Introduction to Hidden Markov Model and Its Application

April 16, 2005
Dr. Sung-Jung Cho
sung-jung.cho@samsung.com
Samsung Advanced Institute of Technology (SAIT)

Contents

- Introduction
- Markov Model
- Hidden Markov model (HMM)
- Three algorithms of HMM
- Model evaluation
- Most probable path decoding
- Model training
- Pattern classification by HMM
- Application of HMM to on-line handwriting recognition with HMM toolbox for Matlab
- Summary
- References

Sequential Data

- Data are sequentially generated according to time or index
- Spatial information along time or index

Advantage of HMM on Sequential Data

- Natural model structure: doubly stochastic process
- transition parameters model temporal variability
- output distribution model spatial variability
- Efficient and good modeling tool for
- sequences with temporal constraints
- spatial variability along the sequence
- real world complex processes
- Efficient evaluation, decoding and training algorithms
- Mathematically strong
- Computaionally efficient
- Proven technology!
- Successful stories in many applications

Successful Application Areas of HMM

- On-line handwriting recognition
- Speech recognition
- Gesture recognition
- Language modeling
- Motion video analysis and tracking
- Protein sequence/gene sequence alignment
- Stock price prediction
- ...

What's HMM?

Hidden Markov Model

Markov Model

- Scenario
- Graphical representation
- Definition
- Sequence probability
- State probability

Markov Model: Scenario

- Classify a weather into three states
- State 1: rain or snow
- State 2: cloudy
- State 3: sunny

- By carefully examining the weather of some city for a long time, we found following weather change pattern

		Tomorrow		
	Rain/snow	Cloudy	Sunny	
Tod ay	Rain/Snow	0.4	0.3	0.3
	Cloudy	0.2	0.6	0.2
	Sunny	0.1	0.1	0.8

Assumption: tomorrow weather depends only on today one!

Markov Model: Graphical Representation

- Visual illustration with diagram

- Each state corresponds to one observation
- Sum of outgoing edge weights is one

Markov Model: Definition

- Observable states

$$
\{1,2, \cdots, N\}
$$

- Observed sequence

$$
q_{1}, q_{2}, \cdots, q_{T}
$$

- $1^{\text {st }}$ order Markov assumption

$$
P\left(q_{t}=j \mid q_{t-1}=i, q_{t-2}=k, \cdots\right)=P\left(q_{t}=j \mid q_{t-1}=i\right)
$$

- Stationary

Bayesian network representation

$$
P\left(q_{t}=j \mid q_{t-1}=i\right)=P\left(q_{t+l}=j \mid q_{t+l-1}=i\right)
$$

Markov Model: Definition (Cont.)

- State transition matrix

- Where

$$
a_{i j}=P\left(q_{t}=j \mid q_{t-1}=i\right), \quad 1 \leq i, j \leq N
$$

- With constraints

$$
a_{i j} \geq 0, \quad \sum_{j=1}^{N} a_{i j}=1
$$

- Initial state probability

$$
\pi_{i}=P\left(q_{1}=i\right), \quad 1 \leq i \leq N
$$

Markov Model: Sequence Prob.

- Conditional probability

$$
P(A, B)=P(A \mid B) P(B)
$$

- Sequence probability of Markov model

$$
\begin{aligned}
& P\left(q_{1}, q_{2}, \cdots, q_{T}\right) \quad \text { Chain rule } \\
& =P\left(q_{1}\right) P\left(q_{2} \mid q_{1}\right) \cdots P\left(q_{T-1} \mid q_{1}, \cdots, q_{T-2}\right) P\left(q_{T} \mid q_{1}, \cdots, q_{T-1}\right) \\
& =P\left(q_{1}\right) P\left(q_{2} \mid q_{1}\right) \cdots P\left(q_{T-1} \mid q_{T-2}\right) P\left(q_{T} \mid q_{T-1}\right)
\end{aligned}
$$

$1^{\text {st }}$ order Markov assumption

Markov Model: Sequence Prob. (Cont.)

- Question: What is the probability that the weather for the next 7 days will be "sun-sun-rain-rain-sun-cloudy-sun" when today is sunny?
S_{1} : rain, S_{2} :cloudy, S_{3} : sunny
$P(O \mid$ model $)=P\left(S_{3}, S_{3}, S_{3}, S_{1}, S_{1}, S_{3}, S_{2}, S_{3} \mid\right.$ model $)$
$=P\left(S_{3}\right) \cdot P\left(S_{3} \mid S_{3}\right) \cdot P\left(S_{3} \mid S_{3}\right) \cdot P\left(S_{1} \mid S_{3}\right)$
- $P\left(S_{1} \mid S_{1}\right) P\left(S_{3} \mid S_{1}\right) P\left(S_{2} \mid S_{3}\right) P\left(S_{3} \mid S_{2}\right)$
$=\pi_{3} \cdot a_{33} \cdot a_{33} \cdot a_{31} \cdot a_{11} \cdot a_{13} \cdot a_{32} \cdot a_{23}$
$=1 \cdot(0.8)(0.8)(0.1)(0.4)(0.3)(0.1)(0.2)$
$=1.536 \times 10^{-4}$

