
1

Reuters
Open Message Model
Technical White Paper
Version 1.0, August 2006

2

Open Message Model

Contents
1. Introduction 3

1.1. Purpose 3

1.2. Executive summary 3

1.2.1. Driving change 3

1.2.2. Unleashing innovation 4

1.2.3. Built-in benefits 4

1.2.4. Upgrade with ease 4

1.3. Reuters Data Model 5
 Architecture overview

1.4. Scope 5

1.5. Glossary 6

2. Fundamentals 7

2.1. Provider/Consumer Model 7

2.2. Services 8

2.3. Access Point 8

3. Wire format 9

3.1. Reuters Wire Format 9

4. Open Message Model 10

4.1. Transport Layer 10

4.1.1. Concepts 11

4.1.2. Messages 13

4.2. Data abstractions 17

4.2.1. Concepts 17

4.2.2. Data formats 19

5. Domain message models 23

5.1. Reuters Domain Models 24

5.1.1. Login 24

5.1.2. Market price 27

5.1.3. Market by order 31

5.2. Defining New Types 36

Figures
Figure 1 – Reuters Data Model Architecture 5

Figure 2 – Provider/Consumer Model 7

Figure 3 – Consumer Access Points 8

Figure 4 – Key 11

Figure 5 – State 12

Figure 6 – Quality of Service 13

Figure 7 – Message Base 13

Figure 8 – Request Message 14

Figure 9 – Refresh (Response) Message 14

Figure 10 – Update Message 15

Figure 11 – Status Message 16

Figure 12 – Close Message 16

Figure 13 – Acknowledgement 16

Figure 14 – Record Set Encodings 17

Figure 15 – Extended Record Set 18

Figure 16 – Elements List 19

Figure 17 – Field List 19

Figure 18 – Vector 20

Figure 19 – Map 21

Figure 20 – Series 22

Figure 21 – Filter List 22

Figure 22 – Reuters Data Model Architecture 23

Figure 23 – Login 24

Figure 24 – Login Data 25

Figure 25 – Login Example 26

Figure 26 – Market Price 27

Figure 27 – Market Price Data 28

Figure 28 – Market Price Data Encodings 29

Figure 29 – Market Price Example 30

Figure 30 – Market by Order 31

Figure 31 – Market by Order Data 32

Figure 32 – Market by Order Image Encodings 33

Figure 33 – Market by Order Image Encodings 34

Figure 34 – Market by Order Example 35

3

1. Introduction

1.1. Purpose
This white paper focuses on the Open
Message Model (OMM) and how it can
be used, both by Reuters and other
parties, to model many different types
of content. OMM is a key component
of the overall Reuters Data Model
Architecture (RDMA). This architecture
defines a layered model which is used
to describe and distribute all content.
Reuters Data Model Architecture and
OMM have been specifically designed
to overcome existing limits and to
provide a more flexible and efficient
basis for exchanging financial data in
the future.

Current interfaces and systems provided
by Reuters support a range of different
data models, most of which have been
created around the popular Marketfeed
record format. Nearly all applications
understand the Marketfeed record
format, Unfortunately, Marketfeed is not
flexible enough to describe complex
data efficiently. This led developers to
force some data models into the simple
Marketfeed record format, resulting
in unwanted complexity and possible
inefficiencies. This has also created a
generation of applications that use
proprietary data formats whose data
models used are not available to Reuters
products (such as Reuters 3000 Xtra) or
other applications.

1.2. Executive summary
Reuters has created a completely new
architecture – Reuters Data Model
Architecture (RDMA) – for structuring
data within RMDS (Reuters Market Data
Systems). This will enable applications
and systems to send and receive
data more efficiently, and will allow
application developers the flexibility
to access new data types and to
model additional data types that meet
changing market requirements.

At the same time, Reuters has been
careful to ensure continued support for
the thousands of custom applications
and third-party products that were
developed for the old architecture. All
key interfaces necessary to run legacy
TIB and Triarch applications have been
maintained in the new architecture.

1.2.1. Driving change
Recent years have seen a strong
increase in the demand for market data.
Trading applications, particularly the
fast-increasing number of algorithmic-
trading applications, are driving this
trend. These applications need to
scan and analyse huge volumes of
data in milliseconds to spot trading
opportunities and trigger orders or
execution.

In addition to the sheer volume of data,
these applications require programmatic
access to a broader array of content
than ever before, such as level II data
(order book, market-maker data), deep
tick history, news, portfolios, and even
transaction messages. As this trend for
new data types to feed applications
accelerates, there will be a constant
requirement for programmatic access to
new data types.

The existing Reuters data structures
have served the markets well for more
than a decade now, but it has become
clear that they are not going to be able
to supply the levels of flexibility and
performance (both processing speed
and throughput) that will become
the norm in the future. Consequently,
Reuters has rearchitected its data model
from top to bottom, in order to create
new structures that will meet these
future needs, while providing continued
support for its existing data structures.

To address all these requirements, the
new Reuters data model breaks down
into three main areas.

- At the bottom of the model is the
Reuters Wire Format (RWF). This is the
binary format that is used to express
all data. In the past, there has been a
number of different formats. Now all
these will be replaced by one single
format that is more efficient in the way
it handles data. This is a key quality,
leading directly to shorter message
lengths and higher throughput.

- The middle layer is the Open Message
Model. This has two important
components: a new transport
protocol, RSSL, which includes new
request types (such as those for
handling streaming data), and a set
of primitive data structures (Data
Abstractions) that are the building
blocks for more complex data types.

- The top layer is the Domain Model.
This is where the primitive data types
and the relevant transport details are
combined to create data types that
match market needs. Reuters has
already created the standard types that
meet existing needs, such as Login,
Dictionary, Market Price, Symbol List,
and Market-by-Order.

The Domain Model types have been
created by composition of the basic
OMM message structures such as:

- Field List. A list of field/value pairs that
replaces the existing logical record.

- Vector. A simple integer-indexed (zero-
based) vector of information.

- Map. A key-indexed vector of
information, similar to a hash table or
STL map.

- Series. A structured table of
information (typically used for historical
data).

- Element List. A list of self-describing
field/value pairs (that does not need a
dictionary).

4

1.2.2. Unleashing innovation
The Open Message Model is truly
open. Your developers can extend
these data types to suit your needs
or create completely new ones. This
degree of flexibility is a key requirement
as applications need to process new
types of data, increasing depth of data
and new types of transactions.

Additionally, the definition of data
structures is no longer dependent on
the underlying infrastructure or API
upgrades. With the legacy data formats,
you have to wait for the new release of
the infrastructure before you can exploit
any changes to the data structures. With
OMM, you design the type definition,
code the new type into your application
using the RFA, and then deploy it on
RMDS very rapidly, potentially in no
more than a couple of hours. The only
limitation is the imagination of the
application developer.

It has always been central to the
success of RMDS that development
partners and individual institutions were
able to leverage the system in different
ways to deliver extra dimensions of
functionality and value. The flexibility
and underlying performance of the new
architecture will open up many new
opportunities for creating innovative
financial applications. In areas like
algorithmic trading, OMM is being
used to represent new information like
full order books, complex yield curves,
machine readable news, tick histories,
corporate actions, and reference data.
In the future, OMM will also be used
to deliver new functionality to RMDS
applications like transactions and
settlements, leveraging standards like
FIX and SWIFT in OMM. Messaging is
the foundation of the RMDS system, and
the switch to flexible data modelling will
result in numerous examples like these,
heralding a new era of inventiveness.

Extending the concept of openness, the
Reuters Customer Zone will be used to
share innovations. Recently created data
types will be available for download.
There will be common-interest groups
where different organizations can
work together. This will ensure rapid
development of, for example, a new
transaction type or trade blotter.

1.2.3. Built-in benefits
Market Data Managers will appreciate
the efficiencies that are inherent in the
new structures:

- The underlying RMDS architecture can
be structured to deliver both efficiency
and low latency. Using OMM, sub-
millisecond latency can be achieved at
higher update rates than ever before.

- The binary efficiency of the Reuters
Wire Format (RWF) means that
message sizes are reduced. Data in
OMM is half the size of the same data
in current MarketFeed format, and
about one-sixth of the size it would
be in TIB.

- When using OMM, higher
throughput rates can be achieved
using RMDS 6 components when
compared to RMDS 5 components
using MarketFeed. RMDS 6 and
OMM can deliver anywhere from
45% to 100% more throughput.

- The binary format of RWF ensures
the faster processing speeds that
algorithmic applications require. With
the data already in binary, there is no
longer any need for conversion of
strings.

- Equally, the new data structures
are inherently faster to utilize in
applications because there is no longer
any need to parse each message in
full. Relationships are defined within
the data types, so applications can go
straight to the relevant point in the
message for the required data.

- The architecture will enable much
more effective sharing of data between
the front, middle and back offices.

1.2.4. Upgrade with ease
The RMDS 6 was designed to
facilitate an easy upgrade. The RMDS
6 components can be operated in
conjunction with existing RMDS 5
installations. You can add a Point-to-
Point Server (P2PS), which can work
simultaneously with both the RMDS
5 RRMP (Restricted Reliable Multicast
Protocol) 4 backbone protocol and the
RMDS 6 RRMP6 backbone protocol. You
can then add new Source Distributors
and new OMM-based source
applications as they are required. This
allows you to meet the needs of new
programmatic applications with needs
for new data types by simply extending
your RMDS. This also allows these
new applications to access all of your
internally published data, There is no
need for wholesale system-change.

Applications using current APIs and data
structures can connect to the upgraded
infrastructure without any changes, and
will continue receiving the information
they receive today. The RMDS 6
components can provide automatic
conversion of OMM Market Price
models (see section 5.1.2) to formats
required by existing APIs like SSL, SFC,
and the TIB API.

5

1.3. Reuters Data Model
Architecture overview
With RFA/RMDS 6, content will be
viewed in a more layered/structured
manner as depicted in Figure 1. This
structure enables each layer to build on
the facilities provided by those beneath
and offers a vocabulary for discussing
the capabilities. Starting with version
6, the RFA and RMDS components
will strictly follow this data model
architecture.

Figure 1 – Reuters Data Model
Architecture
The three key layers are shown in yellow.
From the bottom upwards, these are:

- Wire Format – The encoded wire
format that is used for distribution
between any APIs and/or core
components (e.g. RMDS, RDF, RDF
Direct). The Reuters Wire Format
(RWF) makes up this layer and offers a
flexible, bandwidth and CPU efficient
binary wire representation that can be
used for the distribution, creation and
manipulation of all data content.

- Open Message Model – OMM
provides the constructs for expressing
all data content through transport
and data abstractions. It is the layer
that is implemented in all messaging
APIs and core components. The
flexibility provided by OMM means
that new data models can be created
in the future without any need for new

versions of the messaging APIs (i.e.
RFA) and/or infrastructure (i.e. RMDS).
OMM is implemented within the RFA
6 interface (using a new RSSL protocol)
and the RMDS 6 infrastructure.

