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FROM IDEA TO EXECUTION

v

What makes a good idea? (And where do good ideas come from?)

v

How to decide if an idea is worth researching?

v

How to move from idea to a trading strategy

v

How to move from a trading strategy into execution

As a researcher, your most valuable asset is your time.

Invest it like you invest your money: thoughtfully and carefully.
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GOOD IDEAS

» Usually some nub, often non-linear
» An ounce or two of evidence that it might actually work

» Plus some logic / some believable story for why it working would make sense

Here's the story of Eido as a trading strategy ...
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EIDOSEARCH AT A GLANCE
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HOW DO WE KNOW IF THE CONCEPT WORKS?

» Jump right into back-testing trading rules incorporating the signals?
A common but mostly suboptimal practice

» Establish a precise mathematical definition of the “concept’

What are the parameters and inputs (what's the difference?)
What are the outputs?

ESy(t: ticker, p: pattern, f: forecast)

» Articulate what it means for the concept to ‘work’
In the strictest sense:

Hi;: 30€0, st.r(t,f;) ~ ES;(t,pi, fj), VtE€T

In a less strict sense, the empirical distribution may be usable even with
certain biases

Even if S is the true distribution, we won't make money on every signal
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A STRINGENT CHI-SQURE TEST

» Estimate the parameters and fix the domain of inputs

» For each pattern window and forecast horizon, generate the empirical
distribution for every ticker each dau.

» Calculate the cumulative probabilities ES;(¢, p, f)(r(¢, f)) € (0,1)

» Count the number of observations falling into (0, ), (%, 2), - .-, (55, 1)
2
» For each pattern window and forecast horizon, calculate @ = it O where
E; =" Under the null hupothesis: @ ~ X3_,_,.. hence p-value = P(x}_;_,, > Q)

» Penalize p-values for multiple testing across numerous pattern windows and
forecast horizons (FWER, FDR, etc)

» Analyze the times series of correlated p-values and draw conclusions
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A GRAPHICAL INTERPRETATION
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ANYTHING-BUT-U-SHAPE! TEST DESIGN
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» Repeat the first four steps of the Stringent Chi-Square Test
» On each dauy, fit a beta(a.b) distribution using maximum likelihood

» ... and test the loosened null hypothesis: a < 0.95 and b < 0.95

QUANTCON, NEW YORK; 3.14.15
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ANYTHING-BUT-U-SHAPE! TEST RESULTS

» COOL!I But, what now?
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FROM SIGNAL TO STRATEGY

» You've decided to invest further in an idea; next step is to find a sensible trading
strategy

» Dimensions to think about:
» Whether to go long, short, or both
What basket of assets to trade
How strong a signal to require
How many trades to make
What time horizon to hold over
What performance criteria to prioritize

v Vv VvV Vv Vv

» Almost always wrong to test everything: possible strategies should be driven by
a deep understanding of why you think the strategy works
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FIRST LET’S JUST GO WILD!

Cumulative raw return (non-compounded)
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» Set the base case for portfolio optimization: long-short unconstrained

» Transaction costs, market frictions, and shattered dreams
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BACK-TESTING SHORT SELLING IS DICEY..

Cumulative raw return (non-compounded)
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» Without reliable securities-lending data, it's difficult to estimate P&L of shorts
» The easiest workaround is to restrict all portfolio weights to be non-negative

» ... or only allow shorts in the most liquid securities like benchmark index ETFs
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BACK TO REALITY: CONTROL TURNOVER
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» Many ways to penalize turnover and slippage
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» Either model slippage roughly and conservatively or very meticulously
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IMPORTANCE OF INTUITION

Cumulative raw return (non-compounded)
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minimize  —pfw + & ||w — wW*||

» Equivalent expression: subject to  wTSw <%, S, wi=1, w; >0,Vi
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MOMENT OF TRUTH: TOP 500 MARKET CAP ONLY!

Cumulative raw return (non—compounded)
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» Restricting the universe to the most liquid securities makes for the smoothest
transition from back-testing to live trading

» But the more liquid a securities is, the more difficult it is to eek out an edge.
Mounds of fool's gold to be found in back-tests with illiquid securities.
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IMPLEMENTING THE STRATEGY

» This is where we are now ...

» In honor of our host, | will tell you that we are using Fetcher to pull our signals
iInto Quantopian and then execute in IB.

» As a principle it's always good to get to this stage as quickly as possible ...
nothing matters until you're touching the money



