Algorithmic Trading and Machine Learning

Michael Kearns University of Pennsylvania

QuantCon 2015, NYC

Special thanks: Yuriy Nevmyvaka (Lehman, BofA, SAC, Engineers Gate)

Long Version: <u>http://techtalks.tv/talks/algorithmic-trading-and-machine-learning/60847/</u> or Google "techtalks ICML 2014 kearns"

ML for Trading: Challenges

- Learning to Act (vs. Predict): Optimized Execution
- Dealing with Censored Data: Order Routing in Dark Pools
- Incorporating Risk: Trading Under Inventory Constraints

Learning to Act: ML for Optimized Execution

[Y. Nevmyvaka. Y. Feng, MK; ICML 2006] [MK, Y. Nevmyvaka; In "High Frequency Trading", O'Hara et al. eds, Risk Books 2013]

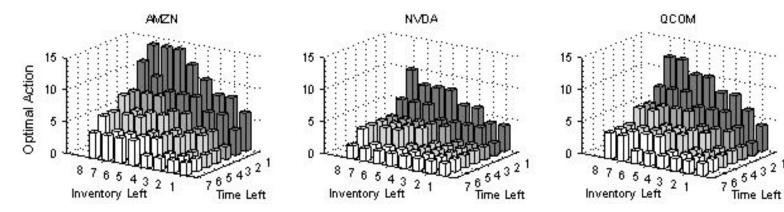
A Canonical Trading Problem

- Goal: Sell V shares in T time steps; maximize revenue
- Benchmarks:
 - Volume Weighted Average Price (VWAP)
 - Time Weighted Average Price (TWAP)
 - Implementation Shortfall (midpoint of bid-ask spread at beginning)
- View as a problem of state-based control (Reinforcement Learning)
 - Action space: limit orders
 - State variables: inventory and time remaining
 - Additional features capturing order book activity
- Experimental framework
 - Full historical order book reconstruction and simulation
 - Learn optimal policy on 1 year training; test on following 6 months
 - Pitfalls: directional drift, "counterfactual" market impact

refresh island home	disclaimer	help
B MSFT	GET STOCK	
	MSFT	go
	Symbol Search	

LAST MATCH		TODAY'S ACTIVITY	
Price	23.7790	Orders	1,630
Time	9:01:55.614	Volume	44,839

BUY (ORDERS	SELL	ORDERS
SHARES	PRICE	SHARES	PRICE
<u>1,000</u>	23.7600	<u> 100 </u>	23.7800
3,087	23.7500	800	23,7990
200	23.7500	<u>500</u>	23.8000
<u>100</u>	23.7400	1,720	23.8070
1,720	23.7280	<u>900</u>	23.8190
2,000	23.7200	200	23.8500
1,000	23.7000	1,000	23.8500
<u>100</u>	23,7000	<u>1,000</u>	23.8500
<u>100</u>	23.7000	<u>1,000</u>	23.8600
800	23.6970	200	24.0000
<u>500</u>	23.6500	<u>500</u>	24.0000
3,000	23.6500	<u>1,000</u>	24.0300
4,300	23.6500	200	24.0300
2,000	23.6500	<u>1,100</u>	24.0400
200	23.6200	<u>500</u>	24.0500
(195	more)	(219	more)



Improvement Over Optimized Submit-and-Leave

T=4 I=1	27.16%	T=8 I=1	31.15%
T=4 I=4	30.99%	T=8 I=4	34.90%
T=4 I=8	31.59%	T=8 I=8	35.50%

Additional Improvement From Order Book Features

Bid Volume	-0.06%	Ask Volume	-0.28%
Bid-Ask Volume Misbalance	0.13%	Bid-Ask Spread	7.97%
Price Level	0.26%	Immediate Market Order Cost	4.26%
Signed Transaction Volume	2.81%	Price Volatility	-0.55%
Spread Volatility	1.89%	Signed Incoming Volume	0.59%
Spread + Immediate Cost	8.69%	Spread+ImmCost+Signed Vol	12.85%

