Introduction	P(up)	Hidden liquidity	Latency	Optimal liquidation	Conclusion
00000	000000000000	000000	0000	000000	0

Time is Money: Estimating the Cost of Latency in Trading

Sasha Stoikov

Cornell University

December 10, 2014

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction	P(up)	Hidden liquidity	Latency	Optimal liquidation	Conclusion
•0000	000000000000	000000	0000		O
Backgro	und				

- Automated or computerized trading
 - Accounts for 70% of equity trades taking place in the US

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Introduction	P(up)	Hidden liquidity	Latency	Optimal liquidation	Conclusion
•0000	000000000000	000000	0000		O
Backgro	und				

- Automated or computerized trading
 - Accounts for 70% of equity trades taking place in the US

- High frequency trading
 - Short position-holding periods
 - Market-making (payment for order flow)
 - Latency arbitrage across trading venues

Introduction	P(up)	Hidden liquidity	Latency	Optimal liquidation	Conclusion
•0000	000000000000	000000	0000		O
Backgro	und				

- Automated or computerized trading
 - Accounts for 70% of equity trades taking place in the US
- High frequency trading
 - Short position-holding periods
 - Market-making (payment for order flow)
 - Latency arbitrage across trading venues
- Algorithmic trading
 - Brokers executing large client transactions
 - Optimally splitting client orders
 - Opportunistic trading algorithms (React, Bolt, Stealth, Ambush, Guerrilla, Sniper)

Introduction	P(up)	Hidden liquidity	Latency	Optimal liquidation	Conclusion
•0000	000000000000	000000	0000		O
Backgro	und				

- Automated or computerized trading
 - Accounts for 70% of equity trades taking place in the US
- High frequency trading
 - Short position-holding periods
 - Market-making (payment for order flow)
 - Latency arbitrage across trading venues
- Algorithmic trading
 - Brokers executing large client transactions
 - Optimally splitting client orders
 - Opportunistic trading algorithms (React, Bolt, Stealth, Ambush, Guerrilla, Sniper)

• Why low-latency trading?

Introduction 00000 Hidden liquidity

Latency 0000 Optimal liquidat

Conclusion O

Market twenty years ago: the pit

Introduction	P(up)	Hidden liquidity	Latency	Optimal liquidation	Con
0000	000000000000	000000	0000	000000	0

Market today: the order book

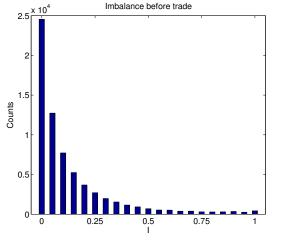
		Bid						Ask	
MM Name	Price	Size	Curn Size	Avg Price	MM Name	Price	Size	Cum Size	Avg Price
NSDQ				47,960 🖓					47.970
NSK				47.960	EDGEA				47.970
BATS				47.960	CHK				47.970
DRCTEDGE				47.960	CBSX				47.970
ARCA				47.960	NSK				47.970
NSDQ				47.952	BEX				47.970
EDGEA				47.952	ARCA				47.970
CHX				47.952	BATS				47.970
CBSX				47.952	DRCTEDGE				47.970
BEX				47.951	NSDQ				47.973
ARCA				47.951	ARCA				47.974
NSDQ			3,969	47.946	NSDQ				47.977
ARCA				47.945	ARCA		1,348	10,800	47.978
NSDQ				47.941	NSDQ				47.981
ARCA				47.940	ARCA				47.983
TMBR				47.940	NSDQ				47.985
NSDQ				47.937	ARCA				47.987
ARCA				47.935	NSDQ	48.02		17,591	47.990
UBSS				47.935	NSDQ				47.992
HDSN				47.935	NSDQ				47.995
NSDQ		1,504	12,336	47.932	TMBR				47.995
NSDQ				47.929	UBSS				47.995
NSDQ				47.925	NSDQ				47.998
NSDQ	47.88		16,259	47.922	HDSN	48.05		21,012	47.998
NSDQ				47.919	NSDQ				48.000
NSDQ	47.86	923		47.916	NSDQ			23,020	48.004
UBSS				47.916	UBSS				48.004
NSDQ				47.913	NSDQ				48.007
NSDQ				47.909	NSDQ				48.010
NSDQ	47.83	800	20,748	47.906	UBSS				48.010
UBSS				47.906	NSDQ				48.012
NS00	47.82	520	21,308	47 904 0	NSDO	48.11	482	25.927	48.014

