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Abstract

We use high-frequency data from the Nasdaq exchange to build a measure of volume

imbalance in the limit order book (LOB). We show that our measure is a good predictor

of the sign of the next market order (MO), i.e. buy or sell, and also helps to predict price

changes immediately after the arrival of an MO. Based on these empirical findings, we

introduce and calibrate a Markov chain modulated pure jump model of price, spread, LO

and MO arrivals, and volume imbalance. As an application of the model, we pose and

solve a stochastic control problem for an agent who maximizes terminal wealth, subject

to inventory penalties, by executing trades using LOs. We use in-sample-data (January

to June 2014) to calibrate the model to ten equities traded in the Nasdaq exchange, and

use out-of-sample data (July to December 2014) to test the performance of the strategy.

We show that introducing our volume imbalance measure into the optimization problem

considerably boosts the profits of the strategy. Profits increase because employing our

imbalance measure reduces adverse selection costs and positions LOs in the book to take

advantage of favorable price movements.
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1. Introduction

The rise in computer power and the dominance of electronic exchanges have paved the

way to a surge in computerized trading algorithms. These algorithms are programmed to

trade in and out of positions and to handle different types of exposures such as inventory

risk and adverse selection costs. The development of many trading algorithms starts

with a preconceived strategy which is framed as an optimization problem, and then its

implementation is handled by computers. This approach has given way to a vast range of

algorithms. These are tailored to different objectives and employed in different trading

environments and markets, but common to all is that their performance depends on one

of the most basic building blocks in any trading strategy: how are orders scheduled, i.e.

how much and when to trade, and what order type should be employed.

How an algorithm determines the timing and type of order to execute a trade depends on

what the model predicts about price movements and what type of orders other agents

are sending to the market. In order driven markets, the main order types are limit

orders (LOs) and market orders (MOs). Agents’ LOs show an intention to buy or sell

an amount of the asset at a displayed price, and these rest in the limit order book (LOB)

until they are filled by an incoming MO or are cancelled by the agent who posted it.

MOs, on the other hand, are sent to the market and immediately executed against the

LOs resting in the book.

In this paper we use Nasdaq data to show how to employ LOB information in trading

algorithms. We use the volume posted on both sides of the LOB for a number of stocks

to build a measure of volume imbalance which proxies buying and selling pressures in the

market. We show that our measure of imbalance acts as a strong predictor of the rate

of incoming MOs as well as the direction and magnitude of price movements following

an MO. Given the arrival of an MO when volume imbalance is buy-heavy (sell-heavy),

there is a high probability that this MO is a buy (sell) order. Furthermore, immediately

following a buy (sell) MO, the magnitude and sign of the midprice is large and positive

(negative) when volume imbalance is buy-heavy (sell-heavy).

The ability to form accurate predictions of trade types and price changes is valuable

information that an agent can use to optimize her trading strategy. In general, incorpo-

rating volume imbalance in algorithmic trading models will improve the performance of

strategies. Using signals from the LOB helps to execute directional trades using MOs,

and tilt the resting orders in the LOB, to take advantage of favorable price movements

and to reduce adverse selection costs.

Furthermore, we use Nasdaq data to analyze the size of MOs relative to the volume

posted at the best bid and ask, and to analyze the financial performance of market

making strategies that only post at the best bid and ask. First, we find that depending
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on the specific equity, between 91.6% and 99.9% of all MOs are filled with the volume

posted only at the best price. This means that LOs posted in the book deeper than

the best price have less than 0.1% to 8.4% chance of being executed by any given MO.

Second, we show that market making strategies that attempt at earning the spread by

always placing two-sided LOs at the best quotes suffer greatly from adverse selection to

the point where compensation of the spread does not allow positive expected profits.

These two findings shed light into the potential performance of the market making mod-

els that decide how deep LOs are posted in the LOB. For large tick stocks, those which

regularly trade with a bid-ask spread of one tick, most market making models proposed

in the literature result in strategies that mimic a market maker who is always posting

at-the-touch, this includes strategies that control exposure to inventory risk, see e.g.

Avellaneda and Stoikov (2008), Guéant et al. (2012), Fodra and Labadie (2012), Cartea

and Jaimungal (2015), and Cartea et al. (2014). Strategies that optimize expected

profits by choosing optimal depths require a level of granularity which is often too fine

relative to the tick size of the stock. In this case it is clear that to implement the market

making strategy the optimal depths must be rounded to the nearest tick which means

that postings are at the best bid or best ask, or at least one tick into the book. However,

postings deeper than the best quote are hardly ever filled so these strategies perform

very close to one that is always posting at the best quotes, and as we show they are

very likely to generate losses.

Our work is related to the microstructure and algorithmic trading literature that studies

the information conveyed by the LOB and order flow (i.e. MO activity). The early

empirical study of Biais et al. (1995) analyzes the dynamics of the LOB and MOs using

French data, and the theoretical work of Foucault (1999) presents a model of price

formation and order placement decisions in the LOB. More recently, with access to

better quality data, Cont et al. (2013) employ trade and quote data from Nasdaq to

perform a statistical study of the price impact of order book events. They show that

price changes are driven by order flow imbalances. The impact of volume imbalance on

price changes and trade arrivals is also studied in Lipton et al. (2013), and they develop

a model for the joint dynamics of the length of the best bid and ask queue and the arrival

of MOs. In Huang et al. (2015), the full LOB is modelled as a Markov queuing system

where interactions on the dynamics at several price levels are possible. They propose

their model as a market simulation tool to test the performance of trading algorithms.

In the context of algorithmic trading, Stoikov and Waeber (2012) consider an asset

liquidation problem where they employ LOB information to construct a measure of the

instantaneous supply and demand imbalance in the market. More recently, Bechler and

Ludkovski (2014) employ order flow information to develop optimal execution models

that take into account market impact and informational costs. Finally, Cartea and

Jaimungal (2014a) and Cartea and Jaimungal (2014b) employ ultra-high frequency data
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to show that there is a positive relation between net order flow, defined as the difference

between the volume of buy and sell MOs, and prices of stocks and show how to develop

trading algorithms to target VWAP and execute a large number of shares.

The rest of this paper is structured as follows. In Section 2 we introduce our measure of

volume imbalance. We investigate the performance of a simple market making strategy

using data from Nasdaq, the results of which provide strong motivation for modifying

the strategy based on the volume imbalance process. In Section 3 we introduce a dy-

namic LOB model which reflects the relationship between the volume imbalance process

quantities such as arrival and size of MOs, and midprice dynamics. We also propose

and solve a trading problem using techniques of stochastic optimal control and provide

a verification proof. In Section 4 we examine the performance of the investment strategy

on the Nasdaq Exchange. Section 5 concludes, and the appendices contain proofs and

parameter estimates used in the paper.