- Domain Message Model – The
Domain Message Model uses the
capabilities of OMM for defining
Item Type Models and the Content
Definition Model. Item Type Models
define real-world types (e.g. Market
Price, Market-by-Order, News,
Historical, etc.) and represent the
realization of select domains using
OMM. The actual field meanings/
relationships, required fields,
instrument types, etc. are defined by
the Content Definition Model. Reuters
versions of the Domain Message
Models are defined by the Reuters
Domain Models and should be used to
guarantee maximum interoperability.

The Reuters Data Model Architecture
will be used to define how all Reuters
content is described, structured,
accessed and produced through
client facing interfaces. Applications
supporting these “standards” will inter-
operate independent of the vendor/
exchange providing the data. Any
interested parties can define their own
Domain Message Models for item types,
and these can be used without software
enhancements to RFA or RMDS.

In other words, the Reuters Data Model
Architecture allows content to

be defined in terms that are familiar to
financial professionals and make sense for
the data itself. It simultaneously defines
extensible and re-usable abstractions
that make sense at a systems/messaging
perspective. These abstractions allow
new types of data to be defined without
new releases of RFA or RMDS.

1.4. Scope
This paper discusses the Reuters Data
Model Architecture in its entirety.

Section 3 gives an overview of wire
formats; the present range of formats
will be replaced by one single format for
all messages.

Section 4 looks in detail at the Open
Message Model and the message types
and abstract data types that are the
building blocks for defining data.

Section 5 describes the Domain
Message Model, where data types
from the OMM are used to define real
data, such Market by Price. Some of the
pre-defined Reuters Domain Models
are examined in detail to show how the
different elements are used in practice.

The main purpose of this document is
to define the OMM architecture. RFA 6
represents the API implementation of
this architecture and may therefore use
different terminology or expose slightly
different attributes (e.g. service name
instead of service identifier).

 Domain Message Model Content Definition Model Field Meanings Reuters Domain
 Field Relationships Models (RDM)

 Item Type Model Real World Objects
 (i.e. Quotes, Order Books, etc)

 Open Message Model Data Data Containers Data Package
 Primitive Structures

 Transport Interaction Paradigms Message Package
 Event Model
 Symbology Session Package
 QoS
 Entitlements

 Wire Format Wire Encoding Reuters Wire Format (RWF)

Figure 1 – Reuters Data Model Architecture

RF
A

 6
.0

 R
SS

L
Pr

ot
oc

ol

6

1.5. Glossary

 API Application Programming Interface

 Decoding The act of parsing and converting content from a Wire Format, or external
representation, into a machine readable form (e.g. RWF parsing, Marketfeed
parsing, XML parsing).

 Event Stream The result of a request/response with interest interaction. When a application
requests streaming news headlines, an event stream is created that provides
asynchronous headlines (updates) and state information.

 HTTP Hypertext Transfer Protocol

 Market-by-Order Instrument market information sorted by order (i.e. full depth order book –
level II content).

 Market-by-Price Top of book instrument market information sorted by best price (i.e. market
depth – level II content).

 Market Price Trades, Quotes and inside top of book quotes (i.e. level I content).

 OMM Open Message Model

 Reuters Data Model Architecture Reuters Data Model Architecture

 RDF Reuters Data Feed

 RDF Direct Reuters Data Feed Direct

 RIC Reuters Instrument Code

 RFA Reuters Foundation API. Strategic, low-level, thread-aware messaging API
that applications can use to publish and consume OMM.

 RMDS Reuters Market Data System

 RSSL Reuters SSL Protocol

 RWF Reuters Wire Format

 SFC System Foundation Classes

 Transformation The act of changing the fundamental structure of the data/model from one
to another (e.g. RWF to Marketfeed conversion, Marketfeed to TibMsg self-
describing conversion).

 Wire Format An encoded, hardware neutral, external representation of a data model that
provides for the transmission of the model between multiple components
(usually over a LAN or WAN). Wire formats may be optimized using many
different networking tricks (e.g. nibbles, bitmaps, integer chains, etc.).

7

Some key terminology is new to RFA/
RMDS 6. The terminology and concepts
are introduced here.

2.1. Provider/Consumer Model
Figure 2 – Provider/Consumer Model
The RFA API and RMDS infrastructure
are designed to enable information and
capabilities to be shared by different
users. Users are divided into Providers,
who seamlessly make capabilities and
information available, and Consumers,
who, with the relevant permissions,
have access to the capabilities and
information. The term Provider, is used

instead of publisher, because this type
of application may not only publish
data (e.g. direct exchange feed, RDF),
but it may also provide a capability
(e.g. Exchange gateway – transactions,
Vendor Contributions) to many different
consumer applications. Consumers
always interact with a provider, either
directly or via RMDS, in order to access
the capabilities or data content they
require.

2. Fundamentals

ConsumersConsumersConsumersConsumers

Value-Add Data
Servers

Value-Add Data
Servers

Local Data
Repository

Transaction
Gateways

Direct Exchange
Feeds

Vendor
Feeds

ECN
Feeds

Contribution
Feeds

Permissioning

Management

Consumers

Providers

RMDS 6.0 or Direct Connect

Mixed

Providers

Consumers

Instrument Lists Order Books Time Series Market Depth

Transactions Level-1 Market Maker News

Figure 2 – Provider/Consumer Model

8

2.2. Services
Services provide a unique identification
scheme for breaking up different types
of providers. They offer a convenient
mechanism to manage large sets of data
and/or capabilities. All request/response
traffic is directed to and received from
a service provider. Services can be
categorized by many different criteria
(e.g. business classification, consolidated
vender, direct exchange feed, exchange
gateway, etc.).

Services are dynamic in nature and thus
may be created or removed on the fly.
Their existence and characteristics are
detected dynamically by the consumer
applications.

2.3. Access Point
Figure 3 – Consumer Access Points
Consumers utilize content and
capabilities from providers through
access points. Consumer access points
currently manifest themselves in two
different ways:

- Direct. A provider that supports direct
connections represents a concrete
consumer access point. Multiple
consumers can directly interact with the
provider in order to access the content
and capabilities offered by the service
provider. Datafeeds (e.g. RDF, RDF
Direct) or exchange gateways typically
implement this style of access point.

- Proxy. When certain capabilities
are required (e.g. multiple content
providers, large scale distribution, local
content management, resiliency, etc.),
RMDS components can be placed
between the concrete providers and
the consumers. In this case consumers
interact with RMDS components acting
as proxies to the concrete service
providers. The point-to-point server,
current RTIC and future multicast server
implement this style of access point.

Consumer
(e.g. 3000 Xtra

Trading)

Consumer
(e.g. 3000 Xtra

Trading)

Concrete Service Provider
(e.g. RDF, RDFD, Exchange Gateways, etc.)

Consumer
(e.g. 3000 Xtra

Trading)

Consumer
(e.g. 3000 Xtra

Trading)

Proxy Service Provider
(e.g. P2PS or Multicast Server)

Access Point

Access Point

RMDS

Figure 3 – Consumer Access Points

9

A wire format defines a hardware
neutral, external data encoding
for transmitting data between
multiple components/machines. The
components can reside on the same or
different machines or even on different
machine architectures (i.e. Win32-x86,
Linux-x86, Solaris-SPARC, Solaris-x64).
Most network-based communications
happen over a Local Area Network
(LAN) or a Wide Area Network (WAN).
Many different wire formats exist
that allow the transferring of simple
data types (e.g. integers, floats, time)
between different parties.

Currently, Reuters APIs and systems
define and utilize many different wire
formats. In fact, the wire format is
usually coupled with the data being
transported. Even though many of
the wire formats utilize very common
techniques, each has its own definition.
Examples of current wire formats
include:

- Marketfeed – a delimited ASCII
based wire data format that is used
to represent logical records. Field
identifiers are used to identify particular
fields and require a dictionary to make
sense of the data. The Marketfeed
format is documented and encoded/
decoded within applications.

- QForms – a binary based wire data
format that is used to represent logical
records. Field identifiers are used to
identify particular fields and require a
dictionary to make sense of the data.
The dictionary is also required to parse
the message. QForms encoding and
decoding are implemented within the
TibMsg API.

- TibMsg – A self-describing binary
based wire format that is used to
represent logical records. TibMsg
encoded messages are typically much
larger than QForms or Marketfeed
due to their self-describing nature.
TibMsg encoding and decoding are
implemented within the TibMsg API.

- ANSI Page – A page format that
uses ANSI sequences to express the
displayable data.

- SSL – a point-to-point binary based
wire format that is used to transport
messages between components. It is
currently implemented within the SSL4.
x APIs.

- RRMP – a broadcast/multicast
binary based wire format that is used
to transport messages between
RMDS components. It is currently
implemented in the Source Distributor,
P2PS, rtic and rdtic.

3.1. Reuters Wire Format
In RFA6 and RMDS6, these different
formats are replaced by a single wire
format – Reuters Wire Format (RWF).
Irrelevant of whether the layer performs
transport behavior, or implements data
formats, the Reuters Wire Format will be
used to encode the information.

RWF uses binary encoding, bit-wise
operations and reserved values in order
to optimize all network distribution. RWF
is automatically encoded into network
byte order for transmission and then
decoded into the machine-specific byte
order for consumption. When properly
combined, the binary nature of RWF
provides smaller messages that are
easier and more efficient to encode/
decode, thus resulting in an increase in
total throughput.

The base Reuters Wire Format defines
primitive data types or building blocks
that can be transmitted between
multiple components. The Open
Message Model uses these primitive
types to represent more complex
transport and data formats between
components. In effect, OMM uses,
and then extends, RWF to build more
complex messages types and data
formats.

Some of the data type encodings that
make up the base Reuters Wire Format
include:

- Fixed-sized signed and unsigned 8-bit,
16-bit, 32-bit and 64-bit Integers. All
values are encoded in network byte
order and use the same number of
bytes as defined by the value used
(e.g. 16-bit – encoded in 2 bytes). The
two’s-complement IEEE format is used
to encode signed integer values.

- Special value variable sized unsigned
16-bit and 32-bit integers. These values
must always contain a single byte. If the
byte is less than a reserved value, then
that byte is the actual value. Otherwise,
the value of the first byte is used to
infer the number of bytes the value is
encoded after this first byte.

- Reserved bit-variable-sized unsigned
15-bit, 30-bit and 62-bit integers.
These values must also always contain
a single byte. However, one, or two,
high-order bits are reserved in the first
byte to indicate the total length of the
integer value.

- Real (decimal) values that contain
a maximum 32-bit or 64-bit integer
coefficient and a 6-bit integer
exponent. The two high bits in
the exponent byte can be used to
identify the length of the exponent for
bandwidth optimizations.

- IEEE standard 754 floating-point
numbers (floats-4 byte and doubles-8
byte).

- Time (hour,minute,second,millisecond)
, Date (day,month,year), and combined
Date/Time.

- Multiple buffers that have different
maximum lengths depending on the
integer encoding used.

- ASCII String, RMTES String and UTF8
String.

- Array of any of the above data types.