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Introduction	P(up)	Hidden liquidity	Latency
00000	00000000000	000000	0000

The worst kept secret in HFT

SELL when imbalance $I = \frac{x}{x+y}$ is small, where x= bid size and y= ask size



Introduction	P(up)	Hidden liquidity	Latency	Optimal liquidation	Conclusion
0000●	000000000000	000000	0000		O
Outline					

- Why bid and ask sizes matter:
 - Forecasting Prices from Level-I Quotes in the Presence of Hidden Liquidity, with M. Avellaneda and J. Reed

- Modeling bid and ask sizes
- P(up): the probability that the price will move up
- The imbalance: $I = \frac{x}{x+y}$

Introduction	P(up)	Hidden liquidity	Latency	Optimal liquidation	Conclusion
0000	000000000000	000000	0000		O
Outline					

- Why bid and ask sizes matter:
 - Forecasting Prices from Level-I Quotes in the Presence of Hidden Liquidity, with M. Avellaneda and J. Reed
 - Modeling bid and ask sizes
 - P(up): the probability that the price will move up
 - The imbalance: $I = \frac{x}{x+y}$
- Why latency matters:
 - Optimal Asset Liquidation using Limit Order Book Information, with R. Waeber

- Modeling latency
- Optimal liquidation time
- Trade regions

Introduction	P(up)	Hidden liquidity	Latency	Optimal liquidation	Conclusion
00000	●○○○○○○○○○○	000000	0000		O
Modelin	g Level I qu	otes			

Assume the bid-ask spread is 1 tick One of the following must happen first:

- 1 The ask queue is depleted and the price "moves up".
- 2 The bid queue is depleted and the price "moves down".

Introduction	P(up)	Hidden liquidity	Latency	Optimal liquidation	Conclusion
00000	o●ooooooooo	000000	0000		O
Continuc	ous model				

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

- Bid size: *x*_t
- Ask size: y_t

Introduction	P(up)	Hidden liquidity	Latency	Optimal liquidation	Conclusion
00000	○●○○○○○○○○○○	000000	0000		O
Continuc	ous model				

- Bid size: *x*_t
- Ask size: y_t
- The process (x_t, y_t) can be approximated by the diffusion

$$dx_t = \sigma dW_t$$

$$dy_t = \sigma dZ_t$$

$$E(dWdZ) = \rho dt,$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Introduction	P(up)	Hidden liquidity	Latency	Optimal liquidation	Conclusion
00000	○●○○○○○○○○○○	000000	0000		O
Continuo	ous model				

- Bid size: x_t
- Ask size: y_t
- The process (x_t, y_t) can be approximated by the diffusion

$$dx_t = \sigma dW_t$$

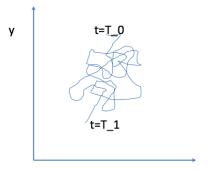
$$dy_t = \sigma dZ_t$$

$$E(dWdZ) = \rho dt,$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• τ_x and τ_y are the times when the sizes hit zero

Introduction	P(up)	Hidden liquidity	Latency	Optimal liquidation	Conclusion
00000	00●000000000	000000	0000		O
The dif	fusion				



X= bid size Y = ask size

 $X_{t} = \sigma W_{t}$ $Y_{t} = \sigma Z_{t}$ $E(dW_{t}dZ_{t}) = \rho dt$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

х

Introduction	P(up)	Hidden liquidity	Latency	Optimal liquidation	Conclusion
00000	000000000000	000000	0000		O
The par	tial different	ial equatior	า		

• Let $u(x, y) = P(\tau_y < \tau_x | x_t = x, y_t = y)$ be the probability that the next price move is up, given the bid and ask sizes.

