p
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Some harmless formalism:
Lp space. Let’s look at payoff
in functional space, to work
with the space of functions
having a certain integrability.
Let Y be a measurable space
with Lebesgue measure µ.
The space Lpof f measurable
functions on Y is defined as:

Lp
(µ) =

n

f :

✓

Z

Y

|fp
| dµ

◆

1/p

< 1

o

with p � 1.
The application of concern
for our analysis in this sec-
tion is where the measure µ
is a counting measure (on a
countable set). [WILL ADD
DISCUSSION ON MEASUR-
ABLE SPACE AND WHY
A RANDOM VARIABLE IS
A REAL VALUED FUNC-
TION, ETC.]

What is critical for our exercise and the
study of the effects of fat tails is that, for
a given norm, dispersion of results increases
values. For example, take a flat distribu-
tion, X= {1, 1}. kXk

1

=kXk

2

=... =kXkn=

1. Perturbating while preserving kXk

1

, X =

�

1

2

, 3

2

 

produces rising higher norms:

{kXkn }
5

n=1

=

(

1,

p

5

2

,
3

p

7

2

2/3
,

4

p

41

2

,
5

p

61

2

4/5

)

.

(3.4)
Trying again, with a wider spread, we get even

higher values of the norms, X =

�

1

4

, 7

4

 

,

{||X||n}
5

n=1

=

8

<

:

1,
5

4

,

3

q

43

2

2

,
4

p

1201

4

,
5

p

2101

2⇥ 2

3/5

9

=

;

.

(3.5)
So we can see it becomes rapidly explo-

sive.

One property quite useful with power laws
with infinite moment:

kXk1 = sup

✓

1

n
|xi|

◆n

i=1

(3.6)

Gaussian Case For a Gaussian, where x ⇠ N(0,�), as we assume the mean is 0

without loss of generality,

MX
T

�

A,XN
�

1/N

MX
T (A, |X|)

=

⇡
N�1

2N

⇣

2

N

2

�1 �
(�1)

N
+ 1

�

�

�

N+1

2

�

⌘

1

N

p

2

or, alternatively

MX
T

�

A,XN
�

MX
T (A, |X|)

= 2

1

2

(N�3) �
1 + (�1)

N
�

✓

1

�2

◆

1

2

�N

2

�

✓

N + 1

2

◆

(3.7)

where �(z) is the Euler gamma function; �(z) =
R1
0

tz�1e�tdt. For odd moments, the
ratio is 0. For even moments:

MX
T

�

A,X2

�

MX
T (A, |X|)

=

r

⇡

2

�

hence

q

MX
T (A,X2

)

MX
T (A, |X|)

=

Standard Deviation
Mean Absolute Deviation

=

r

⇡

2
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Figure 3.3: The Ratio Standard De-
viation/Mean Deviation for the daily
returns of the SP500 over the past 47
years, with a monthly window.
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For a Gaussian the ratio ⇠ 1.25, and it rises from there with fat tails.
Example: Take an extremely fat tailed distribution with n=10

6, observations are all
-1 except for a single one of 106,

X =

�

�1,�1, ...,�1, 106
 

.

The mean absolute deviation, MAD (X) = 2. The standard deviation STD (X)=1000.
The ratio standard deviation over mean deviation is 500.
As to the fourth moment, it equals 3

p

⇡
2

�3 .
For a power law distribution with tail exponent ↵=3, say a Student T

q

MX
T (A,X2

)

MX
T (A, |X|)

=

Standard Deviation
Mean Absolute Deviation

=

⇡

2

We will return to other metrics and definitions of fat tails with power law distributions
when the moments are said to be "infinite", that is, do not exist. Our heuristic of using
the ratio of moments to mean deviation works only in sample, not outside.

"Infinite" moments Infinite moments, say infinite variance, always manifest them-
selves as computable numbers in observed sample, yielding an estimator M, simply be-
cause the sample is finite. A distribution, say, Cauchy, with infinite means will always
deliver a measurable mean in finite samples; but different samples will deliver completely
different means. Figures 3.4 and 3.5 illustrate the "drifting" effect of M a with increasing
information.

What is a "Tail Event"? There seems to be a confusion about the definition of a
"tail event", as it has different meanings in different disciplines. The three are only
vaguely related.
1) In statistics: an event of low probability.
2) Here: an event of low probability but worth discussing, hence has to have some

large consequence.
3) In measure and probability theory: Let (Xi)

n
i=1

be a n sequence of realizations
(that is, roughly speaking a random variables–function of "event"). The tail sigma
algebra of the sequence is T =

T1
n=1

�(Xn+1

, Xn+2

, . . .) and an event 2 T is a
tail event. So here it means a specific event extending infinitely into the future, or
mathematically speaking the limiting behavior of sequence of random variables.
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Figure 3.4: The mean of a series
with Infinite mean (Cauchy).
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Figure 3.5: The standard deviation
of a series with infinite variance
(St(2)).

So when we discuss the Borel-Cantelli lemma or the zero-one law that the prob-
ability of a tail event happening infinitely often is 1 or 0, it is the latter that is
meant.

3.4 A Simple Heuristic to Create Mildly Fat Tails

Since higher moments increase under fat tails, as compared to lower ones, it should be
possible so simply increase fat tails without increasing lower moments.

Note that the literature sometimes separates "Fat tails" from "Heavy tails", the first
term being reserved for power laws, the second to subexponential distribution (on which,
later). Fughtetaboutdit. We simply call "Fat Tails" something with a higher kurtosis
than the Gaussian, even when kurtosis is not defined. The definition is functional as
used by practioners of fat tails, that is, option traders and lends itself to the operation
of "fattening the tails", as we will see in this section.

A Variance-preserving heuristic. Keep E
�

X2

�

constant and increase E
�

X4

�

, by
"stochasticizing" the variance of the distribution, since <X4> is itself analog to the
variance of <X2> measured across samples ( E

�

X4

�

is the noncentral equivalent of
E
⇣

�

X2

� E
�

X2

��

2

⌘

). Chapter x will do the "stochasticizing" in a more involved way.

An effective heuristic to get some intuition about the effect of the fattening of tails
consists in simulating a random variable set to be at mean 0, but with the follow-
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ing variance-preserving tail fattening trick: the random variable follows a distribution
N
�

0,�
p

1� a
�

with probability p = 1

2

and N
�

0,�
p

1 + a
�

with the remaining probability
1

2

, with 0 6 a < 1 .
The characteristic function is

�(t, a) =
1

2

e�
1

2

(1+a)t2�2

⇣

1 + eat
2�2

⌘

Odd moments are nil. The second moment is preserved since

M(2) = (�i)2@t,2�(t)|
0

= �2

and the fourth moment

M(4) = (�i)4@t,4�|
0

= 3

�

a2 + 1

�

�4

which puts the traditional kurtosis at 3
�

a2 + 1

�

. This means we can get an "implied a
from kurtosis. The value of a is roughly the mean deviation of the stochastic volatility
parameter "volatility of volatility" or Vvol in a more fully parametrized form.

This heuristic, while useful for intuition building, is of limited powers as it can only
raise kurtosis to twice that of a Gaussian, so it should be limited to getting some intuition
about its effects. Section 3.6 will present a more involved technique.

As Figure 3.6 shows: fat tails are about higher peaks, a concentration of observations
around the center of the distribution.

The Black Swan Problem:
As we saw, it is not merely that
events in the tails of the distri-
butions matter, happen, play
a large role, etc. The point
is that these events play the
major role and their probabil-
ities are not computable, not
reliable for any effective use.
The implication is that Black
Swans do not necessarily come
from fat tails; le problem can
result from an incomplete as-
sessment of tail events.

3.5 The Body, The Shoul-
ders, and The Tails

We assume tails start at the level of convexity
of the segment of the probability distribution
to the scale of the distribution.

3.5.1 The Crossovers and Tunnel
Effect.

Notice in Figure 3.6 a series of crossover zones,
invariant to a. Distributions called "bell
shape" have a convex-concave-convex shape
(or quasi-concave shape).

Let X be a random variable, the distribution of which p(x) is from a general class of all
unimodal one-parameter continous pdfs p� with support D ✓ R and scale parameter �.
Let p(.) be quasi-concave on the domain, but neither convex nor concave. The density
function p(x) satisfies: p(x) � p(x+ ✏) for all ✏ > 0, and x > x⇤ and p(x) � p(x� ✏) for
all x < x⇤ with {x⇤ : p(x⇤) = maxx p(x)}. The class of quasiconcave functions is defined
as follows: for all x and y in the domain and ! 2 [0, 1],

p (! x+ (1� !) y) � min (p(x), p(y))

1- If the variable is "two-tailed", that is, D= (-1,1), where p�(x) ⌘ p(x+�)+p(x��)
2
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Figure 3.6: Fatter and Fatter Tails through perturbation of �. The mixed distribution with values
for the stochastic volatility coefficient a: {0, 1

4 ,
1
2 ,

3
4}. We can see crossovers a1 through a4. The

"tails" proper start at a4 on the right and a1on the left.

1. There exist a "high peak" inner tunnel, AT= (a
2

, a
3

) for which the �-perturbed �
of the probability distribution p�(x)�p(x) if x 2 (a

2

, a
3

)

2. There exists outer tunnels, the "tails", for which p�(x)�p(x) if x 2 (�1, a
1

) or
x 2 (a

4

,1)

3. There exist intermediate tunnels, the "shoulders", where p�(x) p(x) if x 2

(a
1

, a
2

) or x 2 (a
3

, a
4

)

A={ai} is the set of solutions
n

x :

@2p(x)
@� 2

|a= 0

o

.

For the Gaussian (µ, �), the solutions are obtained by setting the second derivative to
0, so

e�
(x�µ)

2

2�

2

�

2�4

� 5�2

(x� µ)2 + (x� µ)4
�

p

2⇡�7

= 0,

which produces the following crossovers:
{a

1

, a
2

, a
3

, a
4

} =

(

µ�

r

1

2

⇣

5 +

p

17

⌘

�, µ�

r

1

2

⇣

5�

p

17

⌘

�, µ+

r

1

2

⇣

5�

p

17

⌘

�, µ+

r

1

2

⇣

5 +

p

17

⌘

�

)

In figure 3.6, the crossovers for the intervals are numerically {�2.13�,�.66�, .66�, 2.13�}.

As to a symmetric power law(as we will see further down), the Student T Distribution
with scale s and tail exponent ↵:
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In Summary, Where Does
the Tail Start? For
a general class of symmet-
ric distributions with power
laws, the tail starts at:

±

r
5↵+

p
(↵+1)(17↵+1)+1

↵�1

s
p
2

, with
↵ infinite in the stochas-
tic volatility Gaussian case
and s the standard deviation.
The "tail" is located between
around 2 and 3 standard de-
viations. This flows from our
definition: which part of the
distribution is convex to er-
rors in the estimation of the
scale.
But in practice, because his-
torical measurements of STD
will be biased lower because of
small sample effects (as we re-
peat fat tails accentuate small
sample effects), the deviations
will be > 2-3 STDs.

When the Student is "cubic", that is, ↵ = 3:

{a
1

, a
2

, a
3

, a
4

} =

n

�

q

4�

p

13s,�

q

4 +

p

13s,
q

4�

p

13s,

q

4 +

p

13s
o

We can verify that when ↵ ! 1, the
crossovers become those of a Gaussian. For
instance, for a

1

:

lim

↵!1
�

r

5↵�
p

(↵+1)(17↵+1)+1

↵�1 s
p

2

= �

r

1

2

⇣

5�

p

17

⌘

s

2- For some one-tailed distribution that have
a "bell shape" of convex-concave-convex shape,
under some conditions, the same 4 crossover
points hold. The Lognormal is a special case.
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3.6 Fattening of Tails With
Skewed Variance

We can improve on the fat-tail heuristic in 3.4, (which limited the kurtosis to twice the
Gaussian) as follows. We Switch between Gaussians with variance:
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Figure 3.7: Stochastic Variance: Gamma distribution and Lognormal of same mean and vari-
ance.

(

�2

(1 + a), with probability p

�2

(1 + b), with probability 1� p

with p 2 [0,1), both a, b 2 (-1,1) and b= �a p
1�p , giving a characteristic function:

�(t, a) = p e�
1

2

(a+1)�2t2
� (p� 1) e�

�

2

t

2

(ap+p�1)

2(p�1)

with Kurtosis 3

((

1�a2

)

p�1
)

p�1 thus allowing polarized states and high kurtosis, all variance
preserving, conditioned on, when a > (<) 0, a < (>) 1�pp .

Thus with p = 1/1000, and the maximum possible a = 999, kurtosis can reach as high
a level as 3000.

This heuristic approximates quite well the effect on probabilities of a lognormal weight-
ing for the characteristic function

�(t, V ) =

Z 1

0

e�
t

2

v

2

�

✓
log(v)�v0+

V v

2

2

◆
2

2V v

2

p

2⇡vV v
dv

where v is the variance and Vv is the second order variance, often called volatility of
volatility. Thanks to integration by parts we can use the Fourier transform to obtain all
varieties of payoffs (see Gatheral, 2006). But the absence of a closed-form distribution
can be remedied as follows.

Gamma Variance A shortcut for a full lognormal distribution without the narrow
scope of heuristic is to use Gamma Variance. Assume that the variance of the Gaussian
follows a gamma distribution.

�↵(v) =
v↵�1

�

V
↵

��↵
e�

↵v

V

�(↵)

with mean V and standard deviation V 2

↵ . Figure 3.7 shows the matching to a lognormal
with same first two moments as we get the lognormal with mean and standard deviation,
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Figure 3.8: Stochastic Variance us-
ing Gamma distribution by pertur-
bating ↵ in equation 3.8.

-4 -2 0 2 4

Gaussian With Gamma Variance

respectively,
n

1

2

log

⇣

↵V 3

↵V+1

⌘

and
r

� log

⇣

↵V
↵V+1

⌘

. The final distribution becomes (once

again, assuming, without loss, a mean of 0):
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(3.8)

Chapter x will show how tail events have large errors.

Why do we use Student T to simulate symmetric power laws? For convenience,
only for convenience. It is not that we believe that the generating process is Student T.
Simply, the center of the distribution does not matter much for the properties involved
in certain classes of decision making. The lower the exponent, the less the center plays
a role. The higher the exponent, the more the student T resembles the Gaussian, and
the more justified its use will be accordingly. More advanced methods involving the use
of Levy laws may help in the event of asymmetry, but the use of two different Pareto
distributions with two different exponents, one for the left tail and the other for the right
one would do the job (without unnecessary complications).

Why power laws? There are a lot of theories on why things should be power laws,
as sort of exceptions to the way things work probabilistically. But it seems that the
opposite idea is never presented: power should can be the norm, and the Gaussian a
special case as we will see in Chapt x, of concave-convex responses (sort of dampening
of fragility and antifragility, bringing robustness, hence thinning tails).

3.7 Fat Tails in Higher Dimension

*

X = (X
1

, X
2

, . . . , Xm) the vector of random variables. Consider the joint probability
distribution f (x

1

, . . . , xm) . We denote the m-variate multivariate Normal distribution
by N(0,⌃), with mean vector *

µ , variance-covariance matrix ⌃, and joint pdf,
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Figure 3.9: Multidimensional Fat Tails: For a 3 dimentional vector, thin tails (left) and fat tails
(right) of the same variance. Instead of a bell curve with higher peak (the "tunnel") we see an
increased density of points towards the center.
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(3.9)

where *
x = (x

1

, . . . , xm) 2 Rm, and ⌃ is a symmetric, positive definite (m⇥m) matrix.
We can apply the same simplied variance preserving heuristic as in 3.4 to fatten the

tails:
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(3.10)

Where a is a scalar that determines the intensity of stochastic volatility, ⌃
1

= ⌃(1� a)
and ⌃

2

= ⌃(1� a).5

As we can see in Figure ??, as with the one-dimensional case, we see concentration in
the middle part of the distribution.

3.8 Scalable and Nonscalable, A Deeper View of Fat
Tails

So far for the discussion on fat tails we stayed in the finite moments case. For a certain
class of distributions, those with finite moments, P

X>nK

P
X>K

depends on n and K. For a
scale-free distribution, with K "in the tails", that is, large enough, P

X>nK

P
X>K

depends on

5We can simplify by assuming as we did in the single dimension case, without any loss of generality,
that *

µ = (0, . . . , 0).
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Figure 3.10: Three Types of Distributions. As we hit the tails, the Student remains scalable while
the Standard Lognormal shows an intermediate position before eventually ending up getting an
infinite slope on a log-log plot.

n not K. These latter distributions lack in characteristic scale and will end up having a
Paretan tail, i.e., for x large enough, PX>x = Cx�↵ where ↵ is the tail and C is a
scaling constant.
Note: We can see from the scaling difference between the Student and the Pareto the

conventional definition of a power law tailed distribution is expressed more formally
as P(X > x) = L(x)x�↵ where L(x) is a "slow varying function", which satisfies the
following:

lim

x!1

L(t x)

L(x)
= 1

for all constants t > 0.
For x large enough, logP

>x

logx

converges to a constant, namely the tail exponent -↵. A
scalable should produce the slope ↵ in the tails on a log-log plot, as x ! 1. Compare
to the Gaussian (with STD � and mean µ) , by taking the PDF this time instead of the

exceedance probability log

✓

f(x)

◆

=

(x�µ)2
2�2

� log(�
p

2⇡) ⇡ �

1

2�2

x2 which goes to �1

faster than � log(x) for ±x ! 1.
So far this gives us the intuition of the difference between classes of distributions.

Only scalable have "true" fat tails, as others turn into a Gaussian under summation.
And the tail exponent is asymptotic; we may never get there and what we may see is an
intermediate version of it. The figure above drew from Platonic off-the-shelf distributions;
in reality processes are vastly more messy, with switches between exponents.

Estimation issues Note that there are many methods to estimate the tail exponent
↵ from data, what is called a "calibration. However, we will see, the tail exponent is
rather hard to guess, and its calibration marred with errors, owing to the insufficiency
of data in the tails. In general, the data will show thinner tail than it should.
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k P(X > k)�1 P(X>k)
P(X>2 k) P(X > k)�1 P(X>k)

P(X>2 k) P(X > k)�1 P(X>k)
P(X>2 k)

(Gaussian) (Gaussian) Student(3) Student (3) Pareto(2) Pareto (2)

2 44 720 14.4 4.97443 8 4

4 31600. 5.1⇥ 10

10 71.4 6.87058 64 4

6 1.01⇥ 10

9

5.5⇥ 10

23 216 7.44787 216 4

8 1.61⇥ 10

15

9⇥ 10

41 491 7.67819 512 4

10 1.31⇥ 10

23

9⇥ 10

65 940 7.79053 1000 4

12 5.63⇥ 10

32 fuhgetaboudit 1610 7.85318 1730 4

14 1.28⇥ 10

44 fuhgetaboudit 2530 7.89152 2740 4

16 1.57⇥ 10

57 fuhgetaboudit 3770 7.91664 4100 4

18 1.03⇥ 10

72 fuhgetaboudit 5350 7.93397 5830 4

20 3.63⇥ 10

88 fuhgetaboudit 7320 7.94642 8000 4

Table 3.1: Scalability, comparing slowly varying functions to other distributions

We will return to the issue in Chapter 11.

3.9 Subexponential as a class of fat tailed distributions

We introduced the category "true fat tails" as scalable power laws to differenciate it from
the weaker one of fat tails as having higher kurtosis than a Gaussian.

Some use as a cut point infinite variance, but Chapter 3 will show it to be not useful, even
misleading. Many finance researchers (Officer, 1972) and many private communications
with finance artists reveal some kind of mental block in seeing the world polarized into
finite/infinite variance.

Another useful distinction: Let X = (xi)
1in be realizations of i.i.d. random variables

in R+, with cumulative distribution function F ; then by the Teugels (1975)[75] and
Pitman [58] (1980) definition:

lim

x!1

1� F 2

(x)

1� F (x)
= 2

where F 2 is the convolution of x with itself. ÏĂ

Note that X does not have to be limited to R+; we can split the variables in positive
and negative domain for the analysis.
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Example 1 Let f2

(x) be the density of a once-convolved one-tailed Pareto distribution
(that is two-summed variables) scaled at a minimum value of 1 with tail exponent ↵,
where the density of the non-convolved distribution

f(x) = ↵ x�↵�1,

x � 1,
which yields a closed-form density:

f2

(x) = 2↵2x�2↵�1
⇣

B x�1

x

(�↵, 1� ↵)�B 1

x

(�↵, 1� ↵)
⌘

where Bz(a, b) is the Incomplete Beta function, Bz(a, b) ⌘
R z

0

ta�1 (1� t)b�1 dt

(

R1
K

f2

(x,↵) dx
R1
K

f(x,↵) dx

)

↵ =1,2 =

8
<

:
2(K + log(K � 1))

K

,

2

⇣
K(K(K+3)�6)

K�1 + 6 log(K � 1)

⌘

K

2

9
=

;

and, for ↵ = 5,
1

2(K � 1)

4
K

5

K(K(K(K(K(K(K(K(4K + 9) + 24) + 84) + 504)� 5250) + 10920)� 8820) + 2520)

+ 2520(K � 1)

4
log(K � 1)

We know that the limit is 2 for all three cases, but it is important to observe the
preasymptotics
As we can see in fig x, finite or nonfinite variance is of small importance for the effect

in the tails.

Example 2 Case of the Gaussian. Since the Gaussian belongs to the family of the
stable distribution (Chapter x), the convolution will produce a Gaussian of twice the vari-
ance. So taking a Gaussian, N (0, 1) for short (0 mean and unitary standard deviation),
the densities of the convolution will be Gaussian

�

0,
p

2

�

, the ratio of the exceedances
R1
K

f2

(x) dx
R1
K

f(x) dx
=

erfc
�

K
2

�

erfc
⇣

Kp
2

⌘

will rapidly explode.

Application: Two Real World Situations We are randomly selecting two
people, and the sum of their heights is 4.1 meters. What is the most likely combination?
We are randomly selecting two people, and the sum of their assets, the total wealth is
$30 million. What is the most likely breakdown?

Assume two variables X
1

and X
2

following an identical distribution, where f is the
density function,
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Figure 3.11: The ratio of the ex-
ceedance probabilities of a sum of two
variables over a single one: power
law
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Figure 3.12: The ratio of the ex-
ceedance probabilities of a sum of two
variables over a single one: Gaus-
sian
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Figure 3.13: The ratio of the ex-
ceedance probabilities of a sum of
two variables over a single one:
Case of the Lognormal which in that
respect behaves like a power law
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P [X
1

+X
2

= s] = f2

(s)

=

Z

f(y) f(s� y) dy.

The probability densities of joint events, with 0  � < s
2

:

= P
⇣

X
1

=
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2

+ �
⌘
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X
2
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� �
⌘

Let us work with the joint distribution for a given sum:

For a Gaussian, the product becomes

f
⇣s

2

+ �
⌘

f
⇣s

2

� �
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e��
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2
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For a Power law, say a Pareto distribution with ↵ tail exponent, f(x)= ↵ x�↵�1x↵
min
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x
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is minimum value , s
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⌘
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⌘
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⇣⇣

� �
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⌘⇣

� +

s

2

⌘⌘�↵�1

The product of two densities decreases with � for the Gaussian6, and increases with the
power law. For the Gaussian the maximal probability is obtained � = 0. For the power
law, the larger the value of �, the better.
So the most likely combination is exactly 2.05 meters in the first example, and x

min

and
$30 million �x

min

in the second.

3.9.1 More General Approach to Subexponentiality

More generally, distributions are called subexponential when the exceedance probability
declines more slowly in the tails than the exponential.

For a one-tailed random variable7,

a) limx!1
P

X>⌃x

P
X>x

= n, (Christyakov, 1964, [14]), which is equivalent to

b) limx!1
P

X>⌃x

P (X>max(x)) = 1, (Embrecht and Goldie, 1980,[23] ).

The sum is of the same order as the maximum (positive) value, another way of saying
that the tails play a large role.

6Technical comment: we illustrate some of the problems with continuous probability as follows. The
sets 4.1 and 30 10

6 have Lebesgue measures 0, so we work with densities and comparing densities implies
Borel subsets of the space, that is, intervals (open or closed) ± a point. When we say "net worth is
approximately 30 million", the lack of precision in the statement is offset by an equivalent one for the
combinations of summands.

7for two-tailed variables, the result should be the same by splitting the observations in two groups
around a center. BUT I NEED TO CHECK IF TRUE
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Figure 3.14: Multiplying the stan-
dard Gaussian density by emx, for
m = {0, 1, 2, 3}.
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Figure 3.15: Multiplying the Lognor-
mal (0,1) density by emx, for m =
{0, 1, 2, 3}.

Clearly F has to have no exponential moment:
Z 1

0

e✏x dF (x) = 1

for all ✏ > 0.

We can visualize the convergence of the integral at higher values of m: Figures 3.14 and
3.15 illustrate the effect of emx f(x), that is, the product of the exponential moment m
and the density of a continuous distributions f(x) for large values of x.

The standard Lognormal belongs to the subexponential category, but just barely so (we
used in the graph above Log Normal-2 as a designator for a distribution with the tail
exceedance ⇠ Ke��(log(x)�µ)

�

where �=2)

3.10 Joint Fat Tails and Elliptical Distributions

Definition of an Elliptical Distribution. The problem of elliptical distributions is that
they do not map the return of securities, owing to the absence of a single variance at
any point in time, see Bouchaud and Chicheportiche (2010) [13]. When the scales of
the distributions of the individuals move but not in tandem, the distribution ceases
to be elliptical. Figure 3.17 shows the situation of taking the equivalent of stochastic
volatility methods: the more annoying stochastic correlation. Instead of perturbating
the correlation matrix ⌃ as a unit as in section 3.7, we perturbate the correlations with
surprising effect.
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Figure 3.16: A time series of an extremely fat-tailed distribution (one-tailed). Given a long
enough series, the contribution from the largest observation should represent the entire sum,
dwarfing the rest.

3.11 Different Approaches For Statistical Estimators

There are broadly two separate ways to go about estimators: nonparametric and para-
metric.

The nonparametric approach It is based on observed raw frequencies derived
from sample-size n. Roughly, it sets a subset of events A and MX

T (A, 1) (i.e., f(x) =1 ),
so we are dealing with the frequencies '(A) =

1

n

Pn
i=0

1A. Thus these estimates don’t
allow discussions on frequencies ' < 1

n , at least not directly. Further the volatility of the
estimator increases with lower frequencies. The error is a function of the frequency itself
(or rather, the smaller of the frequency ' and 1-'). So if

Pn
i=0

1A=30 and n = 1000, only
3 out of 100 observations are expected to fall into the subset A, restricting the claims to
too narrow a set of observations for us to be able to make a claim, even if the total sample
n = 1000 is deemed satisfactory for other purposes. Some people introduce smoothing
kernels between the various buckets corresponding to the various frequencies, but in
essence the technique remains frequency-based. So if we nest subsets, A

1

✓ A
2

✓ A, the
expected "volatility" (as we will see later in the chapter, we mean MAD, mean absolute
deviation, not STD) of MX

T (Az, f) will produce the following inequality:

E
�

�

�MX
T (Az, f)�MX

>T (Az, f)
�

�

�

�

�MX
T (Az, f)

�

�



E
�

�

�MX
T (A<z, f) �

�

�MX
>T (A<z, f)

�

�

�

�

�MX
T (A<z, f)

�

�

for all functions f (Proof via twinking of law of large numbers for sum of random
variables).

The parametric approach it allows extrapolation but emprisons the representa-
tion into a specific off-the-shelf probability distribution (which can itself be composed of
more sub-probability distributions); so MX

T is an estimated parameter for use input into
a distribution or model and the freedom left resides in differents values of the parameters.
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Figure 3.17: Elliptical Joint Returns of Powerlaw (Student T)

Figure 3.18: NonElliptical Joint Returns, from stochastic correlations

Both methods make is difficult to deal with small frequencies. The nonparametric
for obvious reasons of sample insufficiency in the tails, the parametric because small
probabilities are very sensitive to parameter errors.

The Sampling Error for Convex Payoffs

This is the central problem of model error seen in consequences not in probability. The
literature is used to discussing errors on probability which should not matter much for
small probabilities. But it matters for payoffs, as f can depend on x. Let us see how the
problem becomes very bad when we consider f and in the presence of fat tails. Simply,
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Figure 3.19: Elliptical Joint Returns for for a multivariate distribution (x, y, z) solving to the
same density.

Figure 3.20: NonElliptical Joint Returns, from stochastic correlations, for a multivariate distri-
bution (x, y, z) solving to the same density.
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you are multiplying the error in probability by a large number, since fat tails imply that
the probabilities p(x) do not decline fast enough for large values of x. Now the literature
seem to have examined errors in probability, not errors in payoff.
Let MX

T (Az, f) be the estimator of a function of x in the subset Az= ( �
1

, �
2

) of the
support of the variable. Let ⇠(MX

T (Az, f)) be the mean absolute error in the estimation
of the probability in the small subset Az= ( �

1

, �
2

), i.e.,

⇠
�

MX
T (Az, f)

�

⌘

E
�

�MX
T (Az, 1)�MX

>T (Az, 1)
�

�

MX
T (Az, 1)

Assume f(x) is either linear or convex (but not concave) in the form C+ ⇤ x� , with
both ⇤ > 0 and � � 1. Assume E[X], that is, E

⇥

MX
>T (AD, f)

⇤

< 1, for Az⌘AD, a
requirement that is not necessary for finite intervals.
Then the estimation error of MX

T (Az, f) compounds the error in probability, thus giving
us the lower bound in relation to ⇠

E
⇥
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�MX
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=
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f(x)p(x) dx
R

�

2

�

1

p(x) dx
, and expanding f(x), for a given n on both sides.

We can now generalize to the central inequality from convexity of payoff , which we
shorten as Convex Payoff Sampling Error Inequalities, CPSEI:

Rule 2. Under our conditions above, if for all � 2(0,1) and f{i,j}(x±�) 2 Az,
(1��)fi

(x��)+�fi

(x+�)

fi

(x) �

(1��)fj

(x��)+�fj

(x+�)

fj

(x) , (f iis never less convex than f jin
interval Az ), then

⇠
�

MX
T (Az, f

i
)
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MX
T (Az, f

j
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Rule 3. Let ni be the number of observations required for MX
>T

�

Az
i

, f i
�

the estima-
tor under f i to get an equivalent expected mean absolute deviation as MX

>T

�

Az
j

, f j
�

under f j with observation size nj, that is, for ⇠(MX
T,n

i

�

Az
i

, f i ))=⇠(MX
T,n

j

�

Az
j

, f j )),
then

ni � nj

This inequality becomes strict in the case of nonfinite first moment for the underlying
distribution.
The proofs are obvious for distributions with finite second moment, using the speed

of convergence of the sum of random variables expressed in mean deviations. We will
not get to them until Chapter x on convergence and limit theorems but an example will
follow in a few lines.
We will discuss the point further in Chapter x, in the presentation of the conflation

problem.
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For a sketch of the proof, just consider that the convex transformation of a proba-
bility distribution p(x) produces a new distribution f(x) ⌘ ⇤x� with density pf (x) =

⇤

�1/�x
1��

� p
⇣
(

x

⇤

)

1/�

⌘

� over its own adjusted domain, for which we find an increase in volatil-
ity, which requires a larger n to compensate, in order to maintain the same quality for
the estimator.

Example For a Gaussian distribution, the variance of the transformation becomes:
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For ⇤=1, we get an idea of the increase in variance from convex transformations:

� Variance V (�) Kurtosis

1 �2

3

2 2 �4

15

3 15 �6

231

5

4 96 �8

207

5 945 �10

46189

63

6 10170 �12

38787711

12769

Since the standard deviation drops at the rate
p

n for non power laws, the number of
n(�), that is, the number of observations needed to incur the same error on the sample

in standard deviation space will be
p

V (�)p
n
1

=

p

V (1)p
n

, hence n
1

= 2 n �2. But to equalize
the errors in mean deviation space, since Kurtosis is higher than that of a Gaussian, we
need to translate back into L1 space, which is elementary in most cases.

For a Pareto Distribution with support v[x�
min

,1),

V
�

⇤ x�
�

=

↵⇤2x2

min

(↵� 2)(↵� 1)

2

.

Using Log characteristic functions allows us to deal with the difference in sums and get
the speed of convergence.



3.11. DIFFERENT APPROACHES FOR STATISTICAL ESTIMATORS 69

Example illustrating the Convex Payoff Inequality Let us compare
the "true" theoretical value to random samples drawn from the Student T with 3 degrees
of freedom, for MX
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It produces the following table showing an explosive relative error ⇠. We compare the
effect to a Gausian with matching standard deviation, namely

p

3. The relative error
becomes infinite as � approaches the tail exponent. We can see the difference between
the Gaussian and the power law of finite second moment: both "sort of" resemble each
others in many applications � but... not really.

� ⇠
St(3)

⇠G
(

0,
p
3

)

1 0.17 0.05

3

2

0.32 0.08

2 0.62 0.11

5

2

1.62 0.13

3 ”fuhgetaboudit” 0.18

Warning. Severe mistake (common in the economics litera-
ture) One should never make a decision involving MX

T (A>z, f) and basing it on
calculations for MX

T (Az, 1), especially when f is convex, as it violates CPSEI. Yet
many papers make such a mistake. And as we saw under fat tails the problem is
vastly more severe.

Utility Theory Note that under a concave utility of negative states, decisions re-
quire a larger sample. By CPSEI the magnification of errors require larger number of
observation. This is typically missed in the decision-science literature. But there is
worse, as we see next.

Tail payoffs The author is disputing, in Taleb (2013), the results of a paper, Il-
manen (2013), on why tail probabilities are overvalued by the market: naively Ilmanen
(2013) took the observed probabilities of large deviations,f(x) = 1 then made an infer-
ence for f(x) an option payoff based on x, which can be extremely explosive (a error
that can cause losses of several orders of magnitude the initial gain). Chapter x revis-
its the problem in the context of nonlinear transformations of random variables. The
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error on the estimator can be in the form of parameter mistake that inputs into the as-
sumed probability distribution, say � the standard deviation (Chapter x and discussion
of metaprobability), or in the frequency estimation. Note now that if �

1

!-1, we may
have an infinite error on MX

T (Az, f), the left-tail shortfall while, by definition, the error
on probability is necessarily bounded.
If you assume in addition that the distribution p(x) is expected to have fat tails (of

any of the kinds seen in 3.83.9.1, then the problem becomes more acute.
Now the mistake of estimating the properties of x, then making a decisions for a

nonlinear function of it, f(x), not realizing that the errors for f(x) are different from
those of x is extremely common. Naively, one needs a lot larger sample for f(x) when
f(x) is convex than when f(x) = x. We will re-examine it along with the "conflation
problem" in Chapter x.

3.12 Econometrics imagines functions in L

2 Space

The Black Swan was understood
by :
100% of Firemen
99.9% of skin-in-the-game risk-
takers and businesspersons
85% of common readers
80% of hard scientists (except
some complexity artists)
65% of psychologists (except Har-
vard psychologists)
60% of traders
25% of U.K. journalists
15% of money managers who man-
age money of others
1.5% of "Risk professionals"
1% of U.S. journalists
and
0% of economists (or perhaps, to
be fair, .5%)
If is frequent that economists like
Andrew Lo and Mueller [44] or
Nicholas Barberis [3] play straw
man by treating it as "popular"
(to delegitimize is intellectual con-
tent) while both misunderstanding
(and misrepresenting) its message
and falling for the very errors it
warns against, as in the confusion
between binary and vanilla expo-
sures.

Note8

There is something Wrong With
Econometrics, as Almost All Pa-
pers Don’ t Replicate. Two reliabil-
ity tests in Chapter x, one about paramet-
ric methods the other about robust statis-
tics, show that there is something rot-
ten in econometric methods, fundamen-
tally wrong, and that the methods are
not dependable enough to be of use in
anything remotely related to risky deci-
sions. Practitioners keep spinning incon-
sistent ad hoc statements to explain fail-
ures.
We will show how, with economic vari-

ables one single observation in 10,000, that
is, one single day in 40 years, can explain
the bulk of the "kurtosis", a measure of
"fat tails", that is, both a measure how
much the distribution under consideration
departs from the standard Gaussian, or
the role of remote events in determining
the total properties. For the U.S. stock
market, a single day, the crash of 1987,
determined 80% of the kurtosis for the pe-
riod between 1952 and 2008. The same
problem is found with interest and ex-
change rates, commodities, and other vari-
ables. Redoing the study at different peri-
ods with different variables shows a total

8Lo and Mueler: "... "black swans" (Taleb, 2007). These cultural icons refer to disasters that occur so
infrequently that they are virtually impossible to analyze using standard statistical inference. However,
we find this perspective less than helpful because it suggests a state of hopeless ignorance in which we
resign ourselves to being buffeted and battered by the unknowable." Had they read The Black Swan
they would have found the message is the exact opposite of "blissful ignorance".
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Figure 3.21: The Turkey Problem,
where nothing in the past properties
seems to indicate the possibility of
the jump.

Figure 3.22: History moves by
jumps: A fat tailed historical pro-
cess, in which events are distributed
according to a power law that corre-
sponds to the "80/20", with ↵ ' 1.2,
the equivalent of a 3-D Brownian
motion.

instability to the kurtosis. The problem
is not just that the data had "fat tails",
something people knew but sort of wanted
to forget; it was that we would never be able to determine "how fat" the tails were within
standard methods. Never.

The implication is that those tools used in economics that are based on squaring vari-
ables (more technically, the L

2 norm), such as standard deviation, variance, correlation,
regression, the kind of stuff you find in textbooks, are not valid scientifically(except in
some rare cases where the variable is bounded). The so-called "p values" you find in
studies have no meaning with economic and financial variables. Even the more sophis-
ticated techniques of stochastic calculus used in mathematical finance do not work in
economics except in selected pockets.
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Figure 3.23: What the proponents of
"great moderation" or "long peace"
have in mind: history as a thin-tailed
process.
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Table 3.2: Robust cumulants

Distr Mean C1 C2
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where erfc is the complimentary error function erfc(z) = 1�
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3.13 Typical Manifestations of The Turkey Surprise

Two critical (and lethal) mistakes, entailing mistaking inclusion in a class Di for D<i

because of induced slowness in the convergence under the law of large numbers. We will
see that in the hierarchy, scale (or variance) is swamped by tail deviations.
Great Moderation (Bernanke, 2006) consists in mistaking a two-tailed process with

fat tails for a process with thin tails and low volatility.
Long Peace (Pinker, 2011) consists in mistaking a one-tailed process with fat tails for

a process with thin tails and low volatility and low mean.
Some background on Bernanke’s severe mistake. When I finished writing The Black

Swan, in 2006, I was confronted with ideas of "great moderation" stemming from the
drop in volatility in financial markets. People involved in promulgating such theories
did not realize that the process was getting fatter and fatter tails (from operational
and financial, leverage, complexity, interdependence, etc.), meaning fewer but deeper
departures from the mean. The fact that nuclear bombs explode less often that regular
shells does not make them safer. Needless to say that with the arrival of the events of
2008, I did not have to explain myself too much. Nevertheless people in economics are
still using the methods that led to the "great moderation" narrative, and Bernanke, the
protagonist of the theory, had his mandate renewed.

When I contacted social scientists I discovered that the familiarity with fat tails was
pitifully small, highly inconsistent, and confused.

The Long Peace Mistake. Later, to my horror, I saw an identical theory of great mod-
eration produced by Steven Pinker with the same naive statistically derived discussions
(>700 pages of them!). Except that it applied to security. The problem is that, unlike
Bernanke, Pinker realized the process had fat tails, but did not realize the resulting
errors in inference.
Chapter x will get into the details and what we can learn from it.

3.14 Metrics for Functions Outside L

2 Space

We can see from the data in Chapter 3 that the predictability of the Gaussian-style
cumulants is low, the mean deviation of mean deviation is ⇠70% of the mean deviation
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Figure 3.24: High Water Mark in Palais de la Cité in Paris. The Latin poet Lucretius,
who did not attend business school, wrote that we consider the biggest objeect of any kind that
we have seen in our lives as the largest possible item: et omnia de genere omni / Maxima quae
vivit quisque, haec ingentia fingit. The high water mark has been fooling humans for millennia:
ancient Egyptians recorded the past maxima of the Nile, not thinking that the worst could be
exceeded. The problem has recently affected the UK. floods with the "it never happened before"
argument. Credit Tony Veitch
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of the standard deviation (in sample, but the effect is much worse in practice); working
with squares is not a good estimator. Many have the illusion that we need variance: we
don’t, even in finance and economics (especially in finance and economics).
We propose different cumulants, that should exist whenever the mean exists. So we

are not in the dark when we refuse standard deviation. It is just that these cumulants
require more computer involvement and do not lend themselves easily to existing Platonic
distributions. And, unlike in the conventional Brownian Motion universe, they don’t
scale neatly.
Note finally that these measures are central since, to assess the quality of the estimation

MX
T , we are concerned with the expected mean error of the empirical expectation, here
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, where z corresponds to the support of the distribution.
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depending on whether the function of concern for the fragility metric requires condition-
ing or not).
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Note the practical importance of C
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: under some conditions usually met, it measures
the quality of the estimation E
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, since MX
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.
When discussing fragility, we will use a "tail cumulant", that is absolute deviations for
1A covering a spccific tail.
Table 3.2 shows the theoretical first two cumulants for two symmetric distributions: a

Gaussian, N (0,�) and a symmetric Student T St(0, s,↵) with mean 0, a scale parameter
s, the PDF for x is

p(x) =

✓

↵

↵+
(

x

s

)

2

◆

↵+1

2

p

↵ s B
�

↵
2
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� .

As to the PDF of the Pareto distribution, p(x) = ↵s↵x�↵�1 for x � s (and the mean
will be necessarily positive).
These cumulants will be useful in areas for which we do not have a good grasp of

convergence of the sum of observations.
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Figure 3.25: Terra
Incognita: Brad Efron’s
positioning of the unknown
that is certainly out of
reach for any type of
knowledge, which includes
Bayesian inference.(Efron,
via Susan Holmes)

3.15 A Comment on Bayesian Methods in Risk Manage-
ment

[This section will be developed further; how the statemennt "but this is my prior" can
be nonsense with risk management if such a prior is not solid. ]
Brad Efron (2013)[19]

Sorry. My own practice is to use Bayesian analysis in the presence of gen-
uine prior information; to use empirical Bayes methods in the parallel cases
situation; and otherwise to be cautious when invoking uninformative priors.
In the last case, Bayesian calculations cannot be uncritically accepted and
should be checked by other methods, which usually means frequentistically.

Further Reading

Pitman [58], Embrechts and Goldie (1982)[22]Embrechts (1979 Doctoral thesis?)[23],
Chistyakov (1964) [14], Goldie (1978)[35], Pitman[58], Teugels [75], and, more general,
[24].



A Special Cases of Fat Tails
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Figure A.1: The coffee cup is less likely to incur "small" than large harm; it is exposed to
(almost) everything or nothing.

For monomodal distributions, fat tails are the norm: one can look at tens of thou-
sands of time series of the socio-economic variables without encountering a single
episode of "platykurtic" distributions. But for multimodal distributions, some sur-
prises can occur.

A.1 Multimodality and Fat Tails, or the War and Peace
Model

We noted in 1.x that stochasticizing, ever so mildly, variances, the distribution gains in
fat tailedness (as expressed by kurtosis). But we maintained the same mean.

But should we stochasticize the mean as well, and separate the potential outcomes
wide enough, so that we get many modes, the "kurtosis" (as measured by the fourth
moment) would drop. And if we associate different variances with different means, we
get a variety of "regimes", each with its set of probabilities.

Either the very meaning of "fat tails" loses its significance under multimodality, or
takes on a new one where the "middle", around the expectation ceases to matter.[2, 47].

Now, there are plenty of situations in real life in which we are confronted to many
possible regimes, or states. Assuming finite moments for all states, s

1

a calm regime,
with expected mean m

1

and standard deviation �
1

, s
2

a violent regime, with expected
mean m

2

and standard deviation �
2

, and more. Each state has its probability pi.
Assume, to simplify a one-period model, as if one was standing in front of a discrete

slice of history, looking forward at outcomes. (Adding complications (transition matrices
between different regimes) doesn’t change the main result.)
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Figure A.2: The War and peace
model. Kurtosis K=1.7, much lower
than the Gaussian.
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The Characteristic Function �(t) for the mixed distribution becomes:
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Let us consider the different varieties, all characterized by the condition p
1

< (1� p
1

),
m

1

< m
2

, preferably m
1

< 0 and m
2

> 0, and, at the core, the central property: �
1

> �
2

.

Variety 1: War and Peace. Calm period with positive mean and very low
volatility, turmoil with negative mean and extremely low volatility.