Markov Model: State Probability

- State probability at time t: $P\left(q_{t}=i\right)$

- Simple but slow algorithm:
- Probability of a path that ends to state i at time t :

$$
\begin{aligned}
& Q_{t}(i)=\left(q_{1}, q_{2}, \cdots, q_{t}=i\right) \\
& P\left(Q_{t}(i)\right)=\pi_{q_{1}} \prod_{k=2}^{t} P\left(q_{k} \mid q_{k-1}\right)
\end{aligned}
$$

- Summation of probabilities of \sim the paths that ends to I at t

$$
\begin{gathered}
P\left(q_{t}=i\right)=\sum_{\text {2005, s.-J. Cho }}^{\text {all } Q_{t}(i)^{\prime} s}{ }_{2} P\left(Q_{t}(i)\right), ~
\end{gathered}
$$

Markov Model: State Prob. (Cont.)

- State probability at time t: $P\left(q_{t}=i\right)$

- Efficient algorithm
- Recursive path probability calculation

Each node stores the sum of probabilities of partial paths $P\left(q_{t}=i\right)=\sum_{j=1}^{N} P\left(q_{t-1}=j, q_{t}=i\right)$
$=\sum_{j=1}^{N} P\left(q_{t-1}=j\right) P\left(q_{t}=i \mid q_{t-1}=j\right)$
$=\sum_{j=1}^{N} P\left(q_{t-1}=j\right) \cdot a_{j i}$
April 16, 2005, S.-J. Cho

What's HMM?

Hidden Markov Model

Hidden Markov Model

- Example
- Generation process
- Definition
- Model evaluation algorithm
- Path decoding algorithm
- Training algorithm

Hidden Markov Model: Example

- N urns containing color balls
- M distinct colors
- Each urn contains different number of color balls

HMM: Generation Process

- Sequence generating algorithm
- Step 1: Pick initial urn according to some random process
- Step 2: Randomly pick a ball from the urn and then replace it
- Step 3: Select another urn according to a random selection process
- Step 4: Repeat steps 2 and 3

April 16, 2005, S.-J. Cho

Markov process: $\{q(t)\}$

Output process: $\{f(x \mid q)\}$

HMM: Hidden Information

- Now, what is hidden?

- We can just see the chosen balls
- We can't see which urn is selected at a time
- So, urn selection (state transition) information is hidden

HMM: Definition

- Notation: $\lambda=(\mathrm{A}, \mathrm{B}, \Pi)$
(1) $\mathrm{N}:$ Number of states
(2) M : Number of symbols observable in states

$$
V=\left\{v_{1}, \cdots, v_{M}\right\}
$$

(3) A: State transition probability distribution

$$
A=\left\{a_{i j}\right\}, \quad 1 \leq i, j \leq N
$$

(4) B : Observation symbol probability distribution

$$
B=\left\{b_{i}\left(v_{k}\right)\right\}, \quad 1 \leq i \leq N, 1 \leq j \leq M
$$

(5) П: Initial state distribution

$$
\pi_{i}=P\left(q_{1}=i\right), \quad 1 \leq i \leq N
$$

HMM: Dependency Structure

- 1-st order Markov assumption of transition

$$
P\left(q_{t} \mid q_{1}, q_{2}, \cdots, q_{t-1}\right)=P\left(q_{t} \mid q_{t-1}\right)
$$

- Conditional independency of observation parameters

$$
P\left(X_{t} \mid q_{t}, X_{1}, \cdots, X_{t-1}, q_{1}, \cdots, q_{t-1}\right)=P\left(X_{t} \mid q_{t}\right)
$$

Bayesian network representation

HMM: Example Revisited

- \# of states: $\mathrm{N}=3$
- \# of observation: $\mathrm{M}=3$

$$
V=\{R, G, B\}
$$

- Initial state distribution

$$
\pi=\left\{P\left(q_{1}=i\right)\right\}=[1,0,0]
$$

- State transition probability distribution

$$
A=\left\{a_{i j}\right\}=\left[\begin{array}{lll}
0.6 & 0.2 & 0.2 \\
0.1 & 0.3 & 0.6 \\
0.3 & 0.1 & 0.6
\end{array}\right]
$$

- Observation symbol probability distribution

$$
B=\left\{b_{i}\left(v_{k}\right)\right\}=\left[\begin{array}{lll}
3 / 6 & 2 / 6 & 1 / 6 \\
1 / 6 & 3 / 6 & 2 / 6 \\
1 / 6 & 1 / 6 & 4 / 6
\end{array}\right]
$$

HMM: Three Problems

- What is the probability of generating an observation sequence?