3. Wire Format

10

The Open Message Model forms the
basis for all messaging starting with
the 6.0 release of RFA and RMDS. It
does this through re-usable transport
and data abstractions. All current and
future data content will be described,
structured, accessed and produced
using the OMM concepts. Also, most
new data models can be realized
without modifications to the RFA or
RMDS components. Low latency and
high throughput of messages was a
main design goal of OMM. Abstractions
have been carefully created in order
to properly weigh performance with
overall flexibility. When these goals
came in direct conflict, multiple options
have been employed to maintain
performance were necessary.

Previous interfaces and RMDS
components are divided into transport
level semantics and data format
semantics. The transport level (e.g.
SSL4.X/SASS3/RRMP) supports multiple
services that provide generic item
request, response, update and status
semantics. Items are identified with a
unique name (i.e. buffer and length)
within a particular service. The items that
are provided through the transport carry
many different data formats (including
user/client defined). However, the most
popular utilized data formats are logical
records and pages. Logical records
define everything as a combination of
field/value pairs while pages are used
more for display.

When looking at many different types
of information and how that information
is accessed, many similarities can be
identified. These commonalities can
be found in both how you access the
data and what form the data itself takes.
The request/response with interest
pattern that is used to access Market
Price (level-1) content can be used to
access all “streaming” content (i.e. open
ended requests). The main difference
is meanings between the responses
and any event stream updates. Some
examples of this concept include:

- Market-by-Order, or Order Book,
information can be accessed using the
request/response with interest pattern.
The response to the request contains
the actual order book information that
is structured in a common data format.
Updates represent modifications to
the book received in the response and
need to be applied appropriately.

- Streaming News Headlines can also be
accessed using the request/response
with interest pattern. The response
acknowledges the request and does
not actually contain any information.
Updates represent actual asynchronous
headlines that are structured in a
common format. Updates also contain
an extra permission expression that
must be checked against the user’s
profile.

The OMM design approach uses
generic messages, attributes and data
formats that defer specific semantics
to the Domain Message Model. Data
representations are also abstracted
and separated from the behavior in
order to offer the most flexible model.
Applications can provide and consume
any content using the transport and data
abstractions defined within OMM.

The OMM is divided into two different
layers, each of which is described in
detail in this section:

- The Transport layer defines the
interaction that can take place between
a consumer and a provider, such as a
request for information or a request to
refresh an existing set of information.
The Transport Layer is described in
section 4.1.

- The Data Abstractions are the generic
formats for data, such as the Field List,
Vector, etc. These generic formats can
be combined (e.g. a vector of field lists
or a vector of vectors) to create formats
that suit different types of real data, such
as an order book. The Data Abstractions
are described in section 4.2.

4.1. Transport Layer
The OMM transport layer encapsulates
all messaging syntax and semantics. It
defines generic messages and attributes
within these messages, which defer
actual meanings to the Item Type
Models. Generic interaction paradigms
are combined with an extensible item
identification mechanism (i.e. key) in
order to provide the most flexibility.
Built-in state information exists for
both the data and any event streams.
A request priority scheme exists that
can be used to prioritize request traffic
(in terms of both initial request and any
possible recovery)1. Event streams can
be broken into different groups in order
to allow for efficient state transitions.

Response and/or update data
can optionally contain permission
expressions that define any extra
requirements needed to see the data.
These permissions expressions, tied with
the users permissions profile, allow for
full control of user access to content.
The Login (see 5.1.1) item type model
must be used with an access point to
authenticate users and retrieve their
permissions profiles in order to properly
implement permissioning.

The transport supports both message
fragmentation/reassembly and
multi-part responses for dealing
with potentially large data. Message
fragmentation and reassembly is
automatically handled by the transport,
however it blocks any other data until
all fragments have been sent. Multi-part
responses allow providers to interleave
time-sensitive data with large response
data (even within the same item). Both
concepts need to be used together
when properly implementing a provider
with large data content.

The transport layer has been designed
for both point-to-point and multicast
based delivery. However, the first
implementation of RFA 6.0 only provides
point-to-point delivery. This allows
connections to several access points (i.e.
API-to-API, API-to-Source Distributor,
API-to-P2PS). Multicast and HTTP/S

4. Open Message Model

11

based implementations of the API will
be made available in future releases.2

4.1.1. Concepts
This section goes into detail on some
of the key concepts used to define the
OMM transport layer.

4.1.1.1. Interaction Paradigms
Consumers must work with providers
in order to make use of their many
different capabilities. The actual
behavioral collaboration, or abstract
access methods, between these two
parties have been classified into three
different interaction paradigms.

- Request/Response – A consumer
requests snapshot data, or a static
capability, from a service provider. The
provider typically acts on the request
and responds appropriately. Responses
can optionally contain data and be
broken into multiple parts.3 However
once the response is complete, the
interaction is complete. Examples
include snapshot News Searches,
snapshot Market Prices (Level-1) and
Time-series data.

- Request/Response with Interest – A
consumer requests data or capabilities
that can change over time from a
service provider. Providers act on the
request and respond appropriately.
However, the interaction remains
active (an event stream is created) and
asynchronous events are sent to the
consumer. These streaming events can
represent changes in received data
or notifications of new information.
Examples include exchange
information (Market-by-Order/Market-
by-Price/Market Price), News Headlines
and Symbol Lists.

- Listen/Send – Also known as publish/
subscribe. A provider sends data
without the knowledge of any possible
consumers. Consumers anonymously
listen for data without the knowledge

of the providers. This interaction
paradigm is currently not used in any
Reuters Domain Models since all
modeled domains require a high level
of permissioning and control.

4.1.1.2. Key

Figure 4 – Key
Access to many different types of data
content and capabilities requires an
extensible identification mechanism.
The key implements the identification
mechanism of OMM and replaces the
old service name/item name scheme. It
is made up of many optional elements
that are identified and given meaning
by each upper level domain. The current
elements that make up the key are:

- Service Identifier – an integer
representing the service identifier or
the service provider. Not all item types,
or domains, are directed to specific
services (e.g. login).

- Name – name of the information
requested (consists of a buffer and
length). The maximum length of the
name is 255 characters and it does
not always have to contain printable
characters. The name can be used to
represent a symbol, a username, or
other named types of content.

- Name Type – an enumeration
representing the different forms
the name can take. The name type
can be used to represent different

symbologies (e.g. RIC, ISIN, CUSIP),
multiple username schemes (e.g. email,
user identifier), or any other forms the
name can take within that domain. The
name type enumeration, for certain
item type models, can be expanded
to include third-party or client defined
name types (e.g. internal symbology).

- Filter – a bitmap of optional data
content/formats logically separated by
the provider. The maximum number
of filters, or bits, is 32. This high level
filtering capability is used to break up
different source directory information
into request able categories. It is not
designed for field level requesting
within a field or element list.

- Identifier – a simple integer based
value for identifying different
information. The identifier can be used
to represent a version number within
some request.

- Opaque – an opaque buffer, or
extensibility mechanism, allowing a
complex identification mechanism
(e.g. query, complex filters, etc.).
The opaque element can be used
to provide an SQL/XML query to
a historical database or any other
complex parameter lists to a provider.

- Opaque Data Format – The data
format of the opaque data buffer.

This generic Request Key can be used
for generic identification, forwarding and
updating of item content. This allows
items to be identified/matched using a
much more complex scheme than just
a name or a subject. Item type models
use the key by giving domain specific
meaning to the different key elements.

1 Not supported in RFA 6.0. This will be implemented in a future release.

2 The RMDS backbone, or Market Data Hub, continues to be based on multicast/broadcast technology.

3 Single message responses can never receive update messages; however certain domains that use multi-
part responses may interleave updates with the response messages.

 Key
 Service Identifier

 Name
 Name Type

 Filter

 Identifier

 Opaque Buffer
 Opaque Data Format

12

4.1.1.3. State

Figure 5 – State
Generic item level status, or the item
condition, is made available through
a generic state model. This model
represents a normalized view of status
and separates stream state from data
state. Response status, in terms of both
requests and unsolicited responses, is
not contained within the generic state
model defined within this section. This
allows for a clear separation of response
state from event streaming state. The
elements that make up state include:

- Stream State – the state of the event
stream when using the request/
response with interest paradigm. All
non-streaming requests will contain a
stream state of non-streaming.

 - Unspecified – the state of the stream
was not specified or the request is
pending.

 - Open – the event stream is actively
open and asynchronous events can
happen at any time.

 - Non-Streaming – the information/
capability requested does not support
streaming semantics or the request
was non-streaming. The item will not
incur interest after the final response.
For example – a consumer can ask for
a streaming news search, the provider
can respond with the data and a
stream state of Non-Streaming.

 - Closed – the stream is closed and
is not available from the provider at
this time. It may be made available
in the future.

 - Closed Recover – the stream is
closed and should be re-opened by
the consumer.

 - Redirected – the information, or
capability, requested is available
somewhere else as identified in the
key (i.e. similar to an HTTP redirect).
The consumer should re-request
using the key provided in the
response message. Any parameter
in the key, including the service
identifier, can be re-defined in a
redirect.

- Data State – represents the quality
of the data in the response or in the
stream.

 - Unspecified – the state of the data is
unspecified.

 - Ok – the state of the data is ok.

 - Suspect – the state of the data is
unknown or stale.

- State Code – additional status
information for the stream or data
state. Not needed for generic state
processing. Developers may define
new state codes when necessary.

 - None – no additional information is
available.

 - Not Found – the item is not available
from the provider.

 - Timeout – the request has timed-out.

 - Not Entitled – the consumer is not
entitled to access the item.

 - Invalid Argument – an invalid
argument was passed in the request.

 - Usage Error – illegal usage of

messages or message data content.

 - Preempted – the event stream has
been preempted in order to create
room for another event stream.

 - JIT Conflation Started – just-in-time,
or backpressure based, conflation has
started.

 - Realtime Resumed – just-in-time
conflation has ended.

 - Failover Started – source mirroring
failover has started on a service.

 - Failover Completed – source
mirroring failover is complete for a
service.

 - Gap Detected – A service has
detected a message gap from data
originator (e.g. exchange).

 - No Resources – No more resources
exist in order to handle the request.

 - Too Many Items – The user has
reached the maximum number
of event streams available to the
application (e.g. as defined by the
system administrator).

 - Already Open – The event stream is
already open for the consumer.

 - Service Unknown – The service
identifier in the request key does not
exist.

 - Not Open – The event stream is not
open and cannot be closed.

- Text – textual information about the
stream and/or data state.

 State
 Stream State Data State Code Text

 Unspecified Unspecified None
 Open Ok Not Found
 Non-Streaming Suspect Timeout
 Closed Not Entitled
 Closed Recover …
 Redirect

13

4.1.1.4. Quality of Service

Figure 6 – Quality of Service
Domains may classify data/events in
order to provide differentiated tiers
of service. Quality of Service provides
this classification and is divided into
orthogonal sets of distinct properties.
The two properties that make up QoS
include:

- Timeliness – age of the data

- Rate – maximum period of change in
data (for streaming events)

Timeliness of data has been broken into
the concepts of real-time or delayed.
Real-time implies no delay is applied to
the data (it is up-to-date and sent by the
provider as soon as it happens). Delayed
implies a view of the data in the past and
usually includes the delay time.