2. Volume Imbalance: Order Arrival and Price Revisions

In this section we introduce and discuss aspects of our measure of volume imbalance.

This measure is simple to calculate and easy to incorporate in any algorithmic trading

strategy. In this paper we focus on equities that are traded in order driven markets (so

the LOB is visible), but in principle, measures based on quantities that show buying

and selling pressure can be incorporated into algorithms in a similar way to the trading

algorithm that we frame as a stochastic control problem in Section 3.

We define volume imbalance at time t as

ρt =
V b
t − V a

t

V b
t + V a

t

∈ [−1, 1] , (1)

where V b
t and V a

t are the volumes at time t of LOs posted at the best bid and best ask

respectively. Clearly, when ρt is close to 1 there is strong buying pressure and when it

is close to −1 there is strong selling pressure.

Volume imbalance is a key quantity because it summarizes agents’ willingness to buy or

sell assets. This information can be used to predict the arrival and direction of MOs,

and help to predict the sign and magnitude of price changes – we return to this point in

Subsection 2.2. Before discussing in more detail the attributes and statistical properties

of this quantity, we first illustrate how an investment strategy performs in the absence

of any measure that accounts for buying and selling pressure.
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2.1. An example of trading strategy

A traditional investment strategy is to post on both sides of the LOB with the objective

of making roundtrip trades and earning the quoted difference between the LOs. A simple

version of this strategy is that of a market maker who is always posted at the best bid

and best ask. In this section, we test this strategy for two Nasdaq equities during

the period July to December 2014: Intel Corporation (INTC) and Oracle Corporation

(ORCL). These stocks exhibit behavior in which the spread, i.e. difference between best

offer and best bid, is equal to one cent for a significant portion of the trading day. In

Table 2 we report the results for nine other Nasdaq stocks.

We begin by studying the performance of a zero-intelligence strategy that posts LOs at

the best bid and ask in an attempt to earn the spread on roundtrip trades. We backtest

this strategy on historical data under two scenarios which differ in the volume of the

agent’s LOs.

• Scenario 1. The agent imposes an inventory constraint such that inventory q

always satisfies |q| ≤ Q. If q 6= −Q (q 6= Q), every market buy (sell) order changes

the agent’s inventory position by −1 (+1), and her wealth increases (decreases)

by an amount equal to the best ask (bid) price. At the end of the trading period,

any remaining inventory of the agent is liquidated using and MO which is filled at

the reigning best bid or ask price.

• Scenario 2. As above, the agent imposes the constraint |q| ≤ Q. When a market

buy (sell) order arrives, the agent’s inventory position decreases (increases) by

min{V,Q+ q} (min{V,Q− q}), where V is the volume of the MO, and her wealth

increases (decreases) by the traded volume multiplied by the best ask (bid) price.

At the end of the trading period, any inventory of the agent is liquidated at the

reigning best bid or ask price via an MO.

The difference between the scenarios is that in Scenario 1 the LOs are for one unit of

the asset and in Scenario 2 the LOs are for a number of shares large enough to meet

the full volume of the incoming MO. Moreover, in both scenarios we assume that each

trading period is 30 minutes long, but we exclude the first and last trading period in

each day. We conduct these tests on each trading day from June to December, 2014, so

there are 125 days, each with 11 trading periods during the day.

The left panel of Figure 1 shows the annualized mean and standard deviation of the zero-

intelligence strategy under Scenario 1. The leftmost point on each curve corresponds to

Q = 1 with unit increments to Q = 10. Increments then increase by 10 up to Q = 200.

The right panel shows the Sharpe ratio for a range of values of the inventory constraint.
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Figure 1: Performance of best bid/ask LO strategy under Scenario 1. Each point represents a different
value of Q. The leftmost point on each curve corresponds to Q = 1 with unit increments to Q = 10.
Increments then increase by 10 up to Q = 200.

The results for Scenario 2 are shown in Figure 2. Here the values of Q are scaled by

a factor of 100 from those of Scenario 1 so the total range is 100 to 20000. The much

larger magnitude of earnings under Scenario 2 are due to larger individual trade sizes.

Clearly, the expected earnings of the zero-intelligence strategy are negative under both

scenarios. Any agent who provides liquidity to the market in this naive way will be

driven out of business due to the strategy’s exposure to severe adverse selection costs.

An attempt to alleviate adverse selection costs is to post LOs deeper in the LOB, hoping

that MOs walk beyond the best quote to fill these LOs. However, this adjustment will

have a negligible effect on the expected profits because LOs resting at worse prices than

the best quotes are unlikely to be filled. Consider the size of an MO relative to the

volume at the best bid or offer. In Table 1, we show the number of market buy and

sell orders that only touch the best quotes in the LOB, and the number that touch LOs

beyond the best quote. It is clear that a disproportionate number of MOs only involve

LOs at the best quotes – for these two stocks, approximately 0.1% of the MOs are large

enough to walk beyond the best quote.

Although the strategy employed by the market maker is extremely simple, many of the

market making and investments strategies in the extant literature exhibit a very similar

behavior to the one discussed here for large tick stocks, see for instance Avellaneda and

Stoikov (2008), Guéant et al. (2012), Fodra and Labadie (2012), Cartea and Jaimungal

(2015), and Cartea et al. (2014) – large tick stocks are those that generally trade with

a bid-ask spread of one tick. The trading strategies developed in these papers use a

continuous control variable for the price at which the trader or market maker posts

LOs. These optimal depths are the output of a stochastic optimal control problem
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Figure 2: Performance of best bid/ask LO strategy under Scenario 2. Each point represents a different
value of Q. The leftmost point on each curve corresponds to Q = 100 with increments of 100 up to
Q = 1000. unit increments to Q = 10. Increments then increase by 1000 up to Q = 20000.

Best Quote Only Beyond Best Quote P(VMO ≤ VLO)
Buys Sells Buys Sells

INTC 35,595 38,451 54 50 0.999
ORCL 30,001 27,502 41 45 0.999

Table 1: Number of MOs that touch or go beyond the best quote. Data are taken from a full month
of trading (January, 2014). The column labelled P(VMO ≤ VLO) is the probability that an MO has
smaller volume than all limit orders posted at the best price, and hence only engages the best quote.

where the main driver to adjust the depth is inventory position and end of trading

horizon. When the strategies are implemented, the optimal depths must be rounded to

the nearest tick size, but with the market behavior demonstrated in Table 1 a continuous

control price seems unreasonable (see also Table B.7 in the appendix for similar data

on other stocks). The effect of this mismatch between a continuous control, and the

grid on which asset prices move in exchanges, is more pronounced for large tick stocks

because the probability of an MO walking beyond the best quote is essentially zero.