- Model evaluation

$$
P\left(X=x_{1}, x_{2}, \cdots, x_{T} \mid \lambda\right)=?
$$

- Given observation, what is the most probable transition sequence?
- Segmentation or path analysis
$Q^{*}=\arg \max { }_{Q=\left(q_{1}, \cdots, q_{T}\right)} P(Q, X \mid \lambda)$

- How do we estimate or optimize the parameters of an HMM?
- Training problem
$P(X \mid \lambda=(A, B, \pi))<P\left(X \mid \lambda^{\prime}=\left(A^{\prime}, B^{\prime}, \pi^{\prime}\right)\right)$ April 16, 2005, S.-J. Cho

Model Evaluation

Forward algorithm
Backward algorithm

Definition

- Given a model λ
- Observation sequence: $X=x_{1}, x_{2}, \cdots, x_{T}$
- $\mathrm{P}(\mathrm{X} \mid \lambda)=$?
- $P(X \mid \lambda)=\sum_{Q} P(X, Q \mid \lambda)=\sum_{Q} P(X \mid Q, \lambda) P(Q \mid \lambda)$
(A path or state sequence: $Q=q_{1}, \cdots, q_{T} \quad$)

Solution

- Easy but slow solution: exhaustive enumeration

$$
\begin{aligned}
& P(X \mid \lambda)=\sum_{Q} P(X, Q \mid \lambda)=\sum_{Q} P(X \mid Q, \lambda) P(Q \mid \lambda) \\
& =\sum_{Q} b_{q_{1}}\left(x_{1}\right) b_{q_{2}}\left(x_{2}\right) \cdots b_{q_{T}}\left(x_{T}\right) \pi_{q_{1}} a_{q_{1} q_{2}} a_{q_{2} q_{3}} \cdots a_{q_{T-1} q_{T}}
\end{aligned}
$$

- Exhaustive enumeration = combinational explosion!

$$
O\left(N^{T}\right)
$$

- Smart solution exists?
- Yes!
- Dynamic Programming technique
- Lattice structure based computation
- Highly efficient -- linear in frame length

Forward Algorithm

- Key idea
- Span a lattice of N states and T times
- Keep the sum of probabilities of all the paths coming to each state i at time t

- Forward probability

$$
\begin{aligned}
\alpha_{t}(j) & =P\left(x_{1} x_{2} \ldots x_{t}, q_{t}=S_{j} \mid \lambda\right) \\
& =\sum_{Q_{t}} P\left(x_{1} x_{2} \ldots x_{t}, Q_{t}=q_{1} \ldots q_{t} \mid \lambda\right) \\
& =\sum_{i=1}^{N} \alpha_{t-1}(i) a_{i j} b_{j}\left(x_{t}\right)
\end{aligned}
$$

Forward Algorithm

- Initialization

$$
\alpha_{1}(i)=\pi_{i} b_{i}\left(\mathbf{x}_{1}\right) \quad 1 \leq i \leq N
$$

- Induction

$$
\alpha_{t}(j)=\sum_{i=1}^{N} \alpha_{t-1}(i) a_{i j} b_{j}\left(\mathbf{x}_{t}\right) \quad 1 \leq j \leq N, t=2,3, \cdots, T
$$

- Termination

$$
P(\mathbf{X} \mid \lambda)=\sum_{i=1}^{N} \alpha_{T}(i)
$$

April 16, 2005, S.-J. Cho

Numerical Example: $P(\mathrm{RRGB} \mid \lambda)$ [신봉기 03]

Backward Algorithm (1)

- Key Idea
- Span a lattice of N states and T times
- Keep the sum of probabilities of all the outgoing paths at each state i at time $\mathrm{x}_{1} \mathrm{t}$

x_{1}	x_{2}	x_{3}	x_{4}	x_{1}	$\cdots \cdots \cdots \cdots \cdots$	x_{T}	
0	0	0	0	0	$\cdots \cdots$	0	
0	0	0	0	0	$\cdots \cdots$	0	
0	0	0	0	0	$\cdots \cdots$	0	
0	0	0	0	0	\cdots	\cdots	0

- Backward probability

$$
\begin{aligned}
\beta_{t}(i) & =P\left(x_{t+1} x_{t+2} \ldots x_{T} \mid q_{t}=S_{i}, \lambda\right) \\
& =\sum_{Q_{t+1}} P\left(x_{t+1} x_{t+2} \ldots x_{T}, Q_{t+1}=q_{t+1} \ldots q_{T} \mid q_{t}=S_{i}, \lambda\right) \\
& =\sum_{j=1}^{N} a_{i j} b_{j}\left(x_{t+1}\right) \beta_{t+1}(j)
\end{aligned}
$$

April 16, 2005, S.-J. Cho

Backward Algorithm (2)

- Initialization

$$
\beta_{T}(i)=1 \quad 1 \leq i \leq N
$$

- Induction

$$
\beta_{t}(i)=\sum_{j=1}^{N} a_{i j} b_{j}\left(\mathbf{x}_{t+1}\right) \beta_{t+1}(j) \quad 1 \leq i \leq N, \quad t=T-1, T-2, \cdots, 1
$$

x_{1}	x_{2}	x_{3}	x_{4}	x_{t}	$\cdots \cdots \cdots \cdots \cdots$		
0	0	0	0	0	x_{T}		
0	0	0	0	0	0	0	0

The Most Probable Path Decoding

State sequence
Optimal path
Viterbi algorithm
Sequence segmentation

The Most Probable Path

- Given a model λ
- Observation sequence: $X=\mathbf{x}_{1}, \mathbf{x}_{2}, \cdots, \mathbf{x}_{\mathbf{T}}$
- $P(X, Q \mid \lambda)=$?
- $Q^{*}=\arg \max _{Q} P(X, Q \mid \lambda)=\arg \max _{Q} P(X \mid Q, \lambda) P(Q \mid \lambda)$
- (A path or state sequence: $Q=q_{1}, \cdots, q_{T}$)