Rate of change can be categorized as
tick-by-tick, time conflated or just-in-
time conflated. Tick-by-tick implies the
consumer receives every update, or
change, in the data. Data is conflated
when multiple events are combined in
a way that preserves the final view of
the content. Conflation can be based
on time or vary based on more complex
parameters (e.g. channel capacity,
congestion, etc.).

Quality of service always contains a single
value in each dimension (e.g. Realtime/
TickByTick, Realtime/TimeConflated).
Consumers can specify QoS parameters
on requests and providers will identify
QoS attributes for all data and event
streams. Note that not all domains utilize
the Quality of Service concepts.

4.1.1.5. Group Identifier
Item Groups are used to efficiently
update the state of many event streams
that originate from a single Provider.
Using a single status to report that an
entire item group has become stale is
much more efficient than using a Status
for each of the separate event streams.

Each open event stream belongs to an
item group as defined by the group
identifier. The item group association is
set by the Provider in the initial Refresh.
The item group can be modified by
the Provider with a Status message or
another Refresh message. Providers can
establish item groupings on any basis that
makes sense to the application’s needs.
For example, a Provider that maintains
multiple data links to data services might
establish an item group for each such link.
This would allow the Provider to mark all
of the items from a given link as being
suspect while not modifying the state of
items provided by the other links.

4.1.2. Messages
The transport layer defines the messages,
and their semantics, that can flow between
Provider and Consumer applications. These
symmetric messages are used by both
the Consumer and Provider in order to
communicate (i.e. Symmetric Messaging
Paradigm). This not only avoids redundant
messages and methods, but also reduces
the learning curve when coding either a
Consumer and/or Provider application. Not
all of the messages defined in this section are
used by all of the Domain Message Models.
Each model identifies which messages are
used and extends their actual meaning.

Most messages contain data that is
hierarchal and extensible. It may be sent
from a Provider to a Consumer or from
a Consumer to a Provider. Data can take
the form of attribute or payload and is
given meaning by the Domain Message
Models. Attribute data is typically
additional message attributes (e.g. state,
sequence number) while payload data is
information that satisfies some business
purpose (e.g. Level II data, Transaction
data). See the message definitions in
this section for attribute data details and
section 4.2 for details on payload data.

4.1.2.1. Base

Figure 7 – Message Base
The messages defined all contain
the same base attributes. Optional
attributes are italicized.

- Type – the item type model
represented in this message (e.g.
Login, Market Price, News Headlines,
etc.).

- Stream Identifier – an optimization
that allows applications to refer to
event streams with an unsigned 32
bit value instead of the full key. This
consumer defined value can be sent
in updates instead of the key (e.g.
service id, item name) in order to save
bandwidth. Consumers that want
the key placed in every update can
optionally request this behavior from
the provider.

- Extended Header – an optional
extension to the message header in
case a message attribute is identified
that currently doesn’t fit into any
generic message attributes. The
extended header is currently not
used by any Reuters Domain Model,
however is may be used by any item
type model in the future.

 Quality of Service
 Timeliness Rate

 Realtime Tick By Tick
 Delayed Time Conflated
 Delay Time Conflated Time
 Closed JIT Conflated

 Base
 Type

 Stream Identifier
 Extended Header

14

4.1.2.2. Request

Figure 8 – Request Message
A request message is sent from a
Consumer to a Provider when it wants
to request some data, or a capability,
available from the provider. It can also
be used to obtain a new refresh or
change selected attributes (e.g. priority)
for an already open event stream. The
generic attributes, and their generic
meanings, that make up this message
include:

- Type – item type model (see 4.1.2.1).

- Stream Identifier – integer value
representing the event stream (see
4.1.2.1). It can also be used to match
the request and responses.

- Options – specifies some of the
different request options available.

- Streaming – the application wishes to
create an event stream based on this
request (i.e. the request/response with
interest interaction paradigm).

- Key In Update – the consumer wants
the key encoded in every update.

- Conflation Information In Update
– the consumer wants any update
conflation (e.g. number of updates
conflated) information included in
the update.

- No Refresh – the consumer is trying to
update some simple meta information
(e.g. priority) about a previous request,
or event stream, and does not want
any responses.

- Data Format – generic format of the
payload data (see 4.2).

- Priority – when specified indicates the
relative importance of the request/data
stream.

- Extended Header – request header
extensions (see 4.1.2.1).

- Best Quality of Service – when
specified, indicates the upper bounds
of the quality of service required by the
application (e.g. application prefers
Realtime/TickByTick data but will
accept down to the Worst QoS).

- Worst Quality of Service6 – when
specified, indicates the lower bounds
of the quality of service required by
the application. When not specified,
the best QoS defines the exact
QoS required by the application
(e.g. application requires Realtime/
TickByTick data).7

- Request Key – The key (e.g. service
identifier, symbol, symbology, etc.)
representing the data content or
capability requested (see 4.1.1.2).

- Payload Data – the actual raw
encoded data buffer. The actual
data format type is identified by
the Data Format attribute above.
Current providers typically don’t
accept payload data in requests.
However, new types of providers
have been identified that may
contain payload data in requests
(e.g. transaction gateways will accept
transaction requests that actually
contain the transaction information
in the payload data).

4.1.2.3. Refresh

Figure 9 – Refresh (Response) Message
The refresh message is used to
respond with attribute information/data
content for a request or can be used
to asynchronously change the data of
an already opened event stream (i.e.
unsolicited images). The Solicited flags
within the options identify whether or
not the message is a response or a
refresh. The generic attributes, and their
meanings, that make up this message
include:

- Type – item type model (see 4.1.2.1).

- Stream Identifier – integer value
representing the event stream (see
4.1.2.1). It can also be used to match
the request and responses.

- Options – specifies some of the
different refresh options available.

 - Solicited – indicates whether the
message is a solicited response to a
request or an unsolicited refresh to an
existing event stream.

 - Refresh Complete – indicates that
the response or unsolicited refresh
is complete. Some item type models
require a single response that will
have this flag set with the data. Others
allow multi-part responses that will
have this flag set in the last response
message.

 Request
 Type

 Stream Identifier

 Data Format

 Priority

 Extended Header

 Best QoS

 Worst QoS

 Request Key

 Payload Data

 Options

 - Streaming
 - Key In Update
 - Conflation Info

in Update
 - No Refresh

6 Worst QoS not specified in RFA 6.0 (assumes any
QoS lower than the best).

7 Worst QoS not supported in RMDS 6.0.

 Refresh
 Type

 Stream Identifier

 Data Format

 Group Identifier

 Sequence Identifier

 Permissions Expr.

 Extended Header

 State

 QoS

 Request Key

 Payload Data

 Options

 - Solicited
 - Refresh

Complete
 - Trash Cache
 - Provider Driven

15

 - Trash Cache – an indication that any
previous payload data cache for the
item needs to be deleted.

 - Do Not Cache – it does not make
sense to keep a last value cache of
the payload data in this response
(e.g. responses for unique queries like
Time-Series data).

 - Provider Driven – the item, identified
in the key, is being sent to the
consumer without a request (i.e.
broadcast mode). This is currently
used internally and will not be
received by standard consumers.

- Data Format – generic format of the
payload data (see 4.2).

- Group Identifier – the group identifier
of the event stream (see 4.1.1.5).

- Sequence Number – when specified,
indicates the last sequence number
associated with the event stream as
received by the true data source (e.g.
exchange sequence number). These
sequence numbers do not have to be
sequential for a single event stream
(e.g. market price updates for IBM.N
may be non-contiguous).

- Permissions Expression – when
requested using the Login Item Type,
contains the permissions expression
needed to access the item. This
permissions expression defines the
requirements needed to access the
item data/event stream.

- Extended Header – refresh header
extensions (see 4.1.2.1).

- State – indicates the stream state and
data state for the item (see 4.1.1.3).

- Quality of Service – when specified,
indicates the actual Quality of Service
of the actual response and/or event
stream (see 4.1.1.4).

- Response Key – The key (e.g. service
identifier, symbol, symbology, etc.)
representing the data content or
capability in the response (see 4.1.1.2).
The response key can be different from
the request key if the provider supports
aliasing (i.e. symbology mapping). For
example, a consumer may request

market price information for an ISIN,
the provider can respond with the data
and indicate in the response key that
the item is actually referred to as a
particular RIC.

- Payload Data – the actual raw
encoded data buffer. The actual data
format type is identified by the Data
Format attribute above.

4.1.2.4. Update

Figure 10 – Update Message
The update message is used to
represent asynchronous data events
associated with an already opened
event stream. Item type models
may assign different meaning to
updates depending on the domain
implemented. The generic attributes,
and their meanings, that make up this
message include:

- Type – item type model (see 4.1.2.1).

- Stream Identifier – integer value
representing the event stream (see
4.1.2.1).

- Options – specifies some of the
different update options available.
In some cases update options allow
a provider to put some context into
the update that in the past had to be
inferred by all consuming applications/
devices.

 - Do Not Cache – it does not make
sense to cache (i.e. last value cache)
the payload data in this update
(e.g. News Headlines, Indications of
Interest, Advertised Trades, etc.).

 - Do Not Conflate – the payload data
in this particular update should not be
conflated (e.g. Trades in the Market
Price domain, News Headlines, etc.).

 - Do Not Ripple – do not ripple any
fields within the update (e.g. level-1
data closing run).

 - Provider Driven – the item, identified
in the key, is being sent to the
consumer without a request (i.e.
broadcast mode). This is currently
used internally and will not be
received by standard consumers.9

- Data Format – generic format of the
payload data (see 4.2).

- Update Type – the type of update
as defined by the item type model
(e.g. Trade, Quote, News event for
Market Price content). Update types
a represented as an expandable
enumeration.

- Sequence Number – when specified,
indicates the sequence number
associated with the event as received
by the true data source (e.g. exchange
sequence number). These sequence
numbers do not have to be sequential
for a single event stream (e.g. market
price sequence numbers for IBM.N
may be non-contiguous).

- Permissions Expression – when
requested using the Login Item Type,
contains the required permissions
expression needed to access this
particular update message (e.g.
News Headlines are separately
permissioned). It does not affect
the permissions expression used for
accessing the entire event stream.

- Extended Header – update header
extensions (see 4.1.2.1).

 Update
 Type

 Stream Identifier

 Data Format

 Update Type

 Sequence Number

 Permissions Expr.

 Extended Header

 Conflation Info

 Update Key

 Payload Data

 Options

 - Do Not Cache
 - Do Not Conflate
 - Do Not Ripple

9 Not supported in RFA 6.0. This will be
implemented in a future release.

16

- Conflation Information – when
requested provides the information
about any conflation logic that may
have been applied to this event.
Current parameters include the
number of events conflated and/or the
time between the conflated events.

- Update Key – when requested, the
key (e.g. service identifier, symbol,
symbology, etc.) representing the event
stream for the update (see 4.1.1.2).
If the provider aliased the key in the
refresh, then it matches the aliased
key. By default the update key is not
included in the update.

- Payload Data – the actual raw
encoded data buffer. The actual data
format type is identified by the Data
Format attribute above.