When the continuous controls are rounded to an appropriate multiple of the tick size,

either all of the values are rounded to the best quote, or they are rounded to a tick which

has very little activity in the market. Thus, if the posting strategy based on continuous

controls is inventory based, then the resulting strategy essentially becomes one of always

posting at the best bid and ask, with an inventory constraint – as the scenarios tested

above. On the other hand, models that are not purely inventory based, for instance

Cartea et al. (2014), the strategy is modified based on the observation of recent order

flow, so rounding the optimal strategy to the nearest tick results in a strategy that

posts sometimes at the touch, but also sometimes deeper in the book, and imposes an

inventory constraint.
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Figure 3: Number of MOs that are buys and sells depending on imbalance level. Imbalance levels
correspond to subintervals [−1,−0.33), [−0.33, 0.33], and (0.33, 1]. Data are taken from a full month
of trading in January 2014.

2.2. Volume imbalance in order driven equity markets

The zero-intelligence strategy described above, as well as those that behave in an es-

sentially identical manner, are a few examples of algorithms whose performance can be

enhanced if volume imbalance is employed. In general, if a strategy employs additional

information which predicts trade arrivals and price movements then it is able to protect

itself from adverse selection costs and take advantage of price movements.

To show the predictive power of our volume imbalance measure we first divide the

imbalance measure interval [−1, 1] into three subintervals, referred to as buy-heavy

when ρt ∈
(

1
3
, 1
]
, sell-heavy when ρt ∈

[
−1,−1

3

)
, and neutral when ρt ∈

[
−1

3
, 1

3

]
. Figure

3 shows that depending on which subinterval imbalance ρt lies in, the type of incoming

MO, buy or sell, can be established with high accuracy.

Furthermore, the empirical distribution of the midprice change following an MO varies

depending on which subinterval was occupied at the time of the MO. In panels (a) and

(b) of Figure 4 we show this empirical distribution conditioned on imbalance regime. In

this figure, a time lag of 10 ms is used between the arrival of the MO and the calculation

of the price change. The positive (negative) bias of price changes after an MO in a buy-

heavy (sell-heavy) regime is not simply due to the fact that it is much more likely to

observe a market buy (sell) order in that regime. If we compute the price change when

only observing market buy orders, we obtain the distribution shown in panels (c) and

(d) of Figure 4. These two figures lend support to the idea that the direction of the price

change after a market buy order is most of the time positive (see for example Cartea

and Jaimungal (2014b)), and the magnitude of the change has a clear dependence on
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Figure 4: Distribution of midprice change 10 ms after an MO. Subintervals and data are equivalent to
those in Figure 3.

the level of volume imbalance.

We choose a 10 ms window between MOs and price changes because LO activity increases

immediately following an MO to such a large magnitude that this increase in activity can

be thought of as having been caused by the MO – the results in the paper are not altered

if the window is chosen to be up to 100 ms. We note that our statistical results do not

provide conclusive evidence on the causality between MO and LO activity. However,

the framework we develop here does not require a deeper understanding of causality, it

suffices to observe that LO activity is greatest right after the arrival of MOs.

To highlight this increased LO activity post MO activity, panels (a) and (b) of Figure

5 shows the proportion of three types of LO events that occur after MO arrivals. The

horizontal axis is the time window immediately after the MO event and the vertical axis
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is proportion of all LO events accounted for in this time window. The three types of

LO events counted in the figure are:

• Type 1: placed or cancelled.

• Type 2: placed or cancelled at a price equal to or better than the current best bid

or ask.

• Type 3: placed or cancelled and causes the midprice to change.

The difference between a Type 2 order and a Type 3 order is that a Type 2 order does

not necessarily have to change the midprice of the asset. If a limit buy order is placed

at the best bid, or if an existing order a the best bid is cancelled (but other orders still

remain at that price), then this would be a Type 2 order but not a Type 3 order. The

inclusions Type 3 ⊂ Type 2 ⊂ Type 1 hold.

Panel (c) in Figure 5 shows the proportion of the trading day accounted for immediately

following MO arrivals. The calculation of these proportions are performed as follows:

let [0, T ] be the time interval of interest, panel (c) is all of January 2014 with the first

and last 30 minutes of each day removed (we assume it is one connected interval by

concatenating trading hours together so that T = 415800 seconds). Let {tk}Nk=1 be the

sequence of times when MOs occur, and let {τ ik}N
i

k=1 be the sequence of times when LO

events of type i occur. Let ∆t > 0 represent the lag time after an MO for which its effect

on LO activity may be significant. For each value of the lag, ∆t, define the union of time

intervals I∆t = ∪Nk=1[tk, tk+∆t). The quantity I∆t represents the amount of time in [0, T ]

that takes place less than ∆t after an MO. Finally, define P i
∆t = card({τ ik}N

i

k=1 ∩ I∆t).

This quantity represents the number of LO events of type i which occur within ∆t after

an MO. Panels (a) and (b) plot P i
∆t/N

i as a function of ∆t for each type of LO event,

and panel (c) plots m(I∆t)/T as a function of ∆t for the two equities of interest, where

m is the Lebesgue measure.

As Figure 5 shows, a disproportionate amount of all LO activity occurs shortly following

an MO. To put in perspective the significance of the disproportion, note that less than

0.5% of the trading day is accounted for in the short time (50 ms) following all MOs.

However, between approximately 40% and 90% of all LO activity (whether defined by

type 1, 2 or 3) is accounted for in the same time period.

The combination of using a time lag of 10 ms in computing midprice changes and the

behavior shown in Figures 4 produces a notable feature in the distribution of price

changes. Most of the mass in these distributions occurs at the 0 and ±1 tick levels,

with less probability of observing a ±0.5 tick movement. Consider the scenario when

the spread is one tick and an incoming MO fills the full volume at the best quote. Soon
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Figure 5: Proportion of all LO events that occur shortly after an MO (panels a and b). Proportion of
trading day as percentage accounted for immediately following MO (panel c). Data are taken from a
full month of trading in January 2014.

after, there are three possible events: i) no new LOs are added within the new spread,

ii) an LO is added within the new spread to replenish the order that was filled, or iii)

an LO is added within the new spread, but on the other side of the book. If the original

MO is a buy (sell), the midprice change in each scenario is i) 0.5 (−0.5) ticks, ii) 0

ticks, or iii) 1 (−1) tick, respectively. The drastic increase in LO activity immediately

following an MO along with the fact that INTC and ORCL are large tick stocks explains

why scenario i) is much more rare than scenarios ii) or iii).