Viterbi Algorithm

- Purpose
- An analysis for internal processing result
- The best, the most likely state sequence
- Internal segmentation
- Viterbi Algorithm
- Alignment of observation and state transition
- Dynamic programming technique

Viterbi Path Idea

- Key idea
- Span a lattice of N states and T times
- Keep the probability and the previous node of the most probable path coming to each state i at time t
- Recursive path selection
- Path probability: $\delta_{t+1}(j)=\max _{1 \leq i \leq N} \delta_{t}(i) a_{i j} b_{j}\left(\mathbf{x}_{t+1}\right)$
- Path node:

$$
\psi_{t+1}(j)=\underset{1 \leq i \leq N}{\arg \max } \delta_{t}(i) a_{i j}
$$

$$
\delta_{t}(1) a_{1 j} b_{j}\left(\mathbf{x}_{t+1}\right)
$$

Viterbi Algorithm

- Introduction:

$$
\begin{aligned}
& \delta_{1}(i)=\pi_{i} b_{i}\left(\mathbf{x}_{1}\right) \\
& \psi_{1}(i)=0
\end{aligned}
$$

- Recursion:

$$
\begin{aligned}
& \delta_{t+1}(j)=\max _{1 \leq i \leq N} \delta_{t}(i) a_{i j} b_{j}\left(\mathbf{x}_{t+1}\right) \\
& \psi_{t+1}(j)=\underset{i \leq i \leq N}{\arg \max } \delta_{t}(i) a_{i j}
\end{aligned}
$$

- Termination:
$P^{*}=\max _{1 \leq i \leq N} \delta_{T}(i)$
$q_{T}^{*}=\arg _{\max }^{\operatorname{lis}} \boldsymbol{\delta}_{T}(i)$
- Path backtracking:
$q_{t}^{*}=\psi_{t+1}\left(q_{t+1}^{*}\right), \quad t=T-1, \ldots, 1$

Numerical Example: P(RRGB,Q*| $\boldsymbol{\lambda}$ [신봉기 03]

Parameter Reestimation

HMM training algorithm Maximum likelihood estimation

Baum-Welch reestimation

HMM Training Algorithm

- Given an observation sequence $X=\mathbf{x}_{1}, \mathbf{x}_{2}, \cdots, \mathbf{x}_{\mathbf{T}}$
- Find the model parameter $\lambda^{*}=(A, B, \pi)$
- s.t. $P\left(X \mid \lambda^{*}\right) \geq P(X \mid \lambda)$ for $\forall \lambda$
- Adapt HMM parameters maximally to training samples
- Likelihood of a sample
$P(X \mid \lambda)=\sum_{Q} P(X \mid Q, \lambda) P(Q \mid \lambda)$

State transition is hidden!

- NO analytical solution
- Baum-Welch reestimation (EM)
- iterative procedures that locally maximizes $\mathrm{P}(\mathrm{X} \mid \lambda)$
- convergence proven
- MLE statistic estimation

Maximum Likelihood Estimation

- MLE "selects those parameters that maximizes the probability function of the observed sample."
- [Definition] Maximum Likelihood Estimate
$-\Theta$: a set of distribution parameters
- Given X, Θ^{*} is maximum likelihood estimate of Θ if
$-\quad f\left(X \mid \Theta^{*}\right)=\max \Theta f(X \mid \Theta)$

MLE Example

- Scenario
- Known: 3 balls inside urn
- (some red; some white)
- Unknown: R = \# red balls
- Observation: (two reds)

- Two models
$-\mathrm{P}(\mathrm{O} \mid \mathrm{R}=2)=\binom{2}{2}\binom{1}{0} /\binom{3}{2}=\frac{1}{3}$
$-P(C \mid R=3)=\binom{3}{2} /\binom{3}{2}=1$

- Which model?
$-L\left(\lambda_{R=3}\right)>L\left(\lambda_{R=2}\right)$
- Model(R=3) is our choice

MLE Example (Cont.)

- $\operatorname{Model}(\mathrm{R}=3)$ is a more likely strategy, unless we have a priori knowledge of the system.
- However, without an observation of two red balls
- No reason to prefer $P\left(\lambda_{R=3}\right)$ to $P\left(\lambda_{R=2}\right)$
- ML method chooses the set of parameters that maximizes the likelihood of the given observation.
- It makes parameters maximally adapted to training data.

