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An Introduction to Point Processes Basic definitions

Simple point processes

Point process

Let (Ω,F ,P) be some probability space. Let (ti )i∈N∗ a sequence of
non-negative random variables such that ∀i ∈ N

∗, ti < ti + 1. We call
(ti )i∈N∗ a (simple) point process on R+.

In particular, the variables ti can represent the times of occurrence of
transactions, or arrival of limit orders in an order book, etc. We start
counting events with index 1. If needed, we will assume that t0 = 0.
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An Introduction to Point Processes Basic definitions

Counting process and durations

Counting process

Let (ti)i∈N∗ be a point process. The right-continuous process

N(t) =
∑

i∈N∗

1ti≤t (1)

is called the counting process associated with (ti)i∈N∗ .

Duration

The process (δti )i∈N∗ defined by

∀i ∈ N
∗, δti = ti − ti−1 (2)

is called the duration process associated with (ti )i∈N∗ .
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An Introduction to Point Processes Basic definitions

Representation of a simple point process
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Figure: Illustration of a simple point process: events, counting process and
duration process

Ioane Muni Toke (ECP - BNPP Chair) An Introduction to Hawkes Processes February 4th, 2011 7 / 90



An Introduction to Point Processes Basic definitions

Intensity process

Intensity

Let N be a point process adapted to a filtration Ft . The left-continuous
intensity process is defined as

λ(t|Ft) = lim
h↓0

E

[

N(t + h)− N(t)

h

∣

∣

∣

∣

∣

Ft

]

, (3)

or equivalently

λ(t|Ft) = lim
h↓0

1

h
P [N(t + h)− N(t) > 0|Ft ] . (4)

Intensity depends on the choice of filtration, but we will always assume
that the filtration used is the natural one for the process N, denoted FN

t .
We will therefore write λ(t) instead of λ(t|FN

t ).
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An Introduction to Point Processes Basic definitions

Example: the Poisson process

Homogeneous Poisson Process

Let λ ∈ R
∗
+. A Poisson process with constant rate λ is a point process

defined by

P [N(t + h)− N(t) = 1|Ft ] = λh + o(h), (5)

P [N(t + h)− N(t) > 1|Ft ] = o(h). (6)

The intensity does not depend on the history of the process N, and
the probability of occurrence of an event in (t, t + h] is independent
from Ft .

Durations (δti )i∈N∗ of an homogeneous Poisson process are
independent and identically distributed (i.i.d.) according to an
exponential distribution with parameter λ.
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An Introduction to Point Processes Transformation to Poisson processes

Stochastic Time Change

Integrated intensity

The integrated intensity function Λ is defined as :

∀i ∈ N
∗, Λ(ti−1, ti ) =

∫ ti

ti−1

λ(s)ds. (7)

Time change theorem

Let N be point process on R+ such that
∫∞

0 λ(s)ds =∞. Let tτ be the
stopping time defined by

∫ tτ

0
λ(s)ds = τ. (8)

Then the process Ñ(τ) = N(tτ ) is an homogeneous Poisson process with
constant intensity λ = 1.
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One-dimensional Hawkes processes Definition and stationarity properties
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One-dimensional Hawkes processes Definition and stationarity properties

Definition of a linear self-exciting process

Linear self-exciting process

A general definition for a linear self-exciting process N reads :

λ(t) = λ0(t) +

∫ t

−∞

ν(t − s)dNs ,

= λ0(t) +
∑

ti<t

ν(t − ti), (9)

where λ0 : R 7→ R+ is a deterministic base intensity and ν : R+ 7→ R+

expresses the positive influence of the past events ti on the current value
of the intensity process.
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One-dimensional Hawkes processes Definition and stationarity properties

Simple Hawkes process considered here

Hawkes process

Hawkes (1971) proposes an exponential kernel ν(t) =
∑P

j=1 αje
−βj t1R+ ,

so that the intensity of the model becomes :

λ(t) = λ0(t) +

∫ t

0

P
∑

j=1

αje
−βj(t−s)dNs ,

= λ0(t) +
∑

ti<t

P
∑

j=1

αje
−βj(t−ti ), (10)

The simplest version with P = 1 and λ0(t) constant is defined as:

λ(t) = λ0 +

∫ t

0
αe−β(t−s)dNs = λ0 +

∑

ti<t

αe−β(t−ti ). (11)
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One-dimensional Hawkes processes Definition and stationarity properties

Sample path of a 1D-Hawkes process
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Figure: Simulation of a one-dimensional Hawkes process with parameters
P = 1, λ0 = 1.2, α1 = 0.6, β1 = 0.8.
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One-dimensional Hawkes processes Definition and stationarity properties

Stationarity (I)

Assuming stationarity gives E[λ(t)] = µ constant. Thus,

µ = E [λ(t)] = E

[

λ0 +

∫ t

−∞

ν(t − s)dNs

]

,

= λ0 + E

[
∫ t

−∞

ν(t − s)λ(s)ds

]

,

= λ0 +

∫ t

−∞

ν(t − s)µds,

= λ0 + µ

∫ ∞

0
ν(v)dv , (12)

which gives :

µ =
λ0

1−
∫∞

0 ν(v)dv
. (13)

Ioane Muni Toke (ECP - BNPP Chair) An Introduction to Hawkes Processes February 4th, 2011 17 / 90



One-dimensional Hawkes processes Definition and stationarity properties

Stationarity (II)

Stationarity condition for a 1D-Hawkes process

P
∑

j=1

αj

βj
< 1. (14)

Average intensity of a stationary process

Equation (13) immediately gives for the one-dimensional Hawkes process
with P = 1 the unconditional expected value of the intensity process:

E [λ(t)] =
λ0

1− α/β
. (15)
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One-dimensional Hawkes processes Simulation of a Hawkes process
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One-dimensional Hawkes processes Simulation of a Hawkes process

Thinning procedure

Lewis & Shedler (1979) proposes a “thinning procedure” that allows the
simulation of a point process with bounded intensity.