The above empirical results clearly show that volume imbalance conveys important

information about arrival rate of MOs and the distribution of prices. Here we have

examined a simple way to summarize LOB information on buying and selling pressure,

but depending on the particular asset, or how agents post intentions to sell or buy

using passive orders in other types of markets, it might be useful to synthesize volume

imbalance information in a different way.

Moreover, regardless of the way in which buying and selling pressure is synthesized,

trading algorithms could be considerably improved if this information is included. For

example, in market making algorithms, or those where the investor aims at profiting

from roundtrip trades, it is clear that basing her trading on volume imbalance protects

the strategy from adverse selection costs and increases expected profits as a result of

better inventory management and by tilting the LOs to take advantage of expected

moves in prices.
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3. Trading Algorithm with Volume Imbalance Information

In this section we develop a trading algorithm where the objective is to maximize profits

by posting LOs to make roundtrip trades. While the LOB dynamics we propose are

appropriate over a wide range of equities, we tailor the control processes to large tick

stocks and assume that LOs are posted only at the best bid and/or the best offer – for

small tick stocks the strategy needs to be adjusted so that it is possible to post LOs

within the spread. In Subsection 3.1 we present model ingredients such as the dynamics

for: MOs, midprice, and volume imbalance. In Subsection 3.2 we present and solve

the investor’s investment problem. In Subsection 3.4 we discuss the optimal trading

strategy. Finally, we devote Section 4 to discussing the performance of the trading

algorithm using market data for INTC and ORCL.

3.1. Market orders, midprice dynamics, volume imbalance

We work with a complete filtered probability space (Ω,F ,P). Let E = R+×R3, E be the

Borel sets of E, and µl, µ+, and µ− be three doubly stochastic Poisson random measures

(PRMs) on (E, E) with compensators νl, ν+, and ν−. These PRMs count events in

the book due to LO activity (corresponding to µl) and MO activity (corresponding to

µ±), and thus drive all of the dynamics in the model. More details on their structure

are outlined in subsection 3.1.1. Below we describe how the components of the LOB,

including LOs, MOs, midprice, and spread evolve.

Market Orders: The number of market buy (sell) orders that have occurred up to

time t is denoted by M+
t (M−

t ). These quantities are

M±
t =

∫ t

0

∫
y∈R3

µ±(dy, du) .

Limit Order Events: We are only concerned with an LO placement or cancellation

if it causes the midprice, spread, or imbalance regime (defined below) to change. If we

refer to these as Type 4 events, then with the description of other types as in Section

2.2 we have Type 3 ⊂ Type 4 ⊂ Type 2. We denote the number of Type 4 events as

M l
t =

∫ t

0

∫
y∈R3

µl(dy, du).
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Midprice: The midprice is modelled by the pure jump process

St = S0 +

∫ t

0

∫
y∈R3

y1(µl + µ+ − µ−)(dy, du) , (2)

where the value of y1 ∈ R represents the changes in midprice due to market activity.

Volume Imbalance: Rather than modelling the imbalance process ρt directly, which

can be rather noisy, we instead consider a finite state imbalance regime process Zt ∈
{1, . . . , nZ}. This process acts as an approximation, (and smoothing) to the true value

of imbalance by dividing the interval [−1, 1] into nZ subintervals (labelled such that

subinterval 1 corresponds to the largest negative values (i.e. the sell heavy regime), and

n corresponds to the largest positive values (i.e. the buy heavy regime) and Zt = k

corresponds to ρt lying within subinterval k. The process Zt is given by

Zt = Z0 +

∫ t

0

∫
y∈R3

(y2 − Zu−)(µl + µ+ + µ−)(dy, du) , (3)

where the value of y2 ∈ R represents the state of the imbalance regime process immedi-

ately following any market activity.

Spread: The spread between the best bid and best offer is modelled as a finite state

process which takes values in {1, . . . , n∆} and is given by

∆t = ∆0 +

∫ t

0

∫
y∈R3

(y3 −∆u−)(µl + µ+ + µ−)(dy, du) , (4)

where the value of y3 ∈ R represents the value of the spread immediately following any

market activity.

3.1.1. Properties of the doubly stochastic PRMs

The compensators of µl, µ+, and µ− are denoted by νl, ν+, and ν− and are chosen to

be of the form νi(dy, dt) = λi(Zt,∆t)F
i
Zt,∆t

(dy)dt, where for any (Z,∆)∫
y∈R3

F i
Z,∆(dy) = 1 . (5)

Furthermore, µl, µ+, and µ− are independent conditional on (Zt,∆t), specifically

lim
h→0

1

h
P(M i

t+h −M i
t = 1 ∩M j

t+h −M
j
t = 1 |Zt,∆t) = δi,j

√
λi(Zt,∆t)λj(Zt,∆t) , (6)
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where δi,j is the Kronecker delta and where i and j are any of l, +, or −. This property

ensures that any single change in St, Zt, and ∆t is a result of only one PRM. If the distri-

butions F i
Z,∆ are chosen to have support only on y2 ∈ {1, . . . , nZ} and y3 ∈ {1, . . . , n∆},

then from the definitions in (3) and (4) we have Zt ∈ {1, . . . , nZ} and ∆t ∈ {1, . . . , n∆}
with probability 1. Furthermore, (6), along with the factored form of the compensators,

makes the vector process (Zt,∆t) a continuous-time Markov chain. In the sequel it may

occasionally be convenient to refer to the pair imbalance and spread as a single state in

which case it is represented by J = (Z,∆).

Proposition 1 (Generator of (Zt,∆t)). The generator matrix G of the process J t =

(Zt,∆t) is given by

GJ ,K = λl(J)T lJ ,K + λ+(J)T+
J ,K + λ−(J)T−J ,K , for J 6= K ,

GJ ,J = −λl(J)
(
1− T lJ ,J

)
− λ+(J)

(
1− T+

J ,J

)
− λ−(J)

(
1− T−J ,J

)
,

(7)

for J ∈ {1, . . . , nZ} × {1, . . . , n∆}, where

T iJ ,K =

∫
y∈R3

1(y2,y3)=K F i
J(dy) .

Proof See Appendix A.1.

Finally, the distribution F l
Z,∆(dy) is chosen to have support only on the two hyperplanes

y1 = ±y3−∆
2

. This is because if a single LO placement or cancellation causes the spread to

change, then the midprice must also necessarily change by an amount which is exactly

half of the change in the spread. We do not impose this constraint on F±Z,∆, even

though the change in spread and midprice due to a single MO event must have the same

relationship. The reason for not imposing this constraint is that immediately following

an MO, there is an increase in the intensity of LO activity which has an effect on the

spread and midprice. This extra LO activity (as depicted above in Figure 5) can be

viewed as a result of the MO immediately prior, and so the changes in spread and

midprice can be attributed to the MO arrival itself.