Introduction	P(up)	Hidden liquidity	Latency	Optimal liquidation	Conclusion
00000	000€00000000	000000	0000		O
The par	tial different	ial equatior	า		

- Let $u(x, y) = P(\tau_y < \tau_x | x_t = x, y_t = y)$ be the probability that the next price move is up, given the bid and ask sizes.
- It solves the following PDE:

$$\sigma^2 (u_{xx} + 2\rho u_{xy} + u_{yy}) = 0, \quad x > 0, \ y > 0,$$

Introduction	P(up)	Hidden liquidity	Latency	Optimal liquidation	Conclusion
00000	000000000000	000000	0000		O
The se			_		

I he partial differential equation

- Let $u(x, y) = P(\tau_y < \tau_x | x_t = x, y_t = y)$ be the probability that the next price move is up, given the bid and ask sizes.
- It solves the following PDE:

$$\sigma^2 (u_{xx} + 2\rho u_{xy} + u_{yy}) = 0, \quad x > 0, \ y > 0,$$

Boundary conditions

$$u(0, y) = 0$$
, for $y > 0$,
 $u(x, 0) = 1$, for $x > 0$.

The price moves as soon as x_t or y_t hit zero

Introduction	P(up)	Hidden liquidity	Latency	Optimal liquidation	Conclusion
00000	0000●0000000	000000	0000		O
Solution					

Theorem

The probability of an upward move in the mid price is given by

$$u(x,y) = \frac{1}{2} \left(1 - \frac{\operatorname{Arctan}\left(\sqrt{\frac{1+\rho}{1-\rho}}\frac{y-x}{y+x}\right)}{\operatorname{Arctan}\left(\sqrt{\frac{1+\rho}{1-\rho}}\right)} \right).$$
(1)

Introduction 00000 P(up) 00000●000000

Hidden liquidity

Latency 0000 Optimal liq

Conclusio O

Uncorrelated queues ($\rho = 0$)

Problem

$$u_{xx} + u_{yy} = 0, \quad x > 0, \ y > 0,$$

and

$$u(0, y) = 0$$
, for $y > 0$,
 $u(x, 0) = 1$, for $x > 0$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction 00000 P(up) 00000●000000

Hidden liquidity

Latency 0000 Optimal liqu 0000000 Conclusion O

Uncorrelated queues ($\rho = 0$)

Problem

$$u_{xx} + u_{yy} = 0, \quad x > 0, \ y > 0,$$

and

$$u(0, y) = 0,$$
 for $y > 0,$
 $u(x, 0) = 1,$ for $x > 0.$

Solution

$$u(x,y) = \frac{2}{\pi} Arctan\left(\frac{x}{y}\right).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

ction P(up)

Hidden liquidity

Latency 0000 Optimal liquidation

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Conclusion O

Perfectly negatively correlated queues (ho=-1)

Problem

$$u_{xx} - 2u_{xy} + u_{yy} = 0, \quad x > 0, \ y > 0,$$

and

$$u(0, y) = 0,$$
 for $y > 0,$
 $u(x, 0) = 1,$ for $x > 0.$

roduction Pl 000 O

P(up) 000000●00000 Hidden liquidity 000000 Latency 0000 Optimal liquidatio

Conclusion 0

Perfectly negatively correlated queues (ho=-1)

Problem

$$u_{xx} - 2u_{xy} + u_{yy} = 0, \quad x > 0, \ y > 0,$$

and

$$u(0, y) = 0,$$
 for $y > 0,$
 $u(x, 0) = 1,$ for $x > 0.$

Solution

$$u(x,y)=\frac{x}{x+y}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Introduction	P(up)	Hidden liquidity	Latency	Optimal liquidation	Conclusion
00000	○○○○○○●○○○○	000000	0000		O
The data	а				

 Best bid and ask quotes for tickers QQQQ, XLF, JPM, over the first five trading days in 2010

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Introduction 00000	P(up)	Hidden liquidity 000000	Latency 0000	Optimal liquidation	Conclusion O
The dat	а				

- Best bid and ask quotes for tickers QQQQ, XLF, JPM, over the first five trading days in 2010
- All tickers are traded on various exchanges (NASDAQ, NYSE and BATS)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction	P(up)	Hidden liquidity	Latency	Optimal liquidation	Conclusion
00000	○○○○○●○○○○	000000	0000		O
The dat	а				

- Best bid and ask quotes for tickers QQQQ, XLF, JPM, over the first five trading days in 2010
- All tickers are traded on various exchanges (NASDAQ, NYSE and BATS)
- Consider the perfectly negatively correlated queues model, i.e.