Variety 2: Conditional deterministic state Take a bond B, paying in-
terest r at the end of a single period. At termination, there is a high probability of
getting B(1 + r), a possibility of defaut. Getting exactly Bis very unlikely. Think that
there are no intermediary steps between war and peace: these are separable and discrete
states. Bonds don’t just default "a little bit". Note the divergence, the probability of
the realization being at or close to the mean is about nil. Typically, p(E(x)) the prob-
abilitity densities of the expectation are smaller than at the different means of regimes,
so P(x = E(x)) < P (x = m

1

) and < P (x = m
2

), but in the extreme case (bonds),
P(x = E(x)) becomes increasingly small. The tail event is the realization around the
mean.
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Pr

Figure A.3: The Bond payoff model.
Absence of volatility, determinis-
tic payoff in regime 2, mayhem in
regime 1. Here the kurtosis K=2.5.
Note that the coffee cup is a special
case of both regimes 1 and 2 being
degenerate.

In option payoffs, this bimodality has the effect of raising the value of at-the-money
options and lowering that of the out-of-the-money ones, causing the exact opposite of
the so-called "volatility smile".

Note the coffee cup has no state between broken and healthy. And the state of being
broken can be considered to be an absorbing state (using Markov chains for transition
probabilities), since broken cups do not end up fixing themselves.

Nor are coffee cups likely to be "slightly broken", as we see in figure A.1.

A.1.1 A brief list of other situations where bimodality is en-
countered:

1. Mergers

2. Professional choices and outcomes

3. Conflicts: interpersonal, general, martial, any situation in which there is no inter-
mediary between harmonious relations and hostility.

4. Conditional cascades

A.2 Transition probabilites: what can break will break

So far we looked at a single period model, which is the realistic way since new information
may change the bimodality going into the future: we have clarity over one-step but not
more. But let us go through an exercise that will give us an idea about fragility. Assuming
the structure of the model stays the same, we can look at the longer term behavior under
transition of states. Let P be the matrix of transition probabilitites, where pi,j is the
transition from state i to state j over �t, (that is, where S(t) is the regime prevailing
over period t, P (S(t+�t) = sj |S(t) = sj))

P =

 

p
1,1 p

2,1

p
1,2 p

2,2

!

After n periods, that is, n steps,

Pn
=

 

an bn
cn dn

!

Where
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The extreme case to consider is the one with the absorbing state, where p
1,1 = 1, hence

(replacing pi, 6=i|i=1,2 = 1� pi,i).
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and the "ergodic" probabilities:

lim

n!1
Pn

=

 

1 0

1 0

!

The implication is that the absorbing state regime 1 S(1) will end up dominating with
probability 1: what can break and is irreversible will eventually break.
With the "ergodic" matrix,

lim

n!1
Pn

= ⇡.1T

where 1T is the transpose of unitary vector {1,1}, ⇡ the matrix of eigenvectors.

The eigenvalues become � =
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and associated eigenvectors ⇡=
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B Appendix: Quick and Robust Measure of
Fat Tails

B.1 Introduction

We propose a new measure of fatness of tails. We also propose a quick heuristic to
extract the tail exponent ↵ and get distributions for a symmetric power law distributed
variable. It is based on using whatever moments are believed to be reasonably finite,
and replaces kurtosis which in financial data has proved to be unbearingly unstable ([71],
[? ]). The technique also remedies some of the instability of the Hill estimator, along
with its natural tradoff between how much data one must discard in otder to retain in
the tails that is relevant to draw the slope. Our estimators use the entire data available.
This paper covers two situations:

1. Mild fat tails: a symmetric distribution with finite second moment, ↵ > 2 , prefer-
ably in the neighborhood of 3. (Above 4 the measure of kurtosis becomes applicable
again).

2. Extremely fat tails: a symmetric distribution with finite first moment, 1 < ↵ < 3.
Let x be a r.v. on the real line. Let x be distributed according to a Student T

distribution.

p(x) =
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� (B.1)

We assume that µ = 0 for data in high enough frequency as the mean will not have an
effect on the estimation tail exponent.

B.2 First Metric, the Simple Estimator

Assume finite variance and the tail exponent ↵ > 2.

Define the ratio ⌅(↵) as
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The tail from the observations: Consider a random sample of size n, (Xi)1in. Get a
sample metric
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Figure B.1: Full Distribution of the estimators for ↵ = 3
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Figure B.2: Full Distribution of the estimators for ↵ = 7/4

Where STD and MAD are the sample standard and mean absolute deviations.

m =

STD

MAD

for the sample (these measures do not necessarily need to be central). The estimation of
m using maximum likelihood methods [FILL]
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The recovered tail ↵
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.
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which is computed numerically.

The Hm corresponds to the measure of the m largest deviation in the right tails= (a
negative value for m means it is the left tail). We rank X
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Table B.1: Simulation for true ↵ = 3, N = 1000

Method Estimate STD Error

H
10

3.09681 1.06873

H
20

2.82439 0.639901

H
50

2.4879 0.334652

H
100

2.14297 0.196846
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3.26668 0.422277
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m

0
=

1

n

Pn
i=1 |Xi �MAD|

MAD

Table B.2: Simulation for true ↵ = 7/4, N = 1000
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Method Estimate STD Error

H
10

1.92504 0.677026

H
20

1.80589 0.423783

H
50

1.68919 0.237579

H
100

1.56134 0.149595

↵⇤
⌅

2

1.8231 0.243436



C The "Déja Vu" Illusion

A matter of some gravity. Black Swan neglect was prevalent before... and after the
exposition of the ideas. They just feel as if they were present in the discourse. For
there is a common response to the Black Swan problem, one of the sort: "fat tails...
we know it. There is nothing new there". In general, the "nothing new" response is
more likely to come from nonspecialists or people who do not know a subject well.
For a philistine, Verdi’s Trovatore is not new, since it sounds like another opera he
heard by Mozart with women torturing their throat. One needs to know a subject
to place it in context.

We take a stop and show what is different in this text, and why it is a hindrance for
risk understanding. Our point point is that under fat tails we have near-total opacity for
some segments of the distribution, incomputability of tail probability and convergence
of different laws, hence need to move to measurements of fragility.
The response: "Mandelbrot and Pareto did fat tails" is effectively backwards. In fact

they arrived to the opposite of opacity. Now, risk and uncertainty? Keynes and Knight
dealt with uncertainty as opposed to risk? Well, they got exactly opposite results.
They do not notice that it is the equivalent of saying that anyone using an equation

is doing nothing new since equations were discovered by ancients, or that calculus was
invented by Newton, and that, accordingly, they themselves did nothing worthy of at-
tention.
Now, what they do not say "nothing new" about is exactly what has nothing new, some

wrinkle on some existing conversation, by the narcissim of small differences.
Some economists’ reaction to skin-in-the-game, SITG (on which, later, but the bias

is relevant here): "nothing new; we know everything about the agency problem" (re-
markably they always know everything about everything but never see problems before
they occur, and rarely after). Our point is beyond their standard agency problem: 1)
it is evolutionary, aiming at throwing bad risk takers out of the gene pool so they stop
harming others, 2) under fat tails, and slow law of large numbers, only SITG works
to protect systems, 3) It is moral philosophy, 4) It requires building a system that can
accommodate SITG. Economists do not notice that it is asking them to leave the pool
when they make mistakes, etc. Effectively Joseph Stiglitz, the author of the Palgrave
encyclopedia entry on the agency problem missed that had he had skin in the game with
Fanny Mae he would have exited the pool. Or before that, so we would have avoided a
big crisis. If economists understood skin-in-the-game they would shut down many many
sub-disciplines and stop giving macro advice. Giving opinions without downside is the
opposite of SITG.
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4 Hierarchy of Distributions For
Asymmetries

Chapter Summary 3: Using the asymptotic Radon-Nikodym derivatives
of probability measures, we construct a formal methodology to avoid the
"masquerade problem" namely that standard "empirical" tests are not
empirical at all and can be fooled by fat tails, though not by thin tails, as a
fat tailed distribution (which requires a lot more data) can masquerade
as a low-risk one, but not the reverse. Remarkably this point is the
statistical version of the logical asymmetry between evidence of absence
and absence of evidence. We put some refinement around the notion
of "failure to reject", as it may misapply in some situations. We show
how such tests as Kolmogorov Smirnoff, Anderson-Darling, Jarque-Bera,
Mardia Kurtosis, and others can be gamed and how our ranking rectifies
the problem.

4.1 Permissible Empirical Statements

One can make statements of the type "This is not Gaussian", or "this is not Pois-
son"(many people don’t realize that Poisson distributions are generally thin tailed owing
to finite moments); but one cannot rule out a Cauchy tail or other similar power laws.
So this chapter puts some mathematical structure around the idea of which "empirical"
statements are permissible in acceptance and rejection and which ones are not. (One
can violate these statements but not from data analysis, only basing oneself on a priori
statement of what belongins to some probability distributions.)12

Let us get deeper into the masquerade problem, as it concerns the problem of induction
and fat-tailed environments, and get to the next step. Simply, if a mechanism is fat tailed
it can deliver large values; therefore the incidence of large deviations is possible, but how
possible, how often these occur should occur, will be hard to know with any precision
beforehand. This is similar to the standard water puddle problem: plenty of ice cubes
could have generated it. As someone who goes from reality to possible explanatory
models, I face a completely different spate of problems from those who do the opposite.

We said that fat tailed series can, in short episodes, masquerade as thin-tailed. At
the worst, we don’t know how long it would take to know for sure what is going on. But

1Classical statistical theory is based on rejection and failure to reject, which is inadequade as one can
reject fat tails, for instance, which is not admissible here. Likewise this framework allows us to formally
"accept" some statements.

2This chapter was motivated by the findings in an article by Clauset, Aaron, Cosma Rohilla Shalizi,
and Mark EJ Newman. "Power-law distributions in empirical data." SIAM review 51.4 (2009): 661-703,
deeming that wealth data "cannot plausibly be considered to follow a power law". The methodology
they used is based "naive" power law fitting.
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we can have a pretty clear idea whether organically, because of the nature of the payoff,
the "Black Swan" can hit on the left (losses) or on the right (profits). This point can be
used in climatic analysis. Things that have worked for a long time are preferable�they
are more likely to have reached their ergodic states.
This chapter aims here at building a rigorous methodology for attaining statistical (and

more general) knowledge by rejection, and cataloguing rejections, not addition. We can
reject some class of statements concerning the fat-tailedness of the payoff, not others.

4.2 Masquerade Example

Figure 4.1: N=1000. Sample simulation. Both series have the exact same means and variances
at the level of the generating process. Naive use of common metrics leads to the acceptance that
the process A has thin tails.

Figure 4.2: N=1000. Rejection: Another realization. there is 1/2 chance of seeing the real
properties of A. We can now reject the hypothesis that the smoother process has thin tails.

We construct the cases as switching between Gaussians with variances

(

�2

(a+ 1)

�2

(b+ 1)

with probability p

with probability (1� p)

with p 2 [0,1); a, b 2 (-1,1) and (to conserve the variance) b= �a p
1�p , which produces

a Kurtosis  =

3

((

1�a2

)

p�1
)

p�1 thus allowing polarized states and high kurtosis, with a
condition that for a > (<) 0, a < (>) 1�pp . Let us compare the two cases:

A) A switching process producing Kurtosis= 10

7 (using p= 1/2000, a sligtly below the
upper bound a= 1�p

p �1) to
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B) The regular situation p = 0, a=1, the case of kurtosis  = 3.
The two graphs in figures 4.1 and 4.2 show the realizations of the processes A (to

repeat, produced with the switching process) and B, entirely Gaussian, both of the same
variance.

4.3 The Probabilistic Version of Absense of Evidence

Our concern is exposing some errors in probabilistic statements and statistical inference,
in making inferences symmetric, when they are more likely to be false on one side than
the other, or more harmful one side than another. Believe it or not, this pervades the
entire literature.

Many have the illusion that "because Kolmogorov-Smirnoff is nonparametric”, it is
therefore immune to the nature specific distribution under the test (perhaps from an
accurate sentence in Feller (1971), vol 2 as we will see further down). The belief in
Kolmogorov-Smirnoff is also built in the illusion that our concern is probability rather
than expected payoff, or the associated problem of "confusing a binary for a vanilla”,
where by attribute substitution, one tests a certain variable in place of another, simpler
one.

In other words, it is a severe mistake to treat epistemological inequalities as equalities.
No matter what we do, we end up going back to the problem of induction, except that
the world still exists and people unburdened with too many theories are still around.
By making one-sided statements, or decisions, we have been immune to the muddle in
statistical inference.

Remark on via negativa and the problem of induction Test statistics
are effective (and robust) at rejecting, but not at accepting, as a single large deviation
allowed the rejection with extremely satisfactory margins (a near-infinitesimal P-Value).
This illustrates the central epistemological difference between absence of evidence and
evidence of absence.

4.4 Via Negativa and One-Sided Arbitrage of Statisti-
cal Methods

Via negativa In theology and philosophy, corresponds to the focus on what some-
thing is not, an indirect definition. In action, it is a recipe for what to avoid, what
not to do� subtraction, not addition, say, in medicine. In epistemology: what to not
accept, or accept as false. So a certain body of knowledge actually grows by rejection. (
Antifragile[73], Glossary).
The proof and the derivations are based on climbing to a higher level of abstraction by

focusing the discussion on a hierarchy of distributions based on fat-tailedness.
Remark Test statistics can be arbitraged, or "fooled"in one direction, not the other.
Let us build a hierarchy of distributions based on tail events. But, first, a discussion

of the link to the problem of induction.
From The Black Swan (Chapter 16): This author has learned a few tricks from

experience dealing with power laws: whichever exponent one try to measure will be
likely to be overestimated (recall that a lower exponent implies a smaller role for large
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deviations)�what you see is likely to be less Black Swannish than what you do not see.
Let’s say I generate a process that has an exponent of 1.7. You do not see what is inside
the engine, only the data coming out. If I ask you what the exponent is, odds are that
you will compute something like 2.4. You would do so even if you had a million data
points. The reason is that it takes a long time for some fat tailed processes to reveal
their properties, and you underestimate the severity of the shock. Sometimes a fat tailed
distribution can make you believe that it is Gaussian, particularly when the process has
mixtures. (Page 267, slightly edited).

4.5 Hierarchy of Distributions in Term of Tails

Let Dibe a class of probability measures, Di ⇢ D>i means in our terminology that
a random event "in"Di would necessarily "be in"Dj , with j > i, and we can express
it as follows. Let AK be a one-tailed interval in R, unbounded on one side K, s.a.
A�K = (�1,K

⇤

or A+

K = [K,1
�

, and µ(A) the probability measure on the interval,
which corresponds to µi(A�K) the cumulative distribution function for K on the left, and
µi(A+

K) = 1 � the CDF (that is, the exceedance probability) on the right.
For continuous distributions, we can treat of the Radon-Nikodym derivatives for two

measures @µ
i

@µ
j

over as the ratio of two probability with respect to a variable in AK .

Definition 14. We can define i) "right tail acceptance" as being subject to a strictly
positive probability of mistaking D

+

i for D

+

<i and ii) rejection as a claim that D+

>i. Like-
wise for what is called "confirmation"and "disconfirmation”. Hence D

+

i ⇢ D

+

j if there
exists a K

0

("in the positive tail”) such that µj(A+

K
0

)>µi(A+

K
0

) and µj(A+

K)>µi(A+

K)
for all K > K

0

,
and left tail acceptance if there exists a K

0

( "in the negative tail”) such that µj(A
�
K

0

>

µi(A
�
K

0

) and µj(A�K)>µi(A�K) for all K < K
0

.

The derivations are as follows. Simply, the effect of the scale of the distribution (say,
the variance in the finite second moment case) wanes in the tails. For the classes of
distributions up to the Gaussian, the point is a no brainer because of compact support
with 0 measure beyond a certain K. As as far as the Gaussian, there are two brands,
one reached as a limit of, say, a sum of n Bernouilli variables, so the distribution will
have compact support up to a multiple of n at infinity, that is, in finite processes (what
we call the "real world"where things are finite). The second Gaussian category results
from an approximation; it does not have compact support but because of the exponential
decline in the tails, it will be dominated by power laws. To quote Adrien Douady, it has
compact support for all practical purposes.3 Let us focus on the right tail.

Case of Two Powerlaws

For powerlaws, let us consider the competing effects of scale, say � (even in case of
nonfinite variance), and ↵ tail exponent, with ↵ > 1 . Let the density be

P↵,�(x) = L(x)x�↵�1

where L(x) is a slowly varying function,
3Van Zwet,[cite]: Given two cumulative distribution functions F (x) and G(x), F has lighter tails

than G (and G has heavier tails than F ) if the function G

�1
(F (x)) is convex for x � 0.
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r�,k(x) ⌘
P�↵,k �(x)

P↵,�(x)

By only perturbating the scale, we increase the tail by a certain factor, since limx!1 r
1,k(x) =

k↵, which can be significant. But by perturbating both and looking at the limit we get
limx!1 r�,k(x) = � k↵�

�

L
x

�↵(�1+�), where L is now a constant, thus making the changes
to ↵ the tail exponent leading for large values of x.
Obviously, by symmetry, the same effect obtains in the left tail.

Rule 4. When comparing two power laws, regardless of parametrization of the scale
parameters for either distributions, the one with the lowest tail exponent will have
higher density in the tails.

Comparing Gaussian to Lognormal

Let us compare the Gaussian(µ,�) to a Lognormal(m, s), in the right tail, and look at
how one dominates in the remote tails. There is no values of parameters � and s such
that the PDF of the Normal exceeds that of the Lognormal in the tails. Assume means of
0 for the Gaussian and the equivalent e k

2

s

2

2 for the Lognormal with no loss of generality.
Simply, let us consider the the sign of d, the difference between the two densities,

d =

e
� log

2

(x)

2k

2

s

2

ksx �

e
� x

2

2�

2

�
p

2⇡

by comparing the unscaled tail values of e
� log

2

(x)

2k

2

s

2

ksx and e
� x

2

2�

2

� . Taking logarithms of the
ratio, �(x) = x2

2�2

�

log

2

(x)
2k2s2 � log(ksx) + log(�), which is dominated by the first term x2

as it is convex when the other terms are concave, so it will be > 0 for large values of x
independently of parameters.

Rule 5. Regardless of parametrization of the scale parameter (standard deviation)
for either distribution, a lognormal will produce asymptotically higher tail densities
in the positive domain than the Gaussian.

Case of Mixture of Gaussians

Let us return to the example of the mixture distribution N(0,�) with probability 1� p
and N(0, k �) with the remaining probability p. The density of the second regime

weighted by p becomes p e
� x

2

2k

2

�

2

k
p
2⇡�

. For large deviations of x, p
ke
� x

2

2k

2 is entirely dominated
by k, so regardless of the probability p > 0, k > 1 sets the terms of the density.
In other words:

Rule 6. Regardless of the mixture probabilities, when combining two Gaussians, the
one with the higher standard deviations determines the density in the tails.

Which brings us to the following epistemological classification: [SEE CLASSIFICA-
TION IN EMBRECHTS & ALL FOR COMPARISON]
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Class Description

D

1

True Thin Tails Compact support (e.g. :
Bernouilli, Binomial)

D

2

Thin tails Gaussian reached organically
through summation of true thin
tails, by Central Limit; compact
support except at the limit
n ! 1

D

3a Conventional Thin
tails

Gaussian approximation of a
natural phenomenon

D

3b Starter Fat Tails Higher kurtosis than the Gaus-
sian but rapid convergence to
Gaussian under summation

D

5

Subexponential (e.g. lognormal)

D

6

Supercubic ↵ Cramer conditions do not hold
for t > 3,

R

e�tx d(Fx) = 1

D

7

Infinite Variance Levy Stable ↵ < 2 ,
R

e�txdF (x) = 1

D

8

Undefined First
Moment

Fuhgetaboutdit
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Degenerate

Bernoulli

Thin!Tailed from Convergence to Gaussian

COMPACT 

SUPPORT

Subexponential 

Supercubic Α # 3

Lévy-Stable Α<2 

Α� 1

CRAMER

CONDITION

!
1

LAW OF LARGE NUMBERS (WEAK) CONVERGENCE ISSUES

Gaussian from Lattice Approximation

Fuhgetaboudit

CENTRAL LIMIT — BERRY-ESSEEN

Figure 4.3: The tableau of Fat tails, along the various classifications for convergence purposes
(i.e., convergence to the law of large numbers, etc.)A variation around Embrechts et al [21], but
applied to the Radon-Nikodym derivatives.

A comment on 4.3

Gaussian From Convergence is Not Gaussian : We establish a demarca-
tion between two levels of Gaussians. Adding Bernouilli variables or Binomials, according
to the random walk idea (or similar mechanism that generate Gaussians) always leads
to thinner tails to the true Gaussian.

Subgaussian domain for a review,[12], Kahane’s "gaussian shift"4:
Mixtures distributions entailing Di and Dj are classified with the highest level of fat

tails D

max(i,j) regardless of the mixing. A mixture of Gaussians remains Gaussian for
large deviations, even if the local properties can be confusing in small samples, except
for the situation of infinite nesting of stochastic volatilities discussed in Chapter 6. Now
a few rapidly stated rules.

Rule 7. (General Decision Making Heuristic). For any information entailing
nonbinary decision (see definition in Chapter x), rejection or acceptance of fitness to
pre-specified probability distributions, based on suprema of distance between supposed
probability distributions (say Kolmogorov Smirnoff and similar style) should only be
able to "accept" the fatter tail one and "reject"the lower tail, i.e., based on the

4J.P. Kahane, "Local properties of functions interms of random Fourier series," Stud. Math., 19, No.
i, 1-25 (1960)
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criterion i > j based on the classification above.

Warning 1 : Always remember that one does not observe probability distributions,
only realizations. Every probabilistic statement needs to be discounted by the probability
of the parameter being away from the true one.

Warning 2 : Always remember that we do not live in probability space, but pay-
off space. [TO ADD COMMENTS ON Keynes’ Treatise on Probability focusing on
"propositions" not payoffs]

Rule 8. (Decision Mistakes). Fatter tailed distributions are more likely to pro-
duce a lower in-sample variance (using empirical estimators) than a distribution of
thinner tail of the same variance (in the finite variance case).

For the derivation, recall that (from 3.5), there in increase in observations in the
"tunnel"(a

2

, a
3

) in response to increase in fat-tailedness.

4.6 How To Arbitrage Kolmogorov-Smirnov

Counterintuitively, when one raises the kurtosis, as in Figure 4.1.4.1 the time series looks
"quieter”. Simply, the storms are rare but deep. This leads to mistaken illusion of low
volatility when in fact it is just high kurtosis, something that fooled people big-time with
the story of the "great moderation"as risks were accumulating and nobody was realizing
that fragility was increasing, like dynamite accumulating under the structure.

Kolmogorov - Smirnov, Shkmolgorov-Smirnoff Remarkably, the fat tailed
series passes general test of normality with better marks than the thin-tailed one, since
it displays a lower variance. The problem discussed with with Avital Pilpel (Taleb and
Pilpel, 2001, 2004, 2007) is that Kolmogorov-Smirnov and similar tests of normality are
inherently self-referential.

These probability distributions are not directly observable, which makes any risk cal-
culation suspicious since it hinges on knowledge about these distributions. Do we have
enough data? If the distribution is, say, the traditional bell-shaped Gaussian, then yes,
we may say that we have sufficient data. But if the distribution is not from such well-bred
family, then we do not have enough data. But how do we know which distribution we
have on our hands? Well, from the data itself .

If one needs a probability distribution to gauge knowledge about the future behavior of
the distribution from its past results, and if, at the same time, one needs the past to
derive a probability distribution in the first place, then we are facing a severe regress
loop��a problem of self reference akin to that of Epimenides the Cretan saying whether
the Cretans are liars or not liars. And this self-reference problem is only the beginning.
(Taleb and Pilpel, 2001, 2004)
Also,
From the Glossary in The Black Swan . Statistical regress argument (or the

problem of the circularity of statistics): We need data to discover a probability distribu-
tion. How do we know if we have enough? From the probability distribution. If it is
a Gaussian, then a few points of data will suffice. How do we know it is a Gaussian?
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Figure 4.4: The Kolmorov-
Smirnov Gap. D is the measure
of the largest absolute divergence be-
tween the candidate and the target
distribution.

From the data. So we need the data to tell us what probability distribution to assume,
and we need a probability distribution to tell us how much data we need. This causes a
severe regress argument, which is somewhat shamelessly circumvented by resorting to the
Gaussian and its kin.

A comment on the Kolmogorov Statistic It is key that the Kolmogorov-
Smirnov test doesn’t affect payoffs and higher moments, as it only focuses on probabili-
ties. It is a severe problem because the approximation will not take large deviations into
account, and doesn’t make it useable for our purpose. But that’s not the only problem.
It is, as we mentioned, conditioned on sample size while claiming to be nonparametric.
Let us see how it works. Take the historical series and find the maximum point of

divergence with F(.) the cumulative of the proposed distribution to test against:

D = sup

0

@
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We will get more technical in the discussion of convergence, take for now that the
Kolmogorov statistic, that is, the distribution of D, is expressive of convergence, and
should collapse with n. The idea is that, by a Brownian Bridge argument (that is a
process pinned on both sides, with intermediate steps subjected to double conditioning),
Dj =

�

�

�

⇣P
J

i=1

X
�ti+t

0

j � F (X
�tj+t

0

)

⌘

�

�

�

which is Uniformly distributed.

The probability of exceeding D,P>D = H (

p

nD), where H is the cumulative distribu-
tion function of the Kolmogorov-Smirnov distribution,

H(t) = 1� 2

1
X

i=1

(�1)

i�1e�2i
2t2

We can see that the main idea reposes on a decay of
p

nD with large values of n. So
we can easily fool the testing by proposing distributions with a small probability of very
large jump, where the probability of switch . 1

n .
The mistake in misinterpreting Feller: the distribution of Dwill be uniform indepen-

dently of the distribution under scrutiny, or the two distributions to be compared. But
it does not mean that the test is immune to sample sizen, that is, the possibility of jump
with a probability an inverse function of n.
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Use of the supremum of divergence

Note another manifestation of the error of ignoring the effect of the largest deviation. As
we saw with Kolmogorov-Smirnoff and other rigorous methods in judging a probability
distribution, one focuses on the maximum divergence, the supremum, as information.
Another unused today but very potent technique, initially by Paul Levy (1924), called
the concentration function, also reposes on the use of a maximal distance:
From Petrov (1995):

Q�(X) ⌘ sup
x
P (x  X  x+ �)

for every � � 0.
We will make use of it in discussion of the behavior of the sum of random variables and

the law of large numbers.

4.7 Mistaking Evidence for Anecdotes & The Reverse

4.7.1 Now some sad, very sad comments.

[MOVE TO CHAPTER ON SOCIAL SCIENCE] I emitted the following argument in a
comment looking for maximal divergence: "Had a book proclaiming The Long Peace
(on how violence has dropped) been published in 19133

4

it would carry similar arguments
to those in Pinker’s book", meaning that inability of an estimator period T to explain
period > t, using the idea of maximum divergence. The author of the book complained
that I was using "hindsight"to find the largest deviation, implying lack of rigor. This is
a standard error in social science: data mining everywhere and not understanding the
difference between meaningful disconfirmatory observation and anecdote.
We will revisit the problem upon discussing the "N = 1" fallacy (that is, the fallacy of

thinking that N = 1 is systematically insufficient sample). Some social "scientists" wrote
about my approach to this problem, stating among other equally ignorant comments,
something to the effect that "the plural of anecdotes is not data". This elementary
violation of the logic of inference from data is very common with social scientists as we
will see in Chapter 3, as their life is based on mechanistic and primitive approaches to
probability that miss the asymmetry. Yet, and here is the very, very sad part: social
science is the main consumer of statistical methods.

4.7.2 The Good News

There are domains where "confirmatory evidence" works, or can be used for decisions.
But for that one needs the LLN to operate rather quickly. The idea of "scientific evi-
dence" in fat tailed domains leads to pathologies: it may work "for knowledge" and some
limited applications, but not when it comes to risky decisions.

Further Reading

Doub (1949) [18].
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Figure 4.5: The good news is that we
know exactly what not to call "ev-
idence" in complex domains where
one goes counter to the principle of
"nature as a LLN statistician".
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Table 4.1: Comparing the Fake and genuine Gaussians (Figure 4.1.4.1) and subjecting them to
a battery of tests. Note that some tests, such as the Jarque-Bera test, are more relevant to fat
tails as they include the payoffs.

Table of the "fake"Gaussian when not busted Let us run a more involved battery
of statistical tests (but consider that it is a single run, one historical simulation).

Fake

Statistic P-Value
Anderson-Darling 0.406988 0.354835

Cramér-von Mises 0.0624829 0.357839

Jarque-Bera ALM 1.46412 0.472029

Kolmogorov-Smirnov 0.0242912 0.167368

Kuiper 0.0424013 0.110324

Mardia Combined 1.46412 0.472029

Mardia Kurtosis �0.876786 0.380603

Mardia Skewness 0.7466 0.387555

Pearson �2

43.4276 0.041549

Shapiro-Wilk 0.998193 0.372054

Watson U2

0.0607437 0.326458

Genuine

Statistic P-Value
Anderson-Darling 0.656362 0.0854403

Cramér-von Mises 0.0931212 0.138087

Jarque-Bera ALM 3.90387 0.136656

Kolmogorov-Smirnov 0.023499 0.204809

Kuiper 0.0410144 0.144466

Mardia Combined 3.90387 0.136656

Mardia Kurtosis �1.83609 0.066344

Mardia Skewness 0.620678 0.430795

Pearson �2

33.7093 0.250061

Shapiro-Wilk 0.997386 0.107481

Watson U2

0.0914161 0.116241
Table of the "fake" Gaussian when busted
And of course the fake Gaussian when caught. But recall that we have a small chance
of observing the true distribution.

Busted Fake

Statistic P-Value
Anderson-Darling 376.05 0.

Cramér-von Mises 80.734 0.

Jarque-Bera ALM 4.21⇥ 10

7

0.

Kolmogorov-Smirnov 0.494547 0.

Kuiper 0.967 0.

Mardia Combined 4.21⇥ 10

7

0.

Mardia Kurtosis 6430. 1.5⇥ 10

�8979680

Mardia Skewness 166432. 1.07⇥ 10

�36143

Pearson �2

30585.7 3.28⇥ 10

�6596

Shapiro-Wilk 0.014 1.91⇥ 10

�57

Watson U2

80.58 0.



5 Effects of Higher Orders of
Uncertainty

Chapter Summary 4: The Spectrum Between Uncertainty and Risk.
There has been a bit of discussions about the distinction between "un-
certainty" and "risk". We believe in gradation of uncertainty at the level
of the probability distribution itself (a "meta" or higher order of uncer-
tainty.) One end of the spectrum, "Knightian risk", is not available for
us mortals in the real world. We show how the effect on fat tails and
on the calibration of tail exponents and reveal inconsistencies in models
such as Markowitz or those used for intertemporal discounting (as many
violations of "rationality" aren’t violations .

5.1 Meta-Probability Distribution

When one assumes knowledge of a probability distribution, but has uncertainty attend-
ing the parameters, or when one has no knowledge of which probability distribution to
consider, the situation is called "uncertainty in the Knightian sense" by decision theo-
risrs(Knight, 1923). "Risk" is when the probabilities are computable without an error
rate. Such an animal does not exist in the real world. The entire distinction is a lunacy,
since no parameter should be rationally computed witout an error rate. We find it prefer-
able to talk about degrees of uncertainty about risk/uncertainty, using metadistribution,
or metaprobability.

The Effect of Estimation Error, General Case

The idea of model error from missed uncertainty attending the parameters (another layer
of randomness) is as follows.

Most estimations in social science, economics (and elsewhere) take, as input, an average
or expected parameter,

�
↵ =

Z

↵ �(↵) d↵, (5.1)

where ↵ is � distributed (deemed to be so a priori or from past samples), and regardless of
the dispersion of ↵, build a probability distribution for x that relies on the mean estimated
parameter, p(X = x)= p

⇣

x
�

�

�

�
↵
⌘

, rather than the more appropriate metaprobability
adjusted probability for the density:

p(x) =

Z

�(↵) d↵ (5.2)

99
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Figure 5.1: Log-log plot illustration of the asymptotic tail exponent with two states.

In other words, if one is not certain about a parameter ↵, there is an inescapable layer
of stochasticity; such stochasticity raises the expected (metaprobability-adjusted) prob-
ability if it is < 1

2

and lowers it otherwise. The uncertainty is fundamentally epistemic,
includes incertitude, in the sense of lack of certainty about the parameter.

The model bias becomes an equivalent of the Jensen gap (the difference between the
two sides of Jensen’s inequality), typically positive since probability is convex away from
the center of the distribution. We get the bias !A from the differences in the steps in
integration

!A =

Z

�(↵) p(x|↵) d↵� p

✓

x|

Z

↵�(↵) d↵

◆

With f(x) a function , f(x) = x for the mean, etc., we get the higher order bias !A0

(5.3)!A0
=

Z

✓

Z

�(↵) f(x) p(x|↵) d↵

◆

dx�

Z

f(x) p

✓

x|

Z

↵ �(↵) d↵

◆

dx

Now assume the distribution of ↵ as discrete n states, with ↵ = (↵i)
n
i=1

each with
associated probability � = �i_i=1^n,

Pn
i=1

�i = 1. Then 5.2 becomes

p(x) = �i

 

n
X

i=1

p (x |↵i )

!

(5.4)

So far this holds for ↵ any parameter of any distribution.

5.2 Metadistribution and the Calibration of Power Laws

Remark 1. In the presence of a layer of metadistributions (from uncertainty about
the parameters), the asymptotic tail exponent for a powerlaw corresponds to the lowest
possible tail exponent regardless of its probability.
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This explains "Black Swan" effects, i.e., why measurements tend to chronically under-
estimate tail contributions, rather than merely deliver imprecise but unbiased estimates.

When the perturbation affects the standard deviation of a Gaussian or similar non-
powerlaw tailed distribution, the end product is the weighted average of the probabilities.
However, a powerlaw distribution with errors about the possible tail exponent will bear
the asymptotic properties of the lowest exponent, not the average exponent.
Now assume p(X=x) a standard Pareto Distribution with ↵ the tail exponent being

estimated, p(x|↵) = ↵x�↵�1x↵
min

, where x
min

is the lower bound for x,

p(x) =
n
X

i=1

↵ix
�↵

i

�1x↵
i

min

�i

Taking it to the limit

limit
x!1

x↵⇤
+1

n
X

i=1

↵ix
�↵

i

�1x↵
i

min

�i = K

where K is a strictly positive constant and ↵⇤ = min↵i
1in

. In other words
Pn

i=1

↵ix�↵i

�1x↵
i

min

�i

is asymptotically equivalent to a constant times x↵⇤
+1. The lowest parameter in the space

of all possibilities becomes the dominant parameter for the tail exponent.
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Figure 5.2: Illustration of the convexity bias for a Gaussian from raising small probabilities:
The plot shows the STD effect on P>x, and compares P>6 with a STD of 1.5 compared to P>
6 assuming a linear combination of 1.2 and 1.8 (here a(1)=1/5).

Figure 5.1 shows the different situations: a) p(x|�↵), b)
Pn

i=1

p (x |↵i )�i and c) p (x |↵⇤ ).
We can see how the last two converge. The asymptotic Jensen Gap !A becomes p(x|↵⇤)�
p(x|

�
↵).

Implications

Whenever we estimate the tail exponent from samples, we are likely to underestimate
the thickness of the tails, an observation made about Monte Carlo generated ↵-stable
variates and the estimated results (the “Weron effect”)[79].

The higher the estimation variance, the lower the true exponent.
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The asymptotic exponent is the lowest possible one. It does not even require estima-
tion.

Metaprobabilistically, if one isn’t sure about the probability distribution, and there is
a probability that the variable is unbounded and “could be” powerlaw distributed, then
it is powerlaw distributed, and of the lowest exponent.

The obvious conclusion is to in the presence of powerlaw tails, focus on changing
payoffs to clip tail exposures to limit !A0 and “robustify” tail exposures, making the
computation problem go away.

5.3 The Effect of Metaprobability on Fat Tails

Recall that the tail fattening methods in 3.4 and 3.6.These are based on randomizing
the variance. Small probabilities rise precisely because they are convex to perturbations
of the parameters (the scale) of the probability distribution.

5.4 Fukushima, Or How Errors Compound

“Risk management failed on several levels at Fukushima Daiichi. Both TEPCO and its
captured regulator bear responsibility. First, highly tailored geophysical models pre-
dicted an infinitesimal chance of the region suffering an earthquake as powerful as the
Tohoku quake. This model uses historical seismic data to estimate the local frequency
of earthquakes of various magnitudes; none of the quakes in the data was bigger than
magnitude 8.0. Second, the plant’s risk analysis did not consider the type of cascading,
systemic failures that precipitated the meltdown. TEPCO never conceived of a situation
in which the reactors shut down in response to an earthquake, and a tsunami topped the
seawall, and the cooling pools inside the reactor buildings were overstuffed with spent
fuel rods, and the main control room became too radioactive for workers to survive, and
damage to local infrastructure delayed reinforcement, and hydrogen explosions breached
the reactors’ outer containment structures. Instead, TEPCO and its regulators addressed
each of these risks independently and judged the plant safe to operate as is.”Nick Werle,
n+1, published by the n+1 Foundation, Brooklyn NY

5.5 The Markowitz inconsistency

Assume that someone tells you that the probability of an event is exactly zero. You ask
him where he got this from. "Baal told me" is the answer. In such case, the person is
coherent, but would be deemed unrealistic by non-Baalists. But if on the other hand,
the person tells you "I estimated it to be zero," we have a problem. The person is
both unrealistic and inconsistent. Something estimated needs to have an estimation
error. So probability cannot be zero if it is estimated, its lower bound is linked to the
estimation error; the higher the estimation error, the higher the probability, up to a
point. As with Laplace’s argument of total ignorance, an infinite estimation error pushes
the probability toward 1

2

. We will return to the implication of the mistake; take for now
that anything estimating a parameter and then putting it into an equation is different
from estimating the equation across parameters. And Markowitz was inconsistent by
starting his "seminal" paper with "Assume you know E and V " (that is, the expectation
and the variance). At the end of the paper he accepts that they need to be estimated,
and what is worse, with a combination of statistical techniques and the "judgment of
practical men." Well, if these parameters need to be estimated, with an error, then
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the derivations need to be written differently and, of course, we would have no such
model. Economic models are extremely fragilefragile to assumptions, in the sense that
a slight alteration in these assumptions can lead to extremely consequential differences
in the results. The perturbations can be seen as follows. Let

*

X = (X
1

, X
2

, . . . , Xm)

be the vector of random variables representing returns. Consider the joint probability
distribution f (x

1

, . . . , xm) . We denote the m-variate multivariate Normal distribution
by N(

*
µ,⌃), with mean vector *

µ , variance-covariance matrix ⌃, and joint pdf,

f
⇣

*
x
⌘

= (2⇡)�m/2
|⌃|

�1/2
exp

✓

�

1

2

⇣

*
x �

*
µ
⌘T

⌃

�1
⇣

*
x �

*
µ
⌘

◆

(5.5)

where *
x = (x

1

, . . . , xm) 2 Rm, and ⌃ is a symmetric, positive definite (m⇥m) matrix.
The weights matrix

*

⌦ = (!
1

, . . . ,!m),normalized, with
PN

i=1

!i = 1 (allowing exposures
to be both positive and negative): The scalar of concern is; r = ⌦

T .X, which happens
to be normally distributed, with variance

v = ~!T .⌃.~!

The Markowitz portfolio construction, through simple optimization, gets an optimal ~!⇤,
obtained by, say, minimizing variance under constraints, getting the smallest ~!T .⌃.~!
under constraints of returns, a standard Lagrange multiplier. So done statically, the
problem gives a certain result that misses the metadistribution. Now the problem is that
the covariance matrix is a random object, and needs to be treated as so. So let us focus
on what can happen under these conditions:

Route 1: The stochastic volatility route This route is insufficient but can
reveal structural defects for the construction. We can apply the same simplied variance
preserving heuristic as in 3.4 to fatten the tails. Where a is a scalar that determines the
intensity of stochastic volatility, ⌃

1

= ⌃(1 � a) and ⌃
2

= ⌃(1 � a). Simply, given the
conservation of the Gaussian distribution under weighted summation, maps to v(1 + a)
and v(1�a) for a Gaussian and we could see the same effect as in 3.4. The corresponding
increase in fragility is explained in Chapter 16.

Route 2: Full random parameters route Now one can have a fully random
matrix —not just the overal level of the covariance matrix. The problem is working with
matrices is cumbersome, particularly in higher dimensions, because one element of the
covariance can vary unconstrained, but the degrees of freedom are now reduced for
the matrix to remain positive definite. A possible technique is to extract the principal
components, necessarily orthogonal, and randomize them without such restrictions.

5.6 Psychological pseudo-biases under second layer of
uncertainty.

Often psychologists and behavioral economists find "irrational behavior" (or call it under
something more polite like "biased") as agents do not appear to follow a normative model
and violate their models of rationality. But almost all these correspond to missing a
second layer of uncertainty by a dinky-toy first-order model that doesn’t get nonlinearities
� it is the researcher who is making a mistake, not the real-world agent. Recall that
the expansion from "small world" to "larger world" can be simulated by perturbation of
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Figure 5.3: The effect of Ha,p(t)
"utility" or prospect theory of un-
der second order effect on variance.
Here � = 1, µ = 1 and t variable.
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parameters, or "stochasticization", that is making something that appears deterministic
a random variable itself. Benartzi and Thaler [4], for instance, find an explanation that
agents are victims of a disease labelled "myopic loss aversion" in not investing enough
in equities, not realizing that these agents may have a more complex, fat-tailed model.
Under fat tails, no such puzzle exists, and if it does, it is certainly not from such myopia.
This approach invites "paternalism" in "nudging" the preferences of agents in a manner

to fit professors-without-skin-in-the-game-using-wrong-models.
The problem also applies to GMOs and how "risk experts" find them acceptable; re-

searchers pathologize those who do not partake of the baby models (thin tailed). The
point, an extension of the Pinker problem, is discussed in Chapter x.
Let us use our approach in detecting convexity to three specific problems: 1) the myopic

loss aversion that we just discussed, 2) time preferences, 3) probability matching.

5.6.1 Myopic loss aversion

Take the prospect theory valuation w function for x changes in wealth.

w�,↵(x) = x↵
x�0 � �(�x↵

) x<0

Where �µt,�
p
t(x) is the Normal Distribution density with corresponding mean and

standard deviation (scaled by t)
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The expected "utility" (in the prospect sense):

H
0

(t) =

Z 1

�1
w�,↵(x)�µt,�

p
t(x) dx (5.6)
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We can see from 5.7 that the more frequent sampling of the performance translates
into worse utility. So what Benartzi and Thaler did was try to find the sampling period
"myopia" that translates into the sampling frequency that causes the "premium" —the
error being that they missed second order effects.
Now under variations of � with stochatic effects, heuristically captured, the story

changes: what if there is a very small probability that the variance gets multiplied by a
large number, with the total variance remaining the same? The key here is that we are
not even changing the variance at all: we are only shifting the distribution to the tails.
We are here generously assuming that by the law of large numbers it was established
that the "equity premium puzzle" was true and that stocks really outperformed bonds.
So we switch between two states, (1 + a)�2 w.p. p and (1� a) w.p. (1� p).
Rewriting 5.6

Ha,p(t) =

Z 1

�1
w�,↵(x)

⇣

p�µ t,
p
1+a�

p
t(x) + (1� p)�µ t,

p
1�a�

p
t(x)

⌘

dx (5.8)

Result Conclusively, as can be seen in figures 5.3 and 5.4, second order effects can-
cel the statements made from "myopic" loss aversion. This doesn’t mean that myopia
doesn’t have effects, rather that it cannot explain the "equity premium", not from the
outside (i.e. the distribution might have different returns", but from the inside, owing
to the structure of the Kahneman-Tversky value function v(x).

Comment We used the (1+a) heuristic largely for illustrative reasons; we could use
a full distribution for �2 with similar results. For instance the gamma distribution with

density f(v) =

v��1e�
↵v

V

(

V

↵

)

��

�(�) with expectation V matching the variance used in the
"equity premium" theory.
Rewriting 5.8 under that form,

Z 1

�1

Z 1

0

w�,↵(x)�µ t,
p
v t(x) f(v) dv dx

Which has a closed form solution (though a bit lengthy for here).
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5.6.2 Time preference under model error

This author once watched with a great deal of horror one Laibson [42] at a conference in
Columbia University present the idea that having one massage today to two tomorrow,
but reversing in a year from nowm is irrational and we need to remedy it with some
policy. (For a review of time discounting and intertemporal preferences, see [30], as
economists temps to impart what seems to be a varying "discount rate" in a simplified
model).
Intuitively, what if I introduce the probability that the person offering the massage is

full of balloney? It would clearly make me both prefer immediacy at almost any cost
and conditionally on his being around at a future date, reverse the preference. This is
what we will model next.
First, time discounting has to have a geometric form, so preference doesn’t become

negative: linear discounting of the form Ct, where C is a constant ant t is time into the
future is ruled out: we need something like Ct or, to extract the rate, (1+ k)t which can
be mathematically further simplified into an exponential, by taking it to the continuous
time limit. Exponential discounting has the form e�k t. Effectively, such a discounting
method using a shallow model prevents "time inconsistency", so with � < t:

lim

t!1

e�k t

e�k (t��) = e�k �

Now add another layer of stochasticity: the discount parameter, for which we use the
symbol �, is now stochastic.
So we now can only treat H(t) as

H(t) =

Z

e�� t�(�) d�

It is easy to prove the general case that under symmetric stochasticization of intensity
�� (that is, with probabilities 1

2

around the center of the distribution) using the same
technique we did in 3.4:

H 0(t,��) =
1

2

⇣

e�(����)t
+ e�(�+��)t

⌘

H 0(t,��)

H 0(t, 0)
=

1

2

e�t
⇣

e(�����)t
+ e(����)t

⌘

= cosh(��t)

Where cosh is the cosine hyperbolic function � which will converge to a certain value
where intertemporal preferences are flat in the future.