3.2. Agent’s optimization problem

As discussed above, see for example Table 1 (and Table B.7 in Appendix), we observe

that MOs hardly ever walk beyond the best quote – this is a common feature in large

14



tick stocks. Thus, here we assume that the agent posts LOs only at-the-touch, i.e. the

best bid or best ask. In reality, the agent has LOs posted at many prices in the LOB

deeper than the best bid/ask so that if those prices were to become the best bid or ask

in the future, the agent’s orders at that time are closer to the front of the queue. This

is also why we assume that the agent’s LOs posted at the best bid or ask are always

executed by an incoming MO. It is possible to generalize the results to account for a

probability of being filled which is state dependent and less than 1, but the qualitative

behavior of the optimal strategy does not change.

The agent begins with a certain amount of wealth x0 which changes as MOs arrive and

fill her LOs and her cash process X = (Xt)0≤t≤T satisfies the SDE

dXt = γ+
t

(
St− +

∆t−

2

)
dM+

t − γ−t
(
St− −

∆t−

2

)
dM−

t , X0 = x0 ,

where the processes γ± = (γ±t )0≤t≤T , which take on values 0 or 1, are the agent’s

controls for whether she is posting buy and/or sell orders. Recall that M±
t are the

counting processes for market buy and sell orders.

As well, the agent’s inventory q = (qt)0≤t≤T satisfies the SDE

dqt = −γ+
t dM

+
t + γ−t dM

−
t .

We consider an agent who aims to find the strategy γ± which maximizes expected

terminal wealth subject to additional penalties. In particular, her value function is

given by

H(t, x, q, S,J) = sup
(γ±s )t≤s≤T∈A

E
[
XT + qT (ST − `(qT ,∆T ))− φ

∫ T

t

q2
u du

∣∣∣∣Ft] , (8)

where T is the terminal time of the strategy, `(qT ,∆T ) is a liquidation penalty, φ ≥ 0 is

a running inventory penalty parameter, and A is the set of admissible strategies which

are Ft-predictable such that the inventory remains bounded between finite upper and

lower bounds: Q ≤ qt ≤ Q. If qt = Q the agent does not post LOs on the sell side of

the book, i.e. must choose γ+
t = 0, and similarly, when qt = Q she chooses γ−t = 0.

The liquidation penalty `(q,∆): is increasing in q, its absolute value is increasing in

∆, and `(0,∆) = 0. This penalty reflects the costs from liquidating terminal inventory

with a single MO (which may walk the LOB) and encourages the agent to implement a

strategy where qT is close to 0.

The term φ
∫ T
t
q2
u du represents a running inventory penalty which discourages the agent
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from holding non-zero inventory positions for significant lengths of time. The parameter

φ can be used as a risk control by determining the strength of this penalty. A large

value of φ makes the agent act in a more conservative manner by inducing the strategy

to unwind positions, long or short, very quickly. See Guilbaud and Pham (2013) and

Cartea and Jaimungal (2015) for similar inventory control terms, and Cartea et al.

(2014) who show that this running penalty arises in the context of ambiguity aversion

when the agent is not confident about the drift of the midprice.

3.3. Feedback control of the optimal strategy

To find the optimal strategy, consider the Hamilton-Jacobi-Bellman (HJB) equation

associated with the value function H of the control problem (8)

∂tH−φq2+λl(J)E[DlH |J ]+ sup
γ+∈{0,1}

λ+(J)E[D+
γ+H |J ]+ sup

γ−∈{0,1}
λ−(J)E[D−γ−H |J ] = 0 ,

(9)

subject to the terminal condition H(T, x, q, S,J) = x+ q (S − `(q,∆)). Here the oper-

ator Dl acts as follows:

DlH(t, x, q, S,J) =

∫
y∈R3

(
H (t, x, q, S + y1, y2, y3)−H (t, x, q, S,J)

)
µl(dy, ·) ,

and the expectation operator conditional on J acts as

E[DlH |J ] =

∫
y∈R3

(
H (t, x, q, S + y1, y2, y3)−H (t, x, q, S,J)

)
F l
J(dy) . (10)

Similarly, the operators D±γ± are defined by

D±γ±H =

∫
y∈R3

(
H

(
t, x± γ±

(
S ± ∆

2

)
, q ∓ γ±, S ± y1, y2, y3

)
−H

)
µ±(dy, ·) ,

where we have suppressed explicit dependence on (t, x, q, S,J) for easier readability.

These have conditional expectation

E[D±γ±H |J ] =

∫
y∈R3

(
H

(
t, x± γ±

(
S ± ∆

2

)
, q ∓ γ±, S ± y1, y2, y3

)
−H

)
F±J (dy) .

(11)

Equation (10) represents the expected change in the value function due to the arrival of

an LO event (a new LO or cancellation of an existing order). Similarly, equations (11)

represent the expected change in the value function due to the arrival of a buy or sell

MO, depending on the agent’s strategy γ± at the time of the arrival of the MO.
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We make the ansatz H(t, x, q, S,J) = x + q S + h(t, q,J) where each term carries the

following interpretation: the cash position x, the book value of the shares which are

marked-to-market at the midprice, and h(t, q,J) which represents the extra value of

optimally trading until the terminal date. Inserting this into the HJB (9), after a

number of tedious computations, leads to a system of equations for h:

∂th− φq2 + λl(J)
(
qεl(J) + Σl(t, q,J)

)
+ sup

γ+∈{0,1}
λ+(J)

(
γ+ ∆

2
+ (q − γ+) ε+(J) + Σ+

γ+(t, q,J)

)
+ sup

γ−∈{0,1}
λ−(J)

(
γ−

∆

2
− (q + γ−) ε−(J) + Σ−γ−(t, q,J)

)
= 0 ,

h(T, q,J) = −q `(q,∆) ,

(12)

where

εi(J) =
∑

y1,y2,y3

y1F
i
J(y1, y2, y3) ,

Σl(t, q,J) =
∑
K

(h(t, q,K)− h(t, q,J))T lJ ,K ,

Σ±γ±(t, q,J) =
∑
K

(h(t, q ∓ γ±,K)− h(t, q,J))T±J ,K .

The terms Σi(t, q,J) represent the expected change in the value function due to state

transitions. The terms εi(J) represent the expected midprice change after the arrival

of an event. This identification, allows us to interpret the remaining contributions to

equation (12).

Terms of the form q εi(J) represent the instantaneous expected change of the value of

the agent’s holdings due to market activity of type i (where i can be l, +, or −). If

this product is positive, then the agent is in a state where her inventory holdings are

expected to increase in value. If it is negative, then the current market state dictates her

inventory holdings are expected to decrease in value. The terms −γ± ε±(J) represent

the immediate costs incurred due to adverse selection after having an LO filled (note

that ε±(J) is generally positive according to Figure 4 and the signs of the PRMs in (2)).