Basic thinning theorem

Consider a one-dimensional non-homogeneous Poisson process {N∗(t)}t≥0

with rate function λ∗(t), so that the number of points N∗(T0) in a fixed
interval (0,T0] has a Poisson distribution with parameter

µ∗
0 =

∫ T0

0 λ∗(s)ds. Let t∗1 , t
∗
2 , . . . , t

∗
N∗(T0)

be the points of the process in

the interval (0,T0]. Suppose that for 0 ≤ t ≤ T0, λ(t) ≤ λ∗(t).

For i = 1, 2, . . . ,N∗(T0), delete the points t∗i with probability 1− λ(t∗
i
)

λ∗(t∗
i
) .

Then the remaining points form a non-homogeneous Poisson process

{N(t)}t≥0 with rate function λ(t) in the interval (0,T0].
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One-dimensional Hawkes processes Simulation of a Hawkes process

Simulation algorithm (I)

Ogata (1981) proposes an algorithm for the simulation of Hawkes
processes. Let us denote U[0,1] the uniform distribution on the interval
[0, 1] and [0,T ] the time interval on which the process is to be simulated.
We’ll assume here that P = 1.

Algorithm - Initialization

1 Initialization : Set λ∗ ← λ0(0), n← 1.

2 First event : Generate U  U[0,1] and set s ← − 1

λ∗
lnU.

If s ≤ T ,
Then t1 ← s,
Else go to last step.
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One-dimensional Hawkes processes Simulation of a Hawkes process

Simulation algorithm (II)

Algorithm - General routine

3 General routine : Set n← n + 1.
1 Update maximum intensity: Set λ∗ ← λ(tn−1) + α.

λ∗ exhibits a jump of size α as an event has just occurred. λ being
left-continuous, this jump is not counted in λ(tn−1), hence the explicit
addition.

2 New event : Generate U  U[0,1] and set s ← s − 1

λ∗
lnU .

If s ≥ T ,
Then go to the last step.

3 Rejection test : Generate D  U[0,1].
If D ≤ λ(s)

λ∗
,

Then tn ← s and go through the general routine again,
Else update λ∗ ← λ(s) and try a new date at step (b) of the general
routine.

4 Output: Retrieve the simulated process {tn} on [0,T ].
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One-dimensional Hawkes processes Simulation of a Hawkes process

Examples of simulations (I)
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Figure: Simulation of a one-dimensional Hawkes process with parameters
P = 1, λ0 = 1.2, α1 = 0.6, β1 = 0.8.
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One-dimensional Hawkes processes Simulation of a Hawkes process

Examples of simulations (II)
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Figure: Simulation of a one-dimensional Hawkes process with parameters
P = 1, λ0 = 1.2, α1 = 0.6, β1 = 0.8. (Zoom of the previous figure).
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One-dimensional Hawkes processes Simulation of a Hawkes process

Testing the simulated process (I)

For any consecutive events ti−1 and ti :

Λ(ti−1, ti ) =

∫ ti

ti−1

λ(s)ds (16)

=

∫ ti

ti−1

λ0(s)ds +

∫ ti

ti−1

∑

tk<s

P
∑

j=1

αje
−βj (s−tk )ds

=

∫ ti

ti−1

λ0(s)ds +

∫ ti

ti−1

∑

tk≤ti−1

P
∑

j=1

αje
−βj (s−tk )ds

=

∫ ti

ti−1

λ0(s)ds +
∑

tk≤ti−1

P
∑

j=1

αj

βj

[

e−βj (ti−1−tk) − e−βj (ti−tk )
]

.

Ioane Muni Toke (ECP - BNPP Chair) An Introduction to Hawkes Processes February 4th, 2011 25 / 90



One-dimensional Hawkes processes Simulation of a Hawkes process

Testing the simulated process (II)

This computation can be simplified with a recursive element. Let us denote

Aj(i − 1) =
∑

tk≤ti−1

e−βj (ti−1−tk). (17)

We observe that

Aj(i − 1) =
∑

tk≤ti−1

e−βj (ti−1−tk)

= 1 + e−βj (ti−1−ti−2)
∑

tk≤ti−2

e−βj (ti−2−tk )

= 1 + e−βj (ti−1−ti−2)Aj(i − 2). (18)
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One-dimensional Hawkes processes Simulation of a Hawkes process

Testing the simulated process (III)

Finally, the integrated density can be written ∀i ∈ N
∗:

Λ(ti−1, ti ) =

∫ ti

ti−1

λ0(s)ds +

P
∑

j=1

αj

βj

(

1− e−βj(ti−ti−1)
)

Aj(i − 1), (19)

where A is defined as in equation (17) with ∀j = 1, . . . ,P ,Aj(0) = 0.