Example: Gamma Distribution Under the gamma distribution with support

in R+, with parameters ↵ and �, �(�) = ��↵�↵�1e
��

�

�(↵)

we get:

H(t,↵,�) =

Z 1

0

e�� t

⇣

��↵�↵�1e�
�

�

⌘

�(↵)
d� = ��↵

✓

1

�
+ t

◆�↵

so
lim

t!1

H(t,↵,�)

H(t� �,↵,�)
= 1
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Meaning that preferences become flat in the future no matter how steep they are in the
present, which explains the drop in discount rate in the economics literature.
Further, fudging the distribution and normalizing it, when

�(�)=
e�

�

k

k
,

we get the normatively obtained (not empirical pathology) so-called hyperbolic discount-
ing:

H(t) =
1

1 + k t
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6 Large Numbers and CLT in the Real
World

Chapter Summary 5: The Law of Large Numbers and The Central Limit
Theorem are the foundation of statistical knowledge: The behavior of the
sum of random variables allows us to get to the asymptote and use handy
asymptotic properties, that is, Platonic distributions. But the problem
is that in the real world we never get to the asymptote, we just get
"close" Some distributions get close quickly, others very slowly (even if
they have finite variance). We examine how fat tailedness slows down
the process. Further, in some cases the LLN doesn’t work at all.

6.1 The Law of Large Numbers Under Fat Tails

Recall from Chapter 3 that the quality of an estimator is tied to its replicability outside
the set in which it was derived: this is the basis of the law of large numbers which deals
with the limiting behavior of relative frequencies.

How do you reach the limit?

The common interpretation of the weak law of large numbers is as follows.
By the weak law of large numbers, consider a sum of random variables X

1

, X
2

,...,
XN independent and identically distributed with finite mean m, that is E[Xi] < 1,
then 1

N

P

1iN Xi converges to m in probability, as N ! 1. But the problem of
convergence in probability, as we will see later, is that it does not take place in the tails

Figure 6.1: How thin tails (Gaussian) and fat tails (1< ↵ 2) converge to the mean.

109
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of the distribution (different parts of the distribution have different speeds). This point
is quite central and will be examined later with a deeper mathematical discussions on
limits in Chapter x. We limit it here to intuitive presentations of turkey surprises.

(Hint: we will need to look at the limit without the common route of Chebychev’s
inequality which requires E[X2

i ] <1 . Chebychev’s inequality and similar ones eliminate
the probabilities of some tail events).
So long as there is a mean, observations should at some point reveal it.

The law of iterated logarithms For the “thin-tailed” conditions, we can see
in Figure x how by the law of iterated logarithm, for xi i.i.d. distributed with mean 0 and
unitary variance, lim sup

n!1

P
n

i=1

x
i

p

2n log log(n)
= 1 a.s. (and by symmetry lim inf

n!1

P
n

i=1

x
i

p

2n log log(n)

= -1), thus giving us an acceptably narrow cone limiting the fluctuation of the sum.

Speed of convergence Let us examine the speed of convergence of the average
1

N

P

1iN Xi. For a Gaussian distribution (m,�), the characteristic function for the
convolution is:

'(t/N)

N
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e
imt
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2

t

2

2N

2

⌘N

,

which, derived twice at 0 yields (�i)2 @2c
@t2 �i@c@t/. t ! 0 which produces the standard

deviation �(n) = �(1)p
N

so one can say that sum “converges” at a speed
p

N .

Another approach consists in expanding ' and letting N go to infinity

lim

N!1
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e
imt

N

� s

2

t

2

2N

2

⌘N

= eimt

Now eimt is the characteristic function of the degenerate distribution at m, with
density p(x) = �(m� x) where � is the Dirac delta with values zero except at the point
m� x. (Note that the strong law of large numbers implies that convergence takes place
almost everywhere except for a set of probability 0; for that the same result should be
obtained for all values of t).
But things are far more complicated with power laws. Let us repeat the exercise for a

Pareto distribution with density L↵x�1�↵↵ , x> L,
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N
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where E is the exponential integral E; En(z) =
R1
1

e�zt/tndt.
At the limit:
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which is degenerate Dirac at ↵
↵�1L, and as we can see the limit only exists for ↵ >1.

Setting L = 1 to scale, the standard deviation �↵(N) for the N -average becomes, for
↵ >2

�↵(N) =

1

N

�

↵NE↵+1

(0)

N�2 �E↵�1(0)E↵+1

(0) +E↵(0)
2

�

�N↵NE↵+1

(0)

N
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Figure 6.2: The distribution (histogram) of the standard deviation of the sum of N=100 ↵=13/6.
The second graph shows the entire span of realizations. If it appears to shows very little infor-
mation in the middle, it is because the plot is stretched to accommodate the extreme observation
on the far right.

The trap After some tinkering, we get �↵(N) =

�
↵

(1)p
N

, the same as with the Gaussian,
which is a trap. For we should be careful in interpreting �↵(N), which will be very volatile
since �↵(1) is already very volatile and does not reveal itself easily in realizations of the
process. In fact, let p(.) be the PDF of a Pareto distribution with mean m, variance v,
minimum value L and exponent ↵.
Infinite variance of variance The distribution of the variance, v can be obtained

analytically: intuitively its asymptotic tail is v�
↵

2

�1. Where g(.) is the probability
density of the variance:

g(v) =

↵L↵

✓
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p
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◆�↵�1

2

p

v

with support:[(L�
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2,1).
Cleaner: �↵ the expected mean deviation of the variance for a given ↵ will be �↵ =

1

v

R1
L

�

�

(x�m)

2

� v
�

� p(x)dx.

Absence of Useful Theory: As to situations, central situations, where 1< ↵ <2,
we are left hanging analytically (but we can do something about it in the next section).
We will return to the problem in our treatment of the preasymptotics of the central limit
theorem.
But we saw in ??.?? that the volatility of the mean is ↵

↵�1 s and the mean deviation of
the mean deviation, that is, the volatility of the volatility of mean is 2(↵� 1)

↵�2↵1�↵s
, where s is the scale of the distribution. As we get close to ↵ = 1 the mean becomes
more and more volatile in realizations for a given scale. This is not trivial since we are
not interested in the speed of convergence per se given a variance, rather the ability of
a sample to deliver a meaningful estimate of some total properties.
Intuitively, the law of large numbers needs an infinite observations to converge at ↵=1.

So, if it ever works, it would operate at a >20 times slower rate for an “observed” ↵ of
1.15 than for an exponent of 3. To make up for measurement errors on the ↵, as a rough
heuristic, just assume that one needs > 400 times the observations. Indeed, 400 times!
(The point of what we mean by “rate” will be revisited with the discussion of the Large
Deviation Principle and the Cramer rate function in X.x; we need a bit more refinement
of the idea of tail exposure for the sum of random variables).
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Comparing N = 1 to N = 2 for a symmetric power law with 1< ↵ 2
.

Let �(t) be the characteristic function of the symmetric Student T with ↵ degrees of
freedom. After two-fold convolution of the average we get:
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We can get an explicit density by inverse Fourier transform of �,

p
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is the hypergeometric function:
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We can compare the twice-summed density to the initial one (with notation: pN (x)=
P(
PN
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From there, we see that in the Cauchy case (↵=1) the sum conserves the density, so

p
1,1(x) = p

2,1(x) =
1

⇡ (1 + x2

)

Let us use the ratio of mean deviations; since the mean is 0,
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Figure 6.3: Preasymptotics of the
ratio of mean deviations. But one
should note that mean deviations
themselves are extremely high in the
neighborhood of #1. So we have a
“sort of” double convergence to

p
n :

convergence at higher n and conver-
gence at higher ↵.

The double effect of summing fat tailed random variables: The summation
of random variables performs two simultaneous actions, one, the “thinning” of the
tails by the CLT for a finite variance distribution (or convergence to some basin of
attraction for infinite variance classes); and the other, the lowering of the dispersion
by the LLN. Both effects are fast under thinner tails, and slow under fat tails.
But there is a third effect: the dispersion of observations for n=1 is itself much
higher under fat tails. Fatter tails for power laws come with higher expected mean
deviation.

6.2 Preasymptotics and Central Limit in the Real World

An intuition: how we converge mostly in the center of the distribution

We start with the Uniform Distribution, patently the easiest of all.

f(x) = {

1

H�L L  x  H

0 elsewhere

where L = 0 and H =1

A random run from a Uniform Distribution
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As we can see, we get more ob-
servations where the peak is higher.

The functioning of CLT is as follows: the convolution is a multiplication; it is the
equivalent of weighting the probability distribution by a function that iteratively
gives more weight to the body, and less weight to the tails, until it becomes round
enough to dull the iterative effect. See how "multiplying" a flat distribution by
something triangular as in Figure 6.2 produces more roundedness.

Now some math. By convoluting 2, 3, 4 times we can see the progress and the decrease
of mass in the tails:
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We have a triangle (piecewise linear).
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(6.2)

With N = 3 we square terms, and the familiar "bell" shape.
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A simple Uniform Distribution
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We can see how quickly, after one single addition, the net probabilistic “weight” is going
to be skewed to the center of the distribution, and the vector will weight future densities..
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6.2.1 Finite Variance: Necessary but Not Sufficient

The common mistake is to think that if we satisfy the criteria of convergence, that is,
independence and finite variance , that central limit is a given.Take the conventional
formulation of the Central Limit Theorem 1:

Let X
1

, X
2

,... be a sequence of independent identically distributed random variables
with mean m & variance �2 satisfying m< 1 and 0 < �2< 1, then

PN
i=1

Xi �Nm

�
p

n
D
! N(0, 1)as n ! 1

Where D
! is converges “in distribution” and N(0,1) is the Gaussian with mean 0 and

unit standard deviation.

Granted convergence “in distribution” is about the weakest form of convergence.
Effectively we are dealing with a double problem.
The first, as uncovered by Jaynes, corresponds to the abuses of measure theory: Some
properties that hold at infinity might not hold in all limiting processes .

There is a large difference between convergence a.s. (almost surely) and the weaker
forms.

Jaynes 2003 (p.44):“The danger is that the present measure theory notation presup-
poses the infinite limit already accomplished, but contains no symbol indicating which
limiting process was used (...) Any attempt to go directly to the limit can result in
nonsense”.

We accord with him on this point –along with his definition of probability as infor-
mation incompleteness, about which later.

The second problem is that we do not have a “clean” limiting process –the process is
itself idealized.

Now how should we look at the Central Limit Theorem? Let us see how we arrive to it
assuming “independence”.

1Feller 1971, Vol. II
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The Kolmogorov-Lyapunov Approach and Convergence in the Body
2 The CLT works does not fill-in uniformily, but in a Gaussian way �indeed, disturbingly
so. Simply, whatever your distribution (assuming one mode), your sample is going to be
skewed to deliver more central observations, and fewer tail events. The consequence is
that, under aggregation, the sum of these variables will converge “much” faster in the⇡
body of the distribution than in the tails. As N, the number of observations increases,
the Gaussian zone should cover more grounds... but not in the “tails”.

This quick note shows the intuition of the convergence and presents the difference
between distributions.

Take the sum of of random independent variables Xi with finite variance under
distribution '(X). Assume 0 mean for simplicity (and symmetry, absence of skewness to
simplify).

A more useful formulation is the Kolmogorov or what we can call "Russian" approach
of working with bounds:

P

✓

�u  Z =

Pn
i=0

Xi
p

n�
 u

◆

=

R u

�u e
�Z

2

2 dZ
p

2⇡

So the distribution is going to be:
✓

1�

Z u

�u
e�

Z

2

2 dZ

◆

, for � u  z  u

inside the “tunnel” [-u,u] –the odds of falling inside the tunnel itself,
and

Z u

�1
Z'0(N)dz +

Z 1

u

Z'0(N)dz

outside the tunnel, in [�u, u],where '0(N) is the n-summed distribution of '.
How '0(N) behaves is a bit interesting here –it is distribution dependent.

Before continuing, let us check the speed of convergence per distribution. It is quite
interesting that we the ratio of observations in a given sub-segment of the distribution is
in proportion to the expected frequency Nu

�u

N1
�1

where Nu
�u, is the numbers of observations

falling between -u and u. So the speed of convergence to the Gaussian will depend on
Nu

�u

N1
�1

as can be seen in the next two simulations.

To have an idea of the speed of the widening of the tunnel (�u, u) under summation,
consider the symmetric (0-centered) Student T with tail exponent ↵= 3, with density

2a3

⇡(a2

+x2

)

2

, and variance a2. For large “tail values” of x, P (x) ! 2a3

⇡x4

. Under summation

of N variables, the tail P (⌃x) will be 2Na3

⇡x4

. Now the center, by the Kolmogorov version
of the central limit theorem, will have a variance of Na2 in the center as well, hence

P (⌃ x) =
e�

x

2

2a

2

N

p

2⇡a
p

N
2See Loeve for a presentation of the method of truncation used by Kolmogorov in the early days

before Lyapunov started using characteristic functions.
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Figure 6.4: Q-Q Plot of N Sums of variables
distributed according to the Student T with 3 de-
grees of freedom, N=50, compared to the Gaus-
sian, rescaled into standard deviations. We see
on both sides a higher incidence of tail events.
106simulations

Figure 6.5: The Widening Center. Q-Q Plot
of variables distributed according to the Stu-
dent T with 3 degrees of freedom compared to
the Gaussian, rescaled into standard deviation,
N=500. We see on both sides a higher incidence
of tail events. 107simulations.

Setting the point u where the crossover takes place,

e�
x

2

2aN

p

2⇡a
p

N
'

2Na3

⇡x4

,

hence u4e�
u

2

2aN

'

p
22a3

p
aNNp

⇡
, which produces the solution

±u = ±2a
p

N

s

�W

✓

�

1

2N1/4
(2⇡)1/4

◆

,

where W is the Lambert W function or product log which climbs very slowly3, particu-
larly if instead of considering the sum u we rescaled by 1/a

p

N .

Note about the crossover See the competing Nagaev brothers, s.a. S.V. Na-
gaev(1965,1970,1971,1973), and A.V. Nagaev(1969) etc. There are two sets of inequali-
ties, one lower one below which the sum is in regime 1 (thin-tailed behavior), an upper
one for the fat tailed behavior, where the cumulative function for the sum behaves likes
the maximum . By Nagaev (1965) For a regularly varying tail, where E (|X|

m
) < 1 the

minimum of the crossover should be to the left of
q

�

m
2

� 1

�

N log(N) (normalizing for
unit variance) for the right tail (and with the proper sign adjustment for the left tail).
So

P>NPX
i

P> Xp
N

! 1

3Interestingly, among the authors on the paper on the Lambert W function figures Donald Knuth:
Corless, R. M., Gonnet, G. H., Hare, D. E., Jeffrey, D. J., Knuth, D. E. (1996). On the LambertW
function. Advances in Computational mathematics, 5(1), 329-359.
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Figure 6.6: The behavior of the
"tunnel" under summation
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N log(N)

Generalizing for all exponents > 2 More generally, using the reasoning for
a broader set and getting the crossover for powelaws of all exponents:

4

p

(↵� 2)↵e�
p

↵�2

↵

x

2

2aN

p

2⇡
p

a↵N
'
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1

x2
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1+↵
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Beta
⇥

↵
2

, 1

2

, ]

since the standard deviation is a
q

↵
�2+↵

x ! ±

s

±

a ↵ (↵+ 1) N W (�)
p

(↵� 2) ↵

Where

� = �

(2⇡)
1

↵+1

q

↵�2
↵

✓

4

p
↵�2↵�↵

2

� 1

4 a�↵� 1

2 B
(

↵

2

, 1
2

)p
N

◆� 2

↵+1

a (↵+ 1) N

6.3 Using Log Cumulants to Observe Preasymptotics

The normalized cumulant of order n, n is the derivative of the log of the characteristic
function � which we convolute N times divided by the second cumulant (i,e., second
moment).
This exercise show us how fast an aggregate of N-summed variables become Gaussian,

looking at how quickly the 4th cumulant approaches 0. For instance the Poisson get
there at a speed that depends inversely on ⇤, that is, 1/(N2

⇤

3

), while by contrast
an exponential distribution reaches it at a slower rate at higher values of ⇤ since the
cumulant is (3!⇤

2

)/N2.

Speed of Convergence of the Summed distribution using Edge-
worth Expansions A twinking of Feller (1971), Vol II by replacing the derivatives
with our cumulants. Let fN (z) be the normalized sum of the i.i.d. distributed random



120 CHAPTER 6. LARGE NUMBERS AND CLT IN THE REAL WORLD

Table 6.1: Table of Normalized Cumulants For Thin Tailed Distributions-Speed of Convergence
(Dividing by ⌃n where n is the order of the cumulant).

Distr. Normal(µ,�) Poisson(� ) Exponent’l(�)�(a,b)

PDF e
� (x�µ)
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2
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where kis the cumulant of order k. Yn,k (x1
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DistributionMixed Gaussians (Stoch Vol) StudentT(3) StudentT(4)
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Notes on Levy Stability and the Generalized Cental Limit Theo-
rem

Take for now that the distribution that concerves under summation (that is, stays the
same) is said to be "stable". You add Gaussians and get Gaussians. But if you add
binomials, you end up with a Gaussian, or, more accurately, "converge to the Gaussian
basin of attraction". These distributions are not called "unstable" but they are.

There is a more general class of convergence. Just consider that the Cauchy variables
converges to Cauchy, so the “stability’ has to apply to an entire class of distributions.

Although these lectures are not about mathematical techniques, but about the real
world, it is worth developing some results converning stable distribution in order to prove
some results relative to the effect of skewness and tails on the stability.
Let n be a positive integer, n �2 and X

1

, X
2

, ..., Xn satisfy some measure of indepen-
dence and are drawn from the same distribution,
i) there exist c n 2 R+ and d n 2 R+ such that

n
X

i=1

Xi
D
= cnX + dn

where D
= means “equality” in distribution.

ii) or, equivalently, there exist sequence of i.i.d random variables {Yi}, a real positive
sequence {di} and a real sequence {ai} such that
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Figure 6.7: Disturbing the scale of the alpha stable and that of a more natural distribution, the
gamma distribution. The alpha stable does not increase in risks! (risks for us in Chapter x
is defined in thickening of the tails of the distribution). We will see later with “convexification”
how it is rare to have an isolated perturbation of distribution without an increase in risks.

1

dn

n
X

i=1

Yi + an
D
! X

whereD
! means convergence in distribution.

iii) or, equivalently,
The distribution of X has for characteristic function

�(t) =

(

exp(iµt� � |t| (1 + 2i�/⇡sgn(t) log(|t|))) ↵ = 1

exp

�

iµt� |t�|↵
�

1� i� tan

�

⇡↵
2

�

sgn(t)
��

↵ 6= 1

.

↵ 2(0,2] � 2 R+, � 2[-1,1], µ 2 R

Then if either of i), ii), iii) holds, X has the “alpha stable” distribution S(↵,�, µ,�),
with � designating the symmetry, µ the centrality, and � the scale.

Warning: perturbating the skewness of the Levy stable distribution by changing �
without affecting the tail exponent is mean preserving, which we will see is unnatural:
the transformation of random variables leads to effects on more than one characteristic
of the distribution. S(↵,�, µ,�)represents the stable distribution S

type

with index of
stability ↵, skewness parameter �, location parameter µ, and scale parameter �.

The Generalized Central Limit Theorem gives sequences an and bn such that the
distribution of the shifted and rescaled sum Zn = (

Pn
i Xi � an) /bn of n i.i.d. random

variates Xi whose distribution function FX(x) has asymptotes 1� cx�µ as x->+1 and
d(�x)�µ as x->�1 weakly converges to the stable distribution S

1

(↵, (c�d)/(c+d), 0, 1):

Note: Chebyshev’s Inequality and upper bound on deviations
under finite variance. [To ADD MARKOV BOUNDS �! CHEBYCHEV �!

CHERNOV BOUNDS.]
Even when the variance is finite, the bound is rather far. Consider Chebyshev’s in-

equality:
P (X > ↵)  �2

↵2

P (X > n�)  1

n2

,
which effectively accommodate power laws but puts a bound on the probability distri-

bution of large deviations –but still significant.
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The Effect of Finiteness of Variance
This table shows the inverse of the probability of exceeding a certain � for the Gaussian

and the lower on probability limit for any distribution with finite variance.
Deviation
3 Gaussian
7.⇥ 10

2 ChebyshevUpperBound
9

4 3.⇥ 10

4

16

5 3.⇥ 10

6

25

6 1.⇥ 10

9

36

7 8.⇥ 10

11

49

8 2.⇥ 10

15

64

9 9.⇥ 10

18

81

10 1.⇥ 10

23

100

6.4 Convergence of the Maximum of a Finite Variance
Power Law

An illustration of the following point. The behavior of the maximum value as a percent-
age of a sum is much slower than we think, and doesn’t make much difference on whether
it is a finite variance, that is ↵ >2 or not. (See comments in Mandelbrot & Taleb, 2011)
⌧(N) ⌘ E ()

Α=1.8

Α=2.4
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6.5 Sources and Further Readings

Limits of Sums

Paul Lévy [43], Gnedenko and Kolmogorov [34], Prokhorov [60], [59], Hoeffding[37],
Petrov[56], Blum[7].

For Large Deviations

Nagaev[52], [51], Mikosch and Nagaev[48], Nagaev and Pinelis [53]. In the absence of
Cramér conditions, Nagaev [50], Brennan[11], Ramsay[61], Bennet[5].
Also, for dependent summands, Bernstein [6].
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Discussions of Concentration functions

Esseen [26], [? ], Doeblin [17], [16], Darling [15], Kolmogorov [41], Rogozin [62], Kesten
[38], Rogogin [63].



D Where Standard Diversification Fails

U
Overerestimation
of diversification

Underestimation
of risk

Markowitz

RealWorld
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Number of Assets
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Figure D.1: The "diversification effect": difference between promised and delivered. Markowitz
Mean Variance based portfolio construction will stand probably as one of the most empirically
invalid theory ever used in modern times.

This is an analog of the problem with slowness of the law of large number: how a
portfolio can track a general index (speed of convergence) and how high can true volatility
be compared to the observed one (the base line).
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E Fat Tails and Random Matrices

[The equivalent of fat tails for matrices. This will be completed, but consider for now
that the 4th moment reaching Gaussian levels (i.e. 3) in the chapter is equivalent to
eigenvalues reaching Wigner’s semicircle. ]
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Figure E.1: Gaussian
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Figure E.2: Standard Tail
Fattening
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Figure E.3: Student T 3
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7 Some Misuses of Statistics in Social
Science

Chapter Summary 6: We apply the results of the previous chapter on
the slowness of the LLN and list misapplication of statistics in social
science, almost all of them linked to misinterpretation of the effects of
fat-tailedness (and often from lack of awareness of fat tails), and how
by attribute substitution researchers can substitute one measure for an-
other. Why for example, because of chronic small-sample effects, the
80/20 is milder in-sample (less fat-tailed) than in reality and why regres-
sion rarely works.

7.1 Mechanistic Statistical Statements

Recall from the Introduction that the best way to figure out if someone is using an
erroneous statistical technique is to use such technique on a dataset for which you have
the answer. The best way to know the exact properties is to generate it by Monte Carlo.
So the technique throughout the chapter is to generate fat-tailed data, the properties of
which we know with precision, and check how such standard and mechanistic methods
detect the true properties, then show the wedge between observed and true properties.

Also recall from Chapter 6 (6.1) that fat tails make it harder for someone to detect
the true properties; for this we need a much, much larger dataset, more rigorous ranking
techniques allowing inference in one direction not another ( Chapter 4), etc. Hence this
chapter is a direct application of the results and rules of Chapter 4.

One often hears the statement "the plural of anecdote is not data", a very, very
representative (but elementary) violation of probability theory. It is very severe in
effect for risk taking. For large deviations, n = 1 is plenty of data. The Cheby-
chev distance, or norm L

1 focuses on the largest measure (also see concentration
functions, maximum of divergence (Lévy, Petrov), or even the standard and ubiqui-
tous Kolmogorov-Smirnoff): looking at the extremum of a time series is not cherry
picking since it is disconfirmatory evidence, the only true evidence one can get in
statistics. Remarkably such people tend to also fall for the opposite mistake, the
"n-large", in thinking that confirmatory observations provide "p-values". All these
errors are magnified by fat tails.a

aIn addition to Paul Lévy and some of the Russians (see Petrov), there is an interesting literature
on concentration functions, mostly in Italian (to wit, Gini): Finetti, Bruno (1953) : Sulla nozione
di "dispersione" per distribuzioni a piu dimensioni, de Unione Roma. Gini, corrado (1914) : Sulla
misura delia concentrazione delia variabilita dei caratteri. Atti del Reale Istituto Veneto di S.
L. A., A. A. 1913-1914, 78, parte II, 1203-1248. Atti IV Edizioni- Congresso Cremonese,: La

129
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Matematica Italiana in (Taormina, 25-31 Ott. 1951), 587-596, astratto Giornale qualsiasi, (1955)
deiristituto delle distribuzioni 18, 15-28. insieme translation in : de Finetti, Bruno struttura degli
Attuari (1972).

7.2 Attribute Substitution

Attribute substitution occurs when an individual has to make a judgment (of a target
attribute) that is complicated complex, and instead substitutes a more easily calculated
one. There have been many papers (Kahneman and Tversky [78] , Hoggarth and Soyer,
[67] and comment [69]) showing how statistical researchers overinterpret their own find-
ings, as simplication leads to the fooled by randomness effect.

Dan Goldstein and this author (Goldstein and Taleb [36]) showed how professional
researchers and practitioners substitute norms in the evaluation of higher order properties
of time series, mistaking kxk

1

for kxk
2

(or 1

n

P

|x| for
qP

x2

n ). The common result is
underestimating the randomness of the estimator M , in other words read too much into it
(and, what is worse, underestimation of the tails, since, as we saw in 3.4, the ratio

pP
x2

P
|x|

increases with "fat-tailedness" to become infinite under tail exponents ↵ � 2). Standard
deviation is ususally explained and interpreted as mean deviation. Simply, people find
it easier to imagine that a variation of, say, (-5,+10,-4,-3, 5, 8) in temperature over
successive day needs to be mentally estimated by squaring the numbers, averaging them,
then taking square roots. Instead they just average the absolutes. But, what is key, they
tend to do so while convincing themselves that they are using standard deviations.

There is worse. Mindless application of statistical techniques, without knowledge of
the conditional nature of the claims are widespread. But mistakes are often elementary,
like lectures by parrots repeating "N of 1" or "p", or "do you have evidence of?", etc.
Many social scientists need to have a clear idea of the difference between science and
journalism, or the one between rigorous empiricism and anecdotal statements. Science
is not about making claims about a sample, but using a sample to make general claims
and discuss properties that apply outside the sample.

Take M’ (short for MX
T (A, f)) the estimator we saw above from the realizations

(a sample path) for some process, and M* the "true" mean that would emanate from
knowledge of the generating process for such variable. When someone announces: "The
crime rate in NYC dropped between 2000 and 2010", the claim is limited M’ the observed
mean, not M⇤ the true mean, hence the claim can be deemed merely journalistic, not
scientific, and journalists are there to report "facts" not theories. No scientific and
causal statement should be made from M’ on "why violence has dropped" unless one
establishes a link to M* the true mean. M cannot be deemed "evidence" by itself.
Working with M’ alone cannot be called "empiricism".

What we just saw is at the foundation of statistics (and, it looks like, science).
Bayesians disagree on how M’ converges to M*, etc., never on this point. From his
statements in a dispute with this author concerning his claims about the stability of
modern times based on the mean casualy in the past (Pinker [57]), Pinker seems to be
aware that M’ may have dropped over time (which is a straight equality) and sort of
perhaps we might not be able to make claims on M* which might not have really been
dropping.

In some areas not involving time series, the differnce between M’ and M* is negligible.
So I rapidly jot down a few rules before showing proofs and derivations (limiting M’ to
the arithmetic mean, that is, M’= MX

T ((�1,1), x)).
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Figure 7.1: Q-Q plot" Fitting ex-
treme value theory to data generated
by its own process , the rest of course
owing to sample insuficiency for ex-
tremely large values, a bias that typ-
ically causes the underestimation of
tails, as the reader can see the points
tending to fall to the right.

Note again that E is the expectation operator under "real-world" probability measure
P.

7.3 The Tails Sampling Property

From the derivations in 6.1, E[| M’ - M* |] increases in with fat-tailedness (the mean
deviation of M* seen from the realizations in different samples of the same process).
In other words, fat tails tend to mask the distributional properties. This is the
immediate result of the problem of convergence by the law of large numbers.

7.3.1 On the difference between the initial (generator) and the
"recovered" distribution

(Explanation of the method of generating data from a known distribution and comparing
realized outcomes to expected ones)

7.3.2 Case Study: Pinker [57] Claims On The Stability of the
Future Based on Past Data

When the generating process is power law with low exponent, plenty of confusion can
take place.

For instance, Pinker [57] claims that the generating process has a tail exponent ⇠1.16
but made the mistake of drawing quantitative conclusions from it about the mean from
M’ and built theories about drop in the risk of violence that is contradicted by the data
he was showing, since fat tails plus negative skewness/asymmetry= hidden and
underestimated risks of blowup. His study is also missing the Casanova problem
(next point) but let us focus on the error of being fooled by the mean of fat-tailed data.

Figures 7.2 and 7.3 show the realizations of two subsamples, one before, and the
other after the turkey problem, illustrating the inability of a set to naively deliver true
probabilities through calm periods.
The next simulations shows M1, the mean of casualties over the first 100 years across

10

4sample paths, and M2 the mean of casualties over the next 100 years.
So clearly it is a lunacy to try to read much into the mean of a power law with 1.15

exponent (and this is the mild case, where we know the exponent is 1.15. Typically
we have an error rate, and the metaprobability discussion in Chapter x will show the
exponent to be likely to be lower because of the possibility of error).
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Figure 7.2: First 100
years (Sample Path): A
Monte Carlo generated
realization of a process
for casualties from violent
conflict of the "80/20 or
80/02 style", that is tail
exponent ↵= 1.15
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Figure 7.3: The Turkey
Surprise: Now 200 years,
the second 100 years dwarf
the first; these are real-
izations of the exact same
process, seen with a longer
window and at a different
scale.
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Figure 7.4: Does the past mean pre-
dict the future mean? Not so. M1
for 100 years,M2 for the next cen-
tury. Seen at a narrow scale.
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Figure 7.5: Does the past mean pre-
dict the future mean? Not so. M1
for 100 years,M2 for the next cen-
tury. Seen at a wider scale.
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Figure 7.6: The same seen with a
thin-tailed distribution.

Figure 7.7: Cederman 2003, used by Pinker [57] . I wonder if I am dreaming or if the exponent
↵ is really = .41. Chapters x and x show why such inference is centrally flawed, since low
exponents do not allow claims on mean of the variableexcept to say that it is very, very high
and not observable in finite samples. Also, in addition to wrong conclusions from the data, take
for now that the regression fits the small deviations, not the large ones, and that the author
overestimates our ability to figure out the asymptotic slope.

7.3.3 Claims Made From Power Laws

The Cederman graph, Figure 7.7 shows exactly how not to make claims upon observing
power laws.
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7.4 A discussion of the Paretan 80/20 Rule

Next we will see how when one hears about the Paretan 80/20 "rule" (or, worse, "prin-
ciple"), it is likely to underestimate the fat tails effect outside some narrow domains. It
can be more like 95/20 or even 99.9999/.0001, or eventually 100/✏. Almost all economic
reports applying power laws for "GINI" (Chapter x) or inequality miss the point. Even
Pareto himself miscalibrated the rule.

As a heuristic, it is always best to assume underestimation of tail measurement. Recall
that we are in a one-tailed situation, hence a likely underestimation of the mean.

Where does this 80/20 business come from? Assume ↵ the power law tail
exponent, and an exceedant probability PX>x = x

min

x�↵, x 2(x
min

, 1). Simply, the
top p of the population gets S = p

↵�1

↵ of the share of the total pie.

↵ =

log(p)

log(p)� log(S)

which means that the exponent will be 1.161 for the 80/20 distribution.

Note that as ↵ gets close to 1 the contribution explodes as it becomes close to infinite
mean.

Derivation: Start with the standard density f(x) = x↵
min

↵ x�↵�1, x � x
min

.
1) The Share attributed above K, K � x

min

, becomes
R1
K

xf(x) dx
R1
x
min

xf(x) dx
= K1�↵

2) The probability of exceeding K,
Z 1

K

f(x)dx = K�↵

3) Hence K�↵ of the population contributes K1�↵=p
↵�1

↵ of the result

7.4.1 Why the 80/20 Will Be Generally an Error: The Problem
of In-Sample Calibration

Vilfredo Pareto figured out that 20% of the land in Italy was owned by 80% of the
people, and the reverse. He later observed that 20 percent of the peapods in his garden
yielded 80 percent of the peas that were harvested. He might have been right about the
peas; but most certainly wrong about the land.

For fitting in-sample frequencies for a power law does not yield the proper "true" ratio
since the sample is likely to be insufficient. One should fit a powerlaw using extrapolative,
not interpolative techniques, such as methods based on Log-Log plotting or regressions.
These latter methods are more informational, though with a few caveats as they can also
suffer from sample insufficiency.

Data with infinite mean, ↵ 1, will masquerade as finite variance in sample and show
about 80% contribution to the top 20% quantile. In fact you are expected to witness in
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Figure 7.8:
The differ-
ence betwen
the generated
(ex ante) and
recovered (ex
post) processes;
⌫ = 20/100,
N = 107. Even
when it should
be 100/.0001, we
tend to watch
an average of
75/20

finite samples a lower contribution of the top 20%/
Let us see: Figure 7.8. Generate m samples of ↵ =1 data Xj=(xi,j)

n
i=1

, ordered xi,j�

xi�1,j , and examine the distribution of the top ⌫ contribution Z⌫
j =

P
i⌫n

x
jP

in

x
j

, with ⌫ 2

(0,1).

7.5 Survivorship Bias (Casanova) Property

E(M 0 �M⇤) increases under the presence of an absorbing barrier for the process. This
is the Casanova effect, or fallacy of silent evidence see The Black Swan, Chapter 8. (
Fallacy of silent evidence: Looking at history, we do not see the full story, only the
rosier parts of the process, in the Glossary)

History is a single sample path we can model as a Brownian motion, or something
similar with fat tails (say Levy flights). What we observe is one path among many
"counterfactuals", or alternative histories. Let us call each one a "sample path", a
succession of discretely observed states of the system between the initial state S

0

and
ST the present state.

Arithmetic process: We can model it as S(t) = S(t��t)+Z
�t

where Z
�t

is noise
drawn from any distribution.

Geometric process: We can model it as S(t) = S(t � �t)eWt typically S(t �

�t)eµ�t+s
p
�tZ

t but Wt can be noise drawn from any distribution. Typically, log
⇣

S(t)
S(t�i�t)

⌘

is treated as Gaussian, but we can use fatter tails. The convenience of the Gaus-
sian is stochastic calculus and the ability to skip steps in the process, as S(t)=S(t-
�t)eµ�t+s

p
�tW

t , with Wt ⇠N(0,1), works for all �t, even allowing for a single period
to summarize the total.
The Black Swan made the statement that history is more rosy than the "true" history,

that is, the mean of the ensemble of all sample path.
Take an absorbing barrier H as a level that, when reached, leads to extinction, defined

as becoming unobservable or unobserved at period T.
When you observe history of a family of processes subjected to an absorbing barrier,

i.e., you see the winners not the losers, there are biases. If the survival of the entity
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Figure 7.9: Counterfactual histori-
cal paths subjected to an absorbing
barrier.
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Figure 7.10: The reflection prin-
ciple (graph from Taleb, 1997). The
number of paths that go from point a
to point b without hitting the barrier
H is equivalent to the number of path
from the point - a (equidistant to the
barrier) to b.

depends upon not hitting the barrier, then one cannot compute the probabilities along
a certain sample path, without adjusting.
Begin The "true" distribution is the one for all sample paths, the "observed" distribution

is the one of the succession of points (S
i�t

)

T
i=1

.

Bias in the measurement of the mean In the presence of an absorbing barrier
H "below", that is, lower than S

0

, the "observed mean" > "true mean"

Bias in the measurement of the volatility The "observed" variance (or
mean deviation) 6 "true" variance

The first two results are well known (see Brown, Goetzman and Ross (1995)). What
I will set to prove here is that fat-tailedness increases the bias.

First, let us pull out the "true" distribution using the reflection principle.
Thus if the barrier is H and we start at S

0

then we have two distributions, one f(S),
the other f(S-2( S

0

-H))
By the reflection principle, the "observed" distribution p(S) becomes:

p(S) =

(

f(S)� f (S � 2 (S
0

�H)) if S > H

0 if S < H

Simply, the nonobserved paths (the casualties "swallowed into the bowels of history")
represent a mass of 1-

R1
H

f(S)�f (S � 2 (S
0

�H)) dS and, clearly, it is in this mass that
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Observed Distribution

H

 Absorbed Paths

Figure 7.11: If you don’t take
into account the sample paths
that hit the barrier, the observed
distribution seems more posi-
tive, and more stable, than the
"true" one.
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Figure 7.12: The left tail has fewer
samples. The probability of an event
falling below K in n samples is F(K),
where F is the cumulative distribu-
tion.

all the hidden effects reside. We can prove that the missing mean is
RH

1 S (f(S)� f (S � 2 (S
0

�H))) dS
and perturbate f(S) using the previously seen method to "fatten" the tail.

The interest aspect of the absorbing barrier (from below) is that it has the same
effect as insufficient sampling of a left-skewed distribution under fat tails. The mean
will look better than it really is.

7.6 Left (Right) Tail Sample Insufficiency Under Neg-
ative (Positive) Skewness

E[ M’ - M* ] increases (decreases) with negative (positive) skeweness of the true underying
variable.

Some classes of payoff (those affected by Turkey problems) show better performance
than "true" mean. Others (entrepreneurship) are plagued with in-sample underestima-
tion of the mean. A naive measure of a sample mean, even without absorbing barrier,
yields a higher oberved mean than "true" mean when the distribution is skewed to the
left, and lower when the skewness is to the right.

This can be shown analytically, but a simulation works well.
To see how a distribution masks its mean because of sample insufficiency, take a

skewed distribution with fat tails, say the standard Pareto Distribution we saw earlier.
The "true" mean is known to be m= ↵

↵�1 . Generate a sequence (X
1,j , X2,j , ...,XN,j)

of random samples indexed by j as a designator of a certain history j. Measure
µj =

P
N

i=1

X
i,j

N . We end up with the sequence of various sample means (µj)
T
j=1

, which
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Figure 7.13: Median of
PT

j=1
µ
j

MT
in

simulations (106 Monte Carlo runs).
We can observe the underestima-
tion of the mean of a skewed power
law distribution as ↵ exponent gets
lower. Note that lower values of ↵
imply fatter tails.
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naturally should converge to M with both N and T. Next we calculate µ̃ the median
value of

PT
j=1

µ
j

M⇤T , such that P>µ̃ = 1

2

where, to repeat, M* is the theoretical mean we
expect from the generating distribution.
Entrepreneurship is penalized by right tail insufficiency making performance look

worse than it is. Figures 0.1 and 0.2 can be seen in a symmetrical way, producing the
exact opposite effect of negative skewness.

7.7 Why N=1 Can Be Very, Very Significant Statisti-
cally

The Power of Extreme Deviations: Under fat tails, large deviations from the mean
are vastly more informational than small ones. They are not "anecdotal". (The last two
properties corresponds to the black swan problem, inherently asymmetric).

We saw the point earlier (with the masquerade problem) in ??.??. The gist is as
follows, worth repeating and applying to this context.

A thin-tailed distribution is less likely to deliver a single large deviation than a fat
tailed distribution a series of long calm periods. Now add negative skewness to the issue,
which makes large deviations negative and small deviations positive, and a large negative
deviation, under skewness, becomes extremely informational.

Mixing the arguments of ??.?? and ??.?? we get:

Asymmetry in Inference: Under both negative [positive] skewness and fat tails,
negative [positive] deviations from the mean are more informational than positive
[negative] deviations.

7.8 The Instability of Squared Variations in Regres-
sions

Probing the limits of a standardized method by arbitrage. We can easily arbi-
trage a mechanistic method of analysis by generating data, the properties of which are
known by us, which we call "true" properties, and comparing these "true" properties to
the properties revealed by analyses, as well as the confidence of the analysis about its
own results in the form of "p-values" or other masquerades.
This is no different from generating random noise and asking the "specialist" for an
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The big deviation
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x
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y!x" Figure 7.14: A sample regression
path dominated by a large deviation.
Most samples don’t exhibit such de-
viation this, which is a problem. We
know that with certainty (an applica-
tion of the zero-one laws) that these
deviations are certain as n ! 1 , so
if one pick an arbitrarily large devi-
ation, such number will be exceeded,
with a result that can be illustrated
as the sum of all variations will
come from a single large devia-
tion.

analysis of the charts, in order to test his knowledge, and, even more importantly, asking
him to give us a probability of his analysis being wrong. Likewise, this is equivalent
to providing a literary commentator with randomly generated giberish and asking him
to provide comments. In this section we apply the technique to regression analyses, a
great subject of abuse by the social scientists, particularly when ignoring the effects of
fat tails.

In short, we saw the effect of fat tails on higher moments. We will start with 1) an
extreme case of infinite mean (in which we know that the conventional regression analyses
break down), then generalize to 2) situations with finite mean (but finite variance), then
3) finite variance but infinite higher moments. Note that except for case 3, these results
are "sort of" standard in the econometrics literature, except that they are ignored away
through tweaking of the assumptions.

Fooled by ↵=1 Assume the simplest possible regression model, as follows. Let yi=
�
0

+ �
1

xi + s zi, with Y=(yi)1<in the set of n dependent variables and X= (xi)1<in,
the independent one; Y, X ✏ R, i ✏ N. The errors zi are independent but drawn from
a standard Cauchy (symmetric, with tail exponent ↵ =1), multiplied by the amplitude
or scale s; we will vary s across the thought experiment (recall that in the absence
and variance and mean deviation we rely on s as a measure of dispersion). Since all
moments are infinite, E[zni ] = 1 for all n�1, we know ex ante that the noise is such
that the "errors" or ’residuals" have infinite means and variances –but the problem is
that in finite samples the property doesn’t show. The sum of squares will be finite.

The next figure shows the effect of a very expected large deviation, as can be expected
from a Cauchy jump.

Next we generate T simulations (indexed by j ) of n pairs (yi, xi)1<in for increasing
values of x, thanks to Cauchy distributed variables variable z↵i,j and multiplied z↵i,j by

the scaling constant s, leaving us with a set
⇣

�

�
0

+ �
1

xi + sz↵i,j
�n

i=1

⌘T

j=1

. Using stan-
dard regression techniques of estimation we "regress" and obtain the standard equation
Y est

= �est

0

+ X�est

1

, where Y est is the estimated Y, and E a vector of unexplained

residuals E⌘(✏i,j) ⌘

⇣

�

yest

i,j � �est

0

� �est

1

xij

�n

i=1

⌘T

j=1

. We thus obtain T simulated val-

ues of ⇢ ⌘ (⇢j)
T
j=1

, where ⇢j⌘1-
P

n

i=1

✏
i,j

2

P
n

i=1

(y
i,j

�y
j

)

2

, the R-square for a sample run j, where
yj= 1

n

Pn
i=1

yi,j , in other words 1- ( squared residuals) / (squared variations). We exam-
ine the distribution of the different realizations of ⇢.
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Figure 7.15: The histograms show-
ing the distribution of R Squares;
T = 106 simulations.The "true" R-
Square should be 0. High scale of
noise.
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Figure 7.16: The histograms show-
ing the distribution of R Squares;
T = 106 simulations.The "true" R-
Square should be 0. Low scale of
noise.
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Figure 7.17: We can fit different re-
gressions to the same story (which is
no story). A regression that tries to
accommodate the large deviation.
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Figure 7.18: Missing the largest de-
viation (not necessarily voluntarily):
the sample doesn’t include the criti-
cal observation.
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Figure 7.19: Finite variance but in-
finite kurtosis.

Arbitraging metrics For a sample run which, typically, will not have a large
deviation,
R-squared: 0.994813 (When the "true" R-squared would be 0)
The P-values are monstrously misleading.