Finally, the terms γ± ∆
2

are the immediate profits made by the agent due to the arrival

of an MO. Consequently, the relative sizes of ∆
2

and ε±(J) are an important indicator

of the agent’s strategy. We discuss this point below when analyzing the optimal trading

strategy.

Proposition 2 (Existence of solution). Equation (12) together with its terminal con-

dition has a unique classical solution.
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Proof See Appendix A.2.

Recall that the control processes are restricted to values of 0 or 1. From (12), the

resulting optimal feedback controls are given by a simple comparison:

γ+(t, q,J) =

 1, ∆
2
− ε+(J) + Σ+

1 (t, q,J) > Σ+
0 (t, q,J) , and q 6= Q ,

0, otherwise ,
(13a)

γ−(t, q,J) =

 1, ∆
2
− ε−(J) + Σ−1 (t, q,J) > Σ−0 (t, q,J) , and q 6= Q ,

0, otherwise .
(13b)

Due to the discrete nature of the controls, there is little hope of finding a closed-form

solution for the value function, however, (12) can be easily solved numerically.

The form of the optimal controls in (13a) and (13b), together with some reasonable

foresight about the qualitative behavior of the optimal strategy, reveals a simple rule

of thumb. It is expected that for a fixed state of imbalance and spread, J , there

is a boundary in the space of the variables (t, q) such that if q lies above (below) this

boundary, then the agent optimally posts a limit sell (buy) order. The sign of ∆
2
−ε±(J)

plays a large part in determining whether this boundary lies above or below the curve

q = 0. The terms Σ±1 (t, q,J) and Σ±0 (t, q,J) act as corrections based on the future

liquidation penalty and running inventory penalty. If there is no inventory constraint or

penalization, and the time to maturity is very large, the terms Σ±1 (t, q,J) and Σ±0 (t, q,J)

are equal and the strategy is determined by the sign of ∆
2
− ε±(J). This last expression

is the expected amount of cash that the agent earns if the position is unwound at the

midprice.

Theorem 3 (Verification Theorem). Let h be the solution to (12) and define

Ĥ(t, x, q, S,J) = x + q S + h(t, q,J). Then the candidate solution Ĥ equals the value

function H as defined in (8).

Proof See Appendix A.3.

3.4. Optimal Posting Strategy

To show a typical posting strategy, we select a model with 3 states in the volume

imbalance regime process, and the stock trades with a spread of 1 or 2 ticks, i.e. nZ = 3
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and n∆ = 2. For a full set of parameters, see the Appendix C.1. These parameters

result from the estimation procedure outlined in Section 4.1 when applied to 30 minutes

of INTC data starting at 10:00 on January 24, 2014. Parameters of most interest are

shown below. The components of these vectors represent states, J = (Z,∆) with the

following convention: the first three components correspond to ∆ = 1 and Z = 1, 2, 3.

The last three components correspond to ∆ = 2 and Z = 1, 2, 3.

λ̂+ = ( 0.038 0.121 0.600 1.711 1.188 3.042 ) ,

λ̂− = ( 0.600 0.121 0.038 3.042 1.188 1.711 ) ,

ε̂+ = ( 0.240 0.306 0.713 −0.111 0.152 0.469 ) ,

ε̂− = ( 0.713 0.306 0.240 0.469 0.152 −0.111 ) .

These parameters indicate the intensity of MOs and expected midprice change imme-

diately following an MO for each state. Intensities are displayed in units of second−1

and midprice changes are in ticks. Note that higher imbalance regimes (i.e. the book is

tilted to the buy side) generally indicate a higher frequency of market buy orders and

also larger expected (positive) midprice changes after buy MOs. High imbalance also

indicates lower frequency of market sell orders and smaller jump sizes after sell orders.

This is consistent with market behavior shown in Figures 3 and 4.

Figure 6 shows the optimal strategy corresponding to sell and buy LOs. In the top panel

the spread is ∆ = 1 tick and in the bottom panel is ∆ = 2 ticks. In both panels, the

light grey region corresponds to posting a limit sell order, the dark grey region a limit

buy order, and the black region indicates an overlap where both a buy and sell order are

posted. Finally, the white region indicates that no order should be placed in the book.

There are several features in this figure to note. As imbalance becomes more buy-

heavy, the buy (sell) region becomes larger (smaller) in anticipation of the asset price to

increase. Limit sell orders become less desirable because they are more likely to incur

immediate losses due to adverse selection. Any desire to sell the asset in a buy-heavy

imbalance regime is due to the liquidation penalty, to be paid at time T , and the running

penalty, which add up to a cost that outweighs the gains from trading in the direction

of the expected increase in prices.

In both the buy-heavy and sell-heavy regimes, the boundary between the sell and no

sell regions generally lies considerably above or below, respectively, the zero inventory

level. Note that in the sell-heavy regime the boundary is significantly below the level

of zero inventory. This is consistent with rule of thumb, discussed after Proposition 2,

to sell the asset in the sell-heavy regime when ∆
2
− ε+(J) > 0 because the earnings of

the half-spread are larger than the expected price increase immediately following the

MO. Similarly, in the buy-heavy regime, the boundary is significantly above the zero
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Figure 6: Dark grey (light grey) region is where buy (sell) LOs are posted. Black region is overlap
where both buy and sell orders are be posted. White region indicates no-trade region, where the agent
does not have LOs in the book.

inventory level. In this case it is usually not optimal to post a sell order because the

gains from having the limit sell order filled are lower than the expected increase in

midprice, ∆
2
− ε+(J) < 0. In this region the agent is better off not posting because on

average she loses the half-spread she earns to adverse selection costs.

For a fixed imbalance regime, the sell region is larger for larger values of ∆. This implies

that within a fixed imbalance regime, the agent is more willing to post orders when the

spread is large. This does not always have to be the case, but for the particular set of

parameters chosen note that ∆
2
− ε+(J) is larger for ∆ = 2 ticks than for ∆ = 1 tick.

Finally, the top panel of the figure shows two large no-trade regions in the sell-heavy and

buy-heavy imbalance regimes. In these regions, the agent withdraws from the market.

It is optimal to let current inventory appreciate in value because the expected future

value of what the agent is holding outweighs the earnings from an additional trade net

of any inventory costs (running penalty or terminal liquidation). The agent remains

withdrawn from the market until the imbalance or spread change, or until the passage

of time takes the strategy close enough to the terminal date T , so the future cost of

having to cross the spread to liquidate outweighs the benefit of inventory appreciation.
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We also observe a small no-trade region in the neutral regime when inventory is close

to zero and the strategy approaches the terminal date T .