Time change property

Following theorem 2 and defining {τi} as

τ0 =

∫ t0

0
λ(s)ds = Λ(0, t0), (20)

τi = τi−1 + Λ(ti−1, ti ), (21)

the durations τi − τi−1 = Λ(ti−1, ti ) are exponentially distributed.
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One-dimensional Hawkes processes Simulation of a Hawkes process

Testing the simulated process (IV)
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Figure: Quantile plot for one sample of simulated data of a one-dimensional
Hawkes process with parameters P = 1, λ0 = 1.2, α1 = 0.6, β1 = 0.8, on an
interval [0, 10000].
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One-dimensional Hawkes processes Maximum-likelihood estimation
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One-dimensional Hawkes processes Maximum-likelihood estimation

Computation of the log-likelihood function (I)

The log-likelihood of a simple point process N with intensity λ is written :

lnL((Nt)t∈[0,T ]) =

∫ T

0
(1− λ(s)) ds +

∫ T

0
lnλ(s)dN(s), (22)

which in the case of a Hawkes model can be explicitly computed as :

lnL({ti}i=1,...,n) = tn − Λ(0, tn) +

n
∑

i=1

lnλ(ti )

= tn − Λ(0, tn)

+

n
∑

i=1

ln



λ0(ti ) +

P
∑

j=1

i−1
∑

k=1

αje
−βj (ti−tk)



 . (23)
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One-dimensional Hawkes processes Maximum-likelihood estimation

Computation of the log-likelihood function (II)

As noted by Ogata (1981), this log-likelihood function is easily computed
with a recursive formula. We observe that:

Rj(i) =

i−1
∑

k=1

e−βj (ti−tk )

= e−βj (ti−ti−1)
i−1
∑

k=1

e−βj (ti−1−tk )

= e−βj (ti−ti−1)

(

1 +
i−2
∑

k=1

e−βj (ti−1−tk)

)

= e−βj (ti−ti−1) (1 + Rj(i − 1)) . (24)
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One-dimensional Hawkes processes Maximum-likelihood estimation

Computation of the log-likelihood function (III)

The log-likelihood can thus be recursively computed with :

lnL({ti}i=1,...,n) = tn − Λ(0, tn) +

n
∑

i=1

ln



λ0(ti ) +

P
∑

j=1

αjRj(i)



 , (25)

where R is defined by equation (24) and ∀j ,Rj(1) = 0.
Direct computation of Λ(0, tn) yields to :

Log-likelihood of a 1D-Hawkes process

lnL({ti}i=1,...,n) = tn −
∫ tn

0
λ0(s)ds −

n
∑

i=1

P
∑

j=1

αj

βj

(

1− e−βj (tn−ti )
)

+

n
∑

i=1

ln



λ0(ti ) +

P
∑

j=1

αjRj(i)



 , (26)
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One-dimensional Hawkes processes Maximum-likelihood estimation

Properties of the maximum-likelihood estimator

Ogata (1978) shows that for a stationary one-dimensional Hawkes process
with constant λ0 and P = 1, the maximum-likelihood estimator
θ̂T = (λ̂0, α̂1, β̂1)) is

consistent, i.e. converges in probability to the true values
θ = (λ0, α1, β1)) as T →∞ :

∀ǫ > 0, lim
T→∞

P [|θ̂T − θ| > ǫ] = 0. (27)

asymptotically normal, i.e.

√
T
(

θ̂T − θ
)

→ N (0, I−1(θ)) (28)

where I−1(θ) =
(

E
[

1
λ

∂λ
∂θi

∂λ
∂θj

])

i ,j
.

asymptotically efficient, i.e. asymptotically reaches the lower bound
of the variance.
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One-dimensional Hawkes processes Maximum-likelihood estimation

Numerical estimation of a simulated process

T λ0 α1 β1
100 1.210 (0.370) 0.588 (0.164) 0.833 (0.442)
1000 1.185 (0.133) 0.590 (0.044) 0.787 (0.068)
10000 1.204 (0.045) 0.602 (0.016) 0.804 (0.023)
100000 1.202 (0.014) 0.600 (0.004) 0.800 (0.007)

True values 1.200 0.600 0.800

Table: Maximum likelihood estimation of a one-dimensional Hawkes process on
simulated data. Each estimation is the average result computed on 100 samples
of length [0,T ]. Standard deviations are given in parentheses. These results are
obtained with a simple Nelder-Mead simplex algorithm.
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Multidimensional Hawkes processes Definition and stationarity condition
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Multidimensional Hawkes processes Definition and stationarity condition

Multidimensional Hawkes processes

Let M ∈ N
∗. Let {(tmi )i}m=1,...,M be a M-dimensional point process. We

will denote Nt = (N1
t , . . . ,N

M
t ) the associated counting process.

Definition

A multidimensional Hawkes process is defined with intensities
λm,m = 1, . . . ,M given by :

λm(t) = λm
0 (t) +

M
∑

n=1

∫ t

0

P
∑

j=1

αmn
j e

−βmn
j

(t−s)
dNn

s , (29)

i.e. in its simplest version with P = 1 and λm
0 (t) constant :

λm(t) = λm
0 +

M
∑

n=1

∫ t

0
αmne−βmn(t−s)dNn

s = λm
0 +

M
∑

n=1

∑

tn
i
<t

αmne−βmn(t−tni ).