4.1.2.5. Status

Figure 11 – Status Message
The status message is used to represent
asynchronous attribute changes
associated with an already opened
event stream. The generic attributes,
and their meanings, that make up this
message include:

- Type – item type model (see 4.1.2.1).

- Stream Identifier – integer value
representing the event stream (see
4.1.2.1).

- Options – specifies some of the
different status options available.

 - Trash Cache – any previous payload
data cache for the item needs to be
deleted.

 - Provider Driven – the item, identified
in the key, is being sent to the

consumer without a request (i.e.
broadcast mode). This is currently
used internally and will not be
received by standard consumers.10

- Group Identifier – when present
the new group identifier of the event
stream (see 4.1.1.5).

- Permissions Expression – when asked
for using the Login domain, contains
the new permissions expression
needed to access the event stream
(e.g. permissions change for access to
an item).

- Extended Header – status header
extensions (see 4.1.2.1).

- State – indicates the new event stream
state and data state for the item (see
4.1.1.3).

- Status Key – the key (e.g. service
identifier/symbol/symbology)
identifying the event stream (see
4.1.1.2). If the provider aliased the
key in the refresh, then it matches the
aliased key.

4.1.2.6. Close11

Figure 12 – Close Message
The close message is used to close an
outstanding request or an existing event
stream. The generic attributes, and their
meanings, that make up this message
include:

- Type – item type model (see 4.1.2.1).

- Stream Identifier – integer value
representing the request or event
stream to close (see 4.1.2.1).

- Options – specifies some of the
different close options available.

 - Ack – the provider should acknowledge
the close when received and applied.

- Extended Header – close header
extensions (see 4.1.2.1).

4.1.2.7. Acknowledgement12

Figure 13 – Ack/Nak Message
The ack message is used to acknowledge
an outstanding request or close. The
generic attributes, and their meanings,
that make up this message include:

- Type – item type model (see 4.1.2.1).

- Stream Identifier – integer value
representing the request or event
stream to acknowledge (see 4.1.2.1).

- Options – specifies some of the
different acknowledgment options
available.

 - IsNak – this particular message
represents a Nak and contains the
Nak code and text.

- Ack ID – the acknowledgement
identifier.

- Nak Code – the Nak code (only set for
Nak messages).

- Nak Text – the Nak text (only set for
Nak messages).

- Extended Header – acknowledgment
header extensions (see 4.1.2.1).

 Status
 Type

 Stream Identifier

 Group Identifier

 Permissions Expr.

 Extended Header

 State

 Status Key

 Options

 - Trash Cache
 - Provider Driven

 Close
 Type

 Stream Identifier

 Extended Header

 Options

 - Ack

 Ack
 Type

 Stream Identifier

 Ack Identifier

 Nak Code

 Nak Text

 Extended Header

 Options

 - IsNak

10 Not supported in RFA 6.0. This will be
implemented in a future release.

11 Not an explicit message in RFA 6.0
(accomplished by closing the handle).

12 Not supported in RFA 6.0. This will be
implemented in a future release.

17

4.2. Data Abstractions
OMM provides data abstractions that
are used to represent disparate data
models and are known by applications
and infrastructure components (RMDS,
RDF Direct) alike. They include field/
value pairs constructs in conjunction with
sequential and associative containers.
The OMM data abstractions are
sufficiently flexible to contain additional
data abstractions in an arbitrary nesting
hierarchy. This flexibility enables the
Domain Messaging Models to realize
comprehensive data models on top
of the abstractions. The payload data
formats contained within the transport
messages are defined by the data
abstractions/formats.

4.2.1. Concepts
Basic concepts are used in the definition
of all data abstractions. This section
covers these concepts.

4.2.1.1. Data Types
Basic Data Types are contained within
certain data formats and attribute
information. They allow for the
representation of many different types
of data content within the given formats.
The current defined data types include:

- Signed Integer values (32 and 64 bit)

- Unsigned Integer values (32 and 64 bit)

- Real values that contain both a
coefficient and an exponent (32 and 64
bit coefficient with an exponent from
+7 thru -15). Examples include:

 - 25.653 can be represented as a real
(coefficient = 25653, exponent = -3)

 - -100.01 can be represented as a real
(coefficient = -10001, exponent = -2)

 - 1256000 cam be represented as a real
(coefficient = 1256, exponent = 3)

- Time in the form hours, minutes,
seconds and milliseconds

- Date in the form day, month, year

- Combined data and time

- IEEE 754 floating point numbers
(32 and 64 bit)

- Enumeration

- Binary Buffer

- ASCII String

- RMTES String – Reuters Multilingual
Text Encoding Standard (can contain
partial field update semantics)

- UTF8 String

4.2.1.2. Record Sets
OMM provides a “set” concept to
optimize bandwidth for record based
data. Record based data (i.e. field lists
and element lists) is a way of

representing logical information as a
collection of field/value pairs. The field
contains the entry identifier and possibly
other attributes while the value contains
the actual data content for the entry.
Entry identifiers can be self describing
(e.g. names and data types in element
lists) or reference an independently
distributed data dictionary (field
identifiers in field lists).

Standard record based data is fully
encoded as repeating field data
followed by value data. This simple
encoding unites the entry data and
the entry definition. The key benefits
to this encoding are its ease of use
and similarity to existing record based
formats (e.g. Marketfeed, TibMsg,
QForms).

Record sets represent a bandwidth
optimization that can be employed to
split entry definition from raw entry data
for record based content. This allows
the entry definitions to be defined
once and given an identifier (set id).
The actual data for the entries can then
be encoded without the definitions;
resulting in dramatic bandwidth savings.
This optimization can clearly help with
repetitively structured records where
each record in the structure contains
the same entry definitions (e.g. order
books, time-series). It can also help with

Field
A

Value
A

Field
B

Value
B

Field
C

Value
C

Field
D

Value
D

Entry
Definition

Entry
Definition

Entry
Data

Entry
Definition

Entry
Data

Entry
Definition

Entry
Definition

Entry
Datum

Set ID
1

Field
A

Data
Type

Field
B

Data
Type

Field
C

Data
Type

Field
D

Data
Type

Value
A

Value
B

Value
C

Value
D

Standard
Recording
Encoding

Record
Sets
Encoding

Figure 14 – Record Set Encodings

Entry
Data

Entry
Data

18

repeating record entry definitions across
multiple messages (e.g. market price
trades, market price quotes, etc.).

Record sets are identifiable and defined
at either a local or global scope.13
Local scope implies the entry definitions
(record sets) are sent/defined in the
same message as the entry datum. It
is most commonly used for encoding
repetitively structured records such as
an order book or a time series. Global
scope implies the entry definitions
(records sets) are sent/defined once,
in a record set dictionary, and re-used
across many different messages. It is
most commonly used for encoding
many different messages that contain
the same entry definitions (e.g. equity
quotes, equity trades, etc.).

Consumer applications do not need
to know the difference between the
standard record encoding and the
record sets encoding. This is because
the decoding libraries default to making
content encoded as record sets look
like field/value pairs (i.e. standard record
encoding). However, providers do need
to know the difference since they have
to make a choice when encoding the
actual record content.

Developers can intermix standard record
encoding with record set encoding
within a single message. This allows
record sets to be defined for the most
common cases while supporting the
extensibility needed in an open system.
This is best described using an example.
A system could define a global

record set to represent market price
quote update. When a quote update
is received that also modifies today’s
high price, the provider could encode
the quote data using the normal record
set and then append standard record
encoding for the extra fields (e.g. fields
E and F in Figure 16).

4.2.1.3. Summary Data
Repetitively structured content may have
data that pertains to the entire structure.
This meta-data typically describes the
information contained in each structure
entry. For example, summary data could
specify the currency of each entries
price or rules regarding and sorting
of the entries. Structured based data
abstractions (e.g. Vector, Map and
Series) all support summary data to
house this type of information efficiently.

13 Global scope not supported by RMDS
6.0 or RFA 6.0.

Update x to
Set ID 1

Set ID
1

Field
A

Data
Type

Field
B

Data
Type

Field
C

Data
Type

Field
D

Data
Type

Set Entry
Definition

Value
A

Value
B

Value
C

Value
D

Value
A1

Value
B1

Value
C1

Value
D1

Value
A2

Value
B2

Value
C2

Value
D2

Value
A3

Value
B3

Value
C3

Value
D3

Field
E

Value
E

Field
F

Value
F

Update x+1 to
Set ID 1

Update x+2 to
Set ID 1

Update x+3 to
Set ID 1

Figure 15 – Extended Record Set

19

4.2.1.4. Fragmentation
All data abstractions generically
support fragmentation across multiple
message instances for potentially
large sized content. Fragments will be
broken on logical entry boundaries in
order to simplify the receiving logic.
Receiving applications can process
each fragment independently (i.e.
decode, cache) without waiting for all
fragments. Domain message models
define whether or not they support
fragmentation.

Most structured based data abstractions
that support fragmentation provide
a total count hint. It is the sending
applications suggestion to the total
number of entries within the structure
across all fragments. The receiving
application may choose to use the hint
to pre-allocate sufficient memory for
caching.

4.2.2. Data Formats
The data abstractions supported
through OMM are realized through data
formats. This section defines the generic
data formats that are available to model

all content. The following data formats
are defined in terms of structure and the
different update semantics needed to
keep those structures up-to-date within
an event stream.

It is important to understand that these
structures are in fact a way of encoding
messages and not “in memory” data
structures. These data abstractions
provide a way that an application can
serialize and send a data structure that it
uses over the wire.

4.2.2.1. Element List
An element list is the simplest form of
logical, or record-based, content. It
represents a sequential container of self-
describing field/value pair entries; each
known as an element entry. Element entries
are identified with a string-based tag and
self-describe the actual type of data along
with the data itself. Element lists do not
need any meta-data (i.e. data dictionary)
in order to make full sense of the content.
An optional element list number, unique
within a service, can exist to optimize any
caching logic (i.e. element lists with the
same element list number should contain
the same entries/tags/types).

Element lists can be bandwidth-
intensive, but they offer ease-of-use.
They can make sense for domains that
don’t have very high update rates. In
certain circumstances, the record set
concept (see 4.2.1.2) can be used when
encoding an element list in order to
reduce the bandwidth needed.

4.2.2.2. Field List
A field list is a more complex, or
optimized, form of logical/record-based
content. It represents a sequential
container of field identifier(or fid)/value
pair entries; each known as a field
entry. Field entries are identified with a
signed 2-byte integer and only contain
the actual data for the field. A data
dictionary is needed to convert the field
identifiers into a tagged name, data type
and possible maximum cache length.
An optional field list number, unique
within a service, can exist to optimize
caching logic (i.e. field lists with the
same field list number should contain
the same entries/fids). Field list numbers
are analogous to the record template
numbers that are used today.