Estimate Std Error T-Statistic P-Value
1 4.99 0.417 11.976 7.8⇥ 10

�33

x 0.10 0.00007224 1384.68 9.3⇥ 10

�11426

7.8.1 Application to Economic Variables

We saw in F .F that kurtosis can be attributable to 1 in 10,000 observations (>50 years
of data), meaning it is unrigorous to assume anything other than that the data has
"infinite" kurtosis. The implication is that even if the squares exist, i.e., E[z2i ] < 1,
the distribution of z2i has infinite variance, and is massively unstable. The "P-values"
remain grossly miscomputed. The next graph shows the distribution of ⇢ across samples.

7.9 Statistical Testing of Differences Between Vari-
ables

A pervasive attribute substitution: Where X and Y are two random variables, the prop-
erties of X-Y, say the variance, probabilities, and higher order attributes are markedly
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different from the difference in properties. So E (X � Y ) = E(X)� E(Y ) but of course,
V ar(X � Y ) 6= V ar(X) � V ar(Y ), etc. for higher norms. It means that P-values are
different, and of course the coefficient of variation ("Sharpe"). Where � is the Standard
deviation of the variable (or sample):

E(X � Y )

�(X � Y )

6=

E(X)

�(X)

�

E(Y ))

�(Y )

In Fooled by Randomness (2001):

A far more acute problem relates to the outperformance, or the comparison,
between two or more persons or entities. While we are certainly fooled by
randomness when it comes to a single times series, the foolishness is com-
pounded when it comes to the comparison between, say, two people, or a
person and a benchmark. Why? Because both are random. Let us do the
following simple thought experiment. Take two individuals, say, a person
and his brother-in-law, launched through life. Assume equal odds for each
of good and bad luck. Outcomes: lucky-lucky (no difference between them),
unlucky-unlucky (again, no difference), lucky- unlucky (a large difference be-
tween them), unlucky-lucky (again, a large difference).

Ten years later (2011) it was found that 50% of neuroscience papers (peer-reviewed in
"prestigious journals") that compared variables got it wrong.

In theory, a comparison of two experimental effects requires a statistical test
on their difference. In practice, this comparison is often based on an incorrect
procedure involving two separate tests in which researchers conclude that ef-
fects differ when one effect is significant (P < 0.05) but the other is not (P
> 0.05). We reviewed 513 behavioral, systems and cognitive neuroscience
articles in five top-ranking journals (Science, Nature, Nature Neuroscience,
Neuron and The Journal of Neuroscience) and found that 78 used the correct
procedure and 79 used the incorrect procedure. An additional analysis sug-
gests that incorrect analyses of interactions are even more common in cellular
and molecular neuroscience.

In Nieuwenhuis, S., Forstmann, B. U., & Wagenmakers, E. J. (2011). Erroneous analy-
ses of interactions in neuroscience: a problem of significance. Nature neuroscience, 14(9),
1105-1107.

Fooled by Randomness was read by many professionals (to put it mildly); the mistake
is still being made. Ten years from now, they will still be making the mistake.

7.10 Studying the Statistical Properties of Binaries and
Extending to Vanillas

See discussion in Chapter 9. A lot of nonsense in discussions of rationality facing "dread
risk" (such as terrorism or nuclear events) based on wrong probabilistic structures, such
as comparisons of fatalities from falls from ladders to death from terrorism. The prob-
ability of falls from ladder doubling is 1 10

20. Terrorism is fat-tailed: similar claims
cannot be made.

A lot of unrigorous claims like "long shot bias" is also discussed there.
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7.11 Why Economics Time Series Don’t Replicate

(Debunking a Nasty Type of Misinference)
Something Wrong With Econometrics, as Almost All Papers Don’t Repli-

cate. The next two reliability tests, one about parametric methods the other about
robust statistics, show that there is something wrong in econometric methods, funda-
mentally wrong, and that the methods are not dependable enough to be of use in anything
remotely related to risky decisions.

7.11.1 Performance of Standard Parametric Risk Estimators, f(x) =
xn (Norm L2 )

With economic variables one single observation in 10,000, that is, one single day in 40
years, can explain the bulk of the "kurtosis", a measure of "fat tails", that is, both
a measure how much the distribution under consideration departs from the standard
Gaussian, or the role of remote events in determining the total properties. For the U.S.
stock market, a single day, the crash of 1987, determined 80% of the kurtosis. The same
problem is found with interest and exchange rates, commodities, and other variables.
The problem is not just that the data had "fat tails", something people knew but sort
of wanted to forget; it was that we would never be able to determine "how fat" the tails
were within standard methods. Never.
The implication is that those tools used in economics that are based on squaring

variables (more technically, the Euclidian, or L

2 norm), such as standard deviation,
variance, correlation, regression, the kind of stuff you find in textbooks, are not valid
scientifically(except in some rare cases where the variable is bounded). The so-called "p
values" you find in studies have no meaning with economic and financial variables. Even
the more sophisticated techniques of stochastic calculus used in mathematical finance do
not work in economics except in selected pockets.
The results of most papers in economics based on these standard statistical methods

are thus not expected to replicate, and they effectively don’t. Further, these tools invite
foolish risk taking. Neither do alternative techniques yield reliable measures of rare
events, except that we can tell if a remote event is underpriced, without assigning an
exact value.
From [71]), using Log returns, Xt ⌘ log

⇣

P (t)
P (t�i�t)

⌘

, take the measure MX
t

�

(�1,1), X4

�

of the fourth noncentral moment:

MX
t

�

(�1,1), X4

�

⌘

1

n

n
X

i=0

X4

t�i�t

and the n-sample maximum quartic observation Max(Xt�i�t

4

)

n
i=0

. Q(n) is the contri-
bution of the maximum quartic variations over n samples.

Q(n) ⌘
Max

�

X4

t��ti)
n
i=0

Pn
i=0

X4

t��ti

For a Gaussian (i.e., the distribution of the square of a Chi-square distributed variable)
show Q

�

10

4

�

the maximum contribution should be around .008 ± .0028. Visibly we can
see that the distribution 4

th moment has the property

P
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Figure 7.20: Max quartic across se-
curities
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Recall that, naively, the fourth moment expresses the stability of the second moment.
And the second moment expresses the stability of the measure across samples.

Security Max Q Years.
Silver 0.94 46.
SP500 0.79 56.
CrudeOil 0.79 26.
Short Sterling 0.75 17.
Heating Oil 0.74 31.
Nikkei 0.72 23.
FTSE 0.54 25.
JGB 0.48 24.
Eurodollar Depo 1M 0.31 19.
Sugar #11 0.3 48.
Yen 0.27 38.
Bovespa 0.27 16.
Eurodollar Depo 3M 0.25 28.
CT 0.25 48.
DAX 0.2 18.

Note that taking the snapshot at a different period would show extremes coming from
other variables while these variables showing high maximma for the kurtosis, would drop,
a mere result of the instability of the measure across series and time. Description of the
dataset:
All tradable macro markets data available as of August 2008, with "tradable" meaning

actual closing prices corresponding to transactions (stemming from markets not bureau-
cratic evaluations, includes interest rates, currencies, equity indices).

7.11.2 Performance of Standard NonParametric Risk Estimators,
f(x)= x or |x| (Norm L1), A =(-1, K]

Does the past resemble the future in the tails? The following tests are nonparametric,
that is entirely based on empirical probability distributions.
So far we stayed in dimension 1. When we look at higher dimensional properties, such

as covariance matrices, things get worse. We will return to the point with the treatment
of model error in mean-variance optimization.
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Figure 7.21: Kurtosis across
nonoverlapping periods
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Figure 7.22: Monthly delivered
volatility in the SP500 (as measured
by standard deviations). The only
structure it seems to have comes
from the fact that it is bounded at 0.
This is standard.
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Figure 7.23: Montly volatility of
volatility from the same dataset, pre-
dictably unstable.
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Figure 7.24: Comparing M[t-1, t]
and M[t,t+1], where ⌧= 1year,
252 days, for macroeconomic data
using extreme deviations, A =
(�1,�2 STD (equivalent)], f(x) =
x (replication of data from The
Fourth Quadrant, Taleb, 2009)
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Figure 7.25: The "regular" is predic-
tive of the regular, that is mean de-
viation. Comparing M[t] and M[t+1
year] for macroeconomic data us-
ing regular deviations, A= (-1 ,1),
f(x)= |x|
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Figure 7.26: The figure shows
how things gets a lot worse for
large deviations A = (�1 ,-
4standarddeviations(equivalent),
f(x) = x
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When xt are now in RN , the problems of sensitivity to changes in the covariance matrix
makes the estimator M extremely unstable. Tail events for a vector are vastly more
difficult to calibrate, and increase in dimensions.

Figure 7.27: Correlations are also problematic, which flows from the instability of single vari-
ances and the effect of multiplication of the values of random variables.
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The Responses so far by members of the economics/econometrics
establishment : "his books are too popular to merit attention", "nothing new"
(sic), "egomaniac" (but I was told at the National Science Foundation that "egomaniac"
does not apper to have a clear econometric significance). No answer as to why they still
use STD, regressions, GARCH, value-at-risk and similar methods.

Peso problem : Note that many researchers [CITATION] invoke "outliers" or "peso
problem" as acknowledging fat tails, yet ignore them analytically (outside of Poisson
models that we will see are not possible to calibrate except after the fact). Our approach
here is exactly the opposite: do not push outliers under the rug, rather build everything
around them. In other words, just like the FAA and the FDA who deal with safety
by focusing on catastrophe avoidance, we will throw away the ordinary under the rug
and retain extremes as the sole sound approach to risk management. And this extends
beyond safety since much of the analytics and policies that can be destroyed by tail
events are unusable.

Peso problem confusion about the Black Swan problem :
"(...) "Black Swans" (Taleb, 2007). These cultural icons refer to disasters
that occur so infrequently that they are virtually impossible to analyze using
standard statistical inference. However, we find this perspective less than
helpful because it suggests a state of hopeless ignorance in which we resign
ourselves to being buffeted and battered by the unknowable."

(Andrew Lo, who obviously did not bother to read the book he was citing.
The comment also shows the lack of the common sense to look for robustness
to these events instead of just focuing on probability).

Lack of skin in the game. Indeed one wonders why econometric methods can be
used while being wrong, so shockingly wrong, how "University" researchers (adults) can
partake of such acts of artistry. Basically these capture the ordinary and mask higher
order effects. Since blowups are not frequent, these events do not show in data and the
researcher looks smart most of the time while being fundamentally wrong. At the source,
researchers, "quant" risk manager, and academic economist do not have skin in the game
so they are not hurt by wrong risk measures: other people are hurt by them. And the
artistry should continue perpetually so long as people are allowed to harm others with
impunity. (More in Taleb and Sandis, 2013)

7.12 A General Summary of The Problem of Reliance
on Past Time Series

The four aspects of what we will call the nonreplicability issue, particularly for mesures
that are in the tails. These are briefly presented here and developed more technically
throughout the book:
a- Definition of statistical rigor (or Pinker Problem). The idea that an estima-

tor is not about fitness to past data, but related to how it can capture future realizations
of a process seems absent from the discourse. Much of econometrics/risk management
methods do not meet this simple point and the rigor required by orthodox, basic statis-
tical theory.
b- Statistical argument on the limit of knowledge of tail events. Problems of

replicability are acute for tail events. Tail events are impossible to price owing to the
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limitations from the size of the sample. Naively rare events have little data hence what
estimator we may have is noisier.
c- Mathematical argument about statistical decidability. No probability with-

out metaprobability. Metadistributions matter more with tail events, and with fat-tailed
distributions.

1. The soft problem: we accept the probability distribution, but the imprecision in
the calibration (or parameter errors) percolates in the tails.

2. The hard problem (Taleb and Pilpel, 2001, Taleb and Douady, 2009): We need to
specify an a priori probability distribution from which we depend, or alternatively,
propose a metadistribution with compact support.

3. Both problems are bridged in that a nested stochastization of standard deviation
(or the scale of the parameters) for a Gaussian turn a thin-tailed distribution into a
power law (and stochastization that includes the mean turns it into a jump-diffusion
or mixed-Poisson).

d- Economic arguments: The Friedman-Phelps and Lucas critiques, Goodhart’s
law. Acting on statistical information (a metric, a response) changes the statistical
properties of some processes.

7.13 Conclusion

This chapter introduced the problem of "surprises" from the past of time series, and
the invalidity of a certain class of estimators that seem to only work in-sample. Before
examining more deeply the mathematical properties of fat-tails, let us look at some
practical aspects.



F On the Instability of Econometric Data

Table F.1: Fourth noncentral moment at daily, 10-day, and 66-day windows for the random
variables

K
(1) K (10) K

(66)

Max
Quar-
tic

Years

Australian
Dollar/USD 6.3 3.8 2.9 0.12 22.

Australia
TB 10y 7.5 6.2 3.5 0.08 25.

Australia TB
3y 7.5 5.4 4.2 0.06 21.

BeanOil 5.5 7.0 4.9 0.11 47.
Bonds 30Y 5.6 4.7 3.9 0.02 32.
Bovespa 24.9 5.0 2.3 0.27 16.
British
Pound/USD 6.9 7.4 5.3 0.05 38.

CAC40 6.5 4.7 3.6 0.05 20.
Canadian Dol-
lar 7.4 4.1 3.9 0.06 38.

Cocoa NY 4.9 4.0 5.2 0.04 47.
Coffee NY 10.7 5.2 5.3 0.13 37.
Copper 6.4 5.5 4.5 0.05 48.
Corn 9.4 8.0 5.0 0.18 49.
Crude Oil 29.0 4.7 5.1 0.79 26.
CT 7.8 4.8 3.7 0.25 48.
DAX 8.0 6.5 3.7 0.20 18.
Euro Bund 4.9 3.2 3.3 0.06 18.
Euro Cur-
rency/DEM
previously

5.5 3.8 2.8 0.06 38.

Eurodollar
Depo 1M 41.5 28.0 6.0 0.31 19.

Eurodollar
Depo 3M 21.1 8.1 7.0 0.25 28.

FTSE 15.2 27.4 6.5 0.54 25.
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Table F.1: (continued from previous page)

K
(1) K (10) K

(66)

Max
Quar-
tic

Years

Gold 11.9 14.5 16.6 0.04 35.
Heating Oil 20.0 4.1 4.4 0.74 31.
Hogs 4.5 4.6 4.8 0.05 43.
Jakarta Stock
Index 40.5 6.2 4.2 0.19 16.

Japanese Gov
Bonds 17.2 16.9 4.3 0.48 24.

Live Cattle 4.2 4.9 5.6 0.04 44.
Nasdaq Index 11.4 9.3 5.0 0.13 21.
Natural Gas 6.0 3.9 3.8 0.06 19.
Nikkei 52.6 4.0 2.9 0.72 23.
Notes 5Y 5.1 3.2 2.5 0.06 21.
Russia RTSI 13.3 6.0 7.3 0.13 17.
Short Sterling 851.8 93.0 3.0 0.75 17.
Silver 160.3 22.6 10.2 0.94 46.
Smallcap 6.1 5.7 6.8 0.06 17.
SoyBeans 7.1 8.8 6.7 0.17 47.
SoyMeal 8.9 9.8 8.5 0.09 48.
Sp500 38.2 7.7 5.1 0.79 56.
Sugar #11 9.4 6.4 3.8 0.30 48.
SwissFranc 5.1 3.8 2.6 0.05 38.
TY10Y Notes 5.9 5.5 4.9 0.10 27.
Wheat 5.6 6.0 6.9 0.02 49.
Yen/USD 9.7 6.1 2.5 0.27 38.



8 The Generalized Payoff Function

Chapter Summary 7: We map payoffs in order to analyze various claims in
decision-making.

We have a variable, with its own statistical properties, the "underlying", and its own
support. The exercise consists in isolating the payoff, or "exposure" from such a variable,
as the payoff will itself be now a random variable with its own statistical properties. In
this case we call S the primitive, or variable under consideration, and � the derived
payoff. Let us stay in dimension 1.

Let O be a family the one-dimensional payoff functions considered as of time t
0

over
a certain horizon t 2 R+ , for:

A variable X 2 D = (d�, d+), with initial value xt
0

and value xt at time of the payoff,
upper bound d+ � 0 and lower bound d�  d+

Let A be an indicator function, A 2 {1,�1}, q the size of the exposure, and P a
constant(set at time t

0

) (meant to represent the inital outlay, investment, or exposure).

8.1 First Method

The payoff kernel becomes, over support D and subdomain

 (xt,K) ⌘ f(xt,K) dPt
0

,t(xt,K)

With the expectation under discussion:
R

D (xt,K)dPt
0

,t(xt,K)

Binary Payoff: f(xt,K) = x
t

2A, A = {xt : St � K;xt 2 D}

Continuous payoff: f(xt,K) = xt

Complex payoff: f(xt,K)is some nonlinear function of xt

Contingent claim: f(xt,K) = (S
0

ext

+µ
�K), here for instance St = S

0

ext , x
0

= 0

Type f(xt) p(x) d� d�

Bet x
t

2A Class 1 �1 1

8.2 Second Method

Where �(.) is the Dirac delta function satisfying �(x) = 0 for x 2 D , x 6= 0 and
R

D�(x) dx = 1,

151



152 CHAPTER 8. THE GENERALIZED PAYOFF FUNCTION

Level 0, The Building Block of All Payoffs For i = 0 we get the ele-
mentary security, also called "atomic" Arrow-Debreu security, "state price density", or
"butterfly":

�

0

t
0

,t(St,K) ⌘ �(K � St)

Such a security will deliver payoffs through integration.

Here we can go two routes. One is to use � as a kernel, multiplied by another function
in an integral transform. The other is to build integrals of higher order around such
elementary security.

Level 1, The Binary The first payoff is the binary �1 obtained by integrating
once, which delivers a unit above K:

�

1

t
0

,t(St,K, I, d) ⌘

8

>

>

>

>

>

<

>

>

>

>

>

:

Z S
t

d�
�

0

t
0

,t(x,K) dx if I = 1 , d = d� and K � d�

Z d+

S
t

�

0

t
0

,t(x,K) dx if I = �1 & , d = d+ and K < d�

(8.1)

which can be expressed as the Heaviside ✓ function: ✓(St�K) and ✓(K�St), respectively.

By Combining q(I �1

t
0

,t(St,K, I, d)� I P ) we get all possible binary payoffs in D, as
seen in 8.2.

!2"1!!2, St"#1
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Level 2, Standard Payoffs
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This section will be completed.
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9 Difference Between Binary and
Variable Risk

(With Implications For Forecasting Tournaments and
Decision Making Research)

Chapter Summary 8: There are serious statistical differences between pre-
dictions, bets, and exposures that have a yes/no type of payoff, the “binaries”,
and those that have varying payoffs, which we call standard, multi-payoff (or
"variables"). Real world exposures tend to belong to the multi-payoff cate-

Table 9.1: True and False Biases in the Psychology Literature

Alleged
Bias

Erroneous do-
main

Justified do-
main

Dread Risk Comparing Ter-
rorism to fall
from ladders

Comparing risks
of driving vs fly-
ing

Overestimation
of small
probabilities

Open-ended
payoffs in fat-
tailed domains

Bounded bets in
laboratory set-
ting

Long shot
bias

Convex financial
payoffs

Lotteries

Prediction
markets

Revolutions Elections

Prediction
markets

"Crashes" in
Natural Mar-
kets (Finance)

Sports
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Figure 9.1: Comparing digital payoff (left) to the variable (right). The vertical payoff shows xi,
(x1, x2, ...) and the horizontal shows the index i= (1,2,...), as i can be time, or any other form
of classification. We assume in the first case payoffs of {-1,1}, and open-ended (or with a very
remote and unknown bounds) in the second.

gory, and are poorly captured by binaries. Yet much of the economics and
decision making literature confuses the two. variables exposures are sensitive
to Black Swan effects, model errors, and prediction problems, while the bina-
ries are largely immune to them. The binaries are mathematically tractable,
while the variables are much less so. Hedging variables exposures with bi-
nary bets can be disastrous–and because of the human tendency to engage in
attribute substitution when confronted by difficult questions,decision-makers
and researchers often confuse the variable for the binary.

9.1 Binary vs variable Predictions and Exposures

Binary: Binary predictions and exposures are about well defined discrete events, with
yes/no types of answers, such as whether a person will win the election, a single individual
will die, or a team will win a contest. We call them binary because the outcome is either
0 (the event does not take place) or 1 (the event took place), that is the set {0,1} or the
set {aL, aH}, with aL < aH any two discrete and exhaustive values for the outcomes.
For instance, we cannot have five hundred people winning a presidential election. Or a
single candidate running for an election has two exhaustive outcomes: win or lose.

Standard: “variable” predictions and exposures, also known as natural random vari-
ables, correspond to situations in which the payoff is continuous and can take several
values. The designation “variable” originates from definitions of financial contracts1 ; it
is fitting outside option trading because the exposures they designate are naturally oc-
curring continuous variables, as opposed to the binary that which tend to involve abrupt
institution-mandated discontinuities. The variables add a layer of complication: profits
for companies or deaths due to terrorism or war can take many, many potential values.
You can predict the company will be “profitable”, but the profit could be $1 or $10
billion.

There is a variety of exposures closer to the variables, namely bounded exposures that
we can subsume mathematically into the binary category.

The main errors are as follows.
1The “vanilla” designation comes from option exposures that are open-ended as opposed to the binary

ones that are called “exotic”.
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• Binaries always belong to the class of thin-tailed distributions, because of bound-
edness, while the variabless don’t. This means the law of large numbers operates
very rapidly there. Extreme events wane rapidly in importance: for instance, as
we will see further down in the discussion of the Chernoff bound, the probability
of a series of 1000 bets to diverge more than 50% from the expected average is less
than 1 in 10

18, while the variables can experience wilder fluctuations with a high
probability, particularly in fat-tailed domains. Comparing one to another can be a
lunacy.

• The research literature documents a certain class of biases, such as "dread risk"
or "long shot bias", which is the overestimation of some classes of rare events,
but derived from binary variables, then falls for the severe mathematical mitake
of extending the result to variables exposures. If ecological exposures in the real
world tends to have variables, not binary properties, then much of these results are
invalid.

Let us return to the point that the variations of variables are not bounded, or have a
remote boundary. The consequence is that the prediction of the variable is marred by
Black Swan effects and need to be considered from such a viewpoint. For instance, a
few prescient observers saw the potential for war among the Great Power of Europe in
the early 20th century but virtually everyone missed the second dimension: that the war
would wind up killing an unprecedented twenty million persons, setting the stage for
both Soviet communism and German fascism and a war that would claim an additional
60 million, followed by a nuclear arms race from 1945 to the present, which might some
day claim 600 million lives.

9.2 The Applicability of Some Psychological Biases

Without going through specific identifying biases, Table 1 shows the effect of the error
across domains. We are not saying that the bias does not exist; rather that, if the error
is derived in a binary environment, or one with a capped payoff, it does not port outside
the domain in which it was derived.

The Black Swan is Not About Probability But Payoff

In short, the variable has another dimension, the payoff, in addition to the probability,
while the binary is limited to the probability. Ignoring this additional dimension is
equivalent to living in a 3-D world but discussing it as if it were 2-D, promoting the
illusion to all who will listen that such an analysis captures all worth capturing.
Now the Black Swan problem has been misunderstood. We are saying neither that

there must be more volatility in our complexified world nor that there must be more
outliers. Indeed, we may well have fewer such events but it has been shown that, under
the mechanisms of “fat tails”, their “impact” gets larger and larger and more and more
unpredictable. The main cause is globalization and the spread of winner-take-all effects
across variables (just think of the Google effect), as well as effect of the increased physical
and electronic connectivity in the world, causing the weakening of “island effect” a well
established fact in ecology by which isolated areas tend to have more varieties of species
per square meter than larger ones. In addition, while physical events such as earthquakes
and tsunamis may not have changed much in incidence and severity over the last 65
million years (when the dominant species on our planet, the dinosaurs, had a very bad
day), their effect is compounded by interconnectivity.
So there are two points here.
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Binary predictions are more tractable than standard ones First,
binary predictions tend to work; we can learn to be pretty good at making them (at least
on short timescales and with rapid accuracy feedback that teaches us how to distinguish
signals from noise —all possible in forecasting tournaments as well as in electoral fore-
casting — see Silver, 2012). Further, these are mathematically tractable: your worst
mistake is bounded, since probability is defined on the interval between 0 and 1. But
the applications of these binaries tend to be restricted to manmade things, such as the
world of games (the “ludic” domain).

It is important to note that, ironically, not only do Black Swan effects not impact the
binaries, but they even make them more mathematically tractable, as will see further
down.

Binary predictions are often taken as a substitute for standard
ones Second, most non-decision makers tend to confuse the binary and the variable.
And well-intentioned efforts to improve performance in binary prediction tasks can have
the unintended consequence of rendering us oblivious to catastrophic variable exposure.

The confusion can be traced to attribute substitution and the widespread tendency to
replace difficult-to-answer questions with much-easier-to-answer ones. For instance, the
extremely-difficult-to-answer question might be whether China and the USA are on an
historical trajectory toward a rising-power/hegemon confrontation with the potential to
claim far more lives than the most violent war thus far waged (say 10X more the 60M
who died in World War II). The much-easier-binary-replacement questions —the sorts
of questions likely to pop up in forecasting tournaments or prediction markets — might
be whether the Chinese military kills more than 10 Vietnamese in the South China Sea
or 10 Japanese in the East China Sea in the next 12 months or whether China publicly
announces that it is restricting North Korean banking access to foreign currency in the
next 6 months.

The nub of the conceptual confusion is that although predictions and payoffs are
completely separate mathematically, both the general public and researchers are un-
der constant attribute-substitution temptation of using answers to binary questions as
substitutes for exposure to standard risks.

We often observe such attribute substitution in financial hedging strategies. For
instance, Morgan Stanley correctly predicted the onset of a subprime crisis, but they
had a binary hedge and ended up losing billions as the crisis ended up much deeper than
predicted ( Bloomberg Magazine, March 27, 2008).

Or, consider the performance of the best forecasters in geopolitical forecasting tourna-
ments over the last 25 years (Tetlock, 2005; Tetlock & Mellers, 2011; Mellers et al, 2013).
These forecasters may will be right when they say that the risk of a lethal confrontation
claiming 10 or more lives in the East China Sea by the end of 2013 is only 0.04. They
may be very “well calibrated” in the narrow technical sense that when they attach a
4% likelihood to events, those events occur only about 4% of the time. But framing
a "variable" question as a binary question is dangerous because it masks exponentially
escalating tail risks: the risks of a confrontation claiming not just 10 lives of 1000 or 1
million. No one has yet figured out how to design a forecasting tournament to assess
the accuracy of probability judgments that range between .00000001% and 1% —and if
someone ever did, it is unlikely that anyone would have the patience —or lifespan —to
run the forecasting tournament for the necessary stretches of time (requiring us to think
not just in terms of decades, centuries and millennia).

The deep ambiguity of objective probabilities at the extremes—and the inevitable
instability in subjective probability estimates—can also create patterns of systematic
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mispricing of options. An option or option like payoff is not to be confused with a lottery,
and the “lottery effect” or “long shot bias” often discussed in the economics literature
that documents that agents overpay for these bets should not apply to the properties of
actual options.

In Fooled by Randomness, the narrator is asked “do you predict that the market is
going up or down?” “Up”, he said, with confidence. Then the questioner got angry when
he discovered that the narrator was short the market, i.e., would benefit from the market
going down. The trader had a difficulty conveying the idea that someone could hold the
belief that the market had a higher probability of going up, but that, should it go down,
it would go down a lot. So the rational response was to be short.

This divorce between the binary (up is more likely) and the variable is very prevalent
in real-world variables. Indeed we often see reports on how a certain financial institution
“did not have a losing day in the entire quarter”, only to see it going near-bust from
a monstrously large trading loss. Likewise some predictors have an excellent record,
except that following their advice would result in large losses, as they are rarely wrong,
but when they miss their forecast, the results are devastating.

Remark:More technically, for a heavy tailed distribution (defined as part of the subexpo-
nential family, see Taleb 2013), with at least one unbounded side to the random variable
(one-tailedness), the variable prediction record over a long series will be of the same or-
der as the best or worst prediction, whichever in largest in absolute value, while no single
outcome can change the record of the binary.

Another way to put the point: to achieve the reputation of “Savior of Western civiliza-
tion,”a politician such as Winston Churchill needed to be right on only one super-big
question (such as the geopolitical intentions of the Nazis)– and it matters not how many
smaller errors that politician made (e.g. Gallipoli, gold standard, autonomy for India).
Churchill could have a terrible Brier score (binary accuracy) and a wonderful reputation
(albeit one that still pivots on historical counterfactuals).

Finally, one of the authors wrote an entire book (Taleb, 1997) on the hedging and
mathematical differences between binary and variable. When he was an option trader,
he realized that binary options have nothing to do with variable options, economically
and mathematically. Seventeen years later people are still making the mistake.
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Figure 9.2: Fatter and fatter tails: different values for a. Note that higher peak implies a lower
probability of leaving the ±1 � tunnel
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9.3 The Mathematical Differences

Chernoff Bound The binary is subjected to very tight bounds. Let (Xi)
1<in bea

sequence independent Bernouilli trials taking values in the set {0, 1}, with P(X = 1]) = p
and P(X = 0) = 1�p, Take the sum Sn =

P

1<in Xi. with expectation E(Sn)= np = µ.
Taking � as a “distance from the mean”, the Chernoff bounds gives:
For any � > 0

P(S � (1 + �)µ) 

✓

e�

(1 + �)1+�

◆µ

and for 0 < �  1

P(S � (1 + �)µ)  2e�
µ�

2

3

Let us compute the probability of coin flips n of having 50% higher than the true mean,
with p= 1

2

and µ = n
2

: P
�

S �

�

3

2

�

n
2

�

 2e�
µ�

2

3

= e�n/24

which for n = 1000 happens every 1 in 1.24⇥ 10

18.

Fatter tails lower the probability of remote events (the binary)
and raise the value of the variable.

The following intuitive exercise will illustrate what happens when one conserves the vari-
ance of a distribution, but “fattens the tails” by increasing the kurtosis. The probability
of a certain type of intermediate and large deviation drops, but their impact increases.
Counterintuitively, the possibility of staying within a band increases.
Let x be a standard Gaussian random variable with mean 0 (with no loss of generality)

and standard deviation �. Let P>1� be the probability of exceeding one standard
deviation. P>1�= 1 �

1

2

erfc
⇣

�

1p
2

⌘

, where erfc is the complementary error function,
so P>1� = P<1� '15.86% and the probability of staying within the “stability tunnel”
between ± 1 � is 1� P>1�� P<1� ' 68.3%.
Let us fatten the tail in a variance-preserving manner, using the “barbell” standard

method of linear combination of two Gaussians with two standard deviations separated
by �

p

1 + a and �
p

1� a , a 2(0,1), where a is the “vvol” (which is variance preserving,
technically of no big effect here, as a standard deviation-preserving spreading gives the
same qualitative result). Such a method leads to the immediate raising of the standard

Kurtosis by
�

1 + a2
�

since E
(

x4

)

E(x2

)

2

= 3

�

a2 + 1

�

, where E is the expectation operator.

(9.1)
P >1� = P<1�

= 1�

1

2

erfc
✓

�

1

p

2

p

1� a

◆

�

1

2

erfc
✓

�

1

p

2

p

a+ 1

◆

So then, for different values of a in Eq. 1 as we can see in Figure 2, the probability of
staying inside 1 sigma rises, “rare” events become less frequent.
Note that this example was simplified for ease of argument. In fact the “tunnel”

inside of which fat tailedness increases probabilities is between�
q

1

2

�

5�

p

17

�

� and



9.3. THE MATHEMATICAL DIFFERENCES 161

Binary

Vanilla

Bet 

Level

x

f!x"

Figure 9.3: The different classes of payoff
f(x) seen in relation to an event x. (When
considering options, the variable can start
at a given bet level, so the payoff would be
continuous on one side, not the other).

q

1

2

�

5�

p

17

�

� (even narrower than 1 � in the example, as it numerically corresponds

to the area between -.66 and .66), and the outer one is ±

q

1

2

�

5 +

p

17

�

� , that is the
area beyond ±2.13 �.

The law of large numbers works better with the binary than
the variable

Getting a bit more technical, the law of large numbers works much faster for the binary
than the variable (for which it may never work, see Taleb, 2013). The more convex
the payoff, the more observations one needs to make a reliable inference. The idea
is as follows, as can be illustrated by an extreme example of very tractable binary and
intractable variable.

Let xt be the realization of the random variable X 2 (-1, 1) at period t, which follows
a Cauchy distribution with p.d.f. f (xt)⌘

1

⇡((x
0

�1)2+1)

. Let us set x
0

= 0 to simplify and
make the exposure symmetric around 0. The variable exposure maps to the variable
xt and has an expectation E (xt) =

R1
�1 xtf(x)dx, which is undefined (i.e., will never

converge to a fixed value). A bet at x
0

has a payoff mapped by as a Heaviside Theta
Function ✓>x

0

(xt) paying 1 if xt > x
0

and 0 otherwise. The expectation of the payoff is
simply E(✓(x)) =

R1
�1 ✓>x

0

(x)f(x)dx=
R1
x
0

f(x)dx, which is simply P (x > 0). So long
as a distribution exists, the binary exists and is Bernouilli distributed with probability
of success and failure p and 1—p respectively .

The irony is that the payoff of a bet on a Cauchy, admittedly the worst possible distri-
bution to work with since it lacks both mean and variance, can be mapped by a Bernouilli
distribution, about the most tractable of the distributions. In this case the variable is
the hardest thing to estimate, and the binary is the easiest thing to estimate.

Set Sn =

1

n

Pn
i=1

xt
i

the average payoff of a variety of variable bets xt
i

across peri-
ods ti, and S✓

n =

1

n

Pn
i=1

✓>x
0

(xt
i

). No matter how large n, limn!1 S✓
n has the

same properties — the exact same probability distribution —as S
1

. On the other
hand limn!1 S✓

n=

p; further the presaymptotics of S✓
n are tractable since it con-

verges to 1

2

rather quickly, and the standard deviations declines at speed
p

n , since
p

V (S✓
n) =

q

V (S✓

1

)

n =
q

(1�p)p
n (given that the moment generating function for the

average is M(z) =
�

pez/n � p+ 1

�n).
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The binary has necessarily a thin-tailed distribution, regardless
of domain

More, generally, for the class of heavy tailed distributions, in a long time series, the sum
is of the same order as the maximum, which cannot be the case for the binary:

lim

X!1

P (X >
Pn

i=1

xt
i

)

P
⇣

X > max (xt
i

)i2n

⌘

= 1 (9.2)

Compare this to the binary for which

lim

X!1
P
⇣

X > max (✓(xt
i

))i2n

⌘

= 0 (9.3)

The binary is necessarily a thin-tailed distribution, regardless of domain.
We can assert the following:
• The sum of binaries converges at a speed faster or equal to that of the variable.

• The sum of binaries is never dominated by a single event, while that of the variable
can be.

How is the binary more robust to model error?

In the more general case, the expected payoff of the variable is expressed as
R

A
xdF (x)

(the unconditional shortfall) while that of the binary=
R

À

dF (x), where A is the part
of the support of interest for the exposure, typically A⌘[K,1), or (�1,K]. Consider
model error as perturbations in the parameters that determine the calculations of the
probabilities. In the case of the variable, the perturbation’s effect on the probability is
multiplied by a larger value of x.
As an example, define a slighly more complicated variable than before, with option-like

characteristics, V (↵,K) ⌘

R1
K

x p↵(x)dx and B(↵,K) ⌘

R1
K

p↵(x) dx, where V is the
expected payoff of variable, B is that of the binary, K is the “strike” equivalent for the
bet level, and with x2[1, 1) let p↵(x) be the density of the Pareto distribution with
minimum value 1 and tail exponent ↵, so p↵(x) ⌘ ↵x�↵�1.
Set the binary at .02, that is, a 2% probability of exceeding a certain number K,

corresponds to an ↵=1.2275 and a K=24.2, so the binary is expressed as B(1.2, 24.2).
Let us perturbate ↵, the tail exponent, to double the probability from .02 to .04. The
result is B(1.01,24.2)

B(1.2,24.2) = 2. The corresponding effect on the variable is V (1.01,24.2)
V (1.2,24.2) = 37.4.

In this case the variable was ⇠18 times more sensitive than the binary.
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10 Fat Tails From Recursive Uncertainty

Second Version. An earlier version was presented at Benoit Mandelbrot’s Scientific
Memorial, New Haven, April 11, 2011, under the title: The Future Will Be More Fat

Tailed Than The Past

Chapter Summary 9: Error about Errors. Probabilistic representations
require the inclusion of model (or representation) error (a probabilistic
statement has to have an error rate), and, in the event of such treatment,
one also needs to include second, third and higher order errors (about the
methods used to compute the errors) and by a regress argument, to take
the idea to its logical limit, one should be continuously reapplying the
thinking all the way to its limit unless when one has a reason to stop, as
a declared a priori that escapes quantitative and statistical method. We
show how power laws emerge from nested errors on errors of the standard
deviation for a Gaussian distribution. We also show under which regime
regressed errors lead to non-power law fat-tailed distributions.

10.1 Layering uncertainty

With the Central Limit Theorem: we start with a distribution and, under some condi-
tions, end with a Gaussian. The opposite is more likely to be true. We start with a
Gaussian and under error rates we end with a fat-tailed distribution.

Unlike with the Bayesian compounding the:
1. Numbers of recursions

and

2. Structure of the error of the error (declining, flat, multiplicative or additive)
determine the final moments and the type of distribution.

Note that historically, derivations of power laws have been statistical (cumulative
advantage, preferential attachment, winner-take-all effects, criticality), and the proper-
ties derived by Yule, Mandelbrot, Zipf, Simon, Bak, and others result from structural
conditions or breaking the independence assumptions in the sums of random variables
allowing for the application of the central limit theorem. This work is entirely epistemic,
based on the projection of standard philosophical doubts into the future, in addition to
regress arguments.

10.1.1 Layering Uncertainties

Take a standard probability distribution, say the Gaussian. The measure of dispersion,
here �, is estimated, and we need to attach some measure of dispersion around it. The

165
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Σ

!1" a1"Σ

!a1 # 1"Σ

!a1 # 1" !1" a2"Σ

!a1 # 1" !a2 # 1"Σ

!1" a1" !1" a2"Σ

!1" a1" !a2 # 1"Σ

!1" a1" !1" a2" !1" a3"Σ

!1" a1" !a2 # 1" !1" a3"Σ

!a1 # 1" !1" a2" !1" a3"Σ

!a1 # 1" !a2 # 1" !1" a3"Σ

!1" a1" !1" a2" !a3 # 1"Σ

!1" a1" !a2 # 1" !a3 # 1"Σ

!a1 # 1" !1" a2" !a3 # 1"Σ

!a1 # 1" !a2 # 1" !a3 # 1"Σ

Figure 10.1: Three levels of multiplicative relative error rates for the standard deviation � , with
(1± an) the relative error on an�1

uncertainty about the rate of uncertainty, so to speak, or higher order parameter, similar
to what called the “volatility of volatility” in the lingo of option operators –here it would
be “uncertainty rate about the uncertainty rate”. And there is no reason to stop there:
we can keep nesting these uncertainties into higher orders, with the uncertainty rate of
the uncertainty rate of the uncertainty rate, and so forth. There is no reason to have
certainty anywhere in the process.

10.1.2 Main Results

Note that unless one stops the branching at an early stage, all the results raise small
probabilities (in relation to their remoteness; the more remote the event, the worse the
relative effect).

1. Under the first regime of proportional constant (or increasing) recursive layers
of uncertainty about rates of uncertainty expressed as standard deviation, the
distribution converges to a power law with infinite variance, even when one starts
with a standard Gaussian.

2. Under the same first regime, expressing uncertainty about uncertainty in terms of
variance, the distribution converges to a power law with finite variance but infinite
(or undefined) higher moments.
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3. Under the other regime, where the errors are decreasing (proportionally) for higher
order errors, the ending distribution becomes fat-tailed but in a benign way as
it retains its finite variance attribute (as well as all higher moments), allowing
convergence to Gaussian under Central Limit.

We manage to set a boundary between these two regimes.
In both regimes the use of a thin-tailed distribution is not warranted unless higher order

errors can be completely eliminated a priori.

10.1.3 Higher order integrals in the Standard Gaussian Case

We start with the case of a Gaussian and focus the uncertainty on the assumed standard
deviation. Define �(µ,�,x) as the Gaussian PDF for value x with mean µ and standard
deviation �.

A 2

ndorder stochastic standard deviation is the integral of � across values of � 2 R+,
under the distribution f (�̄,�

1

,�) , with �
1

its scale parameter (our approach to trach
the error of the error), not necessarily its standard deviation; the expected value of �

1

is �
1

.

f(x)
1

=

Z 1

0

�(µ,�, x)f (�̄,�
1

,�) d�

Generalizing to the N th order, the density function f(x) becomes

f(x)N =

Z 1

0

. . .

Z 1

0

�(µ,�, x)f (�̄,�
1

,�)

f (�
1

,�
2

,�
1

) ...f (�N�1,�N ,�N�1) d� d�
1

d�
2

...d�N (10.1)

The problem is that this approach is parameter-heavy and requires the specifications
of the subordinated distributions (in finance, the lognormal has been traditionally used
for �2 (or Gaussian for the ratio Log[�

2

t

�2

] since the direct use of a Gaussian allows for
negative values). We would need to specify a measure f for each layer of error rate.
Instead this can be approximated by using the mean deviation for �, as we will see next1.

10.1.4 Discretization using nested series of two-states for �- a
simple multiplicative process

There are quite effective simplifications to capture the convexity, the ratio of (or difference
between) �(µ,�,x) and

R1
0

�(µ,�, x)f (�̄,�
1

,�) d� (the first order standard deviation) by
using a weighted average of values of �, say, for a simple case of one-order stochastic
volatility:

�(1± a
1

)

with 0  a
1

< 1, where a
1

is the proportional mean absolute deviation for �, in other
word the measure of the absolute error rate for �. We use 1

2

as the probability of each
state. Such a method does not aim at preserving the variance as in standard stochastic
volatility modeling, rather the STD.

1A well developed technique for infinite (or non integrable) Gaussian cumulants, now, is the Wiener
Chaos expansion [55].
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Thus the distribution using the first order stochastic standard deviation can be ex-
pressed as:

f(x)
1

=

1

2

✓

�(µ,� (1 + a
1

), x) + �(µ,�(1� a
1

), x)

◆

(10.2)

Now assume uncertainty about the error rate a
1

, expressed by a
2

, in the same manner
as before. Thus, as a first method, the multiplicative effect, in place of 1 ± a

1

we
have (1 ± a

1

)(1 ± a
2

). Later we will use the non-multiplicative (or, rather, weakly
multiplicative) error expansion �(1± (a

1

(1± (a
2

(1± a
3

( ...))).

The second order stochastic standard deviation:

f(x)
2

=

1

4

 

�

✓

µ,�(1 + a
1

)(1 + a
2

), x

◆

+

�

✓

µ,�(1� a
1

)(1 + a
2

), x) + �(µ,�(1 + a
1

)(1� a
2

), x

◆

+ �
⇣

µ,�(1� a
1

)(1� a
2

), x
⌘

!

(10.3)

and the N th order:

f(x)N =

1

2

N

2

N

X

i=1

�(µ,�MN
i , x)

where MN
i is the ith scalar (line) of the matrix MN

�

2

N
⇥ 1

�

MN
=

0

@

N
Y

j=1

(ajTi,j + 1)

1

A

2

N

i=1

and Ti,j the element of ithline and jthcolumn of the matrix of the exhaustive com-
bination of n-Tuples of the set {�1, 1},that is the sequences of n length (1, 1, 1, ...)
representing all combinations of 1 and �1.

for N=3,

T =

0

B

B

B

B

B

B

B

B

B

B

B

B

B

@

1 1 1

1 1 �1

1 �1 1

1 �1 �1

�1 1 1

�1 1 �1

�1 �1 1

�1 �1 �1

1

C

C

C

C

C

C

C

C

C

C

C

C

C

A

and
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Figure 10.2: Thicker tails (higher
peaks) for higher values of N ; here
N = 0, 5, 10, 25, 50, all values of
a= 1
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So M3

1

= ((1� a
1

)(1� a
2

)(1� a
3

)) , etc.

Note that the various error rates ai are not similar to sampling errors, but rather
projection of error rates into the future. They are, to repeat, epistemic.

The Final Mixture Distribution The mixture weighted average distribution
(recall that � is the ordinary Gaussian PDF with mean µ, std � for the random variable
x ).

f(x|µ,�,M,N) = 2

�N
2

N

X

i=1

�
�

µ,�MN
i , x

�

It could be approximated by a lognormal distribution for � and the corresponding V
as its own variance. But it is precisely the V that interest us, and V depends on how
higher order errors behave.

Next let us consider the different regimes for higher order errors.