(30)

Ioane Muni Toke (ECP - BNPP Chair) An Introduction to Hawkes Processes February 4th, 2011 37 / 90



Multidimensional Hawkes processes Definition and stationarity condition

Stationarity condition (I)

We’ll take here P = 1 to simplify the notations. Rewriting equation (30)
using vectorial notation, we have :

λ(t) = λ0 +

∫ t

0
G(t − s)dNs , (31)

where
G(t) =

(

αmne−βmn(t−s)
)

m,n=1,...,M
. (32)

Assuming stationarity gives E [λ(t)] = µ constant vector, and thus
stationary intensities must satisfy :

µ =

(

I−
∫ ∞

0
G(u)du

)−1

λ0 (33)
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Multidimensional Hawkes processes Definition and stationarity condition

Stationarity condition (II)

Stationarity of a multivariate Hawkes process

A sufficient condition for a multivariate Hawkes process to be linear is that
the spectral radius of the matrix

Γ =

∫ ∞

0
G(u)du =

(

αmn

βmn

)

m,n=1,...,M

(34)

be strictly smaller than 1.

We recall that the spectral radius of the matrix G is defined as :

ρ(G) = max
a∈S(G)

|a|, (35)

where S(G) denotes the set of all eigenvalues of G.
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Multidimensional Hawkes processes Simulation of a multivariate Hawkes process
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Multidimensional Hawkes processes Simulation of a multivariate Hawkes process

Simulation of a multivariate Hawkes process (I)

We generalize the 1D-algorithm in a multidimensional setting. We recall
that :

U[0,1] denotes the uniform distribution on the interval [0, 1],

[0,T ] is the time interval on which the process is to be simulated,

and we define

IK (t) =

K
∑

n=1

λn(t) (36)

the sum of the intensities of the first K components of the multivariate
process. IM(t) =

∑M
n=1 λ

n(t) is thus the total intensity of the multivariate
process and we set I 0 = 0. The algorithm is then rewritten as follows.
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Multidimensional Hawkes processes Simulation of a multivariate Hawkes process

Simulation of a multivariate Hawkes process (II)

Algorithm - Initialization

1 Initialization : Set i ← 1, i1 ← 1, . . . , iM ← 1 and

I ∗ ← IM(0) =
M
∑

n=i

λi
0(0).

2 First event : Generate U  U[0,1] and set s ← − 1

λ∗
lnU.

1 If s > T Then go to last step.
2 Attribution Test : Generate D  U[0,1] and set tn01 ← s where n0 is

such that
I n0−1(0)

I ∗
< D ≤ I n0(0)

I ∗
.

3 Set t1 ← tn01 .
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Multidimensional Hawkes processes Simulation of a multivariate Hawkes process

Simulation of a multivariate Hawkes process (III)

Algorithm - General routine

3 General routine : Set in0 ← in0 + 1 and i ← i + 1.
1 Update maximum intensity: Set I ∗ ← IM(ti−1) +

∑M

n=1

∑P

j=1 α
nn0
j .

2 New event : Generate U  U[0,1] and set s ← s − 1

I ∗
lnU .

If s > T , Then go to the last step.
3 Attribution-Rejection test : Generate D  U[0,1].

If D ≤ IM(s)

I ∗
,

Then set tn0in0 ← s where n0 is such that
I n0−1(s)

I ∗
< D ≤ I n0(s)

I ∗
, and

ti ← tn0in0 and go through the general routine again,
Else update I ∗ ← IM(s) and try a new date at step (b) of the general
routine.

4 Output: Retrieve the simulated process ({tni }i )n=1,...,M on [0,T ].
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Multidimensional Hawkes processes Simulation of a multivariate Hawkes process

Sample paths of a bivariate Hawkes process (I)

We simulate a bivariate Hawkes process with P = 1 and the following
parameters:

λ1
0 = 0.1, α11

1 = 0.2, β11
1 = 1.0, α12

1 = 0.1, β12
1 = 1.0,

λ2
0 = 0.5, α21

1 = 0.5, β21
1 = 1.0, α22

1 = 0.1, β22
1 = 1.0, (37)
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Multidimensional Hawkes processes Simulation of a multivariate Hawkes process

Sample paths of a bivariate Hawkes process (II)
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Intensity maximum I*
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Intensity λ2

Events t1

Events t2

Figure: Simulation of a two-dimensional Hawkes process with P = 1 and
parameters given in equation (37).
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Multidimensional Hawkes processes Simulation of a multivariate Hawkes process

Sample paths of a bivariate Hawkes process (III)
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Figure: Simulation of a two-dimensional Hawkes process with P = 1 and
parameters given in equation (37). (Zoom of the previous figure).
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Multidimensional Hawkes processes Simulation of a multivariate Hawkes process

Testing the simulated data (I)

The integrated intensity of the m-th coordinate of a multidimensional
Hawkes process between two consecutive events tmi−1 and tmi of type m is
computed as:

Λm(tmi−1, t
m
i ) =

∫ tmi

tm
i−1

λm(s)ds

=

∫ tm
i

tm
i−1

λm
0 (s)ds +

∫ tm
i

tm
i−1

M
∑

n=1

P
∑

j=1

∑

tn
k
<s

αmn
j e

−βmn
j (s−tn

k
)
ds

=

∫ tm
i

tm
i−1

λm
0 (s)ds +

∫ tm
i

tm
i−1

M
∑

n=1

P
∑

j=1

∑

tn
k
<tm

i−1

αmn
j e

−βmn
j (s−tn

k
)
ds

+

∫ tmi

tm
i−1

M
∑

n=1

P
∑

j=1

∑

tm
i−1≤tn

k
<s

αmn
j e

−βmn
j

(s−tn
k
)
ds
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Multidimensional Hawkes processes Simulation of a multivariate Hawkes process

