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ML for Trading: Challenges

« Learning to Act (vs. Predict): Optimized Execution
« Dealing with Censored Data: Order Routing in Dark Pools
» Incorporating Risk: Trading Under Inventory Constraints



Learning to Act: ML for Optimized Execution

[Y. Nevmyvaka. Y. Feng, MK; ICML 2006]
[MK, Y. Nevmyvaka; In “High Frequency Trading”, O’Hara et al. eds, Risk Books 2013]



A Canonical Trading Problem

Goal: Sell V shares in T time steps; maximize revenue

Benchmarks:
— Volume Weighted Average Price (VWAP)
— Time Weighted Average Price (TWAP)
— Implementation Shortfall (midpoint of bid-ask spread at beginning)

View as a problem of state-based control (Reinforcement Learning)
— Action space: limit orders

— State variables: inventory and time remaining '

— Additional features capturing order book activity [B|MSFT =
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Improvement Over Optimized Submit-and-Leave
T=41=1 [27.16% | T=8 I=1 |31.15%
T=41=4 |30.99% | T=8 I=4 |34.90%
T=41=8 |31.59% | T=8 I=8 |35.50%
Additional Improvement From Order Book Features
Bid Volume -0.06% | Ask Volume -0.28%
Bid-Ask Volume Misbalance 0.13% | Bid-Ask Spread 7.97%
Price Level 0.26% | Immediate Market Order Cost 4.26%
Signed Transaction Volume 2.81% | Price Volatility -0.55%
Spread Volatility 1.89% | Signed Incoming Volume 0.59%
Spread + Immediate Cost 8.69% | Spread+ImmCost+Signed Vol | 12.85%




Desperately Seeking Alpha

A natural modification:

— Change action space to buy or sell and hold for t seconds, then liquidate (+null action)
— Add state features capturing directional movements

Now trying to predict movement and profit (vs. fixed optimization problem)

Definite (aggregate) predictability, but hard to overcome frading costs

Still learn broadly consistent policies across stocks:
— Null action vast majority of time; trade only in extremal states/opportunities
— Short holding (milliseconds): Momentum
— Longer holding (seconds): Reversion



Smart Order Routing in Dark Pools

[K. Ganchev, MK, Y. Nevmyvaka. J. Wortman Vaughan; UAI 2009, CACM 2010]
[K. Amin, MK, P. Key, A. Schwaighofer; UAI 2012]



Dark Pools

Recently introduced trading mechanism

Intended to allow large counterparties to trade with minimal market impact
Only specify desired volume and direction (buy/sell); no price specified
Buyers and sellers matched in order of arrival

Prices will be midpoint of National Best Bid and Offer (NBBO) in /it market
Now dozens of dark pool, competing for liquidity instead of price

Break trade up over exchanges instead of over time



Smart Order Routing (SOR)

Dark Pool A

?

Buy V shares total

How should we disperse V?

Dark Pool B

?

Dark Pool C

?

Dark Pool D

?




P[s]

A Distributional Model of Liquidity

Assume each dark pool has a stationary distribution P over available shares
If we submit v shares, min(v,s) will be executed where s ~ P

Our observations are censored by our own actions

MLE for P is Kaplan-Meier --- but we must address exploration across pools
Want to learn just enough about each pool to do optimal SOR

Pool A Pool B Pool C Pool D

P[s] \\ P[s] Pls]




A Simple and Efficient Algorithm

Algorithm 2: Main algorithm.

Input: Volume sequence V1, V2 V3, ...
Arbitrarily initialize Til for each i;
fort«—1,2,3,...do
% Allocation Step: ) o . ]
i — Greedy(V!,Tt, ... Tt); €= greedy allocation under current distributional estimates
forie{l,...,K} do
Submit v} units to venue ;
Let r! be the number of shares sold;
%» Reestimation Step:
Ti — OptimisticKM ({(v],77)}._,); €= re-estimate using censored observations
end
end

Provably converges quickly to optimal allocations under known distributions
Involves optimistic modification to MLE, new convergence bound
Analysis reminiscent of E3/RMAX in RL



Empirical Evaluation
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Data: submission/execution data from multiple pools at large brokerage
Used to build distribution models (heavy-tailed) and simulator
Comparison to uniform allocation (strawman), bandit approach, optimal



Incorporating Risk:
Algorithmic Trading with Inventory Constraints

[E. Even-Dar, MK, J. Wortman Vaughan; ALT 2006]
[L. Dworkin, MK, Y. Nevmyvaka; ICML 2014]



No-Regret Learning in Finance

Originates with Cover’s Universal Portfolios; simple reweighting algorithm

Strong theoretical guarantees without stochastic assumptions
— Compete with best single stock in hindsight

Can be applied directly to stocks or higher-level trading strategies
Unfortunately methods work poorly in practice:
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Trading with Inventory Constraints

Can’t manage to Sharpe Ratio, but can limit allowed positions/portfolios
Restrict to portfolios with daily standard deviation PNL at most $X historically

Leads to elliptical constraint in portfolio space depending on correlations

Only compete with strategies:
— Obeying inventory constraints
— Making only local moves (limit market impact)

Combine no-regret with pursuit-evasion to recover theoretical guarantees
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Directional Pursuit-Evasion




Conclusions

In the middle (beginning?) of a period of rapid change in markets:
— Automation of traditional processes and trading
— Introduction of new market mechanisms (open order books, dark pools)
— Development of new types of trading and strategies (HFT)

Automation + Data - Machine Learning

Challenges:

— Feature design

— Censored observations

— Risk considerations

— Strategic/adversarial behavior

More, and different, to come...
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