Tag
“Bid”

Type
Real32

Data
Tag

“Time”
Type
Time

Data
Tag

“Complex”
Type
Time

Data

Field List, Element List, Vector,
Map, Series, Filter List

…

- Element List Number
- Count

- Dictionary Identifier
- Field List Number
- Count

Data
Fid
12

Data
Fid
25

Data
Fid

5022
Data

Fid
343

Data
Fid

5123…

Data
Dictionary

12 = “Bid”,
Real32, 4

Field List, Element List, Vector,
Map, Series, Filter List

Figure 16 – Element List

Figure 17 – Field List

20

Multiple data dictionaries are supported
and can be name-spaced when needed.
Dictionaries also have versions and
can be downloaded from the attached
access point. Field lists self-identify the
required dictionary needed through the
dictionary identifier. A single field list can
have fields that reference multiple data
dictionaries (e.g. fields from a customer
defined dictionary can be added to any
vendor provided record).

A field list can be viewed as an element
list with a compression technique
applied. Instead of passing a full tag/
name and data type in every message,
an integer-based field identifier is
defined. A separate dictionary is needed
to convert this fid number into a tag and
data type. The record set concept (see
4.2.1.2) can be used when encoding a
field list in order to even further reduce
the bandwidth needed.

4.2.2.3. Vector
A vector defines a structure that contains
highly manipulable position-oriented
entries; each known as a vector entry.
Each vector entry position is identified
by an integer index value. The index
starts at 0 and can go as high as a 30-bit
unsigned integer value. Entries in the
vector can be set, updated or cleared
and can optionally each have a separate
permissions expression for even finer
control. A vector can also optionally
support sorting operations (sorted
vectors are identified in the response)
such as insert and delete.

Vectors provide their largest benefit
when combined with other data formats
(e.g. vector of field lists, vector of
vectors). The data format for each vector
entry data is identified once in the vector
header (i.e. all vector entries must be the
same data format). Vectors optionally

contain summary data (see 4.2.1.3)
for content that applies to the entire
structure. Record set definitions (see
4.2.1.2) can also optionally be defined
when vector entries contain repetitive
record data.

Vector responses can be fragmented
depending on the amount of data in the
vector. When this occurs, the encoding
application ensures that a vector entry
will not be broken across two different
fragments. This allows the receiving
application to process each fragment
independently. An optional total count
hint may be provided that indicates
the total count for the vector across all
fragments in a response.

- Dictionary Identifier
- Field List Number
- Count

Record Set Definitions

Summary Data

Vector Entry DataIndex 0

Vector Entry DataIndex 1

Vector Entry DataIndex n

Vector Entries

Vector Entry DataIndex 2

Figure 18 – Vector

21

4.2.2.4. Map
A map defines a structure of highly
manipulable, associative-referenced
key-oriented entries; each known as
a map entry. The OMM map can be
thought of as an STL Map or a generic
hash table. Each map entry is identified
by a key that can take the form of any
basic data type (see 4.2.1.1). Examples
could include map entries identified by
an ASCII string, binary buffer or even
a real number. Entries in the map can
be added, updated or deleted and
can optionally each have a separate
permissions expression for even finer
control.

Maps provide their largest benefit when
combined with other data formats (e.g.
map of field lists, map of vectors). The
data format for each map entry data
is identified once in the map header
(i.e. all map entries must be the same
data format). Maps optionally contain
summary data (see 4.2.1.3) for content
that applies to the entire structure.

Record set definitions (see 4.2.1.2) can
also optionally be defined when map
entries contain repetitive record data.

Map responses can be fragmented
depending on the amount of data in the
map. When this occurs the encoding
application ensures that a map entry
will not be broken across two different
fragments. This allows the receiving
application to process each fragment
independently. An optional total count
hint may be provided that indicates
the total count for the map across all
fragments in a response.

4.2.2.5. Series
A series defines a structure of implicitly-
indexed accruable entries; each known
as a series entry. A series is typically used
to represent repetitively structured data.
Series entries cannot be identified and
typically have an implicit order (e.g. time,
date). Operations on entries are not
supported, since there is no way of entry
identification.

Series provide their largest benefit when
combined with other data formats (e.g.
series of field lists, series of vectors). The
data format for each series entry data
is identified once in the series header
(i.e. all series entries must be the same
data format). Series optionally contain
summary data (see 4.2.1.3) for content
that applies to the entire structure.
Record set definitions (see 4.2.1.2) can
also optionally be defined when series
entries contain repetitive record data.

Series responses can be fragmented
depending on the amount of data in the
series. When this occurs the encoding
application ensures that a series entry
will not be broken across two different
fragments. This allows the receiving
application to process each fragment
independently. An optional total count
hint may be provided that indicates
the total count for the series across all
fragments in a response.

Record Set Definitions

- Key Data Type
- Key Field Id
- Data Format
- Total Count Hint
- Count

Summary Data

Map Entry Data

Map Entry Data

Map Entry Data

Key XXX

Key YTD

Key AFDD

Map Entries

Map Entry DataKey XC

Figure 19 – Map

22

4.2.2.6. Filter List
Figure 21 – Filter List
A filter list defines a structure of loosely-
coupled, associative-referenced entries;
each known as a filter entry. Filter lists are
defined by the provider and are used
to break up information into selectable
entries (i.e. they are not meant for
field level requests). Filter entries are
identified by an 8 bit unsigned integer
and can be requested by setting a bit
in a bitmap (there are a maximum of
32 filter entries). Entries in the filter list
can be set, updated or cleared and
can optionally each have a separate
permissions expression.

Filter lists provide their largest benefit
when combined with other data formats
(e.g. filter list of element lists, filter list
of maps). Even thought the data format
for each filter entry data is identified in
the filter list header, filter entries can
optionally define different data formats
per entry.

Filter list responses can be fragmented
depending on the amount of data in the
filter list. When this occurs the encoding
application ensures that a filter entry
will not be broken across two different
fragments. This allows the receiving
application to process each fragment
independently. An optional total count
hint may be provided that indicates the
total count for the filter list across all
fragments in a response.

- Data Format
- Total Count Hint
- Count

Record Set Definitions

Summary Data

Series Row 1 Data

Series Row 2 Data

Series Row n Data

Series Entries

Series Row 3 Data

Figure 20 – Series

- Data Format
- Total Count Hint
- Count

Filter Entry Data

Filter Entry Data

Filter Entry Data

Id 1

Id 2

Id 3

Filter Entries

Filter Entry DataId 32

Figure 21 – Filter List

23

Domain Message Models use the
capabilities provided by OMM to
define real objects (e.g. Market Price,
News Headlines) that are familiar to
the industry. Domain Message Model
concepts are not understood by RFA or
RMDS, thus allowing for new domain
models to be created without costly
software upgrades. There are a few
exceptions within the administrative
domain (e.g. Login, Directory) where
RFA and RMDS have to perform internal
processing.

Developers define Domain Message
Models through comprehensive
documentation. Message semantics
and data representation (e.g. nested
data formats) will be fully documented
to provide maximum interoperability.
Consumer and provider applications
must conform to these models in order
to properly work together. Domain
Message Models can be defined by
Reuters or any interested party parties in
order to satisfy particular business needs.
Where messaging standards already
exist (e.g. FIX), Reuters will use these
standards modeled on top of OMM will
define the Domain Message Models.

The Domain Message Model is divided
into two layers, shown in light red above.

- The Item Type Model makes up the
first layer in the Domain Message
Model. It defines the actual object
types, their corresponding transport
behavior and data representation (i.e.
data formats) using OMM abstractions/
concepts. Key attributes (see 4.1.1.2)
are chosen and given meaning within
the domain. Utilized messages are
defined and given full semantic
meaning (request/response and any
possible event streams). The use of
any Quality of Service parameters (see
4.1.1.4) is defined and given concrete
meaning. Any attributes that make
up the extended header will also be
defined.

- The Content Definition Model builds
upon the Item Type Model in order
to complete the domain message
model. This important and often not
completely specified layer defines
any field meanings and relationships
on top of the Item Type Models. A
single Item Type Model can have many
different Content Definition Models

(e.g. different field identifiers, different
symbology). Content Definition
Models can include data dictionaries,
enumerations information and any
required/optional field definitions. Some
Item Type Models (e.g. transactions)
require a stricter Content Definition
Model than currently defined for price
discovery.

 Domain Message Model Content Definition Model Field Meanings Reuters Domain
 Field Relationships Models (RDM)

 Item Type Model Real World Objects
 (i.e. Quotes, Order Books, etc)

 Open Message Model Data Data Containers Data Package
 Primitive Structures

 Transport Interaction Paradigms Message Package
 Event Model
 Symbology Session Package
 QoS
 Entitlements

 Wire Format Wire Encoding Reuters Wire Format (RWF)

Figure 22 – Reuters Data Model Architecture

RF
A

 6
.0

 R
SS

L
Pr

ot
oc

ol

24

User IdentityTypes
- User Name
- Email Address

5.1. Reuters Domain Models
Reuters has defined a set of domain
models that will be used by all
Reuters providers and consumers.
Any applications that want to achieve
maximum interoperability with Reuters
providers and consumers should
utilize these models. The definitions
are broken into Item Type Models and
Content Definition Models. Therefore,
applications can still interoperate as
long as they conform to the Item Type
Models.

The currently defined administrative
Reuters Domain Models are:

- Login – login a user to a system access
point (see 2.3) and create a context for
the user within the system.

- Directory – directory and detailed
information about service providers
available to consumers.

- Dictionary – provides access to
all required dictionaries (e.g. data
dictionaries, enumerations files, etc.).

The currently defined Reuters Domain
Models for instrument-based market
data are:

- Market Price – updating trades,
quotes and inside top of book quotes
(i.e. level I content).

- Market-by-Order – updating
instrument market information sorted
by order (i.e. full order book – level II
content).

- Market-by-Price – updating top of
book instrument market information
sorted by best price (i.e. market depth
– level II content).

- Market Maker – updating market
maker quotes and trade information
from exchanges.

- Symbol List – updating lists of
symbols/instruments (e.g. .AV.O,
S&P500, NASDAQ, etc.).

The previous list is not exhaustive as new
domains are being defined. Check the
Reuters Customer Zone for the latest
Domain Models.

The sections that follow contain the
definitions of a few of the Reuters Item
Type Models. They are useful examples
of how OMM is used to create Domain
Message Models within Reuters.

5.1.1. Login
The login item type is used to create
a context within an access point for
all other types of interactions. It is the
special item type model that has to be
used in order to use the system. Logins
are the first request that needs to be
done and also have to be streaming
to maintain the user context within the
access point. Access points have special
logic to handle logins and utilize them
to retrieve permissions information for
the user. This permissions profile will be
used to authorize all of the other item
type model interactions.

Message Classes
- Request
- Refresh
- Update
- Status
- Close
- Ack

Key – User Identity
- Name = User Identity
- Name Type = User Identity Type

Tag

Reply Data – Element List

Type Value Tag Type Value Tag Type Value

Request Data – Element List

Tag Type Value Tag Type Value Tag Type Value…

…

Figure 23 – Login

5. Domain Message Models

25

The transport semantics used with
Login are:

Interaction Paradigm
- Request/Response with Interest

Key – User Identity
- Name – the actual user identity

- Name Type – the type of user identity
contained within the Name (e.g.
username, email address, etc.)