Testing the simulated data (II)

Λm(tmi−1, t
m
i ) =

∫ tm
i

tm
i−1

λm
0 (s)ds

+

M
∑

n=1

P
∑

j=1

∑

tn
k
<tm

i−1

αmn
j

βmn
j

[

e
−βmn

j (tmi−1−tn
k
) − e

−βmn
j (tmi −tn

k
)
]

+
M
∑

n=1

P
∑

j=1

∑

tm
i−1≤tn

k
<tm

i

αmn
j

βmn
j

[

1− e
−βmn

j
(tm

i
−tn

k
)
]

. (38)

This computation can be simplified with a recursive element. Let us denote

Amn
j (i − 1) =

∑

tn
k
<tm

i−1

e
−βmn

j
(tm

i−1−tn
k
). (39)
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Multidimensional Hawkes processes Simulation of a multivariate Hawkes process

Testing the simulated data (III)

We observe that

Amn
j (i − 1) =

∑

tn
k
<tm

i−1

e
−βmn

j (tmi−1−tn
k
)

= e
−βmn

j (tmi−1−tmi−2)
∑

tn
k
<tm

i−2

e
−βmn

j (tmi−2−tn
k
)

+
∑

tm
i−2≤tn

k
<tm

i−1

e
−βmn

j (tmi−1−tn
k
)

= e
−βmn

j
(tm

i−1−tm
i−2)Amn

j (i − 2)

+
∑

tm
i−2≤tn

k
<tm

i−1

e
−βmn

j
(tm

i−1−tn
k
). (40)
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Multidimensional Hawkes processes Simulation of a multivariate Hawkes process

Testing the simulated data (IV)

The integrated density can thus be written ∀i ∈ N
∗:

Λm(tmi−1, t
m
i ) =

∫ tmi

tm
i−1

λm
0 (s)ds +

M
∑

n=1

P
∑

j=1

αmn
j

βmn
j

[

(

1− e
−βmn

j
(tm

i
−tm

i−1)
)

×Amn
j (i − 1) +

∑

tm
i−1≤tn

k
<tm

i

(

1− e
−βmn

j
(tm

i
−tn

k
)
)

]

, (41)

where A is defined as in equation (39) with ∀j ,Amn
j (0) = 0.

Time change property

As for the one-dimensional case, the durations τmi − τmi−1 = Λm(tmi−1, t
m
i )

are exponentially distributed with parameter 1. See e.g. (Bowsher 2007).

Ioane Muni Toke (ECP - BNPP Chair) An Introduction to Hawkes Processes February 4th, 2011 50 / 90



Multidimensional Hawkes processes Simulation of a multivariate Hawkes process

Testing the simulated data (V)
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Figure: Quantile plots for one sample of simulated data of a two-dimensional
Hawkes process with P = 1 and parameters given in equation (37). (Left) m = 0.
(Right) m = 1.
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Multidimensional Hawkes processes Maximum-likelihood estimation
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Multidimensional Hawkes processes Maximum-likelihood estimation

Computation of the log-likelihood function (I)

The log-likelihood of a multidimensional Hawkes process can be computed
as the sum of the likelihood of each coordinate, i.e. is written:

lnL({ti}i=1,...,N) =

M
∑

m=1

lnLm({ti}), (42)

where each term is defined by:

lnLm({ti}) =
∫ T

0
(1− λm(s)) ds +

∫ T

0
lnλm(s)dNm(s). (43)
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Multidimensional Hawkes processes Maximum-likelihood estimation

Computation of the log-likelihood function (II)

In the case of a multidimensional Hawkes process, denoting {ti}i=1,...,N

the ordered pool of all events {{tmi }m=1,...,M}, this log-likelihood can be
computed as:

lnLm({ti}) = T − Λm(0,T ) (44)

+

N
∑

i=1

zmi ln



λm
0 (ti ) +

M
∑

n=1

P
∑

j=1

∑

tn
k
<ti

αmn
j e

−βmn
j (ti−tn

k
)



 ,

where zmi is equal to 1 if the event ti is of type m, 0 otherwise.
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Multidimensional Hawkes processes Maximum-likelihood estimation

Computation of the log-likelihood function (III)

As in the one dimensional case, this can be computed in a recursive way.
We observe that

Rmn
j (l) =

∑

tn
k
<tm

l

e
−βmn

j (tm
l
−tn

k
)

=
∑

tn
k
<tm

l−1

e
−βmn

j
(tm

l
−tn

k
) +

∑

tm
l−1≤tn

k
<tm

l

e
−βmn

j
(tm

l
−tn

k
)

= e
−βmn

j (tm
l
−tm

l−1)
∑

tn
k
<tm

l−1

e
−βmn

j (tm
l−1−tn

k
) +

∑

tm
l−1≤tn

k
<tm

l

e
−βmn

j (tm
l
−tn

k
)

= e
−βmn

j
(tm

l
−tm

l−1)Rmn
j (l − 1) +

∑

tm
l−1≤tn

k
<tm

l

e
−βmn

j
(tm

l
−tn

k
)

=











e
−βmn

j (tm
l
−tm

l−1)Rmn
j (l − 1) +

∑

tm
l−1≤tn

k
<tm

l

e
−βmn

j (tm
l
−tn

k
) if m 6= n,

e
−βmn

j
(tm

l
−tm

l−1)
(

1 + Rmn
j (l − 1)

)

if m = n.