10.2 Regime 1 (Explosive): Case of a constant error
parameter a

10.2.1 Special case of constant a

Assume that a
1

= a
2

= ...an = a, i.e. the case of flat proportional error rate a. The
Matrix M collapses into a conventional binomial tree for the dispersion at the level N.
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f(x|µ,�, N) = 2

�N
N
X

j=0

 

N

j

!

�
�

µ,�(a+ 1)

j
(1� a)N�j , x

�

(10.4)

Because of the linearity of the sums, when a is constant, we can use the binomial
distribution as weights for the moments (note again the artificial effect of constraining
the first moment µ in the analysis to a set, certain, and known a priori).

M
1

(N) = µ

M
2

(N) = �2

�

a2 + 1

�N
+ µ2

M
3

(N) = 3 µ�2

�

a2 + 1

�N
+ µ3

M
4

(N) = 6 µ2�2

�

a2 + 1

�N
+ µ4

+ 3

�

a4 + 6a2 + 1

�N
�4

For clarity, we simplify the table of moments, with µ=0

M
1

(N) = 0

M
2

(N) =

�

a2 + 1

�N
�2

M
3

(N) = 0

M
4

(N) = 3

�

a4 + 6a2 + 1

�N
�4

M
5

(N) = 0

M
6

(N) = 15

�

a6 + 15a4 + 15a2 + 1

�N
�6

M
7

(N) = 0

M
8

(N) = 105

�

a8 + 28a6 + 70a4 + 28a2 + 1

�N
�8

Note again the oddity that in spite of the explosive nature of higher moments, the
expectation of the absolute value of x is both independent of a and N, since the
perturbations of � do not affect the first absolute moment =

q

2

⇡� (that is, the initial
assumed �). The situation would be different under addition of x.

Every recursion multiplies the variance of the process by ( 1 + a2 ). The process is
similar to a stochastic volatility model, with the standard deviation (not the variance)
following a lognormal distribution, the volatility of which grows with M, hence will reach
infinite variance at the limit.

10.2.2 Consequences

For a constant a > 0, and in the more general case with variable a where an � an�1,
the moments explode.

• Even the smallest value of a >0, since
�

1 + a2
�N is unbounded, leads to the second

moment going to infinity (though not the first) when N! 1. So something as small
as a .001% error rate will still lead to explosion of moments and invalidation of the
use of the class of L2 distributions.

• In these conditions, we need to use power laws for epistemic reasons, or, at least,
distributions outside the L

2 norm, regardless of observations of past data.
Note that we need an a priori reason (in the philosophical sense) to cutoff the N
somewhere, hence bound the expansion of the second moment.
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Figure 10.3: LogLog Plot of the
probability of exceeding x show-
ing power law-style flattening as N
rises. Here all values of a= 1/10

10.3 Convergence to Power Laws

Convergence to power law would require the following from the limit distribution. Where
P>x is short for P (X > x), P>x = L(x) x�↵

⇤
and L(x) is a slowly varying function.

↵⇤ = lim

x!1
lim

N!1
↵(x,N)

We know from the behavior of moments that, if convergence is satisfied, ↵⇤ 2 (1, 2).

We can have a visual idea with the Log-Log plot (Figure 10.3) how, at higher
orders of stochastic volatility, with equally proportional stochastic coefficient, (where
a
1

= a
2

= ... = an =

1

10

) the density approaches that of a power law, as shown in flatter
density on the LogLog plot. The probabilities keep rising in the tails as we add layers of
uncertainty until they seem to reach the boundary of the power law, while ironically the
first moment remains invariant.

The same effect takes place as a increases towards 1, as at the limit the tail exponent
P>x approaches 1 but remains >1.

↵(x,N) = �1�

@ log f(x|µ,�,N)

@x
@ log(x)

@x1

Simplifying and normalizing, with µ = 0, � = 1,

↵(x,N) = �1�

x 
1

(N)


2

(N)

(10.5)

where


1

(N) =

K
X

j=0

x(a+ 1)

�3j �
�(1� a)3j�3K

�

✓

K

j

◆
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�2j
(1� a)2j�2K

◆
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K
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◆

exp

✓
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1
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�2j
(1� a)2j�2K

◆

Making the variable continuous (binomial as ratio of gamma functions) makes it equiv-
alent, at large N , to:

↵(x,N) = 1�

x(1� a)N
1

(N)

p

2 
2

(N)

(10.6)

where

⇤
1

(N) =

Z N

0

�

x(a+ 1)

�3y
�(N + 1)(1� a)3(y�N)
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⇤
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exp

✓

�

1
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�2y
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◆
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10.3.1 Effect on Small Probabilities

Next we measure the effect on the thickness of the tails. The obvious effect is the rise of
small probabilities.

Take the exceedant probability,that is, the probability of exceeding K, given N, for
parameter a constant:

P > K|N =

N
X

j=0

2

�N�1

 

N

j

!

erfc
✓

K
p

2�(a+ 1)

j
(1� a)N�j

◆

(10.7)

where erfc(.) is the complementary of the error function, 1-erf(.), erf(z) = 2p
⇡

R z

0

e�t
2

dt

Convexity effect The next two tables shows the ratio of exceedant probability
under different values of N divided by the probability in the case of a standard Gaussian.

Table 10.1: Case of a = 1
10
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N P>3,N
P>3,N=0

P>5,N
P>5,N=0

P>10,N
P>10,N=0

5 1.01724 1.155 7
10 1.0345 1.326 45
15 1.05178 1.514 221
20 1.06908 1.720 922
25 1.0864 1.943 3347

Table 10.2: Case of a = 1
100

N P>3,N
P>3,N=0

P>5,N
P>5,N=0

P>10,N
P>10,N=0

5 2.74 146 1.09⇥ 10

12

10 4.43 805 8.99⇥ 10

15

15 5.98 1980 2.21⇥ 10

17

20 7.38 3529 1.20⇥ 10

18

25 8.64 5321 3.62⇥ 10

18

10.4 Regime 1b: Preservation of Variance

Σ

1" a1 Σ

a1 # 1 Σ

!a1 # 1" !1" a2" Σ

!a1 # 1" !a2 # 1" Σ

!1" a1" !1" a2" Σ

!1" a1" !a2 # 1" Σ

!1" a1" !1" a2" !1" a3" Σ
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!1" a1" !a2 # 1" !a3 # 1" Σ
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!a1 # 1" !a2 # 1" !a3 # 1" Σ

Figure 10.4: Preserving the variance
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M
1

(N) = µ

M
2

(N) = µ2

+ �2

M
3

(N) = µ3

+ 3�2µ

M
4

(N) = 3�4

�

a2 + 1

�N
+ µ4

+ 6µ2�2

Hence ↵ 2 (3, 4)

10.5 Regime 2: Cases of decaying parameters a

n

As we said, we may have (actually we need to have) a priori reasons to decrease the
parameter a or stop N somewhere. When the higher order of ai decline, then the
moments tend to be capped (the inherited tails will come from the lognormality of �).

10.5.1 Regime 2-a;"bleed" of higher order error

Take a "bleed" of higher order errors at the rate �, 0 � < 1 , such as an = � aN�1,
hence aN = �Na

1

, with a
1

the conventional intensity of stochastic standard deviation.
Assume µ = 0.

With N=2 , the second moment becomes:

M
2

(2) =

�

a2
1

+ 1

�

�2

�

a2
1

�2

+ 1

�

With N=3,

M
2

(3) = �2

�

1 + a2
1

� �

1 + �2a2
1

� �

1 + �4a2
1

�

finally, for the general N:

M
3

(N) =

�

a2
1

+ 1

�

�2

N�1
Y

i=1

�

a2
1

�2i
+ 1

�

(10.8)

We can reexpress ( 10.8) using the Q-Pochhammer symbol (a; q)N =

QN�1
i=1

�

1� aq i
�

M
2

(N) = �2

�

�a2
1

;�2

�

N

Which allows us to get to the limit

lim

N!1
M
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�

�2

;�2
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;�2
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(�2

� 1)
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(�2
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As to the fourth moment:

By recursion:

M
4

(N) = 3�4

N�1
Y

i=0

�

6a2
1

�2i
+ a4

1

�4i
+ 1

�
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N!1
M

4

(N) = 3�4

⇣⇣

2

p

2� 3

⌘

a2
1

;�2

⌘

1
⇣

�

⇣

3 + 2

p

2

⌘

a2
1

;�2

⌘

1 (10.10)

So the limiting second moment for �=.9 and a_1=.2 is just 1.28 �2, a significant but
relatively benign convexity bias. The limiting fourth moment is just 9.88�4, more than
3 times the Gaussian’s (3 �4), but still finite fourth moment. For small values of a and
values of � close to 1, the fourth moment collapses to that of a Gaussian.

10.5.2 Regime 2-b; Second Method, a Non Multiplicative Error
Rate

In place of (1± a
1

)(1± a
2

), we use, for N recursions,

�(1± (a
1

(1± (a
2

(1± a
3

( ...)))

Assume a
1

= a
2

= . . . = aN

P (x, µ,�, N) =

1

L

L
X

i=1

f
�

x, µ,�
�

1 +

�

TN .AN
�

i

�

(MN .T + 1)i is the ith component of the (N ⇥ 1) dot product of TN the matrix of
Tuples in , L the length of the matrix, and A contains the parameters

AN
=

�

aj
�

j=1,...N

So for instance, for N = 3, T =
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1, a, a2, a3
�

A3 T3
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The moments are as follows:

M
1

(N) = µ
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M
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M
4

(N) = µ4

+ 12µ2� + 12�2

N
X

i=0

a2i

At the limit:
lim

N!1
M

4

(N) =

12�2

1� a2
+ µ4

+ 12µ2�

which is very mild.

10.6 Conclusion and Suggested Application

10.6.1 Counterfactuals, Estimation of the Future v/s Sampling
Problem

Note that it is hard to escape higher order uncertainties, even outside of the use of
counterfactual: even when sampling from a conventional population, an error rate can
come from the production of information (such as: is the information about the sample
size correct? is the information correct and reliable?), etc. These higher order errors exist
and could be severe in the event of convexity to parameters, but they are qualitatively
different with forecasts concerning events that have not taken place yet.

This discussion is about an epistemic situation that is markedly different from a
sampling problem as treated conventionally by the statistical community, particularly
the Bayesian one. In the classical case of sampling by Gosset ("Student", 1908) from a
normal distribution with an unknown variance (Fisher, 1925), the Student T Distribu-
tion (itself a power law) arises for the estimated mean since the square of the variations
(deemed Gaussian) will be Chi-square distributed. The initial situation is one of rela-
tively unknown variance, but that is progressively discovered through sampling; and the
degrees of freedom (from an increase in sample size) rapidly shrink the tails involved in
the underlying distribution.

The case here is the exact opposite, as we have an a priori approach with no data:
we start with a known priorly estimated or "guessed" standard deviation, but with an
unknown error on it expressed as a spread of branching outcomes, and, given the a priori
aspect of the exercise, we have no sample increase helping us to add to the information
and shrink the tails. We just deal with nested counterfactuals.

Note that given that, unlike the Gosset’s situation, we have a finite mean (since we
don’t hold it to be stochastic and know it a priori) hence we necessarily end in a situation
of finite first moment (hence escape the Cauchy distribution), but, as we will see, a more
complicated second moment. 2 3

10.6.2 The Future is Fatter Tailed Than The Past

A simple application of these derivations: It shows why any uncertainty about the link
between the past and the future leads to underestimation of fat tails.

2See the discussion of the Gosset and Fisher approach in Chapter 3 of Mosteller and Tukey [49].
3I thank Andrew Gelman and Aaron Brown for the discussion.



11 Parametrization and Tails

Chapter Summary 10: We present case studies around the point that,
simply, some models depend quite a bit on small variations in parameters.
The effect on the Gaussian is easy to gauge, and expected. But many
believe in power laws as panacea. Even if one believed the r.v. was power
law distributed, one still would not be able to make a precise statement
on tail risks. Shows weaknesses of calibration of Extreme Value Theory.

This chapter is illustrative; it will initially focus on nonmathematical limits to producing
estimates of MX

T (A, f) when A is limited to the tail. We will see how things get worse
when one is sampling and forecasting the maximum of a random variable.

11.1 Some Bad News Concerning power laws

We saw the shortcomings of parametric and nonparametric methods so far. What are
left are power laws; they are a nice way to look at the world, but we can never really
get to know the exponent ↵, for a spate of reasons we will see later (the concavity of
the exponent to parameter uncertainty). Suffice for now to say that the same analysis
on exponents yields a huge in-sample variance and that tail events are very sensitive to
small changes in the exponent.
For instance, for a broad set of stocks over subsamples, using a standard estimation

method (the Hill estimator), we get subsamples of securities. Simply, the variations are
too large for a reliable computation of probabilities, which can vary by > 2 orders of
magnitude. And the effect on the mean of these probabilities is large since they are way
out in the tails.
The way to see the response to small changes in tail exponent with probability: con-

sidering P>K ⇠ K�↵, the sensitivity to the tail exponent@P>K

@↵ = �K�↵ log(K).
Now the point that probabilities are sensitive to assumptions brings us back to the

Black Swan problem. One might wonder, the change in probability might be large in
percentage, but who cares, they may remain small. Perhaps, but in fat tailed domains,
the event multiplying the probabilities is large. In life, it is not the probability that
matters, but what one does with it, such as the expectation or other moments, and the
contribution of the small probability to the total moments is large in power law domains.
For all powerlaws, when K is large, with ↵ > 1, the unconditional "shortfall" S

+

=

R1
K

x�(x)dx and S�
R �K
�1 x�(x)dx approximate to ↵

↵�1K
�↵+1 and - ↵

↵�1K
�↵+1, which

are extremely sensitive to ↵ particularly at higher levels of K,

@S
+

@↵
= �

K1�↵
((↵� 1)↵ log(K) + 1)

(↵� 1)

2

.
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Figure 11.1: The effect of small changes in tail exponent on a probability of exceeding a certain
point. To the left, a histogram of possible tail exponents across >4 103 variables. To the right
the probability, probability of exceeding 7 times the scale of a power law ranges from 1 in 10 to
1 in 350. For further in the tails the effect is more severe.

There is a deeper problem related to the effect of model error on the estimation of ↵,
which compounds the problem, as ↵ tends to be underestimated by Hill estimators and
other methods, but let us leave it for now.

11.2 Extreme Value Theory: Not a Panacea

We saw earlier how difficult it is to compute risks using power laws, owing to excessive
model sensitivity. Let us apply this to the Extreme Value Theory, EVT. (The idea is
that is useable by the back door as test for nonlinearities exposures not to get precise
probabilities).
On its own it can mislead. The problem is the calibration and parameter uncertainty –in

the real world we don’t know the parameters. The ranges in the probabilities generated
we get are monstrous.
We start with a short presentation of the idea, followed by an exposition of the difficulty.

11.2.1 What is Extreme Value Theory? A Simplified Exposition

Let us proceed with simple examples.
Case 1, Thin Tailed Distribution
The Extremum of a Gaussian variable: Say we generate n Gaussian variables (Xi)

n
i=1

with mean 0 and unitary standard deviation, and take the highest value we find. We
take the upper bound Mj for the n-size sample run j

Mj = max (Xi,j)
n
i=1

Assume we do so p times, to get p samples of maxima for the sequence M , M =

max

�

(Xi,j)
n
i=1

�p

j=1

.
Figure 11.2.1 and 11.2.1 plot a histogram of the result of both the simulation and the

fitting of a distribution.
Let us now fit to the sample from the simulation to g, the density of an Extreme Value

Distribution for x (or the Gumbel for the negative variable �x), with location and scale

parameters ↵ and �, respectively: g(x;↵,�) = e
↵�x

�

�e

↵�x

�

� .
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Figure 11.2: Taking p samples of
Gaussian maxima; here N = 30K,
M = 10K. We get the Mean
of the maxima = 4.11159, Stan-
dard Deviation= 0.286938; Median
= 4.07344
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Figure 11.3: Fitting an extreme
value distribution (Gumbel for
the maxima) ↵= 3.97904, �=
0.235239

11.2.2 Some Intuition: How does the Extreme Value Distribution
emerge?

Consider that the probability of exceeding the maximum corresponds to the rank statis-
tics, that is the probability of all variables being below the observed sample.

P (X
1

< x,X
2

< x, . . . , Xn < x) =
n
\

i=1

P (Xi) = F (x)n,

where F is the cumulative d.f of the Gaussian. Taking the first derivative of the cumu-
lative distribution to get the density of the distribution of the maximum,

pn(x) ⌘ @x (F (x)n) = �

2

1

2

�nne�
x

2

2

⇣

erf
⇣

xp
2

⌘

+ 1

⌘n�1

p

⇡

Now we have norming constants anand bn such that

G(x) ⌘ P

✓

M(n)� an
bn

> x

◆

.

But there is a basin of attraction condition for that. We need to find an x
0

< 1 beyond
which at the limit of n ! 1 , x

0

= sup{x : F (x) < 1}
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Figure 11.4: Fitting a Fréchet dis-
tribution to the Student T generated
with ↵=3 degrees of freedom. The
Frechet distribution ↵=3, �=32 fits
up to higher values of E.But next two
graphs shows the fit more closely.
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Derivations

(1� P (X > a(n)x+ b(n)))N = G(x)

exp(�NP (X > ax+ b)) = G(x)

After some derivations[see below], g(x) = e
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, where erfc�1is the inverse error function, and
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For n = 30K, {↵,�} = {3.98788, 0.231245}

The approximations become
p

2 log(n)� log(log(n))+log(4⇡)

2

p

2 log(n)
and (2 log(n))�

1

2 respectively

+ o
⇣

(log n)�
1

2

⌘

11.2.3 Extreme Values for Fat-Tailed Distribution

Now let us generate, exactly as before, but change the distribution, with N random
power law distributed variables Xi, with tail exponent ↵=3, generated from a Student T
Distribution with 3 degrees of freedom. Again, we take the upper bound. This time it is
not the Gumbel, but the Fréchet distribution that would fit the result, using �critically�
the same ↵, Fréchet �(x; ↵, �)=

↵e�(
x

�

)

�↵

⇣

x
�

⌘�↵�1

�
,

for x>0

11.2.4 A Severe Inverse Problem for EVT

In the previous case we started with the distribution, with the assumed parameters, then
obtained the corresponding values, just as these "risk modelers" do. In the real world,
we don’t quite know the calibration, the ↵ of the distribution, assuming (generously)
that we know the distribution. So here we go with the inverse problem. The next table
illustrates the different calibrations of PK the probabilities that the maximum exceeds a
certain value K (as a multiple of � under different values of K and ↵.
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Figure 11.5: Seen more closely.

↵ 1

P
>3�

1

P
>10�

1

P
>20�

1

P
>40�

1

P
>80�

1. 4. 11. 21. 41. 81.
1.25 4. 18. 43. 101. 240.
1.5 6. 32. 90. 253. 716.
1.75 7. 57. 190. 637. 2140.
2 10. 101. 401. 1601. 6400
2.25 12. 178. 846. 4024. 19141.
2.5 16. 317. 1789. 10120. 57244.
2.75 21. 563. 3783. 25449. 171198.
3. 28. 1001. 8001. 64001. 512001.
3.25 36. 1779. 16918. 160952. 1.5⇥ 106

3.5 47. 3163. 35778. 404772. 4.5⇥10

6

3.75 62. 5624. 75660. 1.01⇥10

6 1.3⇥10

7

4. 82. 10001. 160001. 2.56⇥10

6 4.0⇥10

7

4.25 107. 17783. 338359. 6.43⇥10

6 1.2⇥10

8

4.5 141. 31623. 715542. 1.61⇥10

7 3.6⇥10

8

4.75 185. 56235. 1.5⇥10

6 4.07⇥10

7 1.1⇥10

9

5. 244. 100001. 3.2⇥10

6 1.02⇥10

8 3.27⇥10

9

Table 11.1: EVT for different tail parameters ↵. We can see how a perturbation of ↵ moves
the probability of a tail event from 6, 000 to 1.5 ⇥ 106 . [ADDING A TABLE FOR HIGHER
DIMENSION WHERE THINGS ARE A LOT WORSE]
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Consider that the error in estimating the ↵ of a distribution is quite large, often >
1

2

, and typically overstimated. So we can see that we get the probabilities mixed up
> an order of magnitude.In other words the imprecision in the computation of the ↵
compounds in the evaluation of the probabilities of extreme values.

11.3 Using Power Laws Without Being Harmed by Mis-
takes

We can use power laws in the "near tails" for information, not risk management. That
is, not pushing outside the tails, staying within a part of the distribution for which errors
are not compounded.
I was privileged to get access to a database with cumulative sales for editions in print

that had at least one unit sold that particular week (that is, conditional of the specific
edition being still in print). I fit a powerlaw with tail exponent ↵ ' 1.3 for the upper
10% of sales (graph), with N=30K. Using the Zipf variation for ranks of powerlaws, with
rx and ry the ranks of book x and y, respectively, Sx and Sy the corresponding sales

Sx

Sy
=

✓

rx
ry

◆

� 1

↵

So for example if the rank of x is 100 and y is 1000, x sells
�

100

1000

�� 1

1.3 = 5.87 times
what y sells.
Note this is only robust in deriving the sales of the lower ranking edition (ry> rx)

because of inferential problems in the presence of fat-tails.

Α=1.3

Near tail

100 10
4

10
6

X

10
"4

0.001

0.01

0.1

1

P#X

This works best for the top 10,000 books, but not quite the top 20 (because the tail
is vastly more unstable). Further, the effective ↵ for large deviations is lower than 1.3.
But this method is robust as applied to rank within the "near tail".



G Poisson vs. Power Law Tails

G.1 Beware The Poisson

By the masquerade problem, any power law can be seen backward as a Gaussian plus
a series of simple (that is, noncompound) Poisson jumps, the so-called jump-diffusion
process. So the use of Poisson is often just a backfitting problem, where the researcher
fits a Poisson, happy with the "evidence".

The next exercise aims to supply convincing evidence of scalability and NonPoisson-
ness of the data (the Poisson here is assuming a standard Poisson). Thanks to the need
for the probabililities add up to 1, scalability in the tails is the sole possible model for
such data. We may not be able to write the model for the full distribution –but we know
how it looks like in the tails, where it matters.

The Behavior of Conditional Averages With a scalable (or "scale-free")
distribution, when K is "in the tails" (say you reach the point when 1 � F (X > x) =

Cx�↵ where C is a constant and ↵ the power law exponent), the relative conditional
expectation of X (knowing that X >K ) divided by K, that is, E[X|X>K]

K is a constant,
and does not depend on K. More precisely, the constant is ↵

↵�1 .

R1
K

xf(x,↵) dx
R1
K

f(x,↵) dx
=

K↵

↵� 1

This provides for a handy way to ascertain scalability by raising K and looking at the
averages in the data.

Note further that, for a standard Poisson, (too obvious for a Gaussian): not only the
conditional expectation depends on K, but it "wanes", i.e.

lim

K!1

 R1
K

mx

�(x) dx
R1
K

mx

x! dx

.

K

!

= 1

Calibrating Tail Exponents In addition, we can calibrate power laws. Using
K as the cross-over point, we get the ↵ exponent above it –the same as if we used the
Hill estimator or ran a regression above some point.

We heuristically defined fat tails as the contribution of the low frequency events to
the total properties. But fat tails can come from different classes of distributions. This
chapter will present the difference between two broad classes of distributions.
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184 APPENDIX G. POISSON VS. POWER LAW TAILS

This brief test using 12 million pieces of exhaustive returns shows how equity prices
(as well as short term interest rates) do not have a characteristic scale. No other possible
method than a Paretan tail, albeit of unprecise calibration, can charaterize them.

G.2 Leave it to the Data

This exercise was done using about every piece of data in sight: single stocks, macro
data, futures, etc.

Equity Dataset We collected the most recent 10 years (as of 2008) of daily prices
for U.S. stocks (no survivorship bias effect as we included companies that have been
delisted up to the last trading day), n= 11,674,825 , deviations expressed in logarithmic
returns.
We scaled the data using various methods.
The expression in "numbers of sigma" or standard deviations is there to conform to

industry language (it does depend somewhat on the stability of sigma). In the "MAD"
space test we used the mean deviation.

MAD(i) =

log Si

t

Si

t�1

1

N

P

tn

�

�

�

log Si

t�j

Si

�j+t�1

�

�

�

We focused on negative deviations. We kept moving K up until to 100 MAD (indeed)
–and we still had observations.

Implied↵|K=

E [X|X<K ]

E [X|X<K ]�K

MAD E [X|X<K ] n(forX < K)

E[X|
X<K

]

K Implied↵
�1. �1.75 1.32⇥ 10

6

1.75 2.32

�2. �3.02 300806. 1.51 2.95

�5. �7.96 19285. 1.59 2.68

�10. �15.32 3198. 1.53 2.87

�15. �22.32 1042. 1.48 3.04

�20. �30.24 418. 1.51 2.95

�25. �40.87 181. 1.63 2.57

�50. �101.75 24. 2.03 1.96

�70. �156.70 11. 2.23 1.80

�75. �175.42 9. 2.33 1.74

�100. �203.99 7. 2.03 1.96

Sigma-Space In the "sigma space" test we used a rolling 22 day window scaled by the
noncentral standard deviations. We did not add a mean for reasons explained elsewhere.
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STD E [X|X<K ] n(forX < K)

E[X|
X<K

]

K Implied↵
�2. �3.01 343952. 1.50 2.97

�5. �8.02 21156. 1.60 2.65

�10. �15.60 3528. 1.56 2.78

�20. �30.41 503. 1.52 2.91

�50. �113.324 20. 2.26 1.78

�70. �170.105 10. 2.43 1.69

�80. �180.84 9. 2.26 1.79

�90. �192.543 8. 2.13 1.87

�100. �251.691 5. 2.51 1.65

EuroDollars Front Month 1986-2006
n=4947
MAD E [X|X<K ] n(forX < K)

E[X|
X<K

]

K Implied↵
�0.5 �1.8034 1520 3.6068 1.38361

�1. �2.41323 969 2.41323 1.7076

�5. �7.96752 69 1.5935 2.68491

�6. �9.2521 46 1.54202 2.84496

�7. �10.2338 34 1.46197 3.16464

�8. �11.4367 24 1.42959 3.32782

Short term Interest Rates Literally, you do not even have a large number K
for which scalability drops from a small sample effect.

G.2.1 Global Macroeconomic data

UK Rates 1990-2007
n=4143
MAD E [X|X<K ] n(forX < K)

E[X|
X<K

]

K Implied↵
0.5 1.68802 1270 3.37605 1.42087

1. 2.23822 806 2.23822 1.80761

3. 4.97319 140 1.65773 2.52038

5. 8.43269 36 1.68654 2.45658

6. 9.56132 26 1.59355 2.68477

7. 11.4763 16 1.63947 2.56381
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12 Brownian Motion in the Real World

Chapter Summary 11: Much of the work concerning martingales and
Brownian motion has been idealized; we look for holes and pockets of
mismatch to reality, with consequences. Infinite (or undefined) higher
moments are not compatible with Ito calculus �outside the asymptote.
Path dependence as a measure of fragility.

12.1 Path Dependence and History as Revelation of An-
tifragility

Path 1 , Smin
j

ST
j

0.0 0.2 0.4 0.6 0.8 1.0
Time

80

100

120

140

S

Figure 12.1: Brownian Bridge Pinned at 100 and 120, with multiple realizations {Sj
0, S

j
1, .., S

j
T },

each indexed by j ; the idea is to find the path j that satisfies the maximum distance Dj =��ST � Sj
min

��

Let us examine the non-Markov property of antifragility. Something that incurred hard
times but did not fall apart is giving us information about its solidity, compared to
something that has not been subjected to such stressors.
(The Markov Property for, say, a Brownian Motion XN |{X

1

,X
2

,...X
N�1

}= XN |{X
N�1

} ,
that is the last realization is the only one that matters. Now if we take fat tailed models,
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Figure 12.2: The recovery theorem
requires the pricing kernel to be tran-
sition independent. So the forward
kernel at S2 depends on the path.
Implied vol at S2 via S1b is much
lower than implied vol at S2 via S1a.

 
 
 

 
 
Introduction: A Garlic-Oriented Meeting 
 
The first time I met Emanuel Derman, it was in the summer of 1996, at Uncle 
Nick's on 48th street and 9th Avenue. Stan Jonas paid, I remember (it is 
sometimes easier to remember who paid than the exact conversation). Derman 
and Dupire had come up with the local volatility model and I was burning to 
talk to Emanuel about it. I was writing Dynamic Hedging and in the middle of 
an intense intellectual period (I only experienced the same intellectual 
intensity in 2005-2006 as I was writing The Black Swan). I was tortured with one 
aspect to the notion of volatility surface. I could not explain it then. I will try 
now. 
First, note the following. Local volatility does not mean what you expect 
volatility to be along a stochastic sample path that delivers a future price-
time pair. It is not necessarily the mean square variation along a sample path. 
Nor is it the expected mean-square variation along a sample path that allows 
you to break-even on a dynamic hedge. It is the process that would provide a 
break even P/L for a strategy. 
The resulting subtelty will take more than one post to explain (or I may expand 
in Dynamic Hedging 2). But I will try to explain as much as I can right here. 
The first problem is that options are not priced off a mean-square variation in 

such as stochastic volatility processes, the properties of the system are Markov, but the
history of the past realizations of the process matter in determining the present variance.)
Take M realizations of a Brownian Bridge process pinned at St

0

= 100 and ST= 120,
sampled with N periods separated by �t, with the sequence S, a collection of Brownian-
looking paths with single realizations indexed by j ,

Sj
i =

✓

⇣

Sj
i�t+t

0

⌘N

i=0

◆M

j=1

Take m⇤ = minj mini§
j
i and

n

j : minSj
i = m⇤

o

Take 1) the sample path with the most direct route (Path 1) defined as its lowest
minimum , and 2) the one with the lowest minimum m⇤ (Path 2). The state of the
system at period T depends heavily on whether the process ST exceeds its minimum
(Path 2), that is whether arrived there thanks to a steady decline, or rose first, then
declined.
If the properties of the process depend on (ST - m*), then there is path dependence.

By properties of the process we mean the variance, projected variance in, say, stochastic
volatility models, or similar matters.

12.2 SP and path dependence (incomplete)

For time series sampled at (t
0

, t
0+�t, ..., t ⌘ t

0+n�t), the minimum distance �:

S⇤ (t
0

, t,�t) ⌘ min

⇣

S
i�t+t

0

�min (S
j�t+t

0

)

N
j=i+1

⌘N

i=0

We have the stopping time {⌧ : S⌧ = S⇤ (t
0

, t,�t)} and the distance from the worst
becomes � (t

0

, t,�t) ⌘ St � S⌧

12.3 Brownian Motion in the Real World

We mentioned in the discussion of the Casanova problem that stochastic calculus requires
a certain class of distributions, such as the Gaussian. It is not as we expect because of the
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1.0

Figure 12.3: C(n), Gaus-
sian Case

convenience of the smoothness in squares (finite �x2), rather because the distribution
conserves across time scales. By central limit, a Gaussian remains a Gaussian under
summation, that is sampling at longer time scales. But it also remains a Gaussian at
shorter time scales. The foundation is infinite dividability.
The problems are as follows:
The results in the literature are subjected to the constaints that the Martingale M is

member of the subset (H2) of square integrable martingales, suptTE[M2] < 1

We know that the restriction does not work for lot or time series.
We know that, with ✓ an adapted process, without

R T

0

✓2s ds < 1 we can’t get most of
the results of Ito’s lemma.
Even with

R T

o
dW 2< 1, The situation is far from solved because of powerful, very

powerful presamptotics.
Hint: Smoothness comes from

R T

o
dW 2 becoming linear to T at the continuous limit

–Simply dt is too small in front of dW
Take the normalized (i.e. sum=1) cumulative variance (see Bouchaud & Potters),

C(n) =

Pn
i=1

(W [i�t]�W [(i� 1)�t])2
PT/�t

i=1

(W [i�t]�W [(i� 1)�t])2
.

Let us play with a finite variance situations.

12.4 Stochastic Processes and Nonanticipating Strate-
gies

There is a difference between the Stratonovich and Ito’s integration of a functional of a
stochastic process. But there is another step missing in Ito: the gap between information
and adjustment.

12.5 Finite Variance not Necessary for Anything Eco-
logical (incl. quant finance)

[Summary of article in Complexity (2008)
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Figure 12.4: ↵ = 1.16
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Figure 12.5: ↵ = 3: Even fi-
nite variance does not lead to
the smoothing of discontinu-
ities except in the infinitesi-
mal limit, another way to see
failed asymptotes.
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Figure 12.6: Asymmetry between a
convex and a concave strategy



13 The Fourth Quadrant "Solution"

Chapter Summary 12: A less technical demarcation between Black Swan
Domains and others

Let us return to M [A, f(x)] of Chapter 3. A quite significant result is that M[A,xn]
may not converge, in the case of, say power laws with exponent ↵ < n, but M [A, xm

]

where m < n, would converge. Well, where the integral
R1
�1 f(x)p(x) dx does not exist,

by “clipping tails”, we can make the payoff integrable. There are two routes;

1) Limiting f (turning an open payoff to a binary): when f(x) is a constant as
in a binary

R1
�1Kp(x)dx will necessarily converge if p is a probability distribution.

2) Clipping tails: (and this is the business we will deal with in Antifragile, Part II),
where the payoff is bounded, A = [L,H], or the integral

RH

L
f(x)p(x)dx will necessarily

converge.

13.1 Two types of Decisions

M0 depends on the 0th moment, that is, “Binary”, or simple, i.e., as we saw, you just care
if something is true or false. Very true or very false does not matter. Someone is either
pregnant or not pregnant. A statement is “true” or “false” with some confidence interval.
(I call these M0 as, more technically, they depend on the zeroth moment, namely just on
probability of events, and not their magnitude —you just care about “raw” probability).
A biological experiment in the laboratory or a bet with a friend about the outcome of a
soccer game belong to this category.

Table 13.1: The Four Quadrants

Simple pay-
offs

Complex
payoffs

Distribution 1
(“thin tailed”)

First Quad-
rant
Extremely
Safe

Second
Quadrant:
Safe

Distribution 2
(no or unknown
characteristic
scale)

Third Quad-
rant: Safe

Fourth
Quadrant:
Dangers
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M1+Complex, depend on the 1

st or higher moments. You do not just care of the
frequency—but of the impact as well, or, even more complex, some function of the
impact. So there is another layer of uncertainty of impact. (I call these M1+, as they
depend on higher moments of the distribution). When you invest you do not care how
many times you make or lose, you care about the expectation: how many times you
make or lose times the amount made or lost.
Two types of probability structures:
There are two classes of probability domains—very distinct qualitatively and quantita-

tively. The first, thin-tailed: Mediocristan", the second, thick tailed Extremistan:

Table 13.2: Tableau of Decisions

Mo
“True/False”

f(x)=0

M1
Expectations
LINEAR PAYOFF
f(x)=1

M2+

NONLINEAR PAY-
OFF
f(x) nonlinear(= x

2
,

x

3, etc.)
Medicine (health
not epidemics)

Finance : nonlever-
aged Investment Derivative payoffs

Psychology exper-
iments

Insurance, mea-
sures of expected
shortfall

Dynamically
hedged portfo-
lios

Bets (prediction
markets)

General risk man-
agement

Leveraged portfo-
lios (around the
loss point)

Binary/Digital
derivatives Climate

Cubic payoffs (strips
of out of the money
options)

Life/Death Economics (Policy) Errors in analyses of
volatility

Security: Terror-
ism, Natural catas-
trophes

Calibration of non-
linear models

Epidemics
Expectation
weighted by nonlin-
ear utility

Casinos
Kurtosis-based po-
sitioning (“volatility
trading”)

Conclusion The 4th Quadrant is mitigated by changes in exposures. And exposures
in the 4th quadrant can be to the negative or the positive, depending on if the domain
subset A exposed on the left on on the right.



14 Skin in the game and Risk Taking

Chapter Summary 13: Standard economic theory makes an allowance
for the agency problem, but not the compounding of moral hazard in the
presence of informational opacity, particularly in what concerns high-
impact events in fat tailed domains (under slow convergence for the law
of large numbers). Nor did it look at exposure as a filter that removes
nefarious risk takers from the system so they stop harming others. (In
the language of probability, skin in the game creates an absorbing state
for the agent, not just the principal). But the ancients did; so did many
aspects of moral philosophy. We propose a global and morally mandatory
heuristic that anyone involved in an action which can possibly generate
harm for others, even probabilistically, should be required to be exposed
to some damage, regardless of context. While perhaps not sufficient,
the heuristic is certainly necessary hence mandatory. It is supposed to
counter voluntary and involuntary risk hiding � and risk transfer � in
the tails.

The literature in risk, insurance, and contracts has amply dealt with the notion of
information asymmetry (see Ross, 1973, Grossman and Hart, 1983, 1984, Tirole 1988,
Stiglitz 1988), but not with the consequences of deeper information opacity (in spite of
getting close, as in HÃűlmstrom, 1979), by which tail events are impossible to figure out
from watching time series and external signs: in short, in the "real world" (Taleb, 2013),
the law of large numbers works very slowly, or does not work at all in the time horizon for
operators, hence statistical properties involving tail events are completely opaque to the
observer. And the central problem that is missing behind the abundant research on moral
hazard and information asymmetry is that these rare, unobservable events represent the
bulk of the properties in some domains. We define a fat tailed domain as follows: a large
share of the statistical properties come from the extremum; for a time series involving
n observations, as n becomes large, the maximum or minimum observation will be of
the same order as the sum. Excursions from the center of the distributions happen
brutally and violently; the rare event dominates. And economic variables are extremely
fat tailed (Mandelbrot, 1997). Further, standard economic theory makes an allowance
for the agency problem, but not for the combination of agency problem, informational
opacity, and fat-tailedness. It has not yet caught up that tails events are not predictable,
not measurable statistically unless one is causing them, or involved in increasing their
probability by engaging in a certain class of actions with small upside and large downside.
(Both parties may not be able to gauge probabilities in the tails of the distribution, but
the agent knows which tail events do not affect him.) Sadly, the economics literature’s
treatment of tail risks , or "peso problems" has been to see them as outliers to mention
en passant but hide under the rug, or remove from analysis, rather than a core center
of the modeling and decision-making, or to think in terms of robustness and sensitivity
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to unpredictable events. Indeed, this pushing under the rug the determining statistical
properties explains the failures of economics in mapping the real world, as witnessed by
the inability of the economics establishment to see the accumulation of tail risks leading
up to the financial crisis of 2008 (Taleb, 2009). The parts of the risk and insurance
literature that have focused on tail events and extreme value theory, such as Embrechts
(1997), accepts the large role of the tails, but then the users of these theories (in the
applications) fall for the logical insonsistency of assuming that they can be figured out
somehow: naively, since they are rare what do we know about them? The law of large
numbers cannot be of help. Nor do theories have the required robustness. Alarmingly,
very little has been done to make the leap that small calibration errors in models can
change the probabilities (such as those involving the risks taken in Fukushima’s nuclear
project) from 1 in 10

6 to 1 in 50.
Add to the fat-tailedness the asymmetry (or skewness) of the distribution, by which a

random variable can take very large values on one side, but not the other. An operator
who wants to hide risk from others can exploit skewness by creating a situation in which
he has a small or bounded harm to him, and exposing others to large harm; thus exposing
others to the bad side of the distributions by fooling them with the tail properties.
Finally, the economic literature focuses on incentives as encouragement or deterrent, but

not on disincentives as potent filters that remove incompetent and nefarious risk takers
from the system. Consider that the symmetry of risks incurred on the road causes the
bad driver to eventually exit the system and stop killing others. An unskilled forecaster
with skin-in-the-game would eventually go bankrupt or out of business. Shielded from
potentially (financially) harmful exposure, he would continue contributing to the buildup
of risks in the system. 1

Hence there is no possible risk management method that can replace skin in the game
in cases where informational opacity is compounded by informational asymmetry viz.
the principal-agent problem that arises when those who gain the upside resulting from
actions performed under some degree of uncertainty are not the same as those who incur
the downside of those same acts2. For example, bankers and corporate managers get
bonuses for positive "performance", but do not have to pay out reverse bonuses for
negative performance. This gives them an incentive to bury risks in the tails of the
distribution, particularly the left tail, thereby delaying blowups.
The ancients were fully aware of this incentive to hide tail risks, and implemented very

simple but potent heuristics (for the effectiveness and applicability of fast and frugal
heuristics both in general and in the moral domain, see Gigerenzer, 2010). But we find
the genesis of both moral philosophy and risk management concentrated within the same
rule 3 . About 3,800 years ago, Hammurabi’s code specified that if a builder builds a
house and the house collapses and causes the death of the owner of the house, that
builder shall be put to death. This is the best risk-management rule ever.
What the ancients understood very well was that the builder will always know more

about the risks than the client, and can hide sources of fragility and improve his prof-
itability by cutting corners. The foundation is the best place to hide such things. The

1The core of the problem is as follows. There are two effects: "crooks of randomness" and "fooled of
randomness" (Nicolas Tabardel, private communication). Skin in the game eliminates the first effect in
the short term (standard agency problem), the second one in the long term by forcing a certain class of
harmful risk takers to exit from the game.

2Note that Pigovian mechanisms fail when, owing to opacity, the person causing the harm is not easy
to identify

3Economics seems to be born out of moral philosophy (mutating into the philosophy of action via
decision theory) to which was added naive and improper 19th C. statistics (Taleb, 2007, 2013). We are
trying to go back to its moral philosophy roots, to which we add more sophisticated probability theory
and risk management.
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builder can also fool the inspector, for the person hiding risk has a large informational
advantage over the one who has to find it. The same absence of personal risk is what
motivates people to only appear to be doing good, rather than to actually do it.

Note that Hammurabi’s law is not necessarily literal: damages can be "converted" into
monetary compensation. Hammurabi’s law is at the origin of the lex talonis ("eye for
eye", discussed further down) which, contrary to what appears at first glance, it is not
literal. Tractate Bava Kama in the Babylonian Talmud 4, builds a consensus that "eye
for eye" has to be figurative: what if the perpetrator of an eye injury were blind? Would
he have to be released of all obligations on grounds that the injury has already been
inflicted? Wouldn’t this lead him to inflict damage to other people’s eyesight with total
impunity? Likewise, the Quran’s interpretation, equally, gives the option of the injured
party to pardon or alter the punishment5. This nonliteral aspect of the law solves many
problems of asymmetry under specialization of labor, as the deliverer of a service is not
required to have the same exposure in kind, but incur risks that are costly enough to be
a disincentive.

The problems and remedies are as follows:

First, consider policy makers and politicians. In a decentralized system, say munic-
ipalities, these people are typically kept in check by feelings of shame upon harming
others with their mistakes. In a large centralized system, the sources of error are not so
visible. Spreadsheets do not make people feel shame. The penalty of shame is a factor
that counts in favour of governments (and businesses) that are small, local, personal,
and decentralized versus ones that are large, national or multi-national, anonymous, and
centralised. When the latter fail, everybody except the culprit ends up paying the cost,
leading to national and international measures of endebtment against future generations
or "austerity "6.These points against "big government " models should not be confused
with the standard libertarian argument against states securing the welfare of their citi-
zens, but only against doing so in a centralized fashion that enables people to hide behind
bureaucratic anonymity. Much better to have a communitarian municipal approach:in
situations in which we cannot enforce skin-in-the game we should change the system to
lower the consequences of errors.

Second, we misunderstand the incentive structure of corporate managers. Counter to
public perception, corporate managers are not entrepreneurs. They are not what one
could call agents of capitalism. Between 2000 and 2010, in the United States, the stock
market lost (depending how one measures it) up to two trillion dollars for investors,
compared to leaving their funds in cash or treasury bills. It is tempting to think that
since managers are paid on incentive, they would be incurring losses. Not at all: there
is an irrational and unethical asymmetry. Because of the embedded option in their
profession, managers received more than four hundred billion dollars in compensation.
The manager who loses money does not return his bonus or incur a negative one7.The
built-in optionality in the compensation of corporate managers can only be removed by

4Tractate Bava Kama, 84a, Jerusalem: Koren Publishers, 2013.
5Quran, Surat Al-Ma’idat, 45: "Then, whoever proves charitable and gives up on his right for recip-

rocation, it will be an atonement for him." (our translation).
6 See McQuillan (2013) and Orr (2013); cf. the "many hands " problem discussed by Thompson

(1987)
7There can be situations of overconfidence by which the CEOs of companies bear a disproportionately

large amount of risk, by investing in their companies, as shown by Malmendier and Tate(2008, 2009),
and end up taking more risk because they have skin in the game. But it remains that CEOs have
optionality, as shown by the numbers above. Further, the heuristic we propose is necessary, but may
not be sufficient to reduce risk, although CEOs with a poor understanding of risk have an increased
probability of personal ruin.
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forcing them to eat some of the losses8.