EM Algorithm for Training

-With $\lambda^{(t)}=<\left\{a_{i j}\right\},\left\{b_{i k}\right\}, \pi_{i}>$, estimate EXPECTATION of following quantities:
-Expected number of state i visiting
-Expected number of transitions from i to j
-With following quantities:
-Expected number of state i visiting
-Expected number of transitions from i to j

- Obtain the MAXIMUM LIKELIHOOD of
$\lambda^{(t+1)}=<\left\{a_{i j}^{\prime}\right\},\left\{b_{i k}^{\prime}\right\}, \pi_{i}>$

Expected Number of $\mathbf{S}_{\mathbf{i}}$ Visiting

$$
\begin{aligned}
& \gamma_{t}(i)=P\left(q_{t}=S_{i} \mid X, \lambda\right) \\
& =P\left(q_{t}=S_{i}, X \mid \lambda\right) / P(X \mid \lambda) \\
& =\frac{\alpha_{t}(i) \beta_{t}(i)}{\sum_{j} \alpha_{t}(j) \beta_{t}(j)}
\end{aligned}
$$

$$
\Gamma(i)=\sum_{t_{x}} \gamma_{t}(i)
$$

April 16, 2005, S.-J. Cho

Expected Number of Transition

$$
\begin{aligned}
& \xi_{t}(i, j)=P\left(q_{t}=S_{i}, q_{t+1}=S_{j} \mid X, \lambda\right)=\frac{\alpha_{t}(i) a_{i j} b_{j}\left(x_{t+1}\right) \beta_{t+1}(j)}{\sum_{i} \sum_{j} \alpha_{i}(i) a_{i j} b_{j}\left(x_{t+1}\right) \beta_{t+1}(j)} \\
& \Xi(i, j)=\sum_{t} \xi_{t}(i, j)
\end{aligned}
$$

Parameter Reestimation

- MLE parameter estimation

$$
\bar{a}_{i j}=\frac{\sum_{t=1}^{T-1} \xi_{t}(i, j)}{\sum_{t=1}^{T-1} \Gamma_{t}(i)}
$$

$$
\overline{b_{i}}\left(v_{k}\right)=\frac{\sum_{t=1}^{T} \Gamma_{t}(i) \delta\left(x_{t}, v_{k}\right)}{\sum_{t=1}^{T} \Gamma_{t}(i)}
$$

$$
\overline{\bar{\pi}_{i}}=\gamma_{1}(i)
$$

- Iterative: $P\left(X \mid \lambda^{(t+1)}\right) \geq P\left(X \mid \lambda^{(t)}\right)$
- convergence proven:
- arriving local optima

Pattern Classification by HMM

- Pattern classification
- Extension of HMM structure
- Extension of HMM training method
- Practical issues of HMM
- HMM history

Pattern Classification by HMM

- Construct one HMM per each class k
- $\lambda_{1}, \cdots, \lambda_{N}$
- Train each HMM λ_{k} with samples D_{k}
- Baum-Welch reestimation algorithm
- Calculate model likelihood of $\lambda_{1}, \cdots, \lambda_{N}$ with observation X - Forward algorithm: $P\left(X \mid \lambda_{k}\right)$
- Find the model with maximum a posteriori probability

$$
\begin{aligned}
\lambda^{*} & =\operatorname{argmax}_{\lambda_{\mathrm{k}}} P\left(\lambda_{k} \mid X\right) \\
& =\operatorname{argmax}_{\lambda_{\mathrm{k}}} P\left(\lambda_{k}\right) P\left(X \mid \lambda_{k}\right) / P(X) \\
& =\operatorname{argmax}_{\lambda_{\mathrm{k}}} P\left(\lambda_{k}\right) P\left(X \mid \lambda_{k}\right)
\end{aligned}
$$

Extension of HMM Structure

- Extension of state transition parameters
- Duration modeling HMM
- More accurate temporal behavior
- Transition-output HMM
- HMM output functions are attached to transitions rather than states
- Extension of observation parameter
- Segmental HMM
- More accurate modeling of trajectories at each state, but more computational cost
- Continuous density HMM (CHMM)
- Output distribution is modeled with mixture of Gaussian
- Semi-continuous HMM
- Mix of continuous HMM and discrete HMM by sharing Gaussian components

Extension of HMM Training Method

- Maximum Likelihood Estimation (MLE)*
- maximize the probability of the observed samples
- Maximum Mutual Information (MMI) Method
- information-theoretic measure
- maximize average mutual information:

$$
I^{*}=\max _{\lambda}\left\{\sum_{v=1}^{V}\left[\log P\left(X^{v} \mid \lambda_{v}\right)-\log \sum_{w=1}^{V} P\left(X^{w} \mid \lambda_{w}\right)\right]\right\}
$$

- maximize discrimination power by training models together
- Minimal Discriminant Information (MDI) Method
- minimize the DI or the cross entropy between pd(signal) and pd(HMM)'s
- use generalized Baum algorithm

Practical Issues of HMM

- Architectural and behavioral choices
- the unit of modeling -- design choice
- type of models: ergodic, left-right, etc.
- number of states
- observation symbols;discrete, continuous; mixture number
- Initial estimates
- A, π : adequate with random or uniform initial values
- B : good initial estimates are essential for CHMM

Practical Issues of HMM (Cont.)