(45)
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Multidimensional Hawkes processes Maximum-likelihood estimation

Computation of the log-likelihood function (IV)

The final expression of the log-likelihood may be written:

Log-likelihood of a multivariate Hawkes process

lnLm({ti}) = T −
N
∑

i=1

M
∑

n=1

P
∑

j=1

αmn
j

βmn
j

(

1− e
−βmn

j (T−ti )
)

+
∑

tm
l

ln



λm
0 (t

m
l ) +

M
∑

n=1

P
∑

j=1

αmn
j Rmn

j (l)



 , (46)

where Rmn
j (l) is defined with equation (45) and Rmn

j (0) = 0.
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Multidimensional Hawkes processes Maximum-likelihood estimation

Numerical estimation of a simulated process

T λ1
0 α11

1 β11
1 α12

1 β12
1 λ2

0 α21
1 β21

1 α22
1 β22

1

100 0.614 0.510 0.369 1.482 1.710 0.518 0.337 0.600 1.605 2.595
(0.372) (0.268) (0.269) (1.216) (3.172) (0.272) (0.206) (0.365) (2.051) (6.586)

500 0.516 0.505 0.268 1.043 0.865 0.518 0.264 0.507 0.814 1.048
(0.112) (0.085) (0.080) (0.214) (0.479) (0.120) (0.080) (0.084) (0.278) (0.221)

1000 0.507 0.492 0.254 1.018 0.761 0.513 0.255 0.488 0.794 1.003
(0.079) (0.054) (0.052) (0.122) (0.203) (0.092) (0.052) (0.061) (0.387) (0.152)

0.500 0.500 0.250 1.000 0.750 0.500 0.250 0.500 0.750 1.000

Table: Maximum likelihood estimation of a two-dimensional Hawkes process on
simulated data. Each estimation is the average result computed on 100 samples
of length [0,T ]. Standard deviations are given in parentheses.

Ioane Muni Toke (ECP - BNPP Chair) An Introduction to Hawkes Processes February 4th, 2011 57 / 90



A simple model for buy and sell intensities
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A simple model for buy and sell intensities

A model for buy and sell intensities (I)

Hewlett (2006) proposes to model the clustered arrivals of buy and sell
trades using Hawkes processes. Using the exponent ’B ’ for buy variables
and ’S ’ for sell variables, the model is written :

λB(t) = λB
0 +

∫ t

0
αBBe−βBB (t−u)dNB

u +

∫ t

0
αBSe−βBS (t−u)dNS

u ,(47)

λS(t) = λS
0 +

∫ t

0
αSBe−βSB (t−u)dNB

u +

∫ t

0
αSSe−βSS (t−u)dNS

u . (48)
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A simple model for buy and sell intensities

A model for buy and sell intensities (II)

Hewlett (2006) imposes some symmetry constraints, stating that mutual
excitation and self-excitation should be the same for both processes, which
is written :

λB
0 = λS

0 = λ0 (49)

αSB = αBS = αcross (50)

βSB = βBS = βcross (51)

αSS = αBB = αself (52)

βSS = βBB = βself (53)
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A simple model for buy and sell intensities

Goodness of fit

Hewlett (2006) fits this model on two-month data of EUR/PLN
transactions (no dates given): the Hawkes model is a much better fit of
the empirical data than the Poisson model.

Figure: Quantile plots of integrated intensities for the Hawkes model (left) and a
Poisson model (right) on EUR/PLN buy and sell data. Reproduced from
(Hewlett 2006).
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A simple model for buy and sell intensities

Numerical results

The numerical values obtained are :

λ0 = 0.0033, αcross = 0, αself = 0.0169, βself = 0.0286. (54)

In other words,

the occurrence of a buy (resp. sell) order has an exciting effect on the
stream of buy (resp. sell) orders, with a typical half-life of ln 2

βself ≈ 24
seconds;

the zero value of αcross tends to indicate that there is no influence of
buy orders on sell orders, and conversely.
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A simple model for buy and sell intensities

Test on our own data (I)

We perform the fit of a bivariate Hawkes model on buy/sell market orders
on the following data : BNPP.PA, Feb. 1st 2010 to Feb. 23rd, 2010 (14
trading days), 10am-12am without symmetry constraints. Numerical
results are :

λB
0 = 0.080, αBB = 3.230, βBB = 13.304, αBS = 0.276, βBS = 6.193

λB
0 = 0.086, αSB = 0.515, βSB = 13.451, αSS = 3.789, βSS = 14.151

Confirmation of the very limited cross-excitation effect.