Third, there is a problem with applied and academic economists, quantitative modellers,
and policy wonks. The reason economic models do not fit reality (fat-tailed reality) is that
economists have no disincentive and are never penalized for their errors. So long as they
please the journal editors, or produce cosmetically sound "scientific" papers, their work
is fine. So we end up using models such as portfolio theory and similar methods without
any remote empirical or mathematical reason. The solution is to prevent economists
from teaching practitioners, simply because they have no mechanism to exit the system
in the event of causing risks that harm others. Again this brings us to decentralization
by a system where policy is decided at a local level by smaller units and hence in no
need for economists9.

Fourth, the predictors. Predictions in socioeconomic domains don’t work. Predictors
are rarely harmed by their predictions. Yet we know that people take more risks after
they see a numerical prediction. The solution is to ask —and only take into account—
what the predictor has done (what he has in his portfolio), or is committed to doing
in the future. It is unethical to drag people into exposures without incurring losses.
Further, predictors work with binary variables (Taleb and Tetlock, 2013), that is, "true"
or "false" and play with the general public misunderstanding of tail events. They have
the incentives to be right more often than wrong, whereas people who have skin in the
game do not mind being wrong more often than they are right, provided the wins are
large enough. In other words, predictors have an incentive to play the skewness game
(more on the problem in section 2). The simple solution is as follows: predictors should
be exposed to the variables they are predicting and should be subjected to the dictum "do
not tell people what you think, tell them what you have in your portfolio" (Taleb, 2012,
p.386) . Clearly predictions are harmful to people as, by the psychological mechanism
of anchoring, they increases risk taking.

Fifth, to deal with warmongers, Ralph Nader has rightly proposed that those who vote
in favor of war should subject themselves (or their own kin) to the draft.

We believe Skin in the game is a heuristic for a safe and just society. It is even more
necessary under fat tailed environments. Opposed to this is the unethical practice of
taking all the praise and benefits of good fortune whilst disassociating oneself from the
results of bad luck or miscalculation. We situate our view within the framework of ethical
debates relating to the moral significance of actions whose effects result from ignorance
and luck. We shall demonstrate how the idea of skin in the game can effectively resolve

8We define "optionality" as an option-like situation by which an agent has a convex payoff, that is,
has more to gain than to lose from a random variable, and thus has a positive sensitivity to the scale of
the distribution, that is, can benefit from volatility and dispersion of outcomes.

9 A destructive combination of false rigor and lack of skin in the game. The disease of formalism
in the application of probability to real life by people who are not harmed by their mistakes can be
illustrated as follows, with a very sad case study. One of the most "cited" documents in risk and
quantitative methods about "coherent measures of risk" set strong principles on how to compute the
"value at risk" and other methods. Initially circulating in 1997, the measures of tail risk -while coherent
-have proven to be underestimating risk at least 500 million times (sic, the number is not a typo). We
have had a few blowups since, including Long Term Capital Management; and we had a few blowups
before, but departments of mathematical probability were not informed of them. As we are writing these
lines, it was announced that J.-P. Morgan made a loss that should have happened every ten billion years.
The firms employing these "risk minds" behind the "seminal" paper blew up and ended up bailed out by
the taxpayers. But we now know about a "coherent measure of risk". This would be the equivalent of
risk managing an airplane flight by spending resources making sure the pilot uses proper grammar when
communicating with the flight attendants, in order to "prevent incoherence". Clearly the problem is
that tail events are very opaque computationally, and that such misplaced precision leads to confusion.
The "seminal" paper: Artzner, P., Delbaen, F., Eber, J. M., & Heath, D. (1999). Coherent measures of
risk. Mathematical finance, 9(3), 203-228.



14.1. PAYOFF SKEWNESS AND LACK OF SKIN-IN-THE-GAME 197

debates about (a) moral luck and (b) egoism vs. altruism, while successfully bypassing
(c) debates between subjectivist and objectivist norms of action under uncertainty, by
showing how their concerns are of no pragmatic concern.

Reputational Costs in Opaque Systems: Note that our analysis includes costs of
reputation as skin in the game, with future earnings lowered as the result of a mistake,
as with surgeons and people subjected to visible malpractice and have to live with the
consequences. So our concern is situations in which cost hiding is effective over and
above potential costs of reputation, either because the gains are too large with respect
to these costs, or because these reputation costs can be "arbitraged", by shifting blame
or escaping it altogether, because harm is not directly visible. The latter category in-
cludes bureaucrats in non-repeat environments where the delayed harm is not directly
attributable to them. Note that in many domains the payoff can be large enough to
offset reputational costs, or, as in finance and government, reputations do not seem to
be aligned with effective track record. (To use an evolutionary argument, we need to
avoid a system in which those who make mistakes stay in the gene pool, but throw others
out of it.)

Application of The Heuristic: The heuristic implies that one should be the first
consumer of one’s product, a cook should test his own food, helicopter repairpersons
should be ready to take random flights on the rotorcraft that they maintain, hedge fund
managers should be maximally invested in their funds. But it does not naively imply
that one should always be using one’s product: a barber cannot cut his own hair, the
maker of a cancer drug should not be a user of his product unless he is ill. So one should
use one’s products conditionally on being called to use them. However the rule is far
more rigid in matters entailing sytemic risks: simply some decisions should never be
taken by a certain class of people.

Heuristic vs Regulation: A heuristic, unlike a regulation, does not require state in-
tervention for implementation. It is simple contract between willing individuals: "I buy
your goods if you use them", or "I will listen to your forecast if you are exposed to losses if
you are wrong" and would not require the legal system any more than simple commercial
transaction. It is bottom-up. (The ancients and more-or-less ancients effectively under-
stood the contingency and probabilistic aspect in contract law, and asymmetry under
opacity, as reflected in the works of Pierre de Jean Olivi. Also note that the foundation
of maritime law has resided in skin-the-game unconditional sharing of losses, even as far
in the past as 800 B.C. with the Lex Rhodia, which stipulates that all parties involved in
a transaction have skin in the game and share losses in the event of damage. The rule
dates back to the Phoenician commerce and caravan trades among Semitic people. The
idea is still present in Islamic finance commercial law, see WardÃľ, 2010 .)

The rest of this chapter is organized as follows. First we present the epistemological
dimension of the hidden payoff, expressed using the mathematics of probability, showing
the gravity of the problem of hidden consequences. We conclude with the notion of
heuristic as simple "convex" rule, simple in its application.

14.1 Payoff Skewness and Lack of Skin-in-the-Game

This section will analyze the probabilistic mismatch or tail risks and returns in the
presence of a principal-agent problem.
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time

Changes in Value

Figure 14.1: The most effective way to maximize the expected payoff to the agent at the expense
of the principal.

Transfer of HarmTransfer of HarmTransfer of Harm: If an agent has the upside of the payoff of the random variable, with
no downside, and is judged solely on the basis of past performance, then the incentive is
to hide risks in the left tail using a negatively skewed (or more generally, asymmetric)
distribution for the performance. This can be generalized to any payoff for which one
does not bear the full risks and negative consequences of one’s actions.
Let P (K,M) be the payoff for the operator over M incentive periods

(14.1)P (K,M) ⌘ �
M
X

i=1

qt+(i�1)�t

⇣

xj
t+i�t �K

⌘

+1
�t(i�1)+t<⌧

with Xj
= (xj

t+i�t)
M
i=1

2 R, i.i.d. random variables representing the distribution of
profits over a certain period [t, t + i�t], i 2 N, �t 2 R+ and K is a “hurdle”, ⌧=
inf
n

s :
⇣

P

zs xz

⌘

< x
min

o

is an indicator of stopping time when past performance con-
ditions are not satisfied (namely, the condition of having a certain performance in a
certain number of the previous years, otherwise the stream of payoffs terminates, the
game ends and the number of positive incentives stops). The constant � 2(0,1) is an
“agent payoff”, or compensation rate from the performance, which does not have to be
monetary (as long as it can be quantified as “benefit”). The quantity qt+(i�1)�t

2 [1,1)
indicates the size of the exposure at times t+(i-1 ) �t (because of an Ito lag, as the
performance at period s is determined by q at a a strictly earlier period < s)
Let {fj} be the family of probability measures fj of Xj , j 2 N. Each measure cor-

responds to certain mean/skewness characteristics, and we can split their properties
in half on both sides of a “centrality” parameter K, as the “upper” and “lower” dis-
tributions. With some inconsequential abuse of notation we write dFj(x) as fj(x) dx,
so F+

j =
R1
K

fj(x) dx and F�j =
RK

�1 fj(x) dx , the “upper” and “lower” distributions,

each corresponding to certain conditional expectation E+
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Now define ⌫ 2 R+as a K-centered nonparametric measure of asymmetry, ⌫j ⌘

F�
j

F+

j

,
with values >1 for positive asymmetry, and <1 for negative ones. Intuitively, skewness
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has probabilities and expectations moving in opposite directions: the larger the negative
payoff, the smaller the probability to compensate.
We do not assume a “fair game”, that is, with unbounded returns m 2 (-1,1),

F+

j E+

j + F�j E�j = m, which we can write as

m+

+m� = m.

Simple assumptions of constant q and simple-condition stopping
time Assume q constant, q =1 and simplify the stopping time condition as having no
loss larger than �K in the previous periods, ⌧ =inf{(t+ i�t)): x

�t(i�1)+t < K}, which
leads to

E(P (K,M)) = � E+

j ⇥ E
 

M
X

i=1

1t+i�t<⌧

!

(14.2)

Since assuming independent and identically distributed agent’s payoffs, the expec-
tation at stopping time corresponds to the expectation of stopping time multiplied
by the expected compensation to the agent � Ej

+. And E
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The expectation of stopping time can be written as the probability of success under the
condition of no previous loss:

E
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We can express the stopping time condition in terms of uninterrupted success runs.
Let

P

be the ordered set of consecutive success runs
P

⌘ {{F}, {SF}, {SSF}, ..., {(M �

1) consecutive S, F}}, where S is success and F is failure over period �t, with associ-
ated corresponding probabilities:
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For M large, since F+

j 2 (0,1) we can treat the previous as almost an equality, hence:
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Finally, the expected payoff for the agent:
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E (P (K,M)) ' � E+

j

F+

j

1� F+

j

,

which increases by i) increasing E+

j , ii) minimizing the probability of the loss F�j , but,
and that’s the core point, even if i) and ii) take place at the expense of m the total
expectation from the package.

Alarmingly, since E+

j =

m�m�

F+

j

, the agent doesn’t care about a degradation of the

total expected return m if it comes from the left side of the distribution, m�. Seen
in skewness space, the expected agent payoff maximizes under the distribution j with
the lowest value of ⌫j (maximal negative asymmetry). The total expectation of the
positive-incentive without-skin-in-the-game depends on negative skewness, not on m.

Figure 14.2: Indy Mac, a failed firm during the subprime crisis (from Taleb 2009). It is a
representative of risks that keep increasing in the absence of losses, until the explosive blowup.

Multiplicative q and the explosivity of blowups Now, if there is a
positive correlation between q and past performance, or survival length, then the effect
becomes multiplicative. The negative payoff becomes explosive if the allocation q in-
creases with visible profitability, as seen in Figure 2 with the story of IndyMac, whose risk
kept growing until the blowup10. Consider that "successful" people get more attention,
more funds, more promotion. Having "beaten the odds" imparts a certain credibility.
In finance we often see fund managers experience a geometric explosion of funds under
management after perceived "steady" returns. Forecasters with steady strings of suc-
cesses become gods. And companies that have hidden risks tend to outperform others
in small samples, their executives see higher compensation. So in place of a constant
exposure q, consider a variable one:

10The following sad anecdote illustrate the problem with banks. It was announces that "JPMorgan
Joins BofA With Perfect Trading Record in Quarter" ( Dawn Kopecki and Hugh Son - Bloomberg News,
May 9, 2013). Yet banks while "steady earners" go through long profitable periods followed by blowups;
they end up losing back all cumulative profits in short episodes, just in 2008 they lost around 4.7 trillion
U.S. dollars before government bailouts. The same took place in 1982-1983 and in the Savings and
Loans crisis of 1991, see [71]).
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q
�t(i�1)+t = q !(i),

where !(i) is a multiplier that increases with time, and of course naturally collapses
upon blowup.
Equation 14.1 becomes:

P (K,M) ⌘ �
M
X

i=1

q !(i)
⇣

xj
t+i�t

�K
⌘

+1t+(i�1)�t<⌧ , (14.4)

and the expectation, assuming the numbers of periods, M is large enough

E(P (K,M)) = � E+

j q E
 

M
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!

. (14.5)

Assuming the rate of conditional growth is a constant r 2 [0,1) , and making the
replacement !(i)⌘ eri, we can call the last term in equation 14.5 the multiplier of the
expected return to the agent:
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We can get the table of sensitivities for the "multiplier" of the payoff:
F=.6 0.7 0.8 0.9

r=0 1.5 2.32 3.72 5.47
0.1 2.57 4.8 10.07 19.59
0.2 4.93 12.05 34.55 86.53
0.3 11.09 38.15 147.57 445.59

Table 1 Multiplicative effect of skewness

Explaining why Skewed Distributions Conceal the Mean Note that
skewed distributions conceal their mean quite well, with P (X < E(x)) < 1

2

in the pres-
ence of negative skewness. And such effect increases with fat-tailedness. Consider a
negatively skewed power law distribution, say the mirror image of a standard Pareto
distribution, with maximum value x

min

, and domain (�1, x
min

], with exceedance prob-
ability P (X > x) = � x�↵x↵

min

, and mean �

↵x
min

↵�1 , with ↵ > 1, have a proportion
of 1 �

↵�1
↵ of its realizations rosier than the true mean. Note that fat-tailedness in-

creases at lower values of ↵. The popular "eighty-twenty", with tail exponent ↵ = 1.15,
has > 90 percent of observations above the true mean11. Likewise, to consider a thin-
ner tailed skewed distribution, for a Lognormal distribution with support (�1, 0), with
mean m = �eµ+

�

2

2 , the probability of exceeding the mean is P (X > m =

1

2

erfc
⇣

�

�
2

p
2

⌘

,
which for � = 1 is at 69%, and for � = 2 is at 84%.

11This discussion of a warped probabilistic incentive corresponds to what John Kay has called the
"Taleb distribution", John Kay "A strategy for hedge funds and dangerous drivers", Financial Times,
16 January 2003.
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Forecasters We can see how forecasters who do not have skin in the game have the
incentive of betting on the low-impact high probability event, and ignoring the lower
probability ones, even if these are high impact. There is a confusion between “digital
payoffs”

R

fj(x) dx and full distribution, called “vanilla payoffs”,
R

xfj(x) dx, see Taleb
and Tetlock (2013)12.

14.2 Opacity and Risk Hiding: NonMathematical Sum-
mary

We will next proceed to summarize the mathematical argument in verbal form.
A) If an agent has the upside of the payoff of the random variable, with no downside,

and is judged solely on the basis of past performance, then the incentive is to hide
risks in the left tail using a negatively skewed (or more generally, asymmetric)
distribution for the performance. This can be generalized to any payoff for which
one does not bear the full risks and negative consequences of oneâĂŹs actions.
B) Further, even if it is not intentional, i.e., the agent does not aim at probabilistic

rent at the expense of the principal (at variance with the way agents are treated
in the economics literature); by a survival argument, those agents without skin in
the game who tend to engage in strategies that hide risk in the tail tend to fare
better and longer and populate the agent population. So the argument is not one
of incentive driving the agents, but one of survival.
We can sketch a demonstration of these statements with the following reasoning.

Assume that an agent has a payoff as a proportional cut of his performance or the
benefits to the principal, and can get a percentage at year end, his compensation
being tied to the visible income. The timing of the compensation is periodic, with
no total claw back (subsequent obligation to completely return past compensation).
The expected value to the agent is that of a stream, a sum of payoffs over time,
extending indefinitely (or bounded by the life of the agent). Assume that a loss
will reduce his future risk-taking, or even terminate it, in terms of shrinking of
such contracts, owing to change in reputation. A loss would hurt the track record,
revealing it so to speak, making such a stream of payoffs stop. In addition, the
payoff of the agent is compounded over time as the contracts get larger in response
to the track record.
Critically, the principal does not observe statistical properties, only realizations of

the random variable. However the agent has an edge over the principal, namely
that he can select negatively skewed payoffs. All he needs to do is to figure out
the shape of the probability distribution, not its expected returns, nothing else.
More technically, the expectation for the agent does not depend on the size of the
loss: a small loss or a large loss are the same to him. So the agent can benefit by
minimizing the probability of the loss, not the expectation. Minimizing one not the
other results in the most possibly negatively skewed distribution.

12Money managers do not have enough skin in the game unless they are so heavily invested in their
funds that they can end up in a net negative form the event. The problem is that they are judged on
frequency, not payoff, and tend to cluster together in packs to mitigate losses by making them look like
"industry event". Many fund managers beat the odds by selling tails, say covered writes, by which one
can increase the probability of gains but possibly lower the expectation. They also have the optionality
of multi-time series; they can manage to hide losing funds in the event of failure. Many fund companies
bury hundreds of losing funds away, in the "cemetery of history" (Taleb, 2007) .
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This result can be extended to include any situation in which the compensation or
reward (in any form) to the agent depends on the probability, rather than the true
expectation.
In an evolutionary setting, downside harm via skin-in-the-game would create an

absorbing state, with the system failing to be ergodic, hence would clean up this
class of risk takers.
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II (Anti)Fragility and Nonlinear

Responses to Random Variables
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15 Exposures As Transformed Random
Variables

Chapter Summary 14: Deeper into the conflation between a random
variable and exposure to it.

15.1 The Conflation Problem: Exposures to x Confused
With Knowledge About x

15.1.1 Exposure, not knowledge

.Take x a random or nonrandom variable, and f(x) the exposure, payoff, the effect of x
on you, the end bottom line. (To be technical, x is higher dimensions, in RN but less
assume for the sake of the examples in the introduction that it is a simple one-dimensional
variable).
The disconnect. Practitioner and risk takers observe the following disconnect: people

(nonpractitioners) talking x (with the implication that we practitioners should care about
x in running our affairs) while practitioners think about f(x), nothing but f(x). And
the straight confusion since Aristotle between x and f(x) has been chronic. Sometimes
people mention f(x) as utility but miss the full payoff. And the confusion is at two level:
one, simple confusion; second, in the decision-science literature, seeing the difference and
not realizing that action on f(x) is easier than action on x.

Examples The variable x is unemployment in Senegal, F
1

(x) is the effect on the
bottom line of the IMF, and F

2

(x) is the effect on your grandmother (which I assume
is minimal).
x can be a stock price, but you own an option on it, so f(x) is your exposure an option

value for x, or, even more complicated the utility of the exposure to the option value.
x can be changes in wealth, f(x) the convex-concave value function of Kahneman-

Tversky, how these “affect” you. One can see that f(x) is vastly more stable or robust
than x (it has thinner tails).
A convex and linear function of a variable x. Confusing f(x) (on the vertical) and x

(the horizontal) is more and more significant when f(x) is nonlinear. The more convex
f(x), the more the statistical and other properties of f(x) will be divorced from those
of x. For instance, the mean of f(x) will be different from f(Mean of x), by Jensen’s
ineqality. But beyond Jensen’s inequality, the difference in risks between the two will be
more and more considerable. When it comes to probability, the more nonlinear f, the
less the probabilities of x matter compared to the nonlinearity of f. Moral of the story:
focus on f, which we can alter, rather than the measurement of the elusive properties of
x.
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Figure 15.1: The Conflation

Probability Distribution of x Probability Distribution of f!x"

There are infinite numbers of functions F depending on a unique variable x.
All utilities need to be embedded in F.

15.1.2 Limitations of knowledge

. What is crucial, our limitations of knowledge apply to x not necessarily to f(x). We
have no control over x, some control over F(x ). In some cases a very, very large control
over f(x).
This seems naive, but people do, as something is lost in the translation.
The danger with the treatment of the Black Swan problem is as follows: people focus

on x (“predicting x”). My point is that, although we do not understand x, we can deal
with it by working on F which we can understand, while others work on predicting x
which we can’t because small probabilities are incomputable, particularly in “fat tailed”
domains. f(x) is how the end result affects you.
The probability distribution of f(x) is markedly different from that of x, particularly

when f(x) is nonlinear. We need a nonlinear transformation of the distribution of x to
get f(x). We had to wait until 1964 to get a paper on “convex transformations of random
variables”, Van Zwet (1964).

15.1.3 Bad news

F is almost always nonlinear, often “S curved”, that is convex-concave (for an increasing
function).

15.1.4 The central point about what to understand

When f(x) is convex, say as in trial and error, or with an option, we do not need to
understand x as much as our exposure to H. Simply the statistical properties of x are
swamped by those of H. That’s the point of Antifragility in which exposure is more
important than the naive notion of “knowledge”, that is, understanding x.

15.1.5 Fragility and Antifragility

When f(x) is concave (fragilefragile), errors about x can translate into extreme negative
values for F. When f(x) is convex, one is immune from negative variations.
The more nonlinear F the less the probabilities of x matter in the probability distribution

of the final package F.
Most people confuse the probabilites of x with those of F. I am serious: the entire

literature reposes largely on this mistake.
So, for now ignore discussions of x that do not have F. And, for Baal’s sake, focus on

F, not x.
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15.2 Transformations of Probability Distributions

Say x follows a distribution p(x) and z = f(x) follows a distribution g(z). Assume g(z)
continuous, increasing, and differentiable for now.
The density p at point r is defined by use of the integral

D(r) ⌘

Z r

�1
p(x)dx

hence

Z r

�1
p(x) dx =

Z f(r)

�1
g(z) dz

In differential form

g(z)dz = p(x)dx

[ASSUMING f is Borel measurable, i.e. has an inverse that is a Borel Set...]
since x = f (�1)

(z), one obtains

g(z)dz = p
⇣

f (�1)
(z)

⌘

df (�1)
(z)

Now, the derivative of an inverse function

f (�1)
(z) =

1

f 0 (f�1(z))
,

which provides the useful transformation heuristic:

g(z) =
p
�

f (�1)
(z)

�

f 0(u)|u =

�

f (�1)
(z)

� (15.1)

In the event that g(z) is monotonic decreasing, then

g(z) =
p
�

f (�1)
(z)

�

|f 0(u)|u =

�

f (�1)
(z)

�

�

�

Where f is convex (and continuous), 1

2

(f(x � �x) + f(�x + x)) � f(x), concave if
1

2

(f(x � �x) + f(�x + x))  f(x). Let us simplify with sole condition, assuming f(.)
twice differentiable, @2f

@x2

� 0 for all values of x in the convex case and <0 in the concave
one. [WILL DISCUSS OTHER CASES WHERE WE NEED TO SPLIT THE R.V. IN
TWO DOMAINS BECAUSE INVERSE NOT UNIQUE]

15.2.1 Some Examples.

Squaring x: p(x) is a Gaussian(with mean 0, standard deviation 1) , f(x)= x2

g(x) =
e�

x

2

2

p

2⇡
p

x
, x > 0

which corresponds to the Chi-square distribution with 1 degrees of freedom.



210 CHAPTER 15. EXPOSURES AS TRANSFORMED RANDOM VARIABLES

Exponentiating x :p(x) is a Gaussian(with mean µ, standard deviation �)

g(x) =
e�

(log(x)�µ)

2

2�

2

p

2⇡�x

which is the lognormal distribution.

15.3 Application 1: Happiness (f(x)) is different from
wealth (x)

There is a conflation of fat-tailedness of Wealth and Utility: Happiness (f(x))does not
have the same statistical properties as wealth (x)

15.3.1 Case 1: The Kahneman Tversky Prospect theory, which is
convex-concave

v(x) =

8

>

>

>

<

>

>

>

:

xa x � 0

�� (�xa
) x < 0

with a and � calibrated a = 0.88 and � = 2.25

For x (the changes in wealth) following a T distribution with tail exponent ↵,

f(x) =

⇣
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Where B is the Euler Beta function, B(a, b) = �(a)�(b)/�(a+b) =
R

1

0

ta�1(1�t)b�1dt;
we get (skipping the details of z= v(u) and f(u) du = z(x) dx ), the distribution z(x)
of the utility of happiness v(x)
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Fragility: as defined in the Taleb-Douady (2012) sense, on which later, i.e. tail
sensitivity below K, v(x) is less “fragilefragile” than x.
v(x) has thinner tails than x , more robust.
ASYMPTOTIC TAIL More technically the asymptotic tail for V(x) becomes ↵

a (i.e,
for x and -x large, the exceedance probability for V, P>x ⇠ K x�

↵

a , with K a constant,
or

z(x) ⇠ Kx�
↵

a

�1

We can see that V(x) can easily have finite variance when x has an infinite one. The
dampening of the tail has an increasingly consequential effect for lower values of ↵.



15.3. APPLICATION 1: HAPPINESS (F (X)) IS DIFFERENT FROM WEALTH (X)211

!20 !15 !10 !5 0 5 10

0.05

0.10

0.15

0.20

0.25

0.30

0.35

Figure 15.2: Simulation, first. The
distribution of the utility of changes
of wealth, when the changes in wealth
follow a power law with tail exponent
=2 (5 million Monte Carlo simula-
tions).
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Figure 15.3: The same result derived
analytically, after the Monte Carlo
runs.

Tail of x

Tail of v(x)

!18 !16 !14 !12 !10 !8 !6

0.005

0.010

0.015

0.020

Figure 15.4: Left tail and fragility



212 CHAPTER 15. EXPOSURES AS TRANSFORMED RANDOM VARIABLES

Case 2: Compare to the Monotone concave of Classical Utility

Unlike the convex-concave shape in Kahneman Tversky, classical utility is monotone
concave. This leads to plenty of absurdities, but the worst is the effect on the distribution
of utility.

Granted one (K-T) deals with changes in wealth, the second is a function of wealth.

Take the standard concave utility function g(x)= 1- e�ax. With a=1
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The distribution of v(x) will be
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Which can be tolerated owing to the rapid drop in probabilities in the Gaussian tail.
But with a fatter tailed distribution, such as the standard powerlaw (a Student T Dis-
tribution) (Gabaix, 2008,[32]), where ↵ is the tail exponent,
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With such a distribution of utility it would be absurd to do anything.
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15.4 The effect of convexity on the distribution of f(x)

Note the following property.
Distributions that are skewed have their mean dependent on the variance (when it

exists), or on the scale. In other words, more uncertainty raises the expectation.
Demonstration 1:TK

Outcome

Probability

Low Uncertainty

High Uncertainty

Example: the Lognormal Distribution has a term �2

2

in its mean, linear to variance.

Example: the Exponential Distribution
1� e�x� x � 0

has the mean a concave
function of the variance, that is, 1

� , the square root of its variance.

Example: the Pareto Distribution L↵x�1�↵↵ x � L , ↵ >2 has the mean
p

↵� 2

p

↵ ⇥ Standard Deviation,
p

↵

↵�2

L

↵�1

15.5 Estimation Methods When the Payoff is Convex

A simple way to see the point that convex payoffs have larger estimation errors: the
Ilmanen study assumes that one can derive strong conclusions from a single historical
path not taking into account sensitivity to counterfactuals and completeness of sampling.
It assumes that what one sees from a time series is the entire story. 1

Where data tend to be missing

Outcomes

Probability

Figure 1: The Small Sample Effect and Naive Empiricism: When one looks
at historical returns that are skewed to the left, most missing observations are in the
left tails, causing an overestimation of the mean. The more skewed the payoff, and the
thicker the left tail, the worst the gap between observed and true mean.
Now of concern for us is assessing the stub, or tail bias, that is, the difference between

M and M*, or the potential contribution of tail events not seen in the window used for
1The same flaw, namely missing convexity, is present in Bodarenko ??.
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the analysis. When the payoff in the tails is powerful from convex responses, the stub
becomes extremely large. So the rest of this note will go beyond the Ilmanen (2012) to
explain the convexities of the payoffs in the tails and generalize to classical mistakes of
testing strategies with explosive tail exposures on a finite simple historical sample. It
will be based on the idea of metaprobability (or metamodel): by looking at effects of
errors in models and representations. All one needs is an argument for a very small
probability of a large payoff in the tail (devastating for the option seller) to reverse long
shot arguments and make it uneconomic to sell a tail option. All it takes is a small
model error to reverse the argument.

The Nonlineatities of Option Packages There is a compounding effect of
rarety of tail events and highly convex payoff when they happen, a convexity that is
generally missed in the literature. To illustrate the point, we construct a “return on
theta” (or return on time-decay) metric for a delta-neutral package of an option, seen at
t
0

o given a deviation of magnitude N�K .

(15.2)
⇧(N,K) ⌘
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where 0 (S
0

,K, T � t
0

� �,�K)is the European option price valued at time t
0

off an
initial asset value S

0

, with a strike price K, a final expiration at time T, and priced using
an “implied” standard deviation �K . The payoff of ⇧ is the same whether O is a put or a
call, owing to the delta-neutrality by hegding using a hedge ratio �S

0

,t
0

(thanks to put-
call parity, �S

0

,t
0

is negative if O is a call and positive otherwise). ✓S
0

,t
0

is the discrete
change in value of the option over a time increment � (changes of value for an option in
the absence of changes in any other variable). With the increment � = 1/252, this would
be a single business day. We assumed interest rate are 0, with no loss of generality (it
would be equivalent of expressing the problem under a risk-neutral measure). What 15.2
did is re-express the Fokker-Plank-Kolmogorov differential equation (Black Scholes), in
discrete terms, away from the limit of � !0. In the standard Black-Scholes World, the
expectation of ⇧(N,K ) should be zero, as N follows a Gaussian distribution with mean
-1/00082 �2. But we are not about the Black Scholes world and we need to examine
payoffs to potential distributions. The use of �Kneutralizes the effect of “expensive” for
the option as we will be using a multiple of �K as N standard deviations; if the option
is priced at 15.87% volatility, then one standard deviation would correspond to a move
of about 1%, Exp[ Sqrt[1/252]. 1587].
Clearly, for all K, ⇧[0,K]=-1 , ⇧[ Sqrt[2/⇡],K]= 0 close to expiration (the break-even

of the option without time premium, or when T � t
0

= �, takes place one mean deviation
away), and ⇧[ 1,K]= 0.

15.5.1 Convexity and Explosive Payoffs

Of concern to us is the explosive nonlinearity in the tails. Let us examine the payoff of ⇧
across many values of K = S

0

e⇤�
K

p
�, in other words how many “sigmas” away from the

money the strike is positioned. A package about 20 � out of the money , that is, ⇤=20,
the crash of 1987 would have returned 229,000 days of decay, compensating for > 900
years of wasting premium waiting for the result. An equivalent reasoning could be made
for subprime loans. From this we can assert that we need a minimum of 900 years of data
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to start pronouncing these options 20 standard deviations out-of-the money “expensive”,
in order to match the frequency that would deliver a payoff, and, more than 2000 years
of data to make conservative claims. Clearly as we can see with ⇤=0, the payoff is so
linear that there is no hidden tail effect.

! " 20

! " 10

! " 0 N

#!N"

5 10 15 20
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Figure 2: Returns for package ⇧(N,K= S
0

Exp[⇤ �K ] ) at values of ⇤= 0,10,20 and
N, the conditional “sigma” deviations.
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Figure 3: The extreme convexity of an extremely out of the money option, with ⇤=20

Visibly the convexity is compounded by the fat-tailedness of the process: intuitively a
convex transformation of a fat-tailed process, say a powerlaw, produces a powerlaw of
considerably fatter tails. The Variance swap for instance results in 1

2

the tail exponent of
the distribution of the underlying security, so it would have infinite variance with tail 3

2

off the “cubic” exonent discussed in the literature (Gabaix et al,2003; Stanley et al, 2000)
-and some out-of-the money options are more convex than variance swaps, producing tail
equivalent of up to 1

5

over a broad range of fluctuations.

For specific options there may not be an exact convex transformation. But we can get
a Monte Carlo simulation illustrating the shape of the distribution and visually showing
how skewed it is.
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Fragility Heuristic and Nonlinear Exposure to Implied Volatil-
ity Most of the losses from option portfolios tend to take place from the explosion of
implied volatility, therefore acting as if the market had already experienced a tail event
(say in 2008). The same result as Figure 3 can be seen for changes in implied volatil-
ity: an explosion of volatility by 5 ⇥ results in a 10 � option gaining 270 ⇥ (the VIx
went up > 10 ⇥ during 2008). (In a well publicized debacle, the speculator Niederhoffer
went bust because of explosive changes in implied volatility in his option portfolio, not
from market movement; further, the options that bankrupted his fund ended up expiring
worthless weeks later).
The Taleb and Douady (2012)[68] , Taleb Canetti et al (2012)[64] fragility heuristic

identifies convexity to significant parameters as a metric to assess fragility to model
error or representation: by theorem, model error maps directly to nonlinearity of pa-
rameters. The heuristic corresponds to the perturbation of a parameter, say the scale
of a probability distribution and looks at the effect of the expected shortfall; the same
theorem asserts that the asymmetry between gain and losses (convexity) maps directly
to the exposure to model error and to fragility. The exercise allows us to re-express the
idea of convexity of payoff by ranking effects.

⇥2 ⇥3 ⇥4

ATM 2 3 4
⇤ = 5 5 10 16
⇤ = 10 27 79 143
⇤ = 20 7686 72741 208429

Table 15.1: The Table presents differents results (in terms of multiples of option premia over
intrinsic value) by multiplying implied volatility by 2, 3,4. An option 5 conditional standard
deviations out of the money gains 16 times its value when implied volatility is multiplied by 4.
Further out of the money options gain exponentially. Note the linearity of at-the-money options

15.5.2 Conclusion: The Asymmetry in Decision Making

To assert overpricing (or refute underpricing) of tail events expressed by convex instru-
ments requires an extraordinary amount of “evidence”, a much longer time series about

2This convexity effect can be mitigated by some dynamic hedges, assuming no gaps but, because of
“local time” for stochastic processes; in fact, some smaller deviations can carry the cost of larger ones:
for a move of -10 sigmas followed by an upmove of 5 sigmas revision can end up costing a lot more than
a mere -5 sigmas.Tail events can come from a volatile sample path snapping back and forth.
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the process and strong assumptions about temporal homogeneity. Out of the money op-
tions are so convex to events that a single crash (say every 50, 100, 200, even 900 years)
could be sufficient to justify skepticism about selling some of them (or avoiding to sell
them) –those whose convexity matches the frequency of the rare event. The further out
in the tails, the less claims one can make about their “value”, state of being “expensive’,
etc. One can make claims on ”bounded" variables perhaps, not for the tails.
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16 Mapping (Anti)fragility (w/Douady)

Chapter Summary 15: We provide a mathematical definition of fragility and
antifragility as negative or positive sensitivity to a semi-measure of disper-
sion and volatility (a variant of negative or positive "vega") and examine
the link to nonlinear effects. We integrate model error (and biases) into the
fragilefragile or antifragile context. Unlike risk, which is linked to psycho-
logical notions such as subjective preferences (hence cannot apply to a coffee
cup) we offer a measure that is universal and concerns any object that has
a probability distribution (whether such distribution is known or, critically,
unknown). We propose a detection of fragility, robustness, and antifragility
using a single "fast-and-frugal", model-free, probability free heuristic that
also picks up exposure to model error. The heuristic lends itself to imme-
diate implementation, and uncovers hidden risks related to company size,
forecasting problems, and bank tail exposures (it explains the forecasting bi-
ases). While simple to implement, it improves on stress testing and bypasses
the common flaws in Value-at-Risk.

16.1 Introduction

The notions of fragility and antifragility were introduced in Taleb (2012). In short,
fragility is related to how a system suffers from the variability of its environment beyond
a certain preset threshold (when threshold is K, it is called K -fragility), while antifragility
refers to when it benefits from this variability —in a similar way to “vega” of an option
or a nonlinear payoff, that is, its sensitivity to volatility or some similar measure of scale
of a distribution.

Simply, a coffee cup on a table suffers more from large deviations than from the
cumulative effect of some shocks—conditional on being unbroken, it has to suffer more
from “tail” events than regular ones around the center of the distribution, the “at the

K
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Figure 16.1: A definition of
fragility as left tail-vega sensi-
tivity; the figure shows the effect
of the perturbation of the lower
semi-deviation s� on the tail
integral ⇠ of (x – ⌦) below K, ⌦
being a centering constant. Our
detection of fragility does not
require the specification of f the
probability distribution.
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money” category. This is the case of elements of nature that have survived: conditional on
being in existence, then the class of events around the mean should matter considerably
less than tail events, particularly when the probabilities decline faster than the inverse
of the harm, which is the case of all used monomodal probability distributions. Further,
what has exposure to tail events suffers from uncertainty; typically, when systems – a
building, a bridge, a nuclear plant, an airplane, or a bank balance sheet– are made robust
to a certain level of variability and stress but may fail or collapse if this level is exceeded,
then they are particularly fragile to uncertainty about the distribution of the stressor,
hence to model error, as this uncertainty increases the probability of dipping below the
robustness level, bringing a higher probability of collapse. In the opposite case, the
natural selection of an evolutionary process is particularly antifragile, indeed, a more
volatile environment increases the survival rate of robust species and eliminates those
whose superiority over other species is highly dependent on environmental parameters.

Figure 16.1 show the “tail vega” sensitivity of an object calculated discretely at two
different lower absolute mean deviations. We use for the purpose of fragility and an-
tifragility, in place of measures in L2 such as standard deviations, which restrict the
choice of probability distributions, the broader measure of absolute deviation, cut into
two parts: lower and upper semi-deviation above the distribution center ⌦.
This article aims at providing a proper mathematical definition of fragility, robustness,
and antifragility and examining how these apply to different cases where this notion is
applicable.
Intrinsic and Inherited Fragility: Our definition of fragility is two-fold. First, of
concern is the intrinsic fragility, the shape of the probability distribution of a variable
and its sensitivity to s-, a parameter controlling the left side of its own distribution. But
we do not often directly observe the statistical distribution of objects, and, if we did,
it would be difficult to measure their tail-vega sensitivity. Nor do we need to specify
such distribution: we can gauge the response of a given object to the volatility of an
external stressor that affects it. For instance, an option is usually analyzed with respect
to the scale of the distribution of the “underlying” security, not its own; the fragility of
a coffee cup is determined as a response to a given source of randomness or stress; that
of a house with respect of, among other sources, the distribution of earthquakes. This
fragility coming from the effect of the underlying is called inherited fragility. The transfer
function, which we present next, allows us to assess the effect, increase or decrease in
fragility, coming from changes in the underlying source of stress.
Transfer Function: A nonlinear exposure to a certain source of randomness maps into
tail-vega sensitivity (hence fragility). We prove that

Inherited Fragility , Concavity in exposure on the left side of the distribution
and build H, a transfer function giving an exact mapping of tail vega sensitivity to the
second derivative of a function. The transfer function will allow us to probe parts of the
distribution and generate a fragility-detection heuristic covering both physical fragility
and model error.

16.1.1 Fragility As Separate Risk From Psychological Prefer-
ences

Avoidance of the Psychological: We start from the definition of fragility as tail vega
sensitivity, and end up with nonlinearity as a necessary attribute of the source of such
fragility in the inherited case —a cause of the disease rather than the disease itself.
However, there is a long literature by economists and decision scientists embedding risk
into psychological preferences —historically, risk has been described as derived from risk
aversion as a result of the structure of choices under uncertainty with a concavity of the



16.1. INTRODUCTION 221

muddled concept of “utility” of payoff, see Pratt (1964), Arrow (1965), Rothchild and
Stiglitz(1970,1971). But this “utility” business never led anywhere except the circularity,
expressed by Machina and Rothschild (2008), “risk is what risk-averters hate.” Indeed
limiting risk to aversion to concavity of choices is a quite unhappy result —the utility
curve cannot be possibly monotone concave, but rather, like everything in nature neces-
sarily bounded on both sides, the left and the right, convex-concave and, as Kahneman
and Tversky (1979) have debunked, both path dependent and mixed in its nonlinearity.
Beyond Jensen’s Inequality : Furthermore, the economics and decision-theory liter-
ature reposes on the effect of Jensen’s inequality, an analysis which requires monotone
convex or concave transformations —in fact limited to the expectation operator. The
world is unfortunately more complicated in its nonlinearities. Thanks to the transfer
function, which focuses on the tails, we can accommodate situations where the source
is not merely convex, but convex-concave and any other form of mixed nonlinearities
common in exposures, which includes nonlinear dose-response in biology. For instance,
the application of the transfer function to the Kahneman-Tversky value function, convex
in the negative domain and concave in the positive one, shows that its decreases fragility
in the left tail (hence more robustness) and reduces the effect of the right tail as well
(also more robustness), which allows to assert that we are psychologically “more robust”
to changes in wealth than implied from the distribution of such wealth, which happens
to be extremely fat-tailed.

Accordingly, our approach relies on nonlinearity of exposure as detection of the vega-
sensitivity, not as a definition of fragility. And nonlinearity in a source of stress is
necessarily associated with fragility. Clearly, a coffee cup, a house or a bridge don’t have
psychological preferences, subjective utility, etc. Yet they are concave in their reaction
to harm: simply, taking z as a stress level and ⇧(z ) the harm function, it suffices to see
that, with n > 1,

⇧(nz) < n⇧(z) for all 0 < nz < Z⇤

where Z⇤ is the level (not necessarily specified) at which the item is broken. Such
inequality leads to ⇧(z) having a negative second derivative at the initial value z.
So if a coffee cup is less harmed by n times a stressor of intensity Z than once a stressor

of nZ, then harm (as a negative function) needs to be concave to stressors up to the
point of breaking; such stricture is imposed by the structure of survival probabilities
and the distribution of harmful events, and has nothing to do with subjective utility or
some other figments. Just as with a large stone hurting more than the equivalent weight
in pebbles, if, for a human, jumping one millimeter caused an exact linear fraction of
the damage of, say, jumping to the ground from thirty feet, then the person would be
already dead from cumulative harm. Actually a simple computation shows that he would
have expired within hours from touching objects or pacing in his living room, given the
multitude of such stressors and their total effect. The fragility that comes from linearity
is immediately visible, so we rule it out because the object would be already broken
and the person already dead. The relative frequency of ordinary events compared to
extreme events is the determinant. In the financial markets, there are at least ten
thousand times more events of 0.1% deviations than events of 10%. There are close to
8,000 micro-earthquakes daily on planet earth, that is, those below 2 on the Richter
scale —about 3 million a year. These are totally harmless, and, with 3 million per year,
you would need them to be so. But shocks of intensity 6 and higher on the scale make
the newspapers. Accordingly, we are necessarily immune to the cumulative effect of
small deviations, or shocks of very small magnitude, which implies that these affect us
disproportionally less (that is, nonlinearly less) than larger ones.
Model error is not necessarily mean preserving. s-, the lower absolute semi-deviation
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Figure 16.2: Disproportionate effect of tail events on nonlinear exposures, illustrating the nec-
essary character of the nonlinearity of the harm function and showing how we can extrapolate
outside the model to probe unseen fragility.

does not just express changes in overall dispersion in the distribution, such as for instance
the “scaling” case, but also changes in the mean, i.e. when the upper semi-deviation
from ⌦ to infinity is invariant, or even decline in a compensatory manner to make the
overall mean absolute deviation unchanged. This would be the case when we shift the
distribution instead of rescaling it. Thus the same vega-sensitivity can also express
sensitivity to a stressor (dose increase) in medicine or other fields in its effect on either
tail. Thus s�(l) will allow us to express the sensitivity to the “disorder cluster” (Taleb,
2012): i) uncertainty, ii) variability, iii) imperfect, incomplete knowledge, iv) chance, v)
chaos, vi) volatility, vii) disorder, viii) entropy, ix) time, x) the unknown, xi) randomness,
xii) turmoil, xiii) stressor, xiv) error, xv) dispersion of outcomes.

Detection Heuristic
Finally, thanks to the transfer function, this paper proposes a risk heuristic that "works"
in detecting fragility even if we use the wrong model/pricing method/probability distri-
bution. The main idea is that a wrong ruler will not measure the height of a child;
but it can certainly tell us if he is growing. Since risks in the tails map to nonlin-
earities (concavity of exposure), second order effects reveal fragility, particularly in the
tails where they map to large tail exposures, as revealed through perturbation analysis.
More generally every nonlinear function will produce some kind of positive or negative
exposures to volatility for some parts of the distribution.

16.1.2 Fragility and Model Error

As we saw this definition of fragility extends to model error, as some models produce
negative sensitivity to uncertainty, in addition to effects and biases under variability. So,
beyond physical fragility, the same approach measures model fragility, based on the dif-
ference between a point estimate and stochastic value (i.e., full distribution). Increasing
the variability (say, variance) of the estimated value (but not the mean), may lead to
one-sided effect on the model —just as an increase of volatility causes porcelain cups to
break. Hence sensitivity to the volatility of such value, the “vega” of the model with re-
spect to such value is no different from the vega of other payoffs. For instance, the misuse
of thin-tailed distributions (say Gaussian) appears immediately through perturbation of
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Table 16.1: Payoffs and Mixed Nonlinearities

Type Condition Left Tail

(Loss

Do-

main)

Right

Tail

(Gain

Do-

main)

Nonlinear

Payoff Func-

tion y = f(x)

"derivative"

where x is

a random

variable

Derivatives

Equivalent

(Taleb, 1997)

Effect of fa-

tailedness

of f(x) com-

pared to

primitive x.