4. Performance of Strategy on the Nasdaq Exchange

In this section we analyze the performance of the strategy on trade data from the Nasdaq

exchange for INTC and ORCL. Our data set consists of all messages sent to Nasdaq’s

LOB during all trading days in 2014. We employ the first six months of data to calibrate

model parameters and test the strategy’s performance over the following six months.

We assume that the agent’s trading window is half-hour intervals. That is, the agent

sets a horizon of 30 mins over which she trades and closes all positions at the end of

the window. We record the PnL of the strategy for every half-hour and compute the

Sharpe ratio for a range of values of the running inventory parameter φ.

The choice of a 30 minute trading horizon is arbitrary and may have an effect on the

profitability of the strategy. Some stocks are more active than others over that window so

the chances of making roundtrip trades varies, thus one could choose the trading window

based on the arrival rate of MOs and the average of traded volume. Alternatively, it is

possible to sow together the various 30 minute periods to create a strategy that trades all

day long and only unwinds at the end of the day. Such a strategy should outperform the

one presented here. Nonetheless, the approach taken here allows us to demonstrate the

historical value of adding imbalance as a state variable, and also allows us to generate

many return periods from which we can compute meaningful estimates of returns and

variability of returns.

We organize the rest of this section as follows. In Subsection 4.1 we show how the model

parameters are estimated. In Subsection 4.2 we discuss how to forecast and update the

model parameters which are used in the execution of the out-of-sample strategy. Finally,

in Subsection 4.3 we present the out-of-sample performance of the strategy.

4.1. Estimating Model Parameters

To compute the optimal trading strategy, we solve (12) and then use (13a) and (13b)

to find in which regions LOs are posted. To solve these equations we do not require

all model parameters. Rather, for each Z and ∆ and each i = +,−, l, we only require

the quantities λi(J), εi(J) =
∑

y1,y2,y3
y1F

i
J(y1, y2, y3), and T iJ ,K =

∑
y1
F i
J(y1,K). The

value of λi(J) is the rate at which an event of type i occurs when the current imbalance

and spread are equal to Z and ∆ respectively, recall that J = (Z,∆). The value of εi(J)

is the expected change in midprice immediately after an event of type i when the event

occurs in state J . Finally, the value of T iJ ,K is the probability of transitioning from
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state J to state K after an event of type i. The sum over y1 represents averaging out

all possible midprice changes so the remaining quantity represents transitions between

imbalance and spread only.

Estimating the model parameters over a time window is a straightforward procedure.

Moreover, to ensure that the model does not contain any long term speculation based

on the average growth of the asset midprice, we impose symmetry constraints between

complementary states of imbalance. For example if rate of arrival of buy MOs is higher

than arrival of sell MOs then a long term strategy is to buy and hold the asset because

the model predicts that in the long term prices will increase.

The complementary imbalance state of Z is defined to be Z̃ = nZ −Z + 1. We also use

the short-hand notation J̃ = (Z̃,∆). The constraints we impose are the following:

λl(J) = λl(J̃) , (14a)

λ±(J) = λ∓(J̃) , (14b)

εl(J) = −εl(J̃) , (14c)

ε±(J) = ε∓(J̃) , (14d)

T lJ ,K = T l
J̃ ,K̃

, (14e)

T±J ,K = T∓
J̃ ,K̃

. (14f)

We remark that we impose this symmetry to preclude long term speculation strategies

and acknowledge that many high-frequency trading strategies are designed to benefit

from short-lived trends in the midprice. There is no contradiction in a model where

the long term growth of the midprice is symmetric as discussed here, but also exhibits

short term deviations around the midprice’s long term trend. For example there are

models that ‘seek alpha’, see Cartea et al. (2014), and models that take advantage of

how innovations in order flow affect the trend in prices, see for instance Cartea and

Jaimungal (2014b), Cartea and Jaimungal (2014a).

Let N i
J denote the number of events of type i that occurred from 0 to T when the

imbalance and spread are equal to J . Also let τJ be the total occupation time of state

J so that
∑

J τJ = T . Then λi(J) is estimated by

λ̂l(J) =
N l

J +N l
J̃

τJ + τJ̃
, and λ̂±(J) =

N±J +N∓
J̃

τJ + τJ̃
.

Further, let yi1J , . . . , y
iN i

J
J be all the midprice changes that occur following an event of
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type i from state J . Then

ε̂l(J) =

∑N l
J

k=1 y
lk
J −

∑N l
J̃

k=1 y
lk
J̃

N l
J +N l

J̃

, and ε̂±(J) =

∑N±
J

k=1 y
±k
J +

∑N∓
J̃

k=1 y
∓k
J̃

N±J +N∓
J̃

.

Finally, let N i
J ,K be the number of times that the state transitions from J to K. Then

T̂ lJ ,K =
N l

J ,K +N l
J̃ ,K̃

N l
J +N l

J̃

, and T̂±J ,K =
N±J ,K +N∓

J̃ ,K̃

N±J +N∓
J̃

.

Note that these quantities satisfy (14a) to (14f). These are also the expressions that

result from a maximum likelihood estimation with the constraints imposed. The pa-

rameters used in the numerical example of the previous section were obtained through

this procedure, and so by construction they satisfy the constraints which results in the

symmetry between buy and sell regions seen in Figure 6.

4.2. Forecasting Model Parameters

Testing the trading strategy on out-of-sample data requires forecasts of model parame-

ters for each half-hour interval based on the estimated parameters from previous intervals

– recall that the trading horizon is T = 30 mins. We begin by labelling each interval

according to the day of the year and the time of day in which it takes place. The data

consist of all the messages sent to the Nasdaq exchange in all trading days in 2014,

giving a total of 249 days consisting of 13 half-hour intervals, i.e. T = 30 mins, in each

trading day. We identify each interval as the pair (m,n) where m denotes the day in the

year and n denotes the half-hour of the day, thus m ∈ {1, . . . , 249} and n ∈ {1, . . . , 13}.

We employ the first 6 months of data, i.e. the first 124 days, to calibrate all model

parameters for each half hour in the day. These parameter estimates are used to develop

a predictive model so that model parameters in a given 30 minute period (over which

we aim to backtest out-of-sample) are estimated from the data we already observed in

the last 30 minute period. We do this in two stages described in detail below.

Let λim,n = (λim,n(1), . . . , λim,n(nZ,∆))′ and εim,n = (εim,n(1), . . . , εim,n(nZ,∆))′, where nZ,∆ =

nZ × n∆, and ′ is the transpose operation. In the first stage, for each trading period in

the first six months of the year, January to June (m = 1, . . . , 124), we estimate all of

the model parameters λ̂
i

m,n and ε̂im,n. Thus, we have in-sample estimates of the model

parameters (for the first 6 months), and a different model for each day and each trading

period.