Change of magnitude of parameters β: difference in precision of data
(second, millisecond)
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A simple model for buy and sell intensities

Test on our own data (II)
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Figure: Quantile plots of integrated intensities for a bivariate Hawkes model on
buy/sell market orders fitted on 13 trading days of the stock BNPP.PA (from
Feb. 1st 2010 to Feb. 22nd, 2010), 10am-12am each day.
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Modelling microstructure noise
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Modelling microstructure noise

A one-dimensional price model

Bacry, Delattre, Hoffmann & Muzy (2011) propose a one-dimensional case
where the price p is written:

p(t) = N1(t)− N2(t), (55)

where Ni , i ∈ {1, 2} is a Hawkes process with intensities λi , i ∈ {1, 2} such
that

λ1(t) = λ0 +

∫ t

−∞

αe−β(t−s)dN2
s , (56)

λ2(t) = λ0 +

∫ t

−∞

αe−β(t−s)dN1
s . (57)

No self-excitation of upward (resp. downward) jumps on following
upward (resp. downward) jumps

Only cross-excitation terms are kept, enforcing the mean-reversion
empirically observed on the price p

Cross-excitation is set to be symmetric
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Modelling microstructure noise

An analytical expression for the variance of the price

A volatility signature plot plots the realized variance as a function of the
sampling period:

RV (τ) =
1

τ

I
∑

i=1

(p̂(iτ)− p̂((i − 1)τ))2 (58)

where I is the number of observations p̂. Bacry et al. (2011) shows that
the theoretical signature plot of the stationary model (55)-(57) can be
theoretically computed as:

C (τ) =
1

τ
E
[

p(τ)2
]

= Λ

(

κ2 + (1− κ2)
1− e−γτ

γτ

)

, (59)

where

Λ =
2λ0

1− α/β
, κ =

1

1 + α/β
, and γ = α+ β.

(See (Bacry et al. 2011, Appendix 1).)
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Modelling microstructure noise

Fitting the volatility signature plot

Bacry et al. (2011) show that the signature plot of their model is in very
good agreement with the one computed on 21 samples of two-hour
Euro-Bund futures contracts in November and December 2009.

Figure: Empirical signature plot of the Euro-Bund prices (thin line) and
theoretical Hawkes fit (thick line). Reproduced from (Bacry et al. 2011).
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Modelling microstructure noise

A two-dimensional model

Bacry et al. (2011) also propose a bivariate version of the model:

p1(t) = N1(t)− N2(t), (60)

p2(t) = N3(t)− N4(t), (61)

in which N = (Ni )i=1,...4 is a Hawkes process with intensity:

λ(t) = λ0 +

∫ t

0









0 φ12 φ13 0
φ12 0 0 φ13

φ31 0 0 φ34

0 φ31 φ34 0









(t − s)dNs , (62)

where φij(t − s) = αije−βij (t−s).

self-exciting terms are ruled out, φii = 0∀i ;
upward and downward effects are assumed to be symmetric within the
processes p1 and p2 (φ12 = φ21, φ23 = φ43);

prices p1 and p2 influence each other in a positive way, not a negative
one (φ14 = φ23 = φ32 = φ41 = 0).
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Modelling microstructure noise

An explicit expression for the covariance matrix

For this model, Bacry et al. (2011) show that an explicit form of the
correlation coefficient

ρ(τ) = Corr (p1(t + τ)− p1(t), p2(t + τ)− p2(t)) (63)

can be explicitly computed, although the expected result is quite
cumbersome (see (Bacry et al. 2011, Proposition 3.1)).
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Modelling microstructure noise

Addressing the Epps effect

The theoretical correlation is in good agreement with correlations mesured
on empirical data, and that it is in accordance with the so-called Epps
effect, stating that correlation measured on financial assets decreases when
the sampling frequency increases.

Figure: Empirical correlation measured between the Euro-Bund and Euro-Bobl
prices (thin line) and theoretical Hawkes fit (thick line). Reproduced from (Bacry
et al. 2011).
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Some statistical findings about the order book
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Some statistical findings about the order book

Classifying orders according to their aggressiveness

Large (2007) models streams of orders by Hawkes processes, extending the
model by Hewlett (2006) using a much finer description of orders.
Following classical typologies used in microstructure, events occurring in
an order book are classified in ten categories :

Type Description Aggressiveness

1 Market order that moves the ask Yes
2 Market order that moves the bid Yes
3 Limit order that moves the ask Yes
4 Limit order that moves the bid Yes

5 Market order that doesn’t move the ask No
6 Market order that doesn’t move the bid No
7 Limit order that doesn’t move the ask No
8 Limit order that doesn’t move the bid No
9 Cancellation at ask No
10 Cancellation at bid No
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Some statistical findings about the order book

A 10-variate Hawkes model for aggressive orders

Events of type 1 to 4 are Hawkes processes whose intensities depend on
the 10 different sorts of events, i.e. can be written for m = 1, . . . , 4:

λm(t) = λ0(t) +

10
∑

n=1

∫ t

0
αmne−βmn(t−u)dNn

u . (64)
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Some statistical findings about the order book

Hawkes parameters for aggressive limit orders

Figure: Representation of the influences on aggressive limit orders measured by
the fitting of a Hawkes model on the Barclay’s order book on January 2002. βmn

are in abscissas, αmn are in ordinates, the size of the discs are proportional to the
number of observed events. Reproduced from (Large 2007).
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Some statistical findings about the order book

Hawkes parameters for aggressive market orders

Figure: Representation of the influences on aggressive market orders measured by
the fitting of a Hawkes model on the Barclay’s order book on January 2002. βmn

are in abscissas, αmn are in ordinates, the size of the discs are proportional to the
number of observed events. Reproduced from (Large 2007).
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Some statistical findings about the order book

Empirical conclusions in Large (2007)

Previous figures can be used to draw some conclusions on the way order
book events influence each other. The main findings reported are the
followings:

aggressive limit orders are firstly influenced by aggressive market
orders: this is an evidence of some “resiliency” in the order book ;

aggressive limit orders are secondly influenced by aggressive limit
orders ;

aggressive market orders are firstly influenced by market orders
(aggressive or not) ;

aggressive market orders are secondly influenced by aggressive limit
orders: this is an evidence of some “rush to liquidity”.
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An order book model with Hawkes processes
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An order book model with Hawkes processes