Type

1

Fragile
(type 1)

Fat (reg-
ular or
absorbing
barrier)

Fat Mixed concave
left, convex
right (fence)

Long up-vega,
short down-
vega

More fragility
if absorbing
barrier, neutral
otherwise

Type

2

Fragile
(type 2)

Thin Thin concave Short vega More fragility

Type

3

Robust Thin Thin Mixed convex
left, concave
right (digital,
sigmoid)

Short up - vega,
long down -
vega

No effect

Type

4

antifragile Thin Fat
(thicker
than left)

Convex Long vega More an-
tifragility

the standard deviation, no longer used as point estimate, but as a distribution with its
own variance. For instance, it can be shown how fat-tailed (e.g. power-law tailed)
probability distributions can be expressed by simple nested perturbation and mixing
of Gaussian ones. Such a representation pinpoints the fragility of a wrong probability
model and its consequences in terms of underestimation of risks, stress tests and similar
matters.

16.1.3 Antifragility

It is not quite the mirror image of fragility, as it implies positive vega above some
threshold in the positive tail of the distribution and absence of fragility in the left tail,
which leads to a distribution that is skewed right.

Fragility and Transfer Theorems
Table 16.1 introduces the Exhaustive Taxonomy of all Possible Payoffs y=f(x)

The central Table, Table 1 introduces the exhaustive map of possible outcomes, with
4 mutually exclusive categories of payoffs. Our steps in the rest of the paper are as
follows: a. We provide a mathematical definition of fragility, robustness and antifragility.
b. We present the problem of measuring tail risks and show the presence of severe
biases attending the estimation of small probability and its nonlinearity (convexity) to
parametric (and other) perturbations. c. We express the concept of model fragility in
terms of left tail exposure, and show correspondence to the concavity of the payoff from
a random variable. d. Finally, we present our simple heuristic to detect the possibility
of both fragility and model error across a broad range of probabilistic estimations.



224 CHAPTER 16. MAPPING (ANTI)FRAGILITY (W/DOUADY)

Conceptually, fragility resides in the fact that a small – or at least reasonable – uncer-
tainty on the macro-parameter of a distribution may have dramatic consequences on the
result of a given stress test, or on some measure that depends on the left tail of the
distribution, such as an out-of-the-money option. This hypersensitivity of what we like
to call an “out of the money put price” to the macro-parameter, which is some measure
of the volatility of the distribution of the underlying source of randomness.
Formally, fragility is defined as the sensitivity of the left-tail shortfall (non-conditioned
by probability) below a certain threshold K to the overall left semi-deviation of the
distribution.

Examples
i- A porcelain coffee cup subjected to random daily stressors from use.

ii- Tail distribution in the function of the arrival time of an aircraft.

iii- Hidden risks of famine to a population subjected to monoculture —or, more gener-
ally, fragilizing errors in the application of Ricardo’s comparative advantage without
taking into account second order effects.

iv- Hidden tail exposures to budget deficits’ nonlinearities to unemployment.

v- Hidden tail exposure from dependence on a source of energy, etc. (“squeezability
argument”).

16.2 Mathematical Derivations of Fragility

The following offers a formal definition of fragility as "vega", negative expected response
from uncertainty. It also shows why this is necessarily linked to accelerated response,
how "size matters". The derivations explain, among other things"

• How spreading risks are dangerous compared to limited one we need to weave into
the derivations the notion of risk spreading as a non-concave response to make
links clearer.

• Why error is a problem in the presence of nonlinearity.

• Why polluting "a little" is qualitatively different from pollution "a lot".

• Eventually, why fat tails arise from accelerating response.

16.2.1 Tail Sensitivity to Uncertainty

We construct a measure of "vega", that is, the sensitivity to uncertainty, in the left
tails of the distribution that depends on the variations of s the semi-deviation below a
certain level W , chosen in the L1 norm in order to ensure its existence under "fat tailed"
distributions with finite first semi-moment. In fact s would exist as a measure even in
the case of undefined moments to the right side of W .

Let X be a random variable, the distribution of which is one among a one-parameter
family of pdf f�,� 2 I ⇢ R. We consider a fixed reference value ⌦ and, from this
reference, the left-semi-absolute deviation:

s�(�) =

Z

⌦

�1
(⌦� x)f�(x)dx (16.1)

We assume that � ! s–(�) is continuous, strictly increasing and spans the whole range
R

+

= [0, +1), so that we may use the left-semi-absolute deviation s– as a parameter
by considering the inverse function �(s) : R

+

! I, defined by s� (�(s)) = s for s 2 R
+

.
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This condition is for instance satisfied if, for any given x < ⌦, the probability is a
continuous and increasing function of �. Indeed, denoting

F�(x) = Pf
�

(X < x) =

Z x

�1
f�(t) dt, (16.2)

an integration by parts yields:

s�(�) =

Z

⌦

�1
F�(x) dx

This is the case when � is a scaling parameter, i.e., X ⇠ ⌦+ �(X
1

� ⌦) indeed one has
in this case

F�(x) = F
1

✓

⌦+

x� ⌦

�

◆

,

@F�

@�
(x) =

⌦� x

�2

f�(x) and s�(�) = � s�(1).

It is also the case when � is a shifting parameter, i.e. X ⇠ X
0

� � , indeed, in this case
F�(x) = F

0

(x+ �) and @s�

@� (x) = F�(⌦).
For K < ⌦ and s 2 R+, let:

⇠(K, s�) =

Z K

�1
(⌦� x)f�(s�)

(x)dx (16.3)

In particular, ⇠(⌦, s–) = s–. We assume, in a first step, that the function ⇠(K,s–) is
differentiable on (�1, ⌦] ⇥ R

+

. The K-left-tail-vega sensitivity of X at stress level
K < ⌦ and deviation level s� > 0 for the pdf f� is:

V (X, f�,K, s�) =
@⇠

@s�
(K, s�) =

⇣

R

⌦

�1(⌦� x)@f�)@� dx
⌘⇣

ds�

d�

⌘�1
(16.4)

As in the many practical instances where threshold effects are involved, it may occur that
⇠ does not depend smoothly on s–. We therefore also define a finite difference version of
the vega-sensitivity as follows:

V (X, f�,K, s�) =
1

2�s

�

⇠(K, s� +�s)� ⇠(K, s� ��s)
�

=
RK

�1(⌦� x) f�(s
�
+�s)(x)�f

�

(s���s)(x)
2� s dx(16.5)

Hence omitting the input �s implicitly assumes that �s ! 0.
Note that ⇠(K, s�) = �E(X|X < K) Pf

�

(X < K). It can be decomposed into two
parts:

⇠
�

K, s�(�)
�

= (⌦�K)F�(K) + P�(K) (16.6)

P�(K) =

Z K

�1
(K � x)f�(x) dx (16.7)

Where the first part (⌦�K)F�(K) is proportional to the probability of the variable being
below the stress level K and the second part P�(K) is the expectation of the amount
by which X is below K (counting 0 when it is not). Making a parallel with financial
options, while s–(�) is a “put at-the-money”, ⇠(K,s–) is the sum of a put struck at K and
a digital put also struck at K with amount ⌦ – K ; it can equivalently be seen as a put
struck at ⌦ with a down-and-in European barrier at K.
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Figure 16.3: The different curves of F�(K) and F�0(K) showing the difference in sensitivity to
changes at different levels of K.

Letting � = �(s–) and integrating by part yields

⇠
�

K, s�(�)
�

= (⌦�K)F�(K) +

Z K

�1
F�(x)dx =

R

⌦

�1 FK
� (x) dx(16.8)

Where FK
� (x) = F� (min(x,K)) = min (F�(x), F�(K)), so that

V (X, f�,K, s�) =
@⇠

@s
(K, s�)

=
R

⌦

�1
@FK

�

@� (x) dx R
⌦

�1
@F

�

@�

(x) dx(16.9)
For finite differences

V (X, f�,K, s�,�s) =
1

2� s

Z

⌦

�1
�FK

�,�s(x)dx

(16.10)

Where �+

s and ��s are such that s(�+

s�) = s�+�s, s(��s�) = s���s and �FK
�,�s(x) =

FK
�
s

+

(x)� FK
�
s

�
(x).
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16.2.2 Mathematical Expression of Fragility

In essence, fragility is the sensitivity of a given risk measure to an error in the estimation
of the (possibly one-sided) deviation parameter of a distribution, especially due to the
fact that the risk measure involves parts of the distribution – tails – that are away from
the portion used for estimation. The risk measure then assumes certain extrapolation
rules that have first order consequences. These consequences are even more amplified
when the risk measure applies to a variable that is derived from that used for estimation,
when the relation between the two variables is strongly nonlinear, as is often the case.

Definition of Fragility: The Intrinsic Case The local fragility of a random
variable X� depending on parameter �, at stress level K and semi-deviation level s–(�)
with pdf f� is its K-left-tailed semi-vega sensitivity V (X, f�,K, s�).

The finite-difference fragility of X� at stress level K and semi-deviation level s�(�)±�s
with pdf f� is its K-left-tailed finite-difference semi-vega sensitivity V (X, f�,K, s�,�s).
In this definition, the fragility relies in the unsaid assumptions made when extrapolating
the distribution of X� from areas used to estimate the semi-absolute deviation s–(�),
around ⌦, to areas around K on which the risk measure ⇠ depends.

Definition of Fragility: The Inherited Case Next we consider the particu-
lar case where a random variable Y = '(X ) depends on another source of risk X, itself
subject to a parameter �. Let us keep the above notations for X, while we denote by g�
the pdf of Y ,⌦Y = '(⌦) and u�(�) the left-semi-deviation of Y. Given a “strike” level
L = '(K ), let us define, as in the case of X :

⇣
�

L, u�(�)
�

=

Z K

�1
(⌦Y � y)g�(y) dy (16.11)

The inherited fragility of Y with respect to X at stress level L = '(K) and left-semi-
deviation level s�(�) of X is the partial derivative:

VX

�

Y, g�, L, s
�
(�)

�

=

@⇣

@s

�

L, u�(�)
�

=

⇣

RK

�1(⌦Y � Y )

@g
�

@� (y)dy
⌘⇣

ds�

d�

⌘�1
(16.12)

Note that the stress level and the pdf are defined for the variable Y, but the parameter
which is used for differentiation is the left-semi-absolute deviation of X, s–(�). Indeed, in
this process, one first measures the distribution of X and its left-semi-absolute deviation,
then the function ' is applied, using some mathematical model of Y with respect to X
and the risk measure ⇣ is estimated. If an error is made when measuring s–(�), its impact
on the risk measure of Y is amplified by the ratio given by the “inherited fragility”.

Once again, one may use finite differences and define the finite-difference inherited
fragility of Y with respect to X, by replacing, in the above equation, differentiation by
finite differences between values �+ and �–, where s–(�+) = s– + �s and s–(�–) = s–

– �s.

16.2.3 Effect of Nonlinearity on Intrinsic Fragility

Let us study the case of a random variable Y = '(X ); the pdf g� of which also depends
on parameter �, related to a variable X by the nonlinear function '. We are now
interested in comparing their intrinsic fragilities. We shall say, for instance, that Y
is more fragilefragile at the stress level L and left-semi-deviation level u�(�) than the
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random variable X, at stress level K and left-semi-deviation level s�(�) if the L-left-
tailed semi-vega sensitivity of Y� is higher than the K-left-tailed semi-vega sensitivity of
X�:

V (Y, g�, L, µ
�
) > V (X, f�,K, s�) (16.13)

One may use finite differences to compare the fragility of two random
variables:V (Y, g�, L,�µ) > V (X, f�,K,�s). In this case, finite variations must be com-
parable in size, namely �u/u– = �s/s–.

Let us assume, to start, that ' is differentiable, strictly increasing and scaled so that
⌦Y = '(⌦) = ⌦. We also assume that, for any given x < ⌦, @F

�

@� (x) > 0.
In this case, as observed above, � ! s–(�) is also increasing.

Let us denote Gy(y) = Pg
�

(Y < y) . We have:

G� (�(x)) = Pg
�

(Y < �(y)) = Pf
�

(X < x) = F�(x). (16.14)

Hence, if ⇣(L, u–) denotes the equivalent of ⇠(K), s� with variable (Y, g�) instead of
(X, f�), we have:

⇣
�

L, u�(�)
�

=

Z

⌦

�1
FK
� (x)

d�

dx
(x)dx (16.15)

Because ' is increasing and min('(x ),'(K )) = '(min(x,K )). In particular

µ�(�) = ⇣
�

⌦, µ�(�)
�

=

Z

⌦

�1
FK
� (x)

d�

dx
(x) dx (16.16)

The L-left-tail-vega sensitivity of Y is therefore:

V
�

Y, g�, L, u
�
(�)

�

=

R

⌦

�1
@FK

�

@� (x)d�dx (x) dx
R

⌦

�1
@F

�

@� (x)d�dx (x) dx
(16.17)

For finite variations:

V (Y, g�, L, u
�
(�),�u) =

1

2�u

Z

⌦

�1
�FK

�,�u(x)
d�

dx
(x)dx (16.18)

Where �+

u� and ��u� are such that u(�+

u�) = u�+�u, u(�+

u�) = u���u and FK
�,�u(x) =

FK
�+

u

(x)� FK
��
u

(x).
Next, Theorem 1 proves how a concave transformation '(x ) of a random variable x
produces fragility.

Fragility Transfer Theorem
Theorem 1. Let, with the above notations, ' : R ! R be a twice differentiable function
such that '(⌦) = ⌦ and for any x < ⌦, d'

dx (x) > 0. The random variable Y = '(X) is
more fragile at level L = '(K) and pdf g� than X at level K and pdf f� if, and only if,
one has:

Z

⌦

�1
HK

� (x)
d2'

dx2

(x)dx < 0

Where
HK

� (x) =
@PK

�

@�
(x)

�

@PK
�

@�
(⌦)�

@P�

@�
(x)

�

@P�

@�
(⌦) (16.19)
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and where

P�(x) =

Z x

�1
F�(t)dt (16.20)

is the price of the “put option” on X� with “strike” x and

PK
� (x) =

Z x

�1
FK
� (t)dt

is that of a "put option" with "strike" x and "European down-and-in barrier" at K.
H can be seen as a transfer function, expressed as the difference between two ratios. For
a given level x of the random variable on the left hand side of ⌦, the second one is the
ratio of the vega of a put struck at x normalized by that of a put "at the money" (i.e.
struck at ⌦), while the first one is the same ratio, but where puts struck at x and ⌦ are
"European down-and-in options" with triggering barrier at the level K.

Proof. Let IX
�

=

R

⌦

�1
@F

�

@� (x)dx , IKX
�

=

R

⌦

�1
@FK

�

@� (x)dx , and IY
�

=

R

⌦

�1
@F

�

@� (x)d'
dx (x)dx. One has One has V (X, f�,K, s�(�)) = IKX

�

�

IX
�

and
V (Y, g�, L, u�(�)) = ILY

�

�

IY
�

, hence:

V (Y, g�, L, u
�
(�))� V (X, f�,K, s�(�)) =

I_Y_�L

I
Y

�

�
I

K

X

�

I

X

�

=

I

K

X

�

I

Y

�

 
I

L

Y

�

I

K

X

�

�
I

Y

�

I

X

�

!
(16.21)

Therefore, because the four integrals are positive,

V (Y, g�, L, u
�
(�))� V (X, f�,K, s�(�)) (16.22)

ILY
�

�

IKX
�

� IY
�

/IX
�

. (16.23)

On the other hand, we have IX
�

=

@P
�

@� (⌦)IKX
�

=

@PK

�

@� (⌦)and

IY
�

=

Z

⌦

�1

@F�

@�
(x)

d'

dx
(x)dx

= @P�
@�(⌦)

d'

dx

(⌦)�
R

⌦

�1
@P

�

@�

(x) d

2

'

dx

2

(x)dx(16.24)

ILY
�

=

Z

⌦

�1

@FK
�

@�
(x)

d'

dx
(x)dx

= @PK
�

@�(⌦)

d'

dx

(⌦)�
R

⌦

�1
@P

K

�

@�

(x) d

2

'

dx

2

(x)dx

(16.25)

An elementary calculation yields:
ILY

�

IKX
�

�

IY
�

IX
�

= -
⇣

@PK

�

@� (⌦)

⌘�1
R

⌦

�1
@PK

�

@� (x)d
2'

dx2

dx
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Figure 16.4: The Transfer function H for different portions of the distribution: its sign flips in
the region slightly below ⌦

+
⇣

@P
�

@� (⌦)

⌘�1
R

⌦

�1
@P

�

@� (x)d
2'

dx2

dx

= -
R

⌦

�1HK
� (x)d

2'
dx2

dx.(16.26)

Let us now examine the properties of the function HK
� (x). For x  K, we have @PK

�

@� (x) =
@P

�

@� (x) > 0 (the positivity is a consequence of that of @F
�

@� ), therefore HK
� (x) has the

same sign as @P
�

@� (⌦) �

@PK

�

@� (⌦). As this is a strict inequality, it extends to an interval
on the right hand side of K, say (1,K] with K < K < . But on the other hand:

@P�

@�
(⌦)�

@PK
�

@�
(⌦) =

Z

⌦

K

@F�

@�
(x)dx� (⌦�K)

@F�

@�
(K) (16.27)

For K negative enough, @F
�

@� (K) is smaller than its average value over the interval [K,
⌦], hence

@P�

@�
(⌦)�

@PK
�

@�
(⌦) > 0. (16.28)

We have proven the following theorem.
Fragility Exacerbation Theorem
Theorem 2. With the above notations, there exists a threshold ⇥� < ⌦ such that, if
K  ⇥� then HK

� (x) > 0 for x 2 (1,�] with K < lambda < ⌦.As a consequence, if
the change of variable ' is concave on (�1,�] and linear on [�,⌦], then Y is more
fragile at L = '(K)than X at K.
One can prove that, for a monomodal distribution, ⇥� < � < ⌦ (see discussion below),
so whatever the stress level K below the threshold ⇥�, it suffices that the change of
variable ' be concave on the interval (�1,⇥�] and linear on [⇥lambda,⌦] for Y to
become more fragile at L than X at K. In practice, as long as the change of variable
is concave around the stress level K and has limited convexity/concavity away from K,
the fragility of Y is greater than that of X.
Figure 16.4 shows the shape of HK

� (x) in the case of a Gaussian distribution where � is
a simple scaling parameter (� is the standard deviation �) and ⌦ = 0. We represented
K = –2� while in this Gaussian case, ⇥� = –1.585�.
Discussion
Monomodal case
We say that the family of distributions (f�) is left-monomodal if there exists K� < ⌦

such that @f
�

@� > 0 on (–1, �] and @f
�

@� 6 0 on [µ�,⌦]. In this case @P
�

@� is a convex
function on the left half-line (–1, µ�], then concave after the inflexion point µ�. For
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Figure 16.5: The distribution of G� and the various derivatives of the unconditional shortfalls

K  µ�, the function @PK

�

@� coincides with @P
�

@� on (–1, K ], then is a linear extension,
following the tangent to the graph of @P

�

@� in K (see graph below). The value of @PK

�

@� (⌦)

corresponds to the intersection point of this tangent with the vertical axis. It increases
with K, from 0 when K ! –1 to a value above @P

�

@� (⌦) when K = µ�. The threshold
⇥� corresponds to the unique value of K such that @PK

�

@� (⌦) =

@P
�

@� (⌦) . When K < ⇥�

then G�(x) =
@P

�

@� (x)
.

@P
�

@� (⌦) and GK
� (x) = @PK

�

@� (x)
.

@PK

�

@� (⌦) are functions such that
G�(⌦) = GK

� (⌦) = 1 and which are proportional for x  K, the latter being linear on
[K, ⌦]. On the other hand, if K < ⇥� then @PK

�

@� (⌦) < @P
�

@� (⌦) and G�(K) < GK
� (K),

which implies that G�(x) < GK
� (x) for x  K. An elementary convexity analysis shows

that, in this case, the equation G�(x) = GK
� (x) has a unique solution � with µlambda <

� < ⌦. The “transfer” function HK
� (x) is positive for x < �, in particular when x  µ�

and negative for � < x < ⌦.
Scaling Parameter
We assume here that � is a scaling parameter, i.e. X� = ⌦+ �(X

1

�⌦). In this case, as
we saw above, we have

f�(x) =
1

�
f
1

✓

⌦+

x� ⌦

�

◆

, F�(x) = F
1

✓

⌦+

x� ⌦

�

◆

P�(x) = �P
1

✓

⌦+

x� ⌦

�

◆

and s�(�) = �s�(1).

Hence

⇠(K, s�(�)) = (⌦�K)F
1

✓

⌦+

K � ⌦

�

◆

+ �P
1

�

⌦+

K�⌦
�

�

(16.29)
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@⇠

@s�
(K, s�) =

1

s�(1)

@⇠

@�
(K,�)

= 1
s�(�)

(

P
�

(K)+(⌦�K)F
�

(K)+(⌦�K)

2f
�

(K)

)

(16.30)
When we apply a nonlinear transformation ', the action of the parameter � is no longer
a scaling: when small negative values of X are multiplied by a scalar �, so are large
negative values of X. The scaling � applies to small negative values of the transformed
variable Y with a coefficient d'

dx (0), but large negative values are subject to a different
coefficient d'

dx (K), which can potentially be very different.

16.2.4 Fragility Drift

Fragility is defined at as the sensitivity – i.e. the first partial derivative – of the tail
estimate ⇠ with respect to the left semi-deviation s–. Let us now define the fragility
drift :

V 0K(X, f�,K, s�) =
@2⇠

@K@s�
(K, s�) (16.31)

In practice, fragility always occurs as the result of fragility, indeed, by definition, we
know that ⇠(⌦, s–) = s–, hence V (X, f �, ⌦, s–) = 1. The fragility drift measures the
speed at which fragility departs from its original value 1 when K departs from the center
⌦.
Second-order Fragility
The second-order fragility is the second order derivative of the tail estimate ⇠ with respect
to the semi-absolute deviation s–:

V 0s�(X, f�,K, s�) =
@2⇠

(@s�)2
(K, s�)

As we shall see later, the second-order fragility drives the bias in the estimation of stress
tests when the value of s– is subject to uncertainty, through Jensen’s inequality.

16.2.5 Definitions of Robustness and Antifragility

Antifragility is not the simple opposite of fragility, as we saw in Table 1. Measuring an-
tifragility, on the one hand, consists of the flipside of fragility on the right-hand side, but
on the other hand requires a control on the robustness of the probability distribution on
the left-hand side. From that aspect, unlike fragility, antifragility cannot be summarized
in one single figure but necessitates at least two of them.
When a random variable depends on another source of randomness: Y � = '(X �), we

shall study the antifragility of Y � with respect to that of X � and to the properties of
the function '.

Definition of Robustness
Let (X �) be a one-parameter family of random variables with pdf f �. Robustness is an
upper control on the fragility of X, which resides on the left hand side of the distribution.
We say that f � is b-robust beyond stress level K < ⌦ if V (X �, f �, K’, s(�))  b for any
K’  K. In other words, the robustness of f � on the half-line (–1, K ] is

R
(�1,K]

(X�, f�,K, s�(�)) = max

K06K
V (X�, f�,K

0, s�(�)), (16.32)
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so that b-robustness simply means

R
(�1,K]

(X�, f�,K, s�(�)) 6 b

We also define b-robustness over a given interval [K
1

, K
2

] by the same inequality being
valid for any K’ 2 [K

1

, K
2

]. In this case we use

R
[K

1

,K
2

]

(X�, f�,K, s�(�)) =

max

K
1

6K06K
2

V (X�, f�,K 0, s�(�)).(16.33)

Note that the lower R, the tighter the control and the more robust the distribution f �.
Once again, the definition of b-robustness can be transposed, using finite differences

V (X �, f �, K’, s–(�), �s).
In practical situations, setting a material upper bound b to the fragility is particularly

important: one need to be able to come with actual estimates of the impact of the error
on the estimate of the left-semi-deviation. However, when dealing with certain class of
models, such as Gaussian, exponential of stable distributions, we may be lead to consider
asymptotic definitions of robustness, related to certain classes.
For instance, for a given decay exponent a > 0, assuming that f�(x ) = O(eax) when x

! –1, the a-exponential asymptotic robustness of X � below the level K is:

R
exp

(X�, f�,K, s�(�), a)

= max

K06K

⇣

ea(⌦�K
0
)V (X�, f�,K 0, s�(�))

⌘

(16.34)If one of the two quantities

ea(⌦�K
0
)f�(K 0) or ea(⌦�K

0
)V (X�, f�,K 0, s�(�)) is not bounded from above when

K ! –1, then R
exp

= +1 and X � is considered as not a-exponentially robust.
Similarly, for a given power ↵ > 0, and assuming that f �(x ) = O(x–↵) when x ! –1,
the ↵-power asymptotic robustness of X � below the level K is:

R
pow

(X�, f�,K, s�(�), a) =

max

K06K

⇣

(⌦�K 0)↵�2V (X�, f�,K 0, s�(�))
⌘

If one of the two quantities
(⌦�K 0)↵f�(K

0
)

(⌦�K 0)↵�2V (X�, f�,K
0, s�(�))

is not bounded from above when K 0 ! �1, then Rpow = +1 and X� is considered as
not ↵-power robust. Note the exponent ↵ – 2 used with the fragility, for homogeneity
reasons, e.g. in the case of stable distributions, when a random variable Y� = '(X�)

depends on another source of risk X�.
Definition 15. Left-Robustness (monomodal distribution). A payoff y = '(x) is said
(a, b)-robust below L = '(K) for a source of randomness X with pdf f� assumed
monomodal if, letting g� be the pdf of Y = '(X), one has,for any K 0  K and L = '(K):

VX

�

Y, g�, L
0, s�(�)

�

6 aV
�

X, f�, K
0, s�(�)

�

+ b (16.35)

The quantity b is of order deemed of “negligible utility” (subjectively), that is, does not
exceed some tolerance level in relation with the context, while a is a scaling parameter
between variables X and Y.
Note that robustness is in effect impervious to changes of probability distributions. Also
note that this measure robustness ignores first order variations since owing to their higher
frequency, these are detected (and remedied) very early on.
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Example of Robustness (Barbells):
a. trial and error with bounded error and open payoff
b. for a "barbell portfolio" with allocation to numeraire securities up to 80% of portfolio,
no perturbation below K set at 0.8 of valuation will represent any difference in result,
i.e. q = 0. The same for an insured house (assuming the risk of the insurance company
is not a source of variation), no perturbation for the value below K, equal to minus the
insurance deductible, will result in significant changes.
c. a bet of amount B (limited liability) is robust, as it does not have any sensitivity to
perturbations below 0.

16.2.6 Definition of Antifragility

The second condition of antifragility regards the right hand side of the distribution. Let
us define the right-semi-deviation of X :

s+(�) =

Z

+1

⌦

(x� ⌦)f�(x)dx

And, for H > L > ⌦ :

⇠+(L,H, s+(�)) =

Z H

L

(x� ⌦)f�(x)dx

W (X, f�, L,H, s+) =
@⇠+(L,H, s+)

@s+

=
⇣

RH

L
(x� ⌦)

@f
�

@� (x)dx
⌘⇣

R

+1
⌦

(x� ⌦)

@f
�

@� (x)dx
⌘�1

When Y = '
(

X

) is a variable depending on a source of noise

X, we define:

WX(Y, g�,'(L),'(H), s+) =
⇣

R '(H)

'(L)

(y � '(⌦))@g�@� (y)dy
⌘⇣

R

+1
⌦

(x� ⌦)

@f
�

@� (x)dx
⌘�1

(16.36)

Definition 2b, Antifragility (monomodal distribution). A payoff y = '(x ) is
locally antifragile over the range [L, H ] if

1. It is b-robust below ⌦ for some b > 0

2. WX (Y, g�, '(L),'(H), s+(�)) > aW (X, f�, L,H, s+(�)) where a =

u+

(�)
s+(�)

The scaling constant a provides homogeneity in the case where the relation between X
and y is linear. In particular, nonlinearity in the relation between X and Y impacts
robustness.
The second condition can be replaced with finite differences �u and �s, as long as �u/u
= �s/s.
REMARKS
Fragility is K -specific. We are only concerned with adverse events below a certain
pre-specified level, the breaking point. Exposures A can be more fragile than exposure
B for K = 0, and much less fragile if K is, say, 4 mean deviations below 0. We may need
to use finite Ds to avoid situations as we will see of vega-neutrality coupled with short
left tail.
Effect of using the wrong distribution f : Comparing V (X, f, K, s–, Ds) and
the alternative distribution V (X, f*, K, s*, Ds), where f* is the “true” distribution, the
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-
¶

measure of fragility provides an acceptable indication of the sensitivity of a given outcome
– such as a risk measure – to model error, provided no “paradoxical effects” perturb the
situation. Such “paradoxical effects” are, for instance, a change in the direction in which
certain distribution percentiles react to model parameters, like s–. It is indeed possible
that nonlinearity appears between the core part of the distribution and the tails such
that when s� increases, the left tail starts fattening – giving a large measured fragility
– then steps back – implying that the real fragility is lower than the measured one. The
opposite may also happen, implying a dangerous under-estimate of the fragility. These
nonlinear effects can stay under control provided one makes some regularity assumptions
on the actual distribution, as well as on the measured one. For instance, paradoxical
effects are typically avoided under at least one of the following three hypotheses:
a. The class of distributions in which both f and f* are picked are all monomodal,
with monotonous dependence of percentiles with respect to one another.
b. The difference between percentiles of f and f* has constant sign (i.e. f* is either
always wider or always narrower than f at any given percentile)
c. For any strike level K (in the range that matters), the fragility measure V
monotonously depends on s– on the whole range where the true value s* can be expected.
This is in particular the case when partial derivatives @kV/@sk all have the same sign at
measured s– up to some order n, at which the partial derivative has that same constant
sign over the whole range on which the true value s* can be expected. This condition
can be replaced by an assumption on finite differences approximating the higher order
partial derivatives, where n is large enough so that the interval [s– n�s] covers the
range of possible values of s*. Indeed, in this case, f difference estimate of fragility uses
evaluations of ⇠ at points spanning this interval.
Unconditionality of the shortfall measure ⇠ : Many, when presenting shortfall,
deal with the conditional shortfall

RK

�1 x f(x) dx
.

RK

�1 f(x) dx ; while such measure
might be useful in some circumstances, its sensitivity is not indicative of fragility in the
sense used in this discussion. The unconditional tail expectation ⇠ =

RK

�1 xf(x) dx is
more indicative of exposure to fragility. It is also preferred to the raw probability of
falling below K, which is

RK

�1 f(x) dx, as the latter does not include the consequences.
For instance, two such measures

RK

�1 f(x) dx and
RK

�1 g(x) dx may be equal over broad
values of K ; but the expectation

RK

�1 xf(x) dx can be much more consequential than
RK

�1 xg(x) dx as the cost of the break can be more severe and we are interested in its
“vega” equivalent.

16.3 Applications to Model Error

In the cases where Y depends on X, among other variables, often x is treated as non-
stochastic, and the underestimation of the volatility of x maps immediately into the
underestimation of the left tail of Y under two conditions:

1. X is stochastic and its stochastic character is ignored (as if it had zero variance or
mean deviation)

2. Y is concave with respect to X in the negative part of the distribution, below ⌦

"Convexity Bias" or Jensen’s Inequality Effect: Further, missing the stochasticity
under the two conditions a) and b) , in the event of the concavity applying above ⌦
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leads to the negative convexity bias from the lowering effect on the expectation of the
dependent variable Y.

16.3.1 Example:Application to Budget Deficits

Example: A government estimates unemployment for the next three years as averaging
9%; it uses its econometric models to issue a forecast balance B of 200 billion deficit in the
local currency. But it misses (like almost everything in economics) that unemployment is
a stochastic variable. Employment over 3 years periods has fluctuated by 1% on average.
We can calculate the effect of the error with the following: âĂć Unemployment at 8%
, Balance B(8%) = -75 bn (improvement of 125bn) âĂć Unemployment at 9%, Balance
B(9%)= -200 bn âĂć Unemployment at 10%, Balance B(10%)= –550 bn (worsening of
350bn)
The convexity bias from underestimation of the deficit is by -112.5bn, since

B(8%) +B(10%)

2

= �312.5

Further look at the probability distribution caused by the missed variable (assuming to
simplify deficit is Gaussian with a Mean Deviation of 1% )

Figure 16.6: Histogram from simulation of government deficit as a left-tailed random variable
as a result of randomizing unemployment of which it is a convex function. The method of point
estimate would assume a Dirac stick at -200, thus underestimating both the expected deficit
(-312) and the skewness (i.e., fragility) of it.

Adding Model Error and Metadistributions: Model error should be integrated in
the distribution as a stochasticization of parameters. f and g should subsume the distri-
bution of all possible factors affecting the final outcome (including the metadistribution
of each). The so-called "perturbation" is not necessarily a change in the parameter so
much as it is a means to verify whether f and g capture the full shape of the final
probability distribution.
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Any situation with a bounded payoff function that organically truncates the left tail at
K will be impervious to all perturbations affecting the probability distribution below K.

For K = 0, the measure equates to mean negative semi-deviation (more potent than
negative semi-variance or negative semi-standard deviation often used in financial anal-
yses).

16.3.2 Model Error and Semi-Bias as Nonlinearity from Missed
Stochasticity of Variables

Model error often comes from missing the existence of a random variable that is signif-
icant in determining the outcome (say option pricing without credit risk). We cannot
detect it using the heuristic presented in this paper but as mentioned earlier the error
goes in the opposite direction as model tend to be richer, not poorer, from overfitting.
But we can detect the model error from missing the stochasticity of a variable or under-
estimating its stochastic character (say option pricing with non-stochastic interest rates
or ignoring that the “volatility” s can vary).

Missing Effects: The study of model error is not to question whether a model is precise
or not, whether or not it tracks reality; it is to ascertain the first and second order effect
from missing the variable, insuring that the errors from the model don’t have missing
higher order terms that cause severe unexpected (and unseen) biases in one direction
because of convexity or concavity, in other words, whether or not the model error causes
a change in z.

16.4 Model Bias, Second Order Effects, and Fragility

Having the right model (which is a very generous assumption), but being uncertain
about the parameters will invariably lead to an increase in model error in the presence
of convexity and nonlinearities.
As a generalization of the deficit/employment example used in the previous section, say
we are using a simple function:

f ( x | ↵ )

Where ↵ is supposed to be the average expected rate, where we take ' as the distribution
of ↵ over its domain }↵

↵ =

Z

}
↵

↵ '(↵) d↵

The mere fact that ↵ is uncertain (since it is estimated) might lead to a bias if we perturb
from the outside (of the integral), i.e. stochasticize the parameter deemed fixed. Accord-
ingly, the convexity bias is easily measured as the difference between a) f integrated
across values of potential a and b) f estimated for a single value of a deemed to be its
average. The convexity bias !A becomes:

!A ⌘

Z

}
x

Z

}
↵

f (x | ↵ )' (↵) d↵ dx�

Z

}
x

f(x

�

�

�

�

✓

Z

}
↵

↵ ' (↵) d↵

◆

)dx (16.37)
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And !B the missed fragility is assessed by comparing the two integrals below K, in order
to capture the effect on the left tail:

!B(K) ⌘

Z K

�1

Z

}
↵

f (x | ↵ )' (↵) d↵ dx�

Z K

�1
f(x

�

�

�

�

✓

Z

}
↵

↵ ' (↵) d↵

◆

)dx (16.38)

Which can be approximated by an interpolated estimate obtained with two values of ↵
separated from a mid point by �↵ a mean deviation of ↵ and estimating

!B(K) ⌘

Z K

�1

1

2

(f (x |↵̄+�↵) + f (x |↵̄��↵)) dx�

Z K

�1
f(x |↵̄) dx (16.39)

We can probe !B by point estimates of f at a level of X  K

!0B(X) =

1

2

(f (X |↵̄+�↵) + f (X |↵̄��↵))� f(X |↵̄) (16.40)

So that

!B(K) =

Z K

�1
!0B(x)dx (16.41)

which leads us to the fragility heuristic. In particular, if we assume that !B(X)

0
has a

constant sign for X  K, then !B(K) has the same sign.

16.4.1 The Fragility/Model Error Detection Heuristic (detect-
ing !A and !B when cogent)

Example 1 (Detecting Tail Risk Not Shown By Stress Test, !
B

). The famous
firm Dexia went into financial distress a few days after passing a stress test “with flying
colors”.

If a bank issues a so-called "stress test" (something that has not proven very satis-
factory), off a parameter (say stock market) at -15%. We ask them to recompute at
-10% and -20%. Should the exposure show negative asymmetry (worse at -20% than it
improves at -10%), we deem that their risk increases in the tails. There are certainly
hidden tail exposures and a definite higher probability of blowup in addition to exposure
to model error.
Note that it is somewhat more effective to use our measure of shortfall in Definition, but

the method here is effective enough to show hidden risks, particularly at wider increases
(try 25% and 30% and see if exposure shows increase). Most effective would be to use
power-law distributions and perturb the tail exponent to see symmetry.

Example 2 (Detecting Tail Risk in Overoptimized System, !B). Raise airport
traffic 10%, lower 10%, take average expected traveling time from each, and check the
asymmetry for nonlinearity. If asymmetry is significant, then declare the system as
overoptimized. (Both !A and !B as thus shown.
The same procedure uncovers both fragility and consequence of model error (potential

harm from having wrong probability distribution, a thin- tailed rather than a fat-tailed
one). For traders (and see GigerenzerâĂŹs discussions, in Gigerenzer and Brighton
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(2009), Gigerenzer and Goldstein(1996)) simple heuristics tools detecting the magnitude
of second order effects can be more effective than more complicated and harder to cal-
ibrate methods, particularly under multi-dimensionality. See also the intuition of fast
and frugal in Derman and Wilmott (2009), Haug and Taleb (2011).

16.4.2 The Fragility Heuristic Applied to Model Error

1- First Step (first order). Take a valuation. Measure the sensitivity to all parameters
p determining V over finite ranges �p. If materially significant, check if stochasticity
of parameter is taken into account by risk assessment. If not, then stop and declare
the risk as grossly mismeasured (no need for further risk assessment). 2-Second Step
(second order). For all parameters p compute the ratio of first to second order effects at
the initial range �p = estimated mean deviation. H (�p) ⌘ µ0

µ , where

µ0 (�p) ⌘
1

2

✓

f

✓

p+
1

2

�p

◆

+ f

✓

p�
1

2

�p

◆◆

2-Third Step. Note parameters for which H is significantly > or < 1. 3- Fourth Step:
Keep widening �p to verify the stability of the second order effects.

The Heuristic applied to a stress test:
In place of the standard, one-point estimate stress test S1, we issue a "triple", S1, S2,

S3, where S2 and S3 are S1 ± �p. Acceleration of losses is indicative of fragility.

Remarks a. Simple heuristics have a robustness (in spite of a possible bias) compared
to optimized and calibrated measures. Ironically, it is from the multiplication of convexity
biases and the potential errors from missing them that calibrated models that work
in-sample underperform heuristics out of sample (Gigerenzer and Brighton, 2009). b.
Heuristics allow to detection of the effect of the use of the wrong probability distribution
without changing probability distribution (just from the dependence on parameters).
c. The heuristic improves and detects flaws in all other commonly used measures of
risk, such as CVaR, "expected shortfall", stress-testing, and similar methods have been
proven to be completely ineffective (Taleb, 2009). d. The heuristic does not require
parameterization beyond varying ÎŤp.

16.4.3 Further Applications

In parallel works, applying the "simple heuristic" allows us to detect the following
“hidden short options” problems by merely perturbating a certain parameter p:

i- Size and pseudo-economies of scale.

ii- Size and squeezability (nonlinearities of squeezes in costs per unit).

iii- Specialization (Ricardo) and variants of globalization.

iv- Missing stochasticity of variables (price of wine).

v- Portfolio optimization (Markowitz).

vi- Debt and tail exposure.

vii- Budget Deficits: convexity effects explain why uncertainty lengthens, doesn’t shorten
expected deficits.
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viii- Iatrogenics (medical) or how some treatments are concave to benefits, convex to
errors.

ix- Disturbing natural systems.1
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17 The Origin of Thin-Tails

Chapter Summary 16: The literature of heavy tails starts with a random
walk and finds mechanisms that lead to fat tails under aggregation. We
follow the inverse route and show how starting with fat tails we get to
thin-tails from the probability distribution of the response to a random
variable. We introduce a general dose-response curve show how the left
and right-boundedness of the reponse in natural things leads to thin-
tails, even when the “underlying” variable of the exposure is fat-tailed.

The Origin of Thin Tails.

We have emprisoned the “statistical generator” of things on our planet into the random
walk theory: the sum of i.i.d. variables eventually leads to a Gaussian, which is an
appealing theory. Or, actually, even worse: at the origin lies a simpler Bernouilli binary
generator with variations limited to the set {0,1}, normalized and scaled, under summa-
tion. Bernouilli, De Moivre, Galton, Bachelier: all used the mechanism, as illustrated
by the Quincunx in which the binomial leads to the Gaussian. This has traditionally
been the “generator” mechanism behind everything, from martingales to simple conver-
gence theorems. Every standard textbook teaches the “naturalness” of the thus-obtained
Gaussian.
In that sense, powerlaws are pathologies. Traditionally, researchers have tried to explain

fat tailed distributions using the canonical random walk generator, but twinging it thanks
to a series of mechanisms that start with an aggregation of random variables that does
not lead to the central limit theorem, owing to lack of independence and the magnification
of moves through some mechanism of contagion: preferential attachment, comparative
advantage, or, alternatively, rescaling, and similar mechanisms.

But the random walk theory fails to accommodate some obvious phenomena.
First, many things move by jumps and discontinuities that cannot come from the

random walk and the conventional Brownian motion, a theory that proved to be sticky
(Mandelbrot, 1997).

Second, consider the distribution of the size of animals in nature, considered within-
species. The height of humans follows (almost) a Normal Distribution but it is hard to
find mechanism of random walk behind it (this is an observation imparted to the author
by Yaneer Bar Yam).

Third, uncertainty and opacity lead to power laws, when a statistical mechanism has
an error rate which in turn has an error rate, and thus, recursively (Taleb, 2011, 2013).

Our approach here is to assume that random variables, under absence of contraints,
become power law-distributed. This is the default in the absence of boundedness or
compactness. Then, the response, that is, a funtion of the random variable, considered
in turn as an “inherited” random variable, will have different properties. If the response is
bounded, then the dampening of the tails of the inherited distribution will lead it to bear

243
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the properties of the Gaussian, or the class of distributions possessing finite moments of
all orders.

The Dose Response

Let SN
(x): R ! [kL, kR], SN

2 C1, be a continuous function possessing derivatives
�

SN
�

(n)
(x) of all orders, expressed as an N -summed and scaled standard sigmoid func-

tions:

SN
(x) ⌘

N
X

i=1

ak
1 + exp (�bkx+ ck)

(17.1)

where ak, bk, ck are scaling constants 2 R, satisfying:
i) SN (-1) =kL
ii) SN (1) =kR
and (equivalently for the first and last of the following conditions)
iii) @2SN

@x2

� 0 for x 2 (-1, k
1

) , @2SN

@x2

< 0 for x 2 (k
2

, k>2

), and @2SN

@x2

� 0 for x 2 (k>2

,
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1

> k
2

� k
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...� kN .
The shapes at different calibrations are shown in Figure 1, in which we combined different
values of N=2 S2

(x, a
1

, a
2

, b
1

, b
2

, c
1

, c
2

) , and the standard sigmoid S1

(x, a
1

, b
1

, c
1

), with
a
1

=1, b
1

=1 and c
1

=0. As we can see, unlike the common sigmoid, the asymptotic
response can be lower than the maximum, as our curves are not monotonically increasing.
The sigmoid shows benefits increasing rapidly (the convex phase), then increasing at a
slower and slower rate until saturation. Our more general case starts by increasing, but
the reponse can be actually negative beyond the saturation phase, though in a convex
manner. Harm slows down and becomes “flat” when something is totally broken.

17.1 Properties of the Inherited Probability Distribu-
tion

Now let x be a random variable with distributed according to a general fat tailed dis-
tribution, with power laws at large negative and positive values, expressed (for clarity,
without loss of generality) as a Student T Distribution with scale � and exponent ↵, and
support on the real line. Its domain D

f= (1, 1), and density f�,↵(x):

xf�,↵ ⌘

✓

↵

↵+ x

2

�

2

◆

↵+1

2

p

↵�B
�

↵
2

, 1

2

� (17.2)

where B(a, b) =

(a�)(b�)
�(a+b) =

R

1

0

dtta�1(1 � t)b�1. The simulation effect of the convex-
concave transformations of the terminal probability distribution is shown in Figure 2.