Unused Capabilities
- Does not use priority

- Does not use quality of service

- Does not use event stream groups

Request Message
- Request a login into an access point

- Payload data contains login options/
parameters

Refresh Message
- Response to Request or unsolicited

Refresh to reset all login context data

- Stream State Open implies login success

- Stream State Closed implies login
denied

- Data in response contains login profile
information

- Data contained in single refresh message

- Refresh Key could define another way
of identifying the same user

Update Message
- Update to some login context data

- Cannot be conflated

Status Message
- Status change to logged-in context

- Stream State Closed implies forced
logoff

Close Message
- Logoff an already logged-in context or

close a pending login request

Ack Message
- Optionally used to acknowledge a

close (logoff)

This streaming model supports data in
the request that is used to pass login
parameters to the access point. The
response message state indicates the
success or failure of the login request.
Upon success, the response data may
contain login specific information for the
session that was either requested or sent
from the access point. Updates are used
to modify some of the content provided
in the response data that might change
over the life of a session (e.g. a user’s
permissioning profile).

The data formats used during login
requests and replies are depicted in
Figure 24. Elements lists are used for
both request data and reply data due to
their simplicity, flexibility, and the fact the
login messages are not very frequent.
The parameters that need to be sent with
the login request are contained within
an element list in the request data. Any
information, or parameters, that need to
be sent back to the user are contained
within an element list in the refresh data.

Request Data – Element List

Value Position ASCIIStr Ip Addr Password Buffer Value ProvidePermProfile UInt 8 0|1

ProvidePermExpressions UInt 8 0|1 SingleOpen UInt 8 0|1 AllowSuspectData UInt 8 0|1

ApplicationId ASCIIStr

Reply Data – Element List

AccessPoint ASCIIStr Ip Addr PermProfile Buffer Value

SingleOpen UInt 8 0|1 AllowSuspectData UInt 8 0|1

Figure 24 – Login Data

26

5.1.1.1. Data Encodings
Standard element list encoding is used
in both the request and reply data.
Separate “NoRefresh” requests can
be performed to modify parameters
of the access point. Unsolicited refresh
messages may be received and are
used to reset all of the reply data (e.g.
new user profile). Updates are used
to update parts of the data sent in the
refresh messages (e.g. modification to
a user’s profile).

Even though the login item type model
has special handling, the generic RMDS
last-value cache can optionally be used
to cache login data.

Figure 25 gives an example of some of
the request, and reply, login data that
may be present. These lists of parameters
may be extended in the future as new
capabilities are added. The permissions
profile for a user can optionally be
retrieved and will exist within the
“PermProfile” element of the reply data.

5.1.1.2. Example
Figure 25 shows an example scenario
of the login item type model.

A login request is sent to the access
point; it contains the user identity
key, flags to indicate streaming,
and an element list that contains
any parameters. The access point
asynchronously responds with a login
success; it is represented as a single

Consumer Provider

Login Request

Request Message

Type = Login (1)
StreamId = nnn (non-zero)
DataFormat = ElementList
Flags = Streaming
RequestKey = (username, 1)

Login Success

Refresh Message (Response)

Type = Login (1)
StreamId = nnn
DataFormat = ElementList
Flags = Solicited, Complete
State = (Open, Ok)
RefreshKey = (username, 1)

New Profile
Update Message

Type = Login (1)
StreamId = nnn
DataFormat = ElementList
Flags = DoNotConflate

Logoff Request Close Message

Type = Login (1)
StreamId = nnn
Flags = Ack

Logoff Ack
Ack Message

Type = Login (1)
StreamId = nnn
Flags = None
AckId = 0

Figure 25 – Login Example

27

solicited refresh message that contains
an open stream state, an ok data state
and an element list containing any
information requested (e.g. permissions
profile) or any default parameters.

At this point the consumer can use any
of the other item type models with the
connected access point. The access
point can, at any time, send an update
message that contains modifications to
any requested (e.g. permissions profile)
or default data sent in the refresh.

When the user wants to logoff the
system, a close message is sent for the
stream identifier used in the original
login request. Since the close contained
the optional ack flag, the user will
receive an acknowledgment of the close
from the access point.

5.1.2. Market Price
The term “Market Price” is used to
denote information which contains
trades, indicative quotes and the inside
top of book quotes. It includes the
last traded price(s), best bid(s)/offer(s),
related value data such as: Names,
Codes, etc. and the related derived
data such as: Net Change, pen, Close,
High(s), Low(s), etc. The current Reuters
model for “Level-1” data forms the basis
of the Market Price domain. It includes
different asset classis including equities,
fixed income, commodities, money, FX
and contributed quote data.

Chains, IDN encoded time-series (TS1),
IDN encoded time & sales, and IDN
record pages being published by existing
MarketFeed providers would also be
represented by the Market Price domain.

The transport semantics used with
Market Price are:

Interaction Paradigm
- Request/Response with or without

(snapshot) Interest

Key – Instrument Key
- Service ID – the identifier of the service

for the request

- Name – the symbol of the instrument

- Name Type – the symbology of the
symbol (e.g. RIC, ISIN, etc.)

Options
- Supports priority

- Quality of service applies

- Event stream groups apply

- Sequence number contains sequence
number from exchange

Request Message
- Request an instruments market price

information from an access point
(either streaming or snapshot)

Refresh Message
Response to Request or unsolicited
Refresh to reset all market price/event
stream data

- Data in response contains all of the
market price information for the
requested instrument

- Data contained in single refresh
message (single response)

- Refresh Key could define the way the
actual service identifies the instrument
(ISIN as opposed to a RIC)

Update Message
- Update to the fields, that where

received in the refresh, that have
changed value

- Updates can be conflated (last field
values sent)

Status Message
- Status change to event stream

Close Message
- Close an already open event stream or

close a pending request

Ack Message
- Optionally used to acknowledge a

close

This optional event streaming model
provides a full image in a single refresh/
response message. Updates are used to
modify the fields of the image data that
have changed based on some market
event (e.g. quote, trade, news event,
etc.). Market Price information is one
of multiple types of data available for
market data instruments.

Instrument Key Types
- RIC
- Street Symbol
- ISIN
- CUSIP

Message Classes
- Request
- Refresh
- Update
- Status
- Close
- Ack

Key – Instrument Key
- Service Id
- Name = Symbol
- Name Type - Symbology

ValueFid A Value Fid B Value Fid C Value

Market Price Data – Field List
- Dictionary Id
- Field List Number
- Count

Fid D Value n-2 Value n-1 Value Fid n…

Figure 26 – Market Price

28

The format used to represent Market
Price data is depicted in Figure 26. The
field list data format is used to represent
field/value pairs in a bandwidth-efficient
manner. This is important, since market
price information can potentially update
at very high rates. All of the data that
makes up market price information
for an instrument is contained within
individual fields in the field list. The
collection of these fields, or the field list
itself, then represents all of the market
price information. A dictionary identifier
will always be present and an optional
field list number may exist for efficient
caching. The standard RMDS last-value
cache can optionally be used to cache
Market Price data.

The content or list of fields that make
up a particular type of market price
information is determined by the
underlying type of instrument. For
example, a field list representing an
equity instrument will not contain the
same fields as one that represents the
spot market for a currency. Figure 27
gives an example of the resulting fields
that make up a US equity.

Figure 27 – Market Price Data

1 Value 2 3 Value 4 Value 7 Value 8 9Value 6 ValueValue Value

10 Value 11 12 Value 13 Value 15 Value 16 18Value 14 ValueValue Value

19 Value 21 22 Value 25 Value 29 Value 30 31Value 28 ValueValue Value

32 Value 3254 Value 3262 Value3255Value3253Value

Market Price Data
- Dictionary Id
- Field List Number

29

5.1.2.1. Data Encodings
Figure 28 shows the data format layout
for the different message types within
the Market Price domain. The refresh/
response holds an image that contains
all of the fields/values that make up the
instrument. It also defines the dictionary

identifier and optional field list number.
Market events (e.g. Trades/Quotes)
for the instrument are represented as
updates and contain only the fields/
values that are modified by the event.
Standard field list encoding is used in

both the refresh and update
messages for this domain. Record
sets, in conjunction with global field
list set definitions, may optionally
be used in the future to even further
reduce message sizes.

Market Price Refresh/Response

Value1 Value 2 Value 4 Value 6 73 ValueValue

8 Value 9 10 11 13 14 15Value 12

16 18 19 21 25 28 2922

30 31 3253 3254 32623255

10x09 12 139

Fla
gs

Dict
 Id

FL
N

Coun
t

ValueValue Value Value ValueValue

Value Value ValueValue Value Value ValueValue

Value Value Value Value ValueValue

Market Price (Update for Trade)

Value

379 Value 44 77 Value 131 Value 1067 Value 1379 3246Value 1021 ValueValue Value

11 Value 14 Value 32 Value 56 17818 ValueValue6 Value0x08 15

Fla
gs

Coun
t

Market Price (Update for Quote)

Value Value

0x08 25 Value 30 Value31Value9 22 Value 118 Value 293

Fla
gs

Coun
t

296Value Value

Figure 28 – Market Price Data Encodings

30

5.1.2.2. Example
Figure 29 shows an example scenario for
the market price item type model.

A request is sent to the access point;
it contains the instrument key (service
id, symbol and symbology) and flags
to indicate streaming. The access point
asynchronously responds with a market
price image; it is represented as a single
solicited refresh message that contains

an open stream state, an ok data state
and a field list containing the data for
the instrument. The refresh also defines
the group identifier, optional data
source sequence number and event
stream quality of service (e.g. Realtime/
TickByTick).

At this point the event stream is open for
the instrument and the consumer can

asynchronously receive updates for the
instrument data. The update message
can optionally contain an update type
(e.g. quote, trade) and a data source
(e.g. exchange) sequence number. The
sequence number does not always
increment by one, since each exchange
generates the number differently.

Figure 29 – Market Price Example

Consumer Provider

Request

Request Message

Type = MarketPrice
StreamId = nnn (non-zero)
DataFormat = None
Flags = Streaming
RequestKey =
(Service, Symbol, Symbology)

Image

Update

Update Message

Type = MarketPrice
StreamId = nnn
DataFormat = FieldList
Flags = None
UpdateType = Quote
SequenceNumber = 12190

Refresh Message (Response)

Type = MarketPrice
StreamId = nnn
DataFormat = FieldList
GroupIdentifier = 0x1020
SequenceNumber = 12001
Flags = Solicited, Complete
State = (Open, Ok)
QoS = (Realtime, TickByTick)
RefreshKey =
(Service, Symbol, Symbology)

Update

Update Message

Type = MarketPrice
StreamId = nnn
DataFormat = FieldList
Flags = DoNotConflate
UpdateType = Trade

31

5.1.3. Market by Order
The term “Market by Order” is used
to denote information which contains
full instrument order book content. It
includes all of the orders for the security,
each containing fields like price, size,
side, time and other related information.
New orders can be added to the book
and existing orders can either be
modified (e.g. partial fill) or deleted from
the book.

The transport semantics used with
Market by Order are:

Interaction Paradigm
- Request/Response with or without

(snapshot) Interest

Key – Instrument Key
- Service ID – the identifier of the service

for the request

- Name – the symbol of the instrument

- Name Type – the symbology of the
symbol (e.g. RIC, ISIN, etc.)