$$u(x,y)=\frac{x}{x+y}$$

Introduction	P(up)	Hidden liquidity	Latency	Optimal liquidation	Conclusion
00000	○○○○○○○●○○○	000000	0000		O
Data sa	imple				

Obtained from the consolidated quotes of the NYSE-TAQ database, provided by WRDS

symbol	date	time	bid	ask	bsize	asize	exchange
QQQQ	2010-01-04	09:30:23	46.32	46.33	258	242	Т
QQQQ	2010-01-04	09:30:23	46.32	46.33	260	242	Т
QQQQ	2010-01-04	09:30:23	46.32	46.33	264	242	Т
QQQQ	2010-01-04	09:30:24	46.32	46.33	210	271	Р
QQQQ	2010-01-04	09:30:24	46.32	46.33	210	271	Р
QQQQ	2010-01-04	09:30:24	46.32	46.33	161	271	Р

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Introduction	P(up)	Hidden liquidity	Latency	Optimal liquidation	Conclusion
00000	000000000000000000000000000000000000000	000000	0000	0000000	0

Summary statistics

Ticker	Exchange	num qt	qt/sec	spread	bsize+asize	price
XLF	NASDAQ	0.7M	7	0.010	8797	15.02
XLF	NYSE	0.4M	4	0.010	10463	15.01
XLF	BATS	0.4M	4	0.011	7505	14.99
QQQQ	NASDAQ	2.7M	25	0.010	1455	46.30
QQQQ	NYSE	4.0M	36	0.011	1152	46.27
QQQQ	BATS	1.6M	15	0.011	1055	46.28
JPM	NASDAQ	1.2M	11	0.011	87	43.81
JPM	NYSE	0.7M	6	0.012	47	43.77
JPM	BATS	0.6M	5	0.014	39	43.82

Table: Summary statistics

Introduction	P(up)	Hidden liquidity	Latency	Optimal liquidation	Conclusion
00000	○○○○○○○○○○●○	000000	0000		O
Estimation procedure					

1 We filter the data set by exchange and ticker

Introduction	P(up)	Hidden liquidity	Latency	Optimal liquidation	Conclusion
00000	○○○○○○○○○○●○	000000	0000		O
Estimat	ion procedur	e			

- 1 We filter the data set by exchange and ticker
- **2** We "bucket" the imbalance

$$I = \frac{x}{x+y}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

into intervals: $0 < I \le 0.05$, $0.05 < I \le 0.1$, etc..

Introduction	P(up)	Hidden liquidity	Latency	Optimal liquidation	Conclusion	
00000	○○○○○○○○○○●○	000000	0000		O	
Estimation procedure						

- 1 We filter the data set by exchange and ticker
- **2** We "bucket" the imbalance

$$I = \frac{x}{x+y}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

into intervals: $0 < I \le 0.05$, $0.05 < I \le 0.1$, etc..

3 For each bucket, we compute the empirical probability that the price goes up at the next price move, u(I).

Introduction	P(up)	Hidden liquidity	Latency	Optimal liquidation	Conclusion	
00000	○○○○○○○○○○●○	000000	0000		O	
Estimation procedure						

- 1 We filter the data set by exchange and ticker
- 2 We "bucket" the imbalance

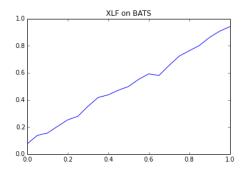
$$I = \frac{x}{x+y}$$

into intervals: $0 < I \le 0.05$, $0.05 < I \le 0.1$, etc..

- **3** For each bucket, we compute the empirical probability that the price goes up at the next price move, u(1).
- We plot the probability that the next price move is up, conditional on the imbalance.

Introduction	P(up)	Hidden liquidity	Latency	Optimal liquidation	Conclusion
00000	○○○○○○○○○○○●	000000	0000		O
Probability of an upward move					

as a function of the imbalance



▲□ > ▲圖 > ▲目 > ▲目 > → 目 - のへで

Introduction	P(up)	Hidden liquidity	Latency	Optimal liquidation	Conclusion
00000	000000000000	●○○○○○	0000		O
Hidden	liquidity				

• Empirically, the probability of the price going up when the ask size is small BUT does not tend to zero.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Introduction	P(up)	Hidden liquidity	Latency	Optimal liquidation	Conclusion
00000	000000000000	●○○○○	0000		O
Hidden I	iquidity				