- Scaling

$$
\alpha_{t}(i)=\prod_{s=1}^{t-1} a_{s, s+1} \prod_{s=1}^{t} b_{s}\left(x_{s}\right)
$$

- heads exponentially to zero: --> scale by $1 / \mathrm{Si}=1, \ldots, \mathrm{~N}$ at(i)
- Multiple observation sequences
- accumulate the expected freq. with weight $\mathrm{P}(\mathrm{X}(\mathrm{k}) \| \mathrm{I})$
- Insufficient training data
- deleted interpolation with desired model \& small model
- output prob. smoothing (by local perturbation of symbols)
- output probability tying between different states

HMM History [Roweis]

- Markov('13) and Shannon ('48, '51) studied Markov chains
- Baum et. Al (BP'66, BE'67 ...) developed many theories of "probabilistic functions of Markov chains"
- Viterbi ('67) developed an efficient optimal state search algorithm
- Application to speech recognition started
- Baker('75) at CMU
- Jelinek's group ('75) at IBM
- Dempster, Laird \& Rubin ('77) recognized a general form of the Baum-Welch algorithm

Application of HMM to on-line handwriting recognition with HMM SW

- SW tools for HMM
- Introduction to on-line handwriting recognition
- Data preparation
- Training \& testing

SW Tools for HMM

- HMM toolbox for Matlab
- Developed by Kevin Murphy
- Freely downloadable SW written in Matlab (Hmm... Matlab is not free!)
- Easy-to-use: flexible data structure and fast prototyping by Matlab
- Somewhat slow performance due to Matlab
- Download: http://www.cs.ubc.ca/~ murphyk/Software/HMM/hmm.html
- HTK (Hidden Markov toolkit)
- Developed by Speech Vision and Robotics Group of Cambridge University
- Freely downloadable SW written in C
- Useful for speech recognition research: comprehensive set of programs for training, recognizing and analyzing speech signals
- Powerful and comprehensive, but somewhat complicate and heavy package
- Download: http://htk.eng.cam.ac.uk/

SW Tools: HMM Toolbox for Matlab

- Support training and decoding for
- Discrete HMMs
- Continuous HMMs with full, diagonal, or spherical covariance matrix
- 3 Algorithms for discrete HMM
- Model evaluation (Forward algorithm)
- Log_likelihood $=$ dhmm_logprob(data, initial state probability, transition probability matrix, observation probability matrix)
- Viterbi decoding algorithm
- 1) $\mathrm{B}=$ multinomial_prob(data, observation matrix);

$$
\leftarrow \mathrm{B}(\mathrm{i}, \mathrm{t})=\mathrm{P}\left(\mathrm{y} _\mathrm{t} \mid \mathrm{Q} _\mathrm{t}=\mathrm{i}\right) \text { for all } \mathrm{t}, \mathrm{i}:
$$

- 2) [path, log_likelihood] = viterbi_path(initial state probability, transition matrix, B)
- Baum-Welch algorithm
- [LL, prior2, transmat2, obsmat2] = dhmm_em(data, prior1, transmat1, obsmat1, 'max_iter', 5);

On-line Handwriting Recognition [Sin]

- Handwriting
- Natural input method to human
- Sequence of some writing units
- Temporally ordered
- Time series of (X, Y) ink points on tablet
- Recognition flow

Data Preparation

0

(

- Chaincode data set for class ' 0 '
- data0 $\{1\}=[98877766655544321161515151514141413$ 131312121110998]
- data $0\{2\}=[88777665555443211161515151515141414$ 141312111010999]
- dataO\{3\} $=[766666655543211616161515151514141414$ 14141311109988887766]
- Chaincode data set for class ' 1 '
- data1\{1\} $=[555555555554$]
- data1\{2\} $=[56666666654$]
- data1\{3\} = [55 5666666764 3]

HMM Initialization

- HMM for class ' 0 ' and randomly initialization
- hmm0.prior = [100];
- hmm0.transmat $=\operatorname{rand}(3,3) ; \% 3$ by 3 transition matrix
- $\operatorname{hmm} 0 \cdot \operatorname{transmat}(2,1)=0 ; \operatorname{hmm} 0 \cdot \operatorname{transmat}(3,1)=0 ; \operatorname{hmm} 0 \cdot \operatorname{transmat}(3,2)=0$;
- hmm0.transmat $=$ mk_stochastic $($ hmm0.transmat $)$;
- hmm0.transmat
0.200 .470 .33
$0 \quad 0.450 .55$
$0 \quad 0.001 .00$

- hmm0.obsmat $=\operatorname{rand}(3,16) ; \%$ \# of states * \# of observation
$-\mathrm{hmm} 0 . \mathrm{obsmat}=\mathrm{mk} _$stochastic $(\mathrm{hmm} 0 . \mathrm{obsmat})$
0.020 .040 .050 .000 .120 .110 .130 .000 .060 .090 .020 .110 .060 .050 .040 .08
0.120 .040 .070 .060 .030 .030 .080 .020 .110 .040 .020 .060 .060 .110 .010 .12
0.050 .040 .010 .110 .020 .080 .110 .100 .090 .020 .050 .100 .060 .000 .090 .07

HMM Initialization (Cont.)