The basic Zero-Intelligence Poisson model (“HP”)

Liquidity provider

1 arrival of new limit orders: homogeneous Poisson process NL(λL)

2 arrival of cancelation of orders: homogeneous Poisson process
NC (λC )

3 new limit orders’ placement: Student’s distribution with parameters
(νP1 ,m

P
1 , s

P
1 ) around the same side best quote

4 volume of new limit orders: exponential distribution E(1/mV
1 );

5 in case of a cancelation, orders are deleted with probability δ

Noise trader (liquidity taker)

1 arrival of market orders: homogeneous Poisson process NM(µ)

2 volume of market orders: exponential distribution with mean
E(1/mV

2 ).
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An order book model with Hawkes processes

Need for physical time in order book models
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Figure: Empirical density function of the distribution of the bid-ask spread in
event time and in physical time.
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An order book model with Hawkes processes

Measures of inter arrival times

(red) Inter arrival times of the counting process of all orders (limit
orders and market orders mixed), i.e. the time step between any order
book event (other than cancelation)

(green) Interval time between a market order and immediatly
following limit order
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An order book model with Hawkes processes

Empirical evidence of “market making”
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Figure: Empirical density function of the distribution of the timesteps between
two consecutive orders (any type, market or limit) and empirical density function
of the distribution of the time steps between a market order and the immediatly
following limit order. X-axis is scaled in seconds. In insets, same data using a
semi-log scale. Studied assets : BNPP.PA (left). Reproduced from (Muni
Toke 2011).
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An order book model with Hawkes processes

Adding dependance between order flows (I)

Liquidity provider

1 arrival of new limit orders: Hawkes process NL(λL)

2 arrival of cancelation of orders: homogeneous Poisson process
NC (λC )

3 new limit orders’ placement: Student’s distribution with parameters
(νP1 ,m

P
1 , s

P
1 ) around the same side best quote

4 volume of new limit orders: exponential distribution E(1/mV
1 );

5 in case of a cancelation, orders are deleted with probability δ

Noise trader (liquidity taker)

1 arrival of market orders: Hawkes process NM(µ)

2 volume of market orders: exponential distribution with mean
E(1/mV

2 ).
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An order book model with Hawkes processes

Adding dependance between order flows (II)

Hawkes processes NL and NM















µ(t) = µ0 +

∫ t

0
αMMe−βMM (t−s)dNM

s

λL(t) = λL
0 +

∫ t

0
αLMe−βLM(t−s)dNM

s +

∫ t

0
αLLe

−βLL(t−s)dNL
s

(65)

MM and LL effect for clustering of orders

LM effect as observed on data

no ML effect
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An order book model with Hawkes processes

Impact on arrival times (I)
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Figure: Empirical density function of the distribution of the interarrival times of
market orders (left) and limit orders (right) for three simulations, namely HP,
MM, LL, compared to empirical measures. In inset, same data using a semi-log
scale. Reproduced from (Muni Toke 2011).

Ioane Muni Toke (ECP - BNPP Chair) An Introduction to Hawkes Processes February 4th, 2011 85 / 90



An order book model with Hawkes processes

Impact on arrival times (II)
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Figure: Empirical density function of the distribution of the interval times
between a market order and the following limit order for three simulations, namely
HP, MM+LL, MM+LL+LM, compared to empirical measures. In inset, same
data using a semi-log scale. Reproduced from (Muni Toke 2011).
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An order book model with Hawkes processes

Impact on the bid-ask spread (I)
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Figure: Empirical density function of the distribution of the bid-ask spread for
three simulations, namely HP, MM, MM+LM, compared to empirical measures.
In inset, same data using a semi-log scale. X-axis is scaled in euro (1 tick is 0.01
euro). Reproduced from (Muni Toke 2011).
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An order book model with Hawkes processes

Impact on the bid-ask spread (II)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0  0.05  0.1  0.15  0.2

Empirical BNPP.PA
Homogeneous Poisson

Hawkes MM+LL
Hawkes MM+LL+LM

10-6

10-5

10-4

10-3

10-2

10-1

100

 0  0.05  0.1  0.15  0.2

Figure: Empirical density function of the distribution of bid-ask spread for three
simulations, namely HP, MM+LL, MM+LL+LM. In inset, same data using a
semi-log scale. X-axis is scaled in euro (1 tick is 0.01 euro). Reproduced from
(Muni Toke 2011).

Ioane Muni Toke (ECP - BNPP Chair) An Introduction to Hawkes Processes February 4th, 2011 88 / 90



An order book model with Hawkes processes

Limitations of the model
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Figure: Empirical density function of the distribution of the variations of the
mid-price sampled every 30 seconds for five simulations, namely HP, MM,
MM+LM, MM+LL, MM+LL+LM, compared to empirical measures. X-axis is
scaled in euro (1 tick is 0.01 euro). Reproduced from (Muni Toke 2011).
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Conclusion

Summary

Self- and mutual-exciting processes (epidemic,
earthquakes,. . . finance!)

Exponential kernel allows easy manipulation (simulation, estimation)

Quite good fit on tested data (buy/sell, market/limit)

See (Bowsher 2007) for a generalized econometric framework

Lots of possible models/strategies to be imagined
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