- Empirically, the probability of the price going up when the ask size is small BUT does not tend to zero.
- Orders on other exchanges prevent the price from moving up (REG NMS)

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Introduction	P(up)	Hidden liquidity	Latency	Optimal liquidation	Conclusion
00000	000000000000	●○○○○○	0000		O
Hidden I	liquidity				

- Empirically, the probability of the price going up when the ask size is small BUT does not tend to zero.
- Orders on other exchanges prevent the price from moving up (REG NMS)
- Hidden orders, iceberg orders, dark pools

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Introduction	P(up)	Hidden liquidity	Latency	Optimal liquidation	Conclusion
00000	000000000000	○●○○○○	0000		O
Boundary	y condition				

• We model a fixed hidden liquidity H

Introduction	P(up)	Hidden liquidity	Latency	Optimal liquidation	Conclusion
00000	000000000000	○●○○○○	0000		O
Boundar	y condition				

- We model a fixed hidden liquidity H
 - This translates in

$$\sigma^2 (p_{xx} + 2\rho p_{xy} + p_{yy}) = 0, \quad x > -H, \ y > -H,$$

with the boundary condition

$$p(-H, y) = 0$$
, for $y > -H$,
 $p(x, -H) = 1$, for $x > -H$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Introduction	P(up)	Hidden liquidity	Latency	Optimal liquidation	Conclusion
00000	000000000000	○●○○○○	0000		O
Boundar	y condition				

- We model a fixed hidden liquidity H
 - This translates in

$$\sigma^2 (p_{xx} + 2\rho p_{xy} + p_{yy}) = 0, \quad x > -H, \ y > -H,$$

with the boundary condition

$$p(-H, y) = 0$$
, for $y > -H$,
 $p(x, -H) = 1$, for $x > -H$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Introduction	P(up)	Hidden liquidity	Latency	Optimal liquidation	Conclusion
00000	000000000000	O●OOOO	0000		O
Boundar	v condition				

- We model a fixed hidden liquidity H
- This translates in

$$\sigma^2 \left(p_{xx} + 2\rho p_{xy} + p_{yy} \right) = 0, \quad x > -H, \ y > -H,$$

with the boundary condition

$$p(-H, y) = 0$$
, for $y > -H$,
 $p(x, -H) = 1$, for $x > -H$.

• In other words we can solve the problem with boundary conditions at zero and use the relation

$$p(x, y; H) = u(x + H, y + H)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Introduction 00000 2(up)

Hidden liquidity

Latency 0000 Optimal liquidatio

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Conclusion 0

Perfectly negatively correlated queues (ho = -1)

Solution

$$p(x, y; H) = \frac{x + H}{x + y + 2H}.$$

Introduction	P(up)	Hidden liquidity	Latency	Optimal liquidation	Conclusion
00000	000000000000	○○○●○○	0000		O
Estimati	on procedur	e			

1 We filter the data set by exchange and ticker

Introduction 00000	P(up) 000000000000	Hidden liquidity	Latency 0000	Optimal liquidation	Conclusion O
Estimati	on procedur	e			

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- 1 We filter the data set by exchange and ticker
- We "bucket" the imbalance in the intervals [0, 0.05), [0.05, 0.1), etc...

Introduction 00000	P(up) 000000000000	Hidden liquidity	Latency 0000	Optimal liquidation	Conclusion O
Estimat	ion procedur	e			

- 1 We filter the data set by exchange and ticker
- We "bucket" the imbalance in the intervals [0, 0.05), [0.05, 0.1), etc...
- **3** For each bucket, we compute the empirical probability that the price goes up $\hat{p}(I)$.

Introduction	P(up)	Hidden liquidity	Latency	Optimal liquidation	Conclusion
00000	000000000000	○○●○○	0000		O
Estimat	ion procedur	ē			

- 1 We filter the data set by exchange and ticker
- We "bucket" the imbalance in the intervals [0, 0.05),
 [0.05, 0.1), etc...
- **3** For each bucket, we compute the empirical probability that the price goes up $\hat{p}(I)$.
- 4 The correlation -1 model predicts

$$p = \frac{x+H}{x+y+2H} = \frac{I + \frac{H}{x+y}}{1+2\frac{H}{x+y}} = \frac{I+h}{1+2h} = \frac{1}{1+2h}(I-0.5) + 0.5$$

where h is the normalized hidden size

Introduction 00000	P(up) 000000000000	Hidden liquidity	Latency 0000	Optimal liquidation	Conclusion O
Estimat	ion procedur	e			