- HMM for class ' 1 ' and randomly initialization
- hmm1.prior = [10];
- hmm1.transmat $=\operatorname{rand}(2,2) ; \% 2$ by 2 transition matrix
- hmm1.transmat $(2,1)=0$;
- hmm1.transmat $=$ mk_stochastic $(\mathrm{hmm} 1$. transmat $)$;
- hmm1.transmat
0.030 .97

$0 \quad 1.00$
- hmm1.obsmat $=\operatorname{rand}(2,16) ; \%$ \# of states $* \#$ of observation
- hmm1.obsmat $=$ mk_stochastic $(\mathrm{hmm1}$.obsmat $)$
0.050 .100 .010 .060 .020 .090 .060 .020 .100 .040 .120 .110 .030 .010 .090 .11
0.080 .090 .060 .050 .090 .100 .070 .060 .120 .030 .030 .120 .030 .010 .030 .02

HMM Training

- Training of model 0
- [LL0, hmm0.prior, hmm0.transmat, hmm0.obsmat] = dhmm_em(data0, hmm0.prior, hmm0.transmat, hmm0.obsmat)
iteration 1, loglik $=-365.390770$
iteration 2, $\log l \mathrm{ik}=-251.112160$
iteration $9, \log$ lik $=-210.991114$
- Trained result
- hmm0.transmat
0.910 .090 .00
0.000 .930 .07
0.000 .001 .00
- hmm0.obsmat

0.000 .000 .000 .000 .300 .330 .210 .120 .030 .000 .000 .000 .000 .000 .000 .00
0.090 .070 .070 .110 .000 .000 .000 .000 .000 .000 .000 .000 .000 .280 .280 .11
0.000 .000 .000 .000 .000 .060 .060 .160 .230 .130 .100 .100 .160 .000 .000 .00

HMM Training (Cont.)

- Training of model 1
- [LL1, hmm1.prior, hmm1.transmat, hmm1.obsmat] = dhmm_em(data1, hmm1.prior, hmm1.transmat, hmm1.obsmat)
- iteration $1, \log \operatorname{lik}=-95.022843$
- ...
- iteration 10, loglik $=-30.742533$
- Trained model
- hmm1.transmat
0.790 .21
0.001 .00
- hmm1.obsmat

0.000 .000 .000 .001 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .00
0.000 .000 .040 .130 .120 .660 .040 .000 .000 .000 .000 .000 .000 .000 .000 .00

HMM Evaluation

- Evaluation of data 0
- for $\mathrm{dt}=1$: length(data0)
- loglike0 = dhmm_logprob(data0\{dt\}, hmm0.prior, hmm0.transmat, hmm0.obsmat);
- loglike1 = dhmm_logprob(data0\{dt\}, hmm1.prior, hmm1.transmat, hmm1.obsmat);
- disp(sprintf('[class 0: \%d-th data] model 0: \%.3f, model 1: \%.3f',dt, loglike0, loglike1));
- end
[class 0: 1-th data] model 0: -68.969, model 1: -289.652
[class 0: 2-th data] model 0: -66.370, model 1: -291.671
[class 0: 3-th data] model 0: -75.649, model 1: -310.484

- Evaluation of data 1
[class 0: 1-th data] model 0: -18.676, model 1: -5.775
[class 0: 2-th data] model 0: -17.914 , model 1: -11.162
[class 0: 3-th data] model 0: -21.193, model 1: -13.037

HMM Decoding

- For data ' 0 ', get the most probable path
- for dt =1:length(data0)
- $\quad B=$ multinomial_prob(data0\{dt\}, hmm0.obsmat);
- path = viterbi_path(hmm0.prior, hmm0.transmat, B);
- disp(sprintf('\%d', path));
- end

11111111111122222222222223333333333
1111111111122222222222222233333333
111111111122222222222222223333333333333

- For data ' 1 ', get the most probable path

111111111112
122222222222
1112222222222

April 16, 2005, S.-J. Cho
1

Summary

- Markov model
- 1-st order Markov assumption on state transition
- 'Visible': observation sequence determines state transition seq.
- Hidden Markov model
- 1-st order Markov assumption on state transition
- 'Hidden': observation sequence may result from many possible state transition sequences
- Fit very well to the modeling of spatial-temporally variable signal
- Three algorithms: model evaluation, the most probable path decoding, model training
- Example of HMM application to on-line handwriting recognition
- Use HMM tool box for Matlab

References

- Hidden Markov Model
- L.R. Rabiner, "A Tutorial to Hidden Markov Models and Selected Applications in Speech Recognition", IEEE Proc. pp. 267-295, 1989
- L.R. Bahl et. al, "A Maximum Likelihood Approach to Continuous Speech Recognition", IEEE PAMI, pp. 179-190, May. 1983
- M. Ostendorf, "From HMM's to Segment Models: a Unified View of Stochastic Modeling for Speech Recognition", IEEE SPA, pp 360-378, Sep., 1996
- HMM Tutorials
- 신봉기, "HMM Theory and Applications ", 2003컴퓨터비젼몿패턴 인식연구회 춘계워크샵 튜토리얼
- Sam Roweis, "Hidden Markov Models (SCIA Tutorial 2003)", http://www.cs.toronto.edu/~roweis/notes/scia03h.pdf
- Andrew Moore, "Hidden Markov Models", http://www-2.cs.cmu.edu/~awm/tutorials/hmm.html

References (Cont.)