Desperately Seeking Alpha

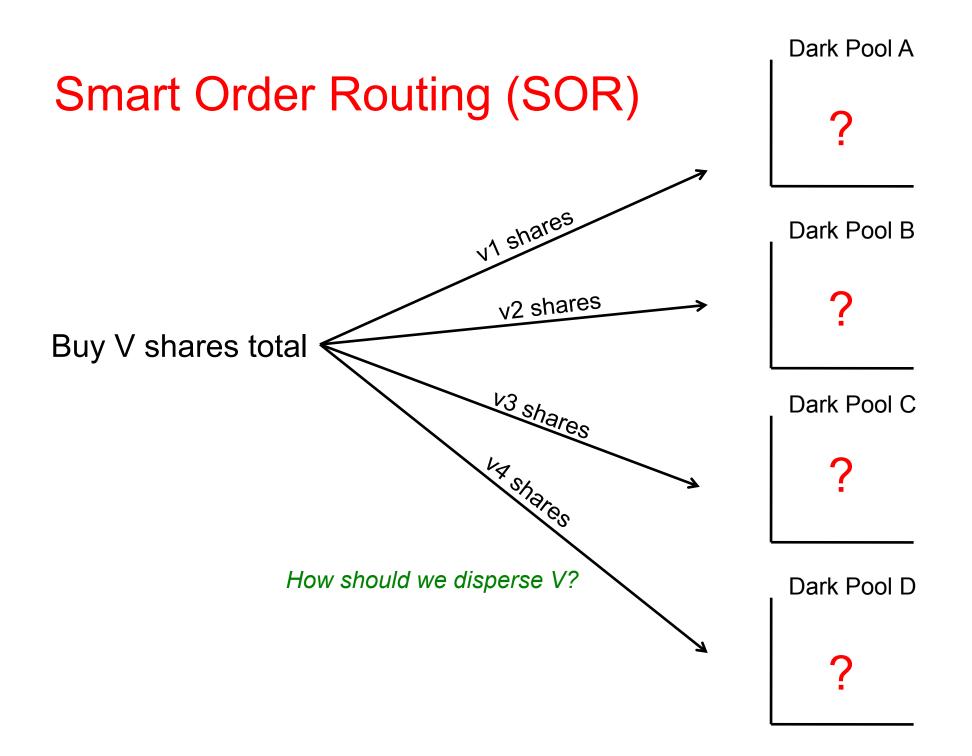
- A natural modification:
 - Change action space to buy or sell and hold for t seconds, then liquidate (+null action)
 - Add state features capturing directional movements
- Now trying to predict movement and *profit* (vs. fixed optimization problem)
- Definite (aggregate) predictability, but hard to overcome *trading costs*
- Still learn broadly consistent policies across stocks:
 - Null action vast majority of time; trade only in extremal states/opportunities
 - Short holding (milliseconds): Momentum
 - Longer holding (seconds): Reversion

Smart Order Routing in Dark Pools

[K. Ganchev, MK, Y. Nevmyvaka. J. Wortman Vaughan; UAI 2009, CACM 2010] [K. Amin, MK, P. Key, A. Schwaighofer; UAI 2012]

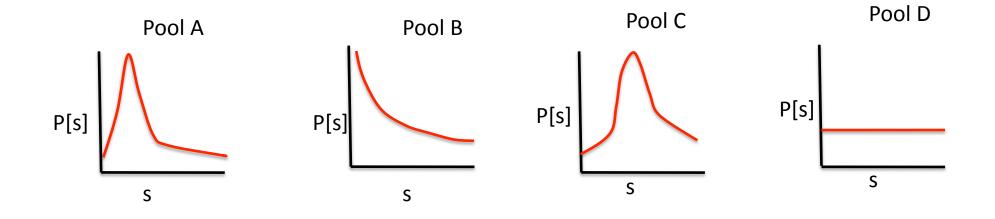
Dark Pools

- Recently introduced trading mechanism
- Intended to allow large counterparties to trade with minimal market impact
- Only specify desired volume and direction (buy/sell); no price specified
- Buyers and sellers matched in order of arrival
- Prices will be midpoint of National Best Bid and Offer (NBBO) in *lit market*
- Now dozens of dark pool, competing for *liquidity* instead of price
- Break trade up over *exchanges* instead of over *time*



A Distributional Model of Liquidity

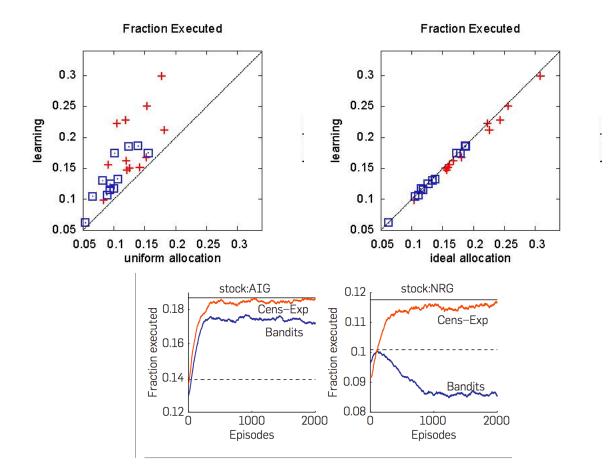
- Assume each dark pool has a stationary distribution P over available shares
- If we submit v shares, min(v,s) will be executed where s ~ P
- Our observations are *censored* by our own actions
- MLE for P is Kaplan-Meier --- but we must address *exploration* across pools
- Want to learn just enough about each pool to do optimal SOR