- 1 We filter the data set by exchange and ticker
- We "bucket" the imbalance in the intervals [0, 0.05),
 [0.05, 0.1), etc...
- **3** For each bucket, we compute the empirical probability that the price goes up $\hat{p}(I)$.
- 4 The correlation -1 model predicts

$$p = \frac{x+H}{x+y+2H} = \frac{I + \frac{H}{x+y}}{1+2\frac{H}{x+y}} = \frac{I+h}{1+2h} = \frac{1}{1+2h}(I-0.5) + 0.5$$

where h is the normalized hidden size

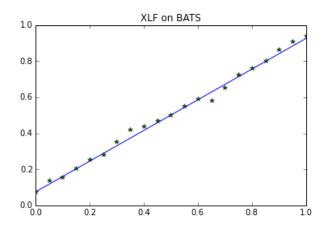
5 We regress

$$\hat{p}(I) - 0.5 = \beta(I - 0.5) + \epsilon$$

and obtain an implied hidden liquidity $h = 0.5(1/\beta - 1)$ for each exchange.

Introduction	P(up)	Hidden liquidity	Latency	Optimal liquidation	Conclusion
00000	000000000000	○○○●○	0000		O
Probabi	lity of an up	ward move			

hidden size= 0.09



▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Introduction	P(up)	Hidden liquidity	Latency	Optimal liquidation	Conclusion
00000	000000000000	○○○○●	0000		O
Results					

The hidden size tells us of how informative the level I quotes are.

Ticker	NYSE	BATS	NASDAQ
XLF	0.21	0.09	0.09
QQQQ	0.42	0.39	0.28
JPM	0.32	0.23	0.18

Table: Implied hidden liquidity across tickers and exchanges

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

But this information decays with latency

Introduction	P(up)	Hidden liquidity	Latency	Optimal liquidation	Conclusion
00000	000000000000	000000	●000		O
Latency					

- Latency arises in every trade execution:
 - Time of datafeed to travel from exchange to execution machine;

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- 2 The algorithm making a decision;
- 3 The order being sent back to the market.
- We assume there is a fixed latency L
- What you see is not what you get

Introduction	P(up)	Hidden liquidity	Latency	Optimal liquidation	Conclusion
00000	000000000000	000000	0●00		O
The cost	of latency				

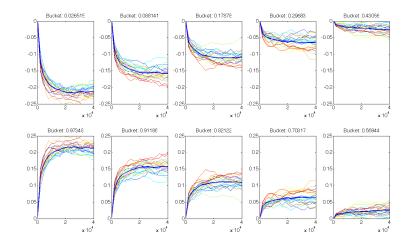
There is empirical evidence that selling on small imbalances can be profitable:

- On each quote *i*, record the imbalance I_i and the bid price S_i^b
- At a later quote in the future j, L milliseconds later, record the bid price S_i^b

• Take averages of $(S_i^b - S_i^b)$ for I_i in different buckets

Introduction	P(up)	Hidden liquidity	Latency	Optimal liquidation	Conclusion
00000	00000000000	000000	0000	0000000	0

Cost as a fraction of the spread



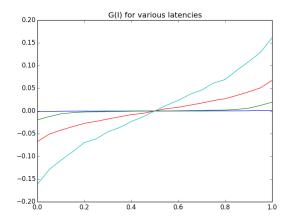
x axis is time, y axis is cost. Each graph is an imbalance decile.

▲ロト ▲圖ト ▲注ト ▲注ト 二注 …のへの

Introduction	P(up)	Hidden liquidity	Latency	Optimal liquidation	Conclusion
00000	000000000000	000000	000●		O
The cost	of latency				

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Transaction cost for L=1ms, 10ms, 100ms, 1000ms



Introduction 00000 2(nb)

Hidden liquidity 000000 Latency 0000 Optimal liquidation •000000

Conclusion O

The Optimal Liquidation Problem

The imbalance process I_t is a Markov process.