Options
- Supports priority

- Event stream groups apply

- Sequence number contains sequence
number from exchange

Request Message
- Request an instruments order book

information from an access point
(either streaming or snapshot)

Refresh Message
- Response to Request or unsolicited

Refresh to reset all order book event
stream data

- Data in response contains all information
for the orders within that response.

- Full image can be broken across
multiple refreshes/responses due to
the potential size of the book.

- Refresh Key could define the way
the actual service identifies the
instrument (ISIN as opposed to a RIC)

Update Message
- Update to the orders that were

received in the refresh (e.g. add,
delete, update)

- When updating an order only
contain the fields that have changed
in the order

Status Message
- Status change to event stream

Close Message
- Close an already open event stream

or close a pending request

Ack Message
- Optionally used to acknowledge

a close

Instrument Key Types
- RIC
- Street Symbol
- ISIN
- CUSIP

Message Classes
- Request
- Refresh
- Update
- Status
- Close
- Ack

Key – Instrument Key
- Service Id
- Name = Symbol
- Name Type - Symbology

Fid A Value Fid B Value Fid C Value

Order Book Data – Map of Field List
- Key Data Type – Buffer
- Data Format – Field List
- Count

Fid D Value ValueFid E Value Fid F Value Fid G …

Summary Data

Entries

OrderID-1 Fid T Value Fid U Value ValueFid V Value Fid W Value Fid X …

OrderID-2 Fid T Value Fid U Value ValueFid V Value Fid W Value Fid X …

OrderID-n Fid T Value Fid U Value ValueFid V Value Fid W Value Fid X …

Figure 30 – Market by Order

32

Order books can be accessed
through snapshots or, if needed, an
asynchronous event stream can also
be created. The full order book data
comes back as an image that may span
multiple refresh/response messages.
Updates are used to modify the order
book based on a market activity (e.g.
add order, modify order, delete order).
Market by Order information is one of
multiple types of data available for a
market data instrument.

The format used to represent Market by
Order data is depicted in Figure 30. A
map of field lists is used to represent the
two-dimensional structure that makes

up the book. Orders are represented by
map entries that contain field/value pairs
for the information that makes up that
order. The map entries are identified
by the order identifier as received by
the data source (e.g. exchange) and
always contain the same set of fields.
The map will also contain summary data
that is made up of field/value pairs for
information that is pertinent to the entire
book (e.g. currency, exchange state,
etc.). The dictionary identifier in the
summary data defines the dictionary to
be used for the entire book. Standard
RMDS last-value caching can optionally
be used to cache Market by Order data.

Figure 31 gives an example of the
resulting data structure for an Order
Book. Summary data is used to provide
fields that apply to the entire book.
Some of the fields that might exist within
summary data include PE, Currency,
Exchange Identifier, Trade Units, etc.
The actual orders are separated by the
order identifiers and contain the actual
fields that make up the order. Orders
typically contain fields such as Price,
Side, Size, Identifier and Time. The fields
within summary data and the fields
within the orders can easily be extended
to provide exchange-specific or other
specific content.

Figure 31 – Market by Order Data

Market by Order Data
- Key Data Type – Buffer
- Data Format – Field List

1 Value 840 Value 1709 Value 53 Value 3423 Value Value5002 …

Summary Data
- Dictionary Id

PE Currency Exch. Id Trade Units Rule Rule

3425 Value

Mkt. State

Entries

OrderID-n 3427 Value 3428 Value 3429 Value 3426 Value …3426 Value

Order Price Order Side Order Size Order Id

OrderID-1 3427 Value 3428 Value 3429 Value 3426 Value …3426 Value

OrderID-2 3427 Value 3428 Value 3429 Value 3426 Value …3426 Value

OrderID-3 3427 Value 3428 Value 3429 Value 3426 Value …3426 Value

Order Time

Price Rank Order Rank

33

5.1.3.1. Data Encodings
Figure 32 shows the data format
layout of the image within the refresh/
response messages for the Market by
Order domain. It uses the record set
optimization since the book contains
many entries with the same fields. The
layout of the record set for each entry
is given within the list set definitions.
Summary data is then defined using
standard field list encoding rules. The

field list within the summary data also
defines the dictionary identifier for all
of the fields within the book and an
optional field list number for the layout
of the fields that make up the summary
data. Order book entries, identified by
the order id, are then defined (Added),
each containing the field data for the
order. Record set encoding rules are
used for the field lists within entries in
order to save bandwidth. Also note that

the set identifier for the field list set data
in each entry defaults to 0, since there is
no specific set ID defined.

Market by Order (Refresh/Responce)
- Key Data Type – Buffer
- Data Format – Field List
- Count = n

List Set Definitions
Set Defs

1 0 5 3427 Real 32 3428 1025Enum 3429 Real 64 3426 Buffer Time

Count SetId Count Field List Set Definition

Summary Data

0x09 1 712

1 840 Value 1709 Value 53 Value Value3423 Value 3425 Value 5002Value

Flags Dict Id FLN Count

Entries

OrderID-n 0x02 TimePrice Side Size IdAdd

OrderID-1

OrderID-2

Add

Add

OrderID-3Add

0x02 TimePrice Side Size Id

0x02 TimePrice Side Size Id

0x02 TimePrice Side Size Id

Field List Set DataFlagsAction Key

Field List Set Data

Figure 32 – Market by Order Image Encodings

34

The encoding rules used for data
within update messages are shown
in Figure 33. When fields are present
(i.e. Add, Update) standard field list
encoding rules are used for simplicity.
An update can add an order, update
fields within an existing order or delete
an existing order. Updates typically act
upon a single entry due to the nature
of an order book. A single update can
act upon multiple entries when some
form of item-level update batching is
employed.

5.1.3.2. Example
The example scenario for the market
by order item type model is shown in
Figure 34.

A request is sent to the access point;
it contains the instrument key (service
id, symbol and symbology) and flags
to indicate streaming. The access
point asynchronously responds with
the first part of an order book image;
it is represented as a solicited refresh
message that contains an open stream
state, an ok data state and a map
containing the data for the instrument.
The first refresh also contains the group
identifier and optional data source
sequence number.

Before the image is fully sent, the
provider can send an update to the
event stream representing the order
book. In fact this update may be for
data that has not yet been sent to the
application. The provider then sends the
final part of the image within another
refresh message that is marked as
solicited and Complete.

At this point the event stream is open for
the order book and the consumer can
asynchronously receive updates for the
data (Add, Delete, Update). The update
message can optionally contain a data
source sequence number that does not
always increment by one.

Entries

OrderId-xxUpd. 0x08 3429 Size 1025

Field List Set DataFlagsAction Key

5

Market by Order
(Update for Update Order)
- Key Data Type – Buffer
- Data Format – Field List
- Count = 1

Market by Order
(Update for Add Order)
- Key Data Type – Buffer
- Data Format – Field List
- Count = 1

Entries

OrderId-xxAdd 0x08 34293427 Price 3428 Side

Field List Set DataFlagsAction Key

Size5 Time3426 Id 1025

Time

Entries

OrderId-xxUpd.

Action Key

Market by Order
(Update for Delete Order)
- Key Data Type – Buffer
- Data Format – Field List
- Count = 1

Figure 33 – Market by Order Image Encodings

Count

Count

35

Consumer Provider

Request

Request Message

Type = MarketByOrder
StreamId = nnn (non-zero)
DataFormat = None
Flags = Streaming
RequestKey =
(Service, Symbol, Symbology)

Image

Update

Update

Image

Image

Update Message

Type = MarketByOrder
StreamId = nnn
DataFormat = FieldList
Flags = DoNotConflate
UpdateType =
SequenceNumber = 12045

Update

Update Message

Type = MarketByOrder
StreamId = nnn
DataFormat = FieldList
Flags = DoNotConflate

Delete

Update Message

Type = MarketByOrder
StreamId = nnn
DataFormat = FieldList
Flags = None
UpdateType = Quote
SequenceNumber = 12010

Add

Refresh Message (Response)

Type = MarketByOrder
StreamId = nnn
DataFormat = FieldList
GroupIdentifier = 0x1020
SequenceNumber = 12001
Flags = Solicited
State = (Open, Ok)
RefreshKey =
(Service, Symbol, Symbology)

Image – Part 1

Refresh Message (Response)

Type = MarketByOrder
StreamId = nnn
SequenceNumber = 12010
Flags = Solicited, Complete
State = (Open, Ok)
RefreshKey =
(Service, Symbol, Symbology)

Image – Part 2

Figure 34 – Market by Order Example

36

5.2. Defining new types
This is where OMM becomes really
very interesting. Because OMM is truly
open, you may extend an existing type
or create your own data type. You could
define a yield curve, a volatility surface, a
complex weather derivative contract, or
a multi-asset portfolio as a few examples.
You can define the types that your
application needs.

New types are defined by specifying
the Item Type Model and the Content
Definition Model. To create a new type:

- Define the transport semantics including
the interaction paradigm, the request
key, the supported options, the request
message, the refresh message, and
other messages like the update, status,
close and ACK.

- Design the data encoding using the
OMM data abstractions. Define what,
if any, optimizations are used including
Summary Data and Record Sets. An
example of this is in Figures 31 – 33.

- Define the interaction scenario as in
Figure 34.

- Define the Content Definition Model,
including fields and data dictionaries
dpecific to your provider’s content.

- Publish and share documentation for
developers in your organization or to
developers that will interact with your
provider of this content. Developers that
need to consume this type will write RFA
code to handle this new type model.

If you find that you need assistance as
you develop your first few types, Reuters
will be happy to help customers with
the design needs for OMM domain
models via training, consulting, or
support. In some cases an architect in
the development organization may
want to work directly with you if this is a
type that will have a wide applicability.
Please contact Reuters through your
account team to discuss the best way of
gaining assistance. As an RDC member,
you may also want to interact with other
developers in our RDC Developer Forums
to discuss creating a new type.

Contact us

Americas
+ 1.888.268.5839

Europe
www.reuters.com/productinfo

Asia
www.reuters.com/contacts

Read more about Reuters Product at
www.about.reuters.com/product
name address

Log-in at
www.reuters.com/login

For more information:

Send us a sales enquiry at
www.reuters.com/salesenquiry

Read more about our products at
www.reuters.com/productinfo

Find out how to contact your local office
www.reuters.com/contacts

Access customer services at
www.reuters.com/customers

Reuters uses your data in accordance with
Reuters privacy policy in the privacy footer at
www.reuters.com. Reuters Limited is primarily
responsible for managing your data. As Reuters
is a global company your data will be transferred
and available internationally, including in countries
which do not have privacy laws but Reuters seeks
to comply with its privacy policy. If you wish to see
or correct data held on you or no longer wish to
receive information about developments in
Reuters Group products and services, such as
free trials or events or you wish to change your
preferred method of receiving a communication,
please email esupport.global@reuters.com
writing “Personal Details” in the subject title.

© Reuters 2006. All rights reserved.

Reuters and the sphere logo are the trademarks
or registered trademarks of the Reuters group of
companies around the world.

Published by Reuters Limited, The Reuters Building,
South Colonnade, Canary Wharf, London, E14 5EP.
IM Jun 06 0519