- HMM SW
- Kevin Murphy, "HMM toolbox for Matlab", freely downloadable SW written in Matlab, http://www.cs.ubc.ca/~murphyk/Software/HMM/hmm.html
- Speech Vision and Robotics Group of Cambridge University, "HTK (Hidden Markov toolkit)", freely downloadable SW written in C, http://htk.eng.cam.ac.uk/
- Online Character Recognition
- C.C. Tappert et. al, "The state of the Art in On-Line Handwriting Recognition", IEEE PAMI, pp. 787-808, Aug, 1990
- B.K. Sin and J.H. Kim, "Ligature Modeling for Online Cursive Script Recognition", IEEE PAMI, pp. 623-633,Jun, 1997
- S.-J. Cho and J.H. Kim, "Bayesian Network Modeling of Character Components and Their Relationships for On-line Handwriting Recognition", Pattern Recognition, pp253-264, Feb. 2004
- J. Hu, et. al, "Writer Independent On-line Handwriting Recognition Using an HMM Approach", Pattern Recognition, pp 133-147, 2000

Appendix: Matlab Code (I)

\% chaincode data set for class ' 0 '
data0\{1\} $=[988777666555443211615151515141414131313121211$ 10998];
data $0\{2\}=[887776655554432111615151515151414141413121110$ 10999];
data0\{3\} $=[7666666555432116161615151515141414141414131110$ 9988887766];
$\%$ chaincode data set for class ' 1 '
data1\{1\} $=[555555555554$];
data1\{2\} $=\left[\begin{array}{ll}566666666554] \text {]; } \\ \text {, }\end{array}\right.$
data1\{3\} $=[555666666764$ 3];
\% HMM for class '0' and random initialization of parameters
hmm0.prior = [100];
hmm0.transmat = rand(3,3); \% 3 by 3 transition matrix
hmm0.transmat $(2,1)=0 ; \operatorname{hmm} 0 . \operatorname{transmat}(3,1)=0 ;$ hmm0.transmat $(3,2)=0$;
hmm0.transmat = mk_stochastic(hmm0.transmat);
hmm0.transmat
hmm0.obsmat = rand(3,16); \% \# of states * \# of observation
hmm0.obsmat $=$ mk_stochastic (hmm0.obsmat)
April 16, 2005, S.-J. Cho

Appendix: Matlab Code (2)

\% HMM for class ' 1 ' and random initialiation of parameters
hmm1. prior = [10 0 ;
hmm1.transmat = rand(2,2); \% 2 by 2 transition matrix
hmm1.transmat(2,1) $=0$;
hmm1.transmat = mk_stochastic(hmm1.transmat);
hmm1.transmat
hmm1.obsmat = rand(2, 16); \% \# of states * \# of observation
hmm1.obsmat = mk_stochastic(hmm1.obsmat)
\% Training of HMM model 0 (Baum-Welch algorithm)
[LLO, hmm0.prior, hmm0.transmat, hmm0.obsmat] = dhmm_em(data0, hmm0.prior, hmm0.transmat, hmm0.obsmat)
\% smoothing of HMM observation parameter: set floor value 1.0e-5
hmm0.obsmat $=\max (\mathrm{hmm} 0 . \mathrm{obsmat}, 1.0 \mathrm{e}-5)$;
\% Training of HMM model 1 (Baum-Welch algorithm)
[LL1, hmm1.prior, hmm1.transmat, hmm1.obsmat] = dhmm_em(data1, hmm1.prior, hmm1.transmat, hmm1.obsmat)
\% smoothing of HMM observation parameter: set floor value 1.0e-5
hmm1.obsmat $=\max (\mathrm{hmm} 1 . \mathrm{obsmat}, 1.0 \mathrm{e}-5)$;
April 16, 2005, s.-J. Cho

Appendix: Matlab Code(3)

\% Compare model likelihood
\%Evaluation of class '0' data
for $\mathrm{dt}=1$: length(data0)
loglike0 = dhmm_logprob(data0\{dt\}, hmm0.prior, hmm0.transmat, hmm0.obsmat);
loglike1 = dhmm_logprob(data0\{dt\}, hmm1.prior, hmm1.transmat, hmm1.obsmat);
disp(sprintf('[class 0: \%d-th data] model 0: \%.3f, model 1: \%.3f',dt, loglike0, loglike1)); end
for $\mathrm{dt}=1$:length(data1)
loglike $0=$ dhmm_logprob(data1\{dt\}, hmm0.prior, hmm0.transmat, hmm0.obsmat);
loglike1 = dhmm_logprob(data1\{dt\}, hmm1.prior, hmm1.transmat, hmm1.obsmat);
disp(sprintf('[class 1: \%d-th data] model 0: \%.3f, model 1: \%.3f',dt, loglike0, loglike1));
end

Appendix: Matlab Code (4)

\%Viterbi path decoding
\%First you need to evaluate $B(i, t)=P\left(y _t \mid Q _t=i\right)$ for all t,i:
path0 = cell(1, length(data0));
for $\mathrm{dt}=1$:length(data0)
$\mathrm{B}=$ multinomial_prob(dataO\{dt\}, hmm0.obsmat);
path0\{dt\} = viterbi_path(hmm0.prior, hmm0.transmat, B);
disp(sprintf('\%d', path0\{dt\}));
end
path1 = cell(1, length(data1));
for $\mathrm{dt}=1$: length(data1)
$\mathrm{B}=$ multinomial_prob(data1\{dt\}, hmm1.obsmat);
path1 $\{\mathrm{dt}\}=$ viterbi_path(hmm1.prior, hmm1.transmat, B);
disp(sprintf('\%d', path1\{dt\}));
end