• Goal: Identify an optimal time τ in [0, T - L] to sell the share at the bid price, i.e.,

$$V(t,x) = \sup_{0 \le \tau \le T-L} E[P^{b}_{\tau+L} - P^{b}_{0}|I_{t} = x],$$

for $x \in [0, 1]$.

Introduction	P(up)	Hidden liquidity	Latency	Optimal liquidation	Conclusion
00000	000000000000	000000	0000	○●○○○○○	O

Modeling the imbalance

- I(n) for $0 \le n \le N$ is a finite state Markov process.
- 20 transient states, (0,0.05], (0.05,0.1], etc...
- We estimate the payoff function G^L(x) = E[P_L^b P₀^b|I₀ = x] for a given latency L and imbalance x
- We estimate the transition probabilities $p_{ij}^{up},\,p_{ij}^{down}$ and p_{ij}^{stay} empirically

Introduction	P(up)	Hidden liquidity	Latency	Optimal liquidation	Conclusion
00000	000000000000	000000	0000		O
Dynamic	c Program				

• Bellman's recursion:

$$V^{L}(n,i) = \max \left\{ G^{L}(i), E[V^{L}(n+1,I(n+1))|I(n)=i] \right\},$$

• Conditional probability:

$$E[V^{L}(n+1, I(n+1))|I(n) = i] = \sum_{k=1}^{20} p_{ik}^{stay} V^{L}(n+1, k)$$

$$+\sum_{k=1}^{20}p_{ik}^{up}(V^{L}(n+1,k)+1)+\sum_{k=1}^{20}p_{ik}^{down}(V^{L}(n+1,k)-1)$$

Introduction 00000

Hidden liquidity

Latency 0000 Optimal liquidation

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

Conclusion O

Trade/no Trade Regions

Define

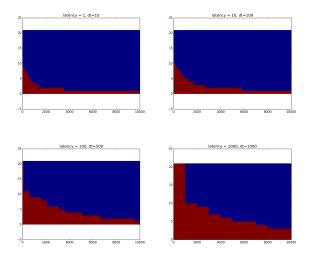
$$D = \left\{ (t, x) \in [0, T] \times [0, 1) : V(t, x) = G^{L}(x) \right\},\$$
$$C = \left\{ (t, x) \in [0, T] \times [0, 1) : V(t, x) < G^{L}(x) \right\}.$$

Proposition

Fix $t \in [0, T]$, $x \in [0, 1]$, then $V^{L}(t, x)$ is decreasing in L for $L \in [0, T]$.

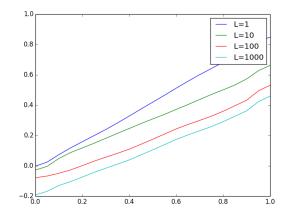
Introduction	P(up)	Hidden liquidity	Latency	Optimal liquidation	Conclusion
00000	000000000000	000000	0000	0000€00	O

Trade/no Trade Regions



◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Introduction	P(up)	Hidden liquidity	Latency	Optimal liquidation	Conclusion
00000	000000000000	000000	0000		O
The val	ue function				



くりゃく 前・ 本語・ 本語・ オロ・

Introduction 00000 '(up) 00000000000000 Hidden liquidity 000000 Latency 0000 Optimal liquidation

Conclusion O

Backtesting the Trade Regions

- Calibrate the trade region based on 1 day of 5 year US treasuries data
- 2 Backtest the trade region on 10 out of sample days
- 8 Results:
 - $P^b_{\tau+L} P^b_0 = 42\%$ of the bid ask spread, for L=1ms
 - $P^{b}_{\tau+L} P^{b}_{0} = 31\%$ of the bid ask spread, for L=10ms
 - $P^b_{\tau+L} P^b_0 = 20\%$ of the bid ask spread, for L=100ms
 - $P^b_{\tau+L} P^b_0 = 9\%$ of the bid ask spread, for L=1000ms

Introduction	P(up)	Hidden liquidity	Latency	Optimal liquidation	Conclusion
00000	000000000000	000000	0000		•
Conclus	sion				

- 1 We can estimate the probability of the next price move:
 - Conditional on the bid and ask sizes
 - Conditional on imbalance if the sizes are negatively correlated

- Conditional on hidden liquidity for a ticker/exchange pair
- **2** We can estimate the cost of latency:
 - By solving an optimal stopping problem
 - Backtesting trade/no trade regions on level I data