And the Kurtosis of the inherited distributions drops at higher � thanks to the bound-
edness of the payoff, making the truncation to the left and the right visible. Kurtosis for
f.2,3 is infinite, but in-sample will be extremely high, but, of course, finite. So we use it
as a benchmark to see the drop from the calibration of the response curves.
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Figure 17.1: The Generalized Response Curve, S2 (x, a1, a2, b1, b2, c1, c2) , S1 (x, a1, b1, c1) The
convex part with positive first derivative has been designated as "antifragile"

Distribution Kurtosis

f.2,3(x) 86.3988

S2
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g(x) is the inherited distribution, which can be shown to have a scaled domain
D

g= (kL, kR). It becomes

g(x) =

a1

0

@

↵

↵+
(

log

(

x

a1�x

)

+c1

)

2

b1

2

�

2

1

A

↵+1

2

p

↵b1�xB
�

↵
2

, 1

2

�

(a1� x)



246 CHAPTER 17. THE ORIGIN OF THIN-TAILS

!20 !10 0 10 20 30 40

0.005

0.010

0.015

0.020

f.2,3!x"

!0.5 0.0 0.5 1.0

0.005

0.010

0.015

0.020

0.025

S
2!1,!2,1,2,1,15"

0.2 0.4 0.6 0.8 1.0

0.002

0.004

0.006

0.008

0.010

0.012

0.014

S
2!1,!1"2,2,1,1,15#

0.2 0.4 0.6 0.8 1.0

0.005

0.010

0.015

0.020

S
1!1,1,0"

Figure 17.2: Histograms for the different inherited probability distributions (simulations,N =
106)
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Table 17.1: The different inherited probability distributions.
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Table 17.2: The Kurtosis of the standard drops along with the scale � of the power law
Remark 1Remark 1Remark 1: The inherited distribution from S(x) will have a compact support regardless
of the probability distribution of x.

17.2 Conclusion and Remarks

We showed the dose-response as the neglected origin of the thin-tailedness of observed
distributions in nature. This approach to the dose-response curve is quite general, and
can be used outside biology (say in the Kahneman-Tversky prospect theory, in which
their version of the utility concept with respect to changes in wealth is concave on the
left, hence bounded, and convex on the right.
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18 Small is Beautiful: Risk, Scale and
Concentration

Chapter Summary 17: We extract the effect of size on the degrada-
tion of the expectation of a random variable, from nonlinear response.
The method is general and allows to show the "small is beautiful" or
"decentralized is effective" or "a diverse ecology is safer" effect from a
response to a stochastic stressor and prove stochastic diseconomies of
scale and concentration (with as example the Irish potato famine and
GMOs). We apply the methodology to environmental harm using stan-
dard sigmoid dose-response to show the need to split sources of pollution
across independent
(nonsynergetic) pollutants.

18.1 Introduction: The Tower of Babel

Diseconomies and Harm of scale Where is small beautiful and how can we detect,
even extract its effect from nonlinear response? 1 Does getting larger makes an entity
more vulnerable to errors? Does polluting or subjecting the environment with a large
quantity cause disproportional "unseen" stochastic effects? We will consider different
types of dose-response or harm-response under different classes of probability distribu-
tions.

The situations convered include:
1. Size of items falling on your head (a large stone vs small pebbles).

2. Losses under strain.

3. Size of animals (The concavity stemming from size can be directly derived from the
difference between allometic and isometric growth, as animals scale in a specific
manner as they grow, an idea initially detected by Haldane,[31] (on the "cube
law"(TK)).

4. Quantity in a short squeeze

5. The effect of crop diversity

6. Large vs small structures (say the National Health Service vs local entities)

7. Centralized government vs municipalities

8. Large projects such as the concentration of health care in the U.K.

1The slogan "small is beautiful" originates with the works of Leonard Kohr [40] and his student
Schumacher who thus titled his influential book.

249
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Figure 18.1: The Tower of
Babel Effect: Nonlinear re-
sponse to height, as taller
towers are disproportion-
ately more vulnerable to,
say, earthquakes, winds, or
a collision. This illus-
trates the case of truncated
harm (limited losses).For
some structures with un-
bounded harm the effect is
even stronger.
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9. Stochastic environmental harm: when, say, polluting with K units is more than
twice as harmful than polluting with K/2 units.

18.1.1 First Example: The Kerviel Rogue Trader Affair

The problem is summarized in Antifragile [73] as follows:
On January 21, 2008, the Parisian bank Societé Générale rushed to sell in the
market close to seventy billion dollars worth of stocks, a very large amount
for any single "fire sale." Markets were not very active (called "thin"), as it
was Martin Luther King Day in the United States, and markets worldwide
dropped precipitously, close to 10 percent, costing the company close to six
billion dollars in losses just from their fire sale. The entire point of the squeeze
is that they couldn’t wait, and they had no option but to turn a sale into a fire
sale. For they had, over the weekend, uncovered a fraud. Jerome Kerviel, a
rogue back office employee, was playing with humongous sums in the market
and hiding these exposures from the main computer system. They had no
choice but to sell, immediately, these stocks they didn’t know they owned.
Now, to see the effect of fragility from size (or concentration), consider losses
as a function of quantity sold. A fire sale of $70 billion worth of stocks leads
to a loss of $6 billion. But a fire sale a tenth of the size,$7 billion would
result in no loss at all, as markets would absorb the quantities without panic,
maybe without even noticing. So this tells us that if, instead of having one
very large bank, with Monsieur Kerviel as a rogue trader, we had ten smaller
units, each with a proportional Monsieur Micro- Kerviel, and each conducted
his rogue trading independently and at random times, the total losses for the
ten banks would be close to nothing.

18.1.2 Second Example: The Irish Potato Famine with a warning
on GMOs

The same argument and derivations apply to concentration. Consider the tragedy of the
Irish potato famine.
In the 19th Century, Ireland experienced a violent potato famine coming from concen-

tration and lack of diversity. They concentrated their crops with the "lumper" potato
variety. "Since potatoes can be propagated vegetatively, all of these lumpers were clones,
genetically identical to one another."2

Now the case of genetically modified organism (GMOs) is rich in fragilities (and confusion
about the "natural"): the fact that an error can spread beyond local spots bringing fat-
tailedness, a direct result ofthe multiplication of large scale errors. But the mathematical
framework here allows us to gauge its effect from loss of local diversity. The greater
problem with GMOs is the risk of ecocide, examined in Chapter x.

18.1.3 Only Iatrogenics of Scale and Concentration

Note that, in this discussion, we only consider the harm, not the benefits of concentration
under nonlinear (concave) response. Economies of scale (or savings from concentration
and lack of diversity) are similar to short volatility exposures, with seen immediate
benefits and unseen deferred losses.

2the source is evolution.berkeley.edu/evolibrary but looking for author’s name.
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Figure 18.2: Integrating the
evolutionary explanation of the
Irish potato famine into our
fragility framework, courtesy
http://evolution.berkeley.edu/evolibrary
.

The rest of the discussion is as follows. We will proceed, via convex transformation to
show the effect of nonlinearity on the expectation. We start with open-ended harm, a
monotone concave response, where regardless of probability distribution (satisfying some
criteria), we can extract the harm from the second derivative of the exposure. Then we
look at more natural settings represented by the "sigmoid" S-curve (or inverted S-curve)
which offers more complex nonlinearities and spans a broader class of phenomena.

Unimodality as a general assumption Let the variable x, representing the
stochastic stressor, follow a certain class of continuous probability distributions (uni-
modal), with the density p(x) satisfying: p(x) � p(x + ✏) for all ✏ > 0, and x > x⇤ and
p(x) � p(x � ✏) for all x < x⇤ with {x⇤ : p(x⇤) = maxx p(x)}. The density p(x) is
Lipschitz. This condition will be maintained throughout the entire exercise.

18.2 Unbounded Convexity Effects

In this section, we assume an unbounded harm function, where harm is a monotone (but
nonlinear) function in C2, with negative second derivative for all values of x in R+; so
let h(x), R+

! R� be the harm function. Let B be the size of the total unit subjected
to stochastic stressor x, with ✓(B) = B + h(x).

We can prove by the inequalities from concave transformations that, the expectation
of the large units is lower or equal to that of the sum of the parts. Because of the
monotonocity and concavity of h(x),

h

 

N
X

i=1

!i x

!



N
X

i=1

h(!i x), (18.1)

for all x in its domain (R+

), where !i are nonnegative normalized weights, that is,
PN

i=1

!i = 1 and 0  !i  1.

And taking expectations on both sides, E(✓(B))  E
⇣

PN
i=1

✓(!i B)

⌘

: the mean of a
large unit under stochastic stressors degrades compared to a series of small ones.
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Stressor

Damage !or Cost"

Figure 18.3: Simple Harm Func-
tions, monotone: k = 1, � =
3/2, 2, 3.

18.2.1 Application

Let h(x) be the simplified harm function of the form

h(x) ⌘ �k x� , (18.2)

k 2 (0,1) ,� 2 [0,1).

Table 18.1: Applications with unbounded convexity effects
Environment Research h(x)

Liquidation
Costs

Toth et
al.,[77],Bouchaud
et al. [9]

�kx
3

2

Bridges Flyvbjerg et al
[29]

�x( log(x)+7.1
10

)

Example 1: One-Tailed Standard Pareto Distribution Let the prob-
ability distribution of x (the harm) be a simple Pareto (which matters little for the
exercise, as any one-tailed distribution does the job). The density:

p↵,L(x) = ↵ L↵ x�↵�1 for x � L (18.3)

The distribution of the response to the stressor will have the distribution g = (p � h)(x).
Given that k the stressor is strictly positive, h(x) will be in the negative domain.

Consider a second change of variable, dividing x in N equal fragments, so that the unit
becomes ⇠ = x/N , N 2 N�1:

g↵,L,N (⇠) = �

↵↵N�↵
⇣

�

⇠
k

⌘�↵/�

� ⇠
, (18.4)

for ⇠  �k
�

L
N

�� and with ↵ > 1 + �. The expectation for a section x/N , M�(N):

M�(N) =

Z � kL

�

N

�1
⇠ g↵,L,N (⇠) d⇠ = �

↵ k L� N↵
(

1

�

�1
)

�1

↵� �
(18.5)

which leads to a simple ratio of the mean of the total losses (or damage) compared to
a  number of its N fragments, allowing us to extract the "convexity effect" or the
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degradation of the mean coming from size (or concentration):

 M�(N)

M�(N)

= ↵
(

1

�

�1
) (18.6)

With � = 1, the convexity effect =1. With � = 3/2 (what we observe in orderflow and
many other domains related to planning, Bouchaud et al., 2012, Flyvbjerg et al, 2012),
the convexity effect is shown in Figure 18.2.

2 4 6 8 10
N

0.2

0.4

0.6

0.8

1.0

Expected total loss for N units

Convexity Effects

Table 18.2: The mean harm in total as a result of concentration. Degradation of the mean for
N=1 compared to a large N, with � = 3/2

Unseen Harm The skewness of g↵,L,N (⇠) shows effectively how losses have prop-
erties that hide the mean in "small" samples (that is, large but insufficient number of
observations), since, owing to skewness, the observed mean loss with tend to be lower
than the true value. As with the classical Black Swan exposures, benefits are obvious
and harm hidden.

18.3 A Richer Model: The Generalized Sigmoid

Now the biological and physical domains (say animals, structures) do not incur unlimited
harm, when taken as single units. The losses terminate somewhere: what is broken is bro-
ken. From the generalized sigmoid function of [? ], where SM

(x) =
PM

k=1

a
k

1+exp(b
k

(c
k

�x)) ,
a sum of single sigmoids. We assume as a special simplified case M = 1 and a

1

= �1 so
we focus on a single stressor or source of harm S(x),R+

! [�1, 0] where x is a positive
variable to simplify and the response a negative one. S(0) = 0, so S(.) has the following
form:

S(x) =
�1

1 + e

b (c�x) +
1

1 + e

b c
(18.7)

The second term is there to ensure that S(0) = 0. Figure 18.3 shows the different
calibrations of b (c sets a displacement to the right).
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Harm
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!0.4

!0.2
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Table 18.3: Consider the object broken at �1 and in perfect condition at 0

[backgroundcolor=lightgray] The sigmoid, S(x) in C1 is a class of generalized function
(Sobolev, Schwartz [65]); it represents literally any object that has progressive positive
or negative saturation; it is smooth and has derivatives of all order: simply anything
bounded on the left and on the right has to necessarily have to have the sigmoid convex-
concave (or mixed series of convex-concave) shape.
The idea is to measure the effect of the distribution, as in 18.4. Recall that the probability
distribution p(x) is Lipshitz and unimodal.

Convex Response

Higher scale 

(dispersion or 

variance)

Harm

Response

Table 18.4: When variance is high, the distribution of stressors shifts in a way to elevate the
mass in the convex zone

The second derivative S00(x) =
b2eb(c+x)

(

ebx�ebc
)

(ebc+ebx)3
. Setting the point where S00(x) becomes

0, at x = c, we get the following: S(x) is concave in the interval x 2 [0, c) and convex in
the interval x 2 (c,1).

The result is mixed and depends necessarily on the parametrization of the sigmoids.
We can thus break the probability distributions into two sections, the "concave" and
"convex" parts: E = E� + E+. Taking ⇠ = x/N , as we did earlier,

E� = N

Z c

0

S(⇠) p(⇠) d⇠,

and
E+

= N

Z 1

c

S(⇠) p(⇠) d⇠

The convexity of S(.) is symmetric around c,
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S00(x)|x=c�u= �2b2 sinh4
✓

b u

2

◆

csch3

(b u)

S00(x)|x=c+u= 2b2 sinh4
✓

bu

2

◆

csch3

(b u)

We can therefore prove that the effect of the expectation for changes in N depends exactly
on whether the mass to the left of a is greater than the mass to the right. Accordingly,
if
R a

0

p(⇠) d⇠ >
R1
a

p(⇠) d⇠, the effect of the concentration ratio will be positive, and
negative otherwise.

18.3.1 Application

Example of a simple distribution: Exponential Using the same notations
as 18.2.1, we look for the mean of the total (but without extracting the probability
distribution of the transformed variable, as it is harder with a sigmoid). Assume x
follows a standard exponential distribution with parameter �, p(x) ⌘ �e�(�x)

M�(N) = E (S(⇠)) =

Z 1

0

�e�(�x)
✓

�

1

eb(c�
x

N

)

+ 1

+

1

ebc

+ 1

◆

dx (18.8)

M�(N) =

1

ebc + 1

�

2

F
1

✓

1,
N�

b
;

N�

b
+ 1;�ebc

◆

where the Hypergeometric function
2

F
1

(a, b; c; z) =
P1

k=0

a
k

b
k

zk

k!c
k

.

The ratio  M
�

(N)

M
�

(N)

doesn’t admit a reversal owing to the shape, as we can
see in 18.5 but we can see that high variance reduces the effect of the
concentration. However high variance increases the probability of breakage.

Λ " 0

Different values of Λ # (0,1]
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ΚMΛ !Κ"
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Table 18.5: Exponential Distribution: The degradation coming from size at different values of
�.

Example of a more complicated distribution: Pareto type IV Qua-
siconcave but neither convex nor concave PDF: The second derivative of the PDF
for the Exponential doesn’t change sign, @2

@x2

(� exp(��x)) = �3e�(�x), so the distribu-
tion retains a convex shape. Further, it is not possible to move its mean beyond the
point c where the sigmoid switches in the sign of the nonlinearity. So we elect a broader
one, the Pareto Distibution of Type IV, which is extremely flexible because, unlike the
simply convex shape (it has a skewed "bell" shape, mixed convex-concave-convex shape)
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and accommodates tail exponents, hence has power law properties for large deviations.
It is quasiconcave but neither convex nor concave. A probability measure (hence PDF)
p : D ! [0, 1] is quasiconcave in domain D if for all x, y 2 D and ! 2 [0, 1] we have:

p(!x+ (1� !)y) � min (p(x), p(y)).

Where x is the same harm as in Equation 18.7:

p↵,�,µ,k(x) =

↵k�1/�(x� µ)
1

�

�1
✓

⇣

k
x�µ

⌘�1/�
+ 1

◆�↵�1

�
(18.9)

for x � µ and 0 elsewhere.

The Four figures in 18.6 shows the different effects of the parameters on the distribution.
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Table 18.6: The different shapes of the Pareto IV distribution with perturbations of ↵, �, µ, and
k allowing to create mass to the right of c.
The mean harm function, M↵,�,µ,k(N) becomes:

M↵,�,µ,k(N) =

↵k�1/�

�
Z 1

0

(x� µ)
1

�

�1
✓

1

ebc + 1

�

1

eb(c�
x

N

)

+ 1

◆
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k

x� µ

◆�1/�
+ 1

!�↵�1

dx (18.10)

M(.) needs to be evaluated numerically. Our concern is the "pathology" where the
mixed convexities of the sigmoid and the probability distributions produce locally op-
posite results than 18.3.1 on the ratio M

↵,�,µ,k

(N)

M
↵,�,µ,k

(N)

. We produce perturbations around
zones where µ has maximal effects, as in 18.6. However as shown in Figure 18.4, the total
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Figure 18.4: Harm increases as the
mean of the probability distribution
shifts to the right, to become maxi-
mal at c, the point where the sigmoid
function S(.) switches from concave
to convex.

S''(x)=0
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Figure 18.5: Different values of µ:
we see the pathology where 2 M(2)
is higher than M(1), for a value of
µ = 4 to the right of the point c.
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expected harm is quite large under these conditions, and damage will be done regardless
of the effect of scale.

18.3.2 Conclusion

This completes the math showing extracting the "small is beautiful" effect, as well as
the effect of dose on harm in natural and biological settings where the Sigmoid is in use.
More verbal discussions are in Antifragile.
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19 How The World Will Progressively
Look Weirder

Chapter Summary 18: Information is convex to noise. The paradox is
that increase in sample size magnifies the role of noise (or luck); it makes
tail values even more extreme. There are some problems associated with
big data and the increase of variables available for epidemiological and
other "empirical" research.

19.1 How Noise Explodes Faster than Data

To the observer, every day will seem weirder than the previous one. It has always been
absolutely silly to be exposed the news. Things are worse today thanks to the web.

Source Effect

News Weirder and weirder events reported on the front
pages

Epidemiological Stud-
ies, "Big Data"

More spurious "statistical" relationships that even-
tually fail to replicate, with more accentuated effects
and more statistical "significance" (sic)

Track Records Greater performance for (temporary) "star" traders

We are getting more information, but with constant “consciouness”, “desk space”, or
“visibility”. Google News, Bloomberg News, etc. have space for, say, <100 items
at any point in time. But there are millions of events every day. As the world is
more connected, with the global dominating over the local, the number of sources of
news is multiplying. But your consciousness remains limited. So we are experiencing a
winner-take-all effect in information: like a large movie theatre with a small door.

Likewise we are getting more data. The size of the door is remaining constant, the
theater is getting larger.
The winner-take-all effects in information space corresponds to more noise, less signal.
In other words the spurious dominates.

Similarity with the Fooled by Randomness Bottleneck

This is similar to the idea that the more spurious returns dominate finance as the number
of players get large, and swamp the more solid ones. Start with the idea (see Taleb 2001),
that as a population of operators in a profession marked by a high degrees of randomness

261
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Figure 19.1: The picture of a "freak
event" spreading on the web of a
boa who ate a drunk person in Ker-
ala, India, in November 2013. With
7 billion people on the planet and
ease of communication the "tail" of
daily freak events is dominated by
such news. The make the point
even more: it turned out to be false
(thanks to Victor Soto).

increases, the number of stellar results, and stellar for completely random reasons, gets
larger. The “spurious tail” is therefore the number of persons who rise to the top for no
reasons other than mere luck, with subsequent rationalizations, analyses, explanations,
and attributions. The performance in the “spurious tail” is only a matter of number
of participants, the base population of those who tried. Assuming a symmetric market,
if one has for base population 1 million persons with zero skills and ability to predict
starting Year 1, there should be 500K spurious winners Year 2, 250K Year 3, 125K
Year 4, etc. One can easily see that the size of the winning population in, say, Year 10
depends on the size of the base population Year 1; doubling the initial population would
double the straight winners. Injecting skills in the form of better-than-random abilities
to predict does not change the story by much. (Note that this idea has been severely
plagiarized by someone, about which a bit more soon).
Because of scalability, the top, say 300, managers get the bulk of the allocations, with the
lion’s share going to the top 30. So it is obvious that the winner-take-all effect causes
distortions: say there are m initial participants and the “top” k managers selected, the
result will be k

m managers in play. As the base population gets larger, that is, N
increases linearly, we push into the tail probabilities.
Here read skills for information, noise for spurious performance, and translate the prob-
lem into information and news.
The paradox:The paradox:The paradox: This is quite paradoxical as we are accustomed to the opposite effect,
namely that a large increases in sample size reduces the effect of sampling error; here
the narrowness of M puts sampling error on steroids.

19.2 Derivations

Let Z ⌘

⇣

zji

⌘

1<j<m,1i<nbe a (n ⇥ m) sized population of variations, m population
series and n data points per distribution, with i, j 2 N; assume “noise” or scale of the
distribution � 2 R+ , signal µ �0 . Clearly � can accommodate distributions with
infinite variance, but we need the expectation to be finite. Assume i.i.d. for a start.

Cross Sectional (n = 1) Special case n = 1: we are just considering news/data
without historical attributes.
Let F be the generalized inverse distribution, or the quantile,

F (w) = inf{t 2 R : F (t) � w},
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for all nondecreasing distribution functions F (x) ⌘ P(X < x). For distributions without
compact support, w 2 (0,1); otherwise w 2 [0, 1]. In the case of continuous and increasing
distributions, we can write F�1 instead.
The signal is in the expectaion, so E(z) is the signal, and � the scale of the distribution
determines the noise (which for a Gaussian corresponds to the standard deviation).
Assume for now that all noises are drawn from the same distribution.
Assume constant probability the “threshold”, ⇣= k

m , where k is the size of the window
of the arrival. Since we assume that k is constant, it matters greatly that the quantile
covered shrinks with m.

Gaussian Noise

When we set ⇣ as the reachable noise. The quantile becomes:

F�1(w) =
p

2 � erfc�1(2w) + µ,

where erfc�1is the inverse complementary error function.
Of more concern is the survival function, � ⌘ F (x) ⌘ P(X > x), and its inverse ��1

�

�1
�,µ(⇣) = �

p

2�erfc�1
✓

2

k

m

◆

+ µ

Note that � (noise) is multiplicative, when µ (signal) is additive.
As information increases, ⇣ becomes smaller, and �

�1 moves away in
standard deviations. But nothing yet by comparison with Fat tails.
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Table 19.1: Gaussian, �={1,2,3,4}

Fat Tailed Noise

Now we take a Student T Distribution as a substitute to the Gaussian.
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Where we can get the inverse survival function.
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Figure 19.2:
Power Law,
�={1,2,3,4}
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Figure 19.3: Al-
pha Stable Dis-
tribution
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where I is the generalized regularized incomplete Beta function I
(z

0

,z
1

)

(a, b) =
B

(z

0

,z

1

)

(a,b)

B(a,b) , and Bz(a, b) the incomplete Beta function Bz(a, b) =

R z

0

ta�1(1 � t)b�1dt.
B(a, b) is the Euler Beta function B(a, b) = �(a)�(b)/�(a+ b) =

R

1

0

ta�1(1� t)b�1dt.
As we can see in Figure 2, the explosion in the tails of noise, and noise only.

Fatter Tails: Alpha Stable Distribution

Part 2 of the discussion to come soon.



20 The Convexity of Wealth to Inequality

Chapter Summary 19: The one percent of the one percent has tail proper-
ties such that the tail wealth (expectation

R1
K

x p(x) dx) depends far more on
inequality than wealth.

20.1 The One Percent of the One Percent are Divorced
from the Rest

The one percent of the one percent of the population is vastly more sensitive to inequality
than total GDP growth (which explains why the superrich are doing well now, and should
do better under globalization, and why it is a segment that doesn’t correlate well with
the economy). For the super-rich, one point of GINI causes an increase equivalent to
6-10% increase in total income (say, GDP). More generally, the partial expectation in the
tail is vastly more sensitive to changes in scale of the distribution than in its centering.
Sellers of luxury goods and products for the superwealthy profit from dispersion more
than increase in total wealth or income. I looked at their case as a long optionality,
benefit-from-volatility type of industry.
From textitAntifragile[73]:

Another business that does not care about the average but rather the dispersion
around the average is the luxury goods industry—jewelry, watches, art, expensive
apartments in fancy locations, expensive collec - tor wines, gourmet farm - raised
probiotic dog food, etc. Such businesses only cares about the pool of funds available
to the very rich. If the population in the Western world had an average income
of fifty thousand dollars, with no inequality at all, the luxury goods sellers would
not survive. But if the average stays the same, with a high degree of inequality,
with some incomes higher than two million dollars, and potentially some incomes
higher than ten million, then the business has plenty of customers—even if such
high incomes were offset with masses of people with lower incomes. The “tails” of
the distribution on the higher end of the income brackets, the extreme, are much
more determined by changes in inequality than changes in the average. It gains
from dispersion, hence is antifragile.

This explains the bubble in real estate prices in Central London, determined by
inequality in Russia and the Arabian Gulf and totally independent of the real estate
dynamics in Britain. Some apartments, those for the very rich, sell for twenty
times the average per square foot of a building a few blocks away.

Harvard’ s former president Larry Summers got in trouble explaining a version
of the point and lost his job in the aftermath of the uproar. He was trying to
say that males and females have equal intelligence, but the male population has
more variations and dispersion (hence volatility), with more highly unintelligent
men, and more highly intelligent ones. For Summers, this explained why men were
overrepresented in the sci - entific and intellectual community (and also why men
were overrepre - sented in jails or failures). The number of successful scientists
depends on the “tails,” the extremes, rather than the average. Just as an option
does not care about the adverse outcomes, or an author does not care about the
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haters.

20.1.1 Derivations

Let the r.v. x 2 [x
min

, 1) follow a Pareto distribution (type II), with expected return
fixed at E(x) = m, tail exponent ↵ >1, the density function

p(x) =
↵
⇣

(↵�1)(m�x
min

)�x
min

+x
(↵�1)(m�x

min

)

⌘

�↵�1

(↵� 1) (m� x
min

)

We are dealing with a three parameter function, as the fatness of the tails is determined
by both ↵ and m� x

min

, with m� x
min

> 0 (since ↵ >1).
Note that with 7 billion humans, the one percent of the one percent represents 700,000
persons.
The same distribution applies to wealth and income (although with a different
parametrization, including a lower ↵ as wealth is more unevenly distributed than in-
come.)
Note that this analysis does not take into account the dynamics (and doesn’t need to):
over time a different population will be at the top.

The Lorenz curve Where F(x), short for P (X < x) is the cumulative distribution
function and inverse F (z) : [0,1] ![x

min

, 1), the Lorenz function for z L(z):[0, 1]![0,1]
is defined as:

L(z) ⌘

R z

0

F (y)dy
R

1

0

F (y)dy

The distribution function

F (x) = 1�

✓

1 +

x� x
min

(↵� 1) (m� x
min

)

◆

�↵,

so its inverse becomes:

F (y) = m(1� ↵) + (1� y)�1/↵(↵� 1) (m� x
min

) + ↵x
min

Hence

L (z,↵,m, x
min

) =

1

m
(1� z)�1/↵ ((z � 1)↵ (m� x

min

)

+ (z � 1)

1

↵

(m(z + ↵� z↵) + (z � 1)↵x
min

) (20.1)

Which gives us different combination of ↵ and m�x
min

, producing different tail shapes:
some can have a strong “middle class” (or equivalent) while being top-heavy; others can
have more equal inequality throughout.

20.1.2 Gini and Tail Expectation

The GINI Coefficient, 2[0,1] is the difference between 1) the perfect equality,with a
Lorenz L(f) = f and 2) the observed L (z,↵,m, x

min

)

GINI (↵,m, x
min

) =

↵

(2↵� 1)

(m� x
min

)

m
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Figure 20.1: Different combinations
L(z, 3, .2, .1), L(z, 3, .95, .1), L(z, 1.31, .2, .1)
in addition to the perfect equality
line L( z)= z. We see the criss-
crossing at higher values of z.

Computing the tail mass above a threshold K, that is, the unconditional partial expec-
tation E>K⌘

R1
K

xp(x) dx, which corresponds to the nominal share of the total pie for
those with wealth above K,

E>K = (↵� 1)

↵�1
(↵ (K +m� x

min

)�m)

✓

m� x
min

K + (↵� 1)m� ↵x
min

◆↵

The Probability of exceeding K, P>K (Short for P (X > k))

P>K =

✓

1 +

K � x
min

(↵� 1) (m� x
min

)

◆

�↵

For the One Percent of the One Percent (or equivalent), we set the probability P>K

and invert to KP=(↵� 1) (m� x
min

) p�1/↵ � ↵ (1 +m+ x
min

),

E>K =

⇣

p
↵�1

↵
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↵ (m� x
min

) + p
1

↵

(m�m↵+ ↵x
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)

⌘

Now we can check the variations in GINI coefficient and the corresponding changes in
E>K for a constant m.

↵ GINI E>K E>K/m

1.26 0.532895 0.33909 0.121103

1.23 0.541585 0.395617 0.141292

1.2 0.55102 0.465422 0.166222

1.17 0.561301 0.55248 0.197314

1.14 0.572545 0.662214 0.236505

1.11 0.584895 0.802126 0.286474

1.08 0.598522 0.982738 0.350978
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21 Why is the fragilefragile nonlinear?

Chapter Summary 20: Explains why the fragilefragile is necessarily in the
nonlinear. Examines nonlinearities in medicine /iatrogenics as a risk man-
agement problem.
INCOMPLETE CHAPTER as of November 2013

Broken glass !

Dose

Response

The main framework of broken glass: very nonlinear in response. We replace the Heavy-
side with a continuous funtion in C1.
Imagine different classes of coffee cups or fragilefragile items that break as the dose
increases, indexed by

�

�i
 

for their sigmoid of degree 1: the linearity in the left interval
(x

0

, x
1

] , where xis the dose and S(.) the response, S : R+

! [0, 1]. ( Note that ↵ = 1;
we keep a (which determines the height) constant so all start at the same point x

0

and
end at the same one x

4

. Note that c corresponds to the displacement to the right or
the left on the dose-response line.

Sa,�i,�(x) ⌘
a

e�i

(�(�+x))
+ 1

The second derivative:

@2Sa,�i,�(x)

@x2

= �2a�2

sinh

4

✓

1

2

�(� + x)

◆

csch

3

(�(� + x)), (21.1)

where sinh and csnh are the hyperbolic sine and cosine, respectively.

Next we subject all the families to a probability distribution of harm, f(z) being a
monomodal distribution with the expectation E(z) 2 (x

0

, x
1

] . We compose f � Sto get
f
�

S↵,�i,�(x)
�

. In this case we pick a symmetric power law.
f↵,� (Sa,�,�(x)) =,
with ↵ ✏ (1, 1) and � 2 (0, 1)
The objects will produce a probability distribution around [0, 1] since Sa,�i,�(x) is
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Figure 21.1: The
different dose-
response curves,
at different val-
ues of

�
�i
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bounded at these levels; we can see to the right a Dirac mass concentrating observa-
tions at 1. Clearly what has survived is the nonlinear.
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21.1 Concavity of Health to Iatrogenics

Table 21.1: Concavity of Gains to Health Spending. Credit Edward Tufte

21.2 Antifragility from Uneven Distribution

Take health effect a function “response” from a single parameter, f: R ->R be a twice
differentiable, the effect from dose x.
If over a range x 2 [a,b], over a set time period �t, @2f(x)

@x2

> 0 or more heuristically,
1

2

(f(x+�x) + f(x-�x))> f(x), with x+�x and x-�x 2 [a,b] then there are benefits from
unevenness of distribution: episodic deprivation, intermittent fasting, variable pulmonary
ventilation, uneven distribution of proteins(autophagy), vitamins, high intensity training,
etc.).
In other words, in place of a dose x, one can give 140% of x , then 60% of x, with a more
favorable outcome.

Dose

Response f

f!x"

f !x!"x"! f !x#"x"

2

H

ProofProofProof: Jensen’s Inequality.
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This is a simplification here since dose response is rarely monotone in its nonlinearity,
as we will see further down.

Mixed Nonlinearities in Nature Nonlinearities are not monotone.
Nonlinearities in BiologyNonlinearities in BiologyNonlinearities in Biology- The shape convex-concave necessarily flows from anything
increasing (monotone, i.e. never decreasing) and bounded, with a maximum and a
minimum values, i.e. never reached infinity from either side. At low levels, the dose
response is convex (gradually more and more effective). Additional doses tend to become
gradually ineffective or hurt. The same can apply to anything consumed in too much
regularity. This type of graph necessarily applies to any situation bounded on both sides,
with a known minimum and maximum (saturation), which includes happiness.
For instance, If one considers that there exists a maximum level of happiness and un-
happiness then the general shape of this curve with convexity on the left and concavity
on the right has to hold for happiness (replace “dose” with wealth and “response” with
happiness). Kahneman-Tversky Prospect theory models a similar one for “utility” of
changes in wealth, which they discovered empirically.

Iatrogenics If @2f(x)
@x2

 0 for all x (to simplify), and x is symmetrically distributed,
then the distribution of the “outcome” from administration of f (and only the effect of
f ) will be left-skewed as shown in Figure 1. Further “known limited upside, unknown
downside” to map the effect of the next figure.

Outcomes

Probability

Hidden Iatrogenics Benefits

Medical IatrogenicsMedical IatrogenicsMedical Iatrogenics: Probability distribution of f. Case of small benefits and large
Black Swan-style losses seen in probability space. Iatrogenics occur when we have small
identifiable gains (say, avoidance of small discomfort or a minor infection) and exposure
to Black Swans with delayed invisible large side effects (say, death). These concave
benefits from medicine are just like selling a financial option (plenty of risk) against
small tiny immediate gains while claiming “evidence of no harm”.
In short, for a healthy person, there is a small probability of disastrous outcomes (dis-
counted because unseen and not taken into account), and a high probability of mild
benefits.
ProofProofProof: Convex transformation of a random variable, the Fragility Transfer Theorem.
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Medical Breakeven

Iatrogenics zone

Condition

Drug Benefit

In time series space:

Mother Nature v/s Medicine The hypertension example. On the vertical axis,
we have benefits of a treatment, on the horizontal, the severity of the condition. The
arrow points at the level where probabilistic gains match probabilistic harm. Iatrogenics
disappear nonlinearly as a function of the severity of the condition. This implies that
when the patient is very ill, the distribution shifts to antifragile (thicker right tail), with
large benefits from the treatment over possible iatrogenics, little to lose.
Note that if you increase the treatment you hit concavity from maximum benefits, a zone
not covered in the graph —seen more broadly, it would look like the graph of bounded
upside
From Antifragile
Second principle of iatrogenicsSecond principle of iatrogenicsSecond principle of iatrogenics: it is not linear. We should not take risks with near-
healthy people; but we should take a lot, a lot more risks with those deemed in danger.
Why do we need to focus treatment on more serious cases, not marginal ones? Take this
example showing nonlinearity (convexity). When hypertension is mild, say marginally
higher than the zone accepted as “normotensive,” the chance of benefiting from a certain
drug is close to 5.6 percent (only one person in eighteen benefit from the treatment).
But when blood pressure is considered to be in the “high” or “severe” range, the chances
of benefiting are now 26 and 72 percent, respectively (that is, one person in four and
two persons out of three will benefit from the treatment). So the treatment benefits
are convex to condition (the bene- fits rise disproportionally, in an accelerated manner).
But consider that the iatrogenics should be constant for all categories! In the very ill
condi- tion, the benefits are large relative to iatrogenics; in the borderline one, they are
small. This means that we need to focus on high-symptom con- ditions and ignore, I
mean really ignore, other situations in which the patient is not very ill.
The argument here is based on the structure of conditional survival probabilities, similar
to the one that we used to prove that harm needs to be nonlinear for porcelain cups.
Consider that Mother Nature had to have tinkered through selection in inverse proportion
to the rarity of the condition. Of the hundred and twenty thousand drugs available today,
I can hardly find a via positiva one that makes a healthy person uncondi- tionally “better”
(and if someone shows me one, I will be skeptical of yet-unseen side effects). Once in a
while we come up with drugs that enhance performance, such as, say, steroids, only to
discover what peo- ple in finance have known for a while: in a “mature” market there
is no free lunch anymore, and what appears as a free lunch has a hidden risk. When
you think you have found a free lunch, say, steroids or trans fat, something that helps
the healthy without visible downside, it is most likely that there is a concealed trap
somewhere. Actually, my days in trading, it was called a “sucker’s trade.”
And there is a simple statistical reason that explains why we have not been able to
find drugs that make us feel unconditionally better when we are well (or unconditionally
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stronger, etc.): nature would have been likely to find this magic pill by itself. But
consider that illness is rare, and the more ill the person the less likely nature would have
found the solu- tion by itself, in an accelerating way. A condition that is, say, three units
of deviation away from the norm is more than three hundred times rarer than normal;
an illness that is five units of deviation from the norm is more than a million times rarer!
The medical community has not modeled such nonlinearity of benefits to iatrogenics,
and if they do so in words, I have not seen it in formal- ized in papers, hence into
a decision-making methodology that takes probability into account (as we will see in
the next section, there is little explicit use of convexity biases). Even risks seem to be
linearly extrapo- lated, causing both underestimation and overestimation, most certainly
miscalculation of degrees of harm—for instance, a paper on the effect of radiation states
the following: “The standard model currently in use ap- plies a linear scale, extrapolating
cancer risk from high doses to low doses of ionizing radiation.” Further, pharmaceutical
companies are under financial pressures to find diseases and satisfy the security ana- lysts.
They have been scraping the bottom of the barrel, looking for disease among healthier
and healthier people, lobbying for reclassifica- tions of conditions, and fine-tuning sales
tricks to get doctors to overpre- scribe. Now, if your blood pressure is in the upper
part of the range that used to be called “normal,” you are no longer “normotensive” but
“pre-hypertensive,” even if there are no symptoms in view. There is nothing wrong with
the classification if it leads to healthier lifestyle and robust via negativa measures—but
what is behind such classification, often, is a drive for more medication.



22 American Options and Hidden Convexity

Chapter Summary 21: As an application of the model-error-heuristic to
a financial problem. American Options have hidden optionalities. Using a
European option as a baseline we heuristically add the difference.

War Story 1 : The Currency Interest rate Flip

I recall in the 1980s the German currency carried lower interest rates than the US. When
rate 1 is lower than rate 2, then, on regular pricing systems, for vanilla currency options,
the American Put is higher than the European Put, but American Call =European Call.
At some point the rates started converging; they eventually flipped as the German rates
rose a bit after the reunification of Deutschland. I recall the trade in which someone who
understood model error (not a finance professor) trying to buy American Calls Selling
European Calls and paying some trader who got an immediate marks-to-market P/L
(from the mark-to-model). The systems gave an identical value to these -it looked like
free money, until the trader blew up. Nobody could initially figure out why they were
losing money after the flip –the systems were missing on the difference. There was no
big liquidity but several billions went through. Eventually the payoff turned out to be
big.
We repreated the game a few times around devaluations as interest rates would shoot
up and there was always some sucker with a math degree willing to do the trade.

War Story 2: The Stock Squeeze

Spitz called me once in during the 2000 Bachelier conference to tell me that we were in
trouble. We were long listed American calls on some Argentinian stock and short the
delta in stock. The stock was some strange ADR that got delisted and we had to cover
our short ASAP. Somehow we could not find the stock, and begging Bear Stearns failed
to help. The solution turned out to be trivial: exercise the calls, enough of them to get
the stock. We were lucky that our calls were American, not European, otherwise we
would have been squeezed to tears. Moral: an American call has hidden optionality on
model error.
These hidden optionalities on model errors are more numerous than the ones in the two
examples I just gave. I kept discovering new ones.

Misplaced Precision

So many "rigorous" research papers have been involved in the "exact" pricing of Amer-
ican options, though within model when in fact their most interesting attribute is that
they benefit from the breakdown of models. Indeed an interesting test to see if some-
one understand quantitative finance is to quiz him on American options. If he answers
by providing a "pasting boundary" story but using a Black- Scholes type world, then
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you can safely make the conclusion that he represents an intellectual and financial dan-
ger. Furthermore, with faster computers, a faster pricing algorithm does not carry large
advantages. The problem is in the hidden optionality... Major points to know.
An American option is always worth equally or more than the European option of the
same nominal maturity.
An American option has always a shorter or equal expected life than a European option.
Rule 9. The value of an American option increases with the following factors:
• Higher volatility of interest rates.
• Higher volatility of volatility.
• Higher instability of the slope of the volatility curve.
DANGER: A conventional pricing system will trick you into using the wrong parameter
for the American option, as we will see.
The major difference between an American and European option is that the holder of
the American option has the right to decide on whether the option is worth more dead
or alive. In other words is it worth more held to expiration or immediately exercised?

War Story 3: American Option and The Squeeze

I recall in the late 1990s seeing a strange situation: Long dated over-the-counter call
options on a European Equity index were priced exceedingly below whatever measure
of historical volatility one can think of. What happened was that traders were long the
calls, short the future, and the market had been rallying slowly. They were losing on
their future sales and had to pay for it âĂŞwithout collecting on their corresponding
profits on the option side. The calls kept getting discounted; they were too long- dated
and nobody wanted to toutch them. What does this mean? Consider that a long term
European option can trade below intrinsic value! I mean intrinsic value by the forward!
You may not have the funds to arb it... The market can become suddenly inefficient and
bankrupt you on the marks as your options can be severely discounted. I recall seing the
cash-future discount reach 10% during the crash of 1987. But with an American option
you have a lower bound on how much you can be squeezed. Let us look for cases of
differential valuation.

Case 1 (Simplest, the bang comes from the convexity to changes
in the carry of the premium)

Why do changes in interest rate carry always comparatively benefit the American option
? Take a 1 year European and American options on a forward trading at 100, i.e. with
a spot at 100. The American option will be priced on the risk management system at
exactly the same value as the European one. S=100, F=100, where S is the spot and F
is the forward. Assume that the market rallies and the spot goes to 140. Both options
will go to parity, and be worth $40.

Case 1 A Assume that interest rates are longer 0, that both rates go to 10%. F stays
equal to S. Suddenly the European option will go from $40 to the present value of $40
in one year using 10%, i.e. $36.36. The American option will stay at $40, like a rock.

Case 1 B Assume the domestic rate goes up to 10%, spot unchanged. F will be worth
approximately of S. It will go from 140 to 126, but the P/L should be neutral if the
option still has no gamma around 126 (i.e. the options trade at intrinsic value). The
European option will still drop to the PV of 26, i.e. 23.636, while the American will be
at 26.
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We can thus see that the changes in carry always work to the advantage of the American
option (assuming the trader is properly delta neutral in the forward). We saw in these
two cases the outperformance of the American option. We know the rule that :
If in all scenarios option A is worth at least the same as option B and, in some scenarios
can be worth more than option B, then it is not the greatest idea to sell option A and
buy option B at the exact same price.
This tells us something but not too much: we know we need to pay more, but how much
more?

Case 2 Sensitivity (more serious) to changes in the Divi-
dend/Foreign rate

Another early exercise test needs to be in place, now. Say that we start with S = 140
and F = 140 and that we have both rates equal to 0. Let us compare a European and
an American option on cash. As before, they will initially bear the same price on the
risk management system.
Assume that that the foreign rate goes to 20%. F goes to approximately S, roughly 1.16.
The European call option will be worth roughly $16 (assuming no time value), while
the American option will be worth $40. Why ? because the American option being a
very smart option, chooses whatever fits it better, between the cash and the future, and
positions itself there.

Case 3: More Complex: Sensitivity to the Slope of the Yield
Curve

Now let us assume that the yield curve has kinks it it, that it is not quite as linear as
one would think. We often such niceties around year end events, when interest rates flip,
etc.
As Figure 1 shows the final forward might not be the most relevant item. Any bubbling
on the intermediate date would affect the value of the American option. Remember
that only using the final F is a recipe for being picked-on by a shrewd operator. A risk
management and pricing system that uses no full term structure would be considered
greatly defective, as it would price both options at the exact same price when clearly
the American put is worth more because one can lock-in the forward to the exact point
in the middle – where the synthetic underlying is worth the most. Thus using the final
interest rate differential would be totally wrong.
To conclude from these examples, the American option is extremely sensitive to the
interest rates and their volatility. The higher that volatility the higher the difference
between the American and the European. Pricing Problems
It is not possible to price American options using a conventional Monte Carlo simulator.
We can, however, try to price them using a more advanced version -or a combination
between Monte Carlo and an analytical method. But the knowledge thus gained would
be simply comparative.
Further results will follow. It would be great knowledge to quantify their difference, but
we have nothing in the present time other than an ordinal relationship.

The Stopping Time Problem

Another non-trivial problem with American options lies in the fact that the forward hedge
is unknown. It resembles the problem with a barrier option except that the conditions
of termination are unknown and depend on many parameters (such as volatility, base
interest rate, interest rate differential). The intuition of the stopping time problem is as
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follows: the smart option will position itself on the point on the curve that fits it the
best.
Note that the forward maturity ladder in a pricing and risk management system that
puts the forward delta in the terminal bucket is WRONG.

Conclusion

A simple method to heuristically track the true difference between American and Euro-
pean options.
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