A Simple and Efficient Algorithm

- Provably converges quickly to optimal allocations under known distributions
- Involves optimistic modification to MLE, new convergence bound
- Analysis reminiscent of E³/RMAX in RL

Empirical Evaluation



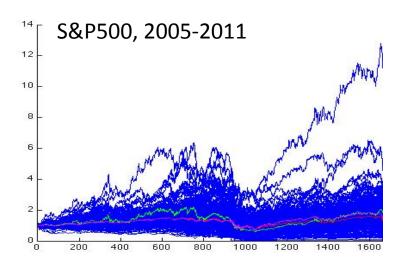
- Data: submission/execution data from multiple pools at large brokerage
- Used to build distribution models (heavy-tailed) and simulator
- Comparison to uniform allocation (strawman), bandit approach, optimal

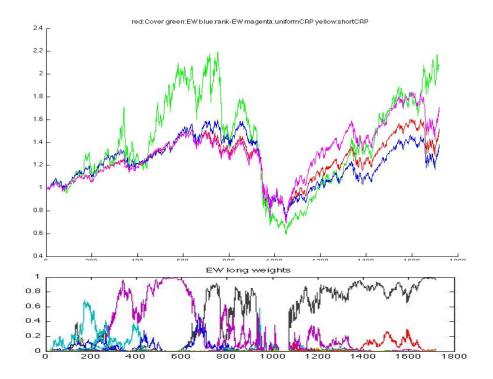
Incorporating Risk: Algorithmic Trading with Inventory Constraints

[E. Even-Dar, MK, J. Wortman Vaughan; ALT 2006][L. Dworkin, MK, Y. Nevmyvaka; ICML 2014]

No-Regret Learning in Finance

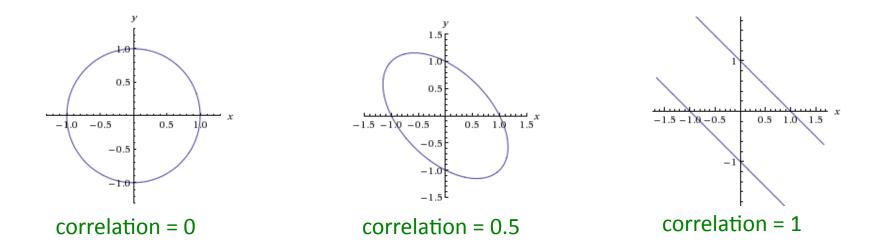
- Originates with Cover's Universal Portfolios; simple reweighting algorithm
- Strong theoretical guarantees without stochastic assumptions
 - Compete with best single stock in hindsight
- Can be applied directly to stocks or higher-level trading strategies
- Unfortunately methods work poorly in practice:

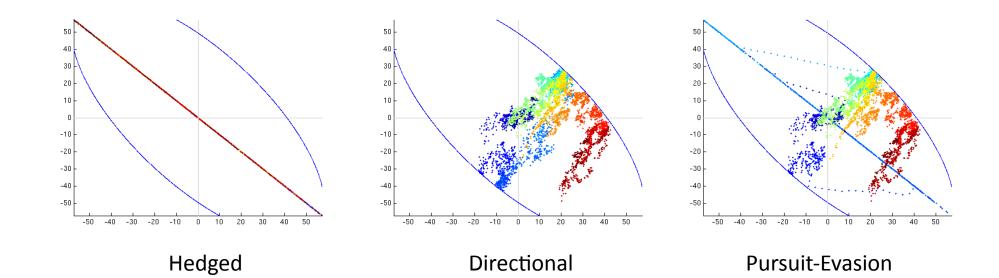




Trading with Inventory Constraints

- Can't manage to Sharpe Ratio, but can limit allowed positions/portfolios
- Restrict to portfolios with daily standard deviation PNL at most \$X historically
- Leads to elliptical constraint in portfolio space depending on correlations
- Only compete with strategies:
 - Obeying inventory constraints
 - Making only local moves (limit market impact)
- Combine no-regret with pursuit-evasion to recover theoretical guarantees





Conclusions

- In the middle (beginning?) of a period of rapid change in markets:
 - Automation of traditional processes and trading
 - Introduction of new market mechanisms (open order books, dark pools)
 - Development of new types of trading and strategies (HFT)
- Automation + Data \rightarrow Machine Learning
- Challenges:
 - Feature design
 - Censored observations
 - Risk considerations
 - Strategic/adversarial behavior
- More, and different, to come...

Contact: mkearns@cis.upenn.edu

Long Version: <u>http://techtalks.tv/talks/algorithmic-trading-and-machine-learning/60847/</u> or Google "techtalks ICML 2014 kearns"