In Figures 7 and 8 we show motivation for the forecasting method we propose below.
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(c) Buy-Heavy

Figure 7: Intraday seasonality of MO intensity for ORCL. Each curve is a different day in the month
of January 2014. Each point on a single curve is the intensity of market buy orders conditional on the
state of imbalance over a 30 minute period. The thick black curve is the average intensity within the
same window of all days in the sample. Similar behavior is shown for INTC.

When calibrating the model parameters over each 30 minute period, we observe a well

known intraday seasonality effect. Figure 7 shows the arrival intensity of MOs, condi-

tional on the imbalance regime, which is generally higher at the beginning and end of

the day giving a characteristic ‘U’ shape. Moreover, Figure 8 shows the size of midprice

changes following an MO. The pattern is generally high at the beginning of the day and

low at the end of the day giving a characteristic ‘S’ shape.

In the second stage, we assume a factor model that relates the parameters of one trading

interval n to the parameters of the previous trading interval n− 1 on the same day m:

λ̂
i

m,n = αλ
i

n + βλ
i

n λ̂
i

m,n−1 + ελ
i

m,n , (15)

ε̂im,n = αε
i

n + βε
i

n ε̂
i
m,n−1 + εε

i

m,n , (16)

where αλ
i

n , α
εi

n ∈ RnZ,∆ , βλ
i

n , β
εi

n ∈ RnZ,∆×nZ,∆ , and all of the idiosyncratic error terms

ελ
i

m,n and εε
i

m,n are independent with mean zero.

Using the model parameters estimated in-sample for the first 6 months, we then perform

a multilinear regression to obtain the estimates α̂λ
i

n and α̂ε
i

n , and the factor loadings β̂λ
i

n

and β̂ε
i

n .

To test the strategy’s performance, the next step is to forecast the parameters that

are used in the out-of-sample period. For day m we employ the data in the first 30

minute period (i.e. n = 1 which is the first half hour of the day) to estimate the model

parameters λ̂
i

m,1 and ε̂im,1, but do not trade over this first half-hour of the day. We then

use the regression model to predict the model parameters for the next period (in which

we trade). Denote these forecasts by λ̃
i

m,2 and ε̃im,2, which are the parameters used to
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(c) Buy-Heavy

Figure 8: Intraday seasonality of midprice changes following an MO for ORCL. Each curve is a different
day in the month of January 2014. Each point on a single curve is the average midprice change following
a market buy order (measured in ticks) conditional on the state of imbalance over a 30 minute period.
The thick black curve is the average midprice change within the same window of all days in the sample.
Similar behavior is shown for INTC.

formulate the trading strategy over the second 30 minute period. After the second 30

minute period has passed, we use the observed data for the second period to estimate

λ̂
i

m,2 and ε̂im,2, and once again use the regression model to forecast the parameters of the

third period (over which we trade), and so on. Succinctly, we use the estimates resulting

from the regression (15) and (16) to forecast the parameters for half-hour n = 2, . . . , 131

in day m using the recursion:2

λ̃
i

m,n = α̂λ
i

n + β̂λ
i

n λ̂
i

m,n−1 ,

ε̃im,n = α̂ε
i

n + β̂ε
i

n ε̂
i
m,n−1 .

We do not perform this type of regression and forecasting for the transition probabilities

T iJ ,K,m,n because numerical investigation has shown that the trading strategy depends

much more heavily on εi and λi. Instead, the value of T iJ ,K,m,n is set equal to the mean

of T iJ ,K,m,n taken over all m ∈ {1, . . . , 124}.

1Although we are able to use our forecasting method to obtain parameters for n = 13, we do not
test the trading strategy in the last 30 minute interval as market behaviour is notably different towards
the end of the day.

2After computing the forecast of λ̃im,n it is possible we obtain a negative value. In this case, we set

λ̃im,n = 10−2. We do not set it equal to zero because we do not want to impose that a state is absorbing.

We also impose a maximum value on each λ̃im,n of 10. This is solely for purposes of numerical stability
when solving equation (12) and does not have a significant qualitative impact on the resulting optimal
strategy.
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4.3. Out-of-sample Performance of Trading Strategy

Now that we have a recursive method to forecast model parameters for the interval

(m,n), based on the parameters of interval (m,n − 1), we test the out-of-sample per-

formance of the trading strategy for all days in July to December 2014. Our forecast

method does not allow us to test the strategy in the first half-hour of each day, and

we also exclude testing in the last half-hour of each day as market behavior is notably

different towards the end of the trading day. This leaves us with a total of 1375 half-hour

intervals to perform an out-of-sample test of the strategy. At the end of each half-hour

trading period, any non-zero inventory is liquidated by crossing the spread, consistent

with the use of the penalty term `(q,∆) = sign(q)∆
2

, which assumes that there is enough

liquidity at the best quote to fill the agent’s MO.

Here we fix the maximum inventory constraint at Q = −Q = 50 and choose a range

of values of the running penalty parameter φ to see how it affects the PnL. Moreover,

we examine how the strategy performs when volume imbalance is modelled assuming

nZ = 1, 3, 5 states, and fixing n∆ = 2. Recall that volume imbalance ρt ∈ [−1, 1] and

that this is divided into nZ subintervals, and n∆ is the grid on which the spread lives.

When nZ = 1 there is only one volume imbalance state and the midprice can either be

in a state where the spread is one or two ticks.

Figure 9 shows the annualized mean PnL versus annualized standard deviation of the

resulting wealth over all trading intervals for INTC (left panel) and ORCL (right panel).

As expected, the worst performance is when nZ = 1 and the results for nZ equal to 3

and 5 are approximately the same. For both stocks we observe that increasing the value

of the running penalty parameter φ increases the performance of the strategy: expected

PnL increases and its standard deviation decreases.

Figure 10 shows another perspective of the results. It depicts the Sharpe ratio of the

strategy as a function of the parameter φ, and the risk-free rate is zero. We observe that

as the agent enforces stricter controls on inventory by increasing φ, the Sharpe ratio of

the strategy also increases.

The results in Figures 9 and 10 should be compared to those of the zero-intelligence

strategy. It is clear that employing the information impounded in the volume imbalance

process, i.e. MO arrival and price innovations, considerably boosts the profits of an

investment strategy based on roundtrip trades. The sources of the profits stem from

protecting the strategy from adverse selection costs, and positioning the LOs to take

advantage of price movements. In addition, we also observe that imposing a running

inventory penalty enhances the profitability of the strategy as in Guilbaud and Pham

(2013) and Cartea and Jaimungal (2015).
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Figure 9: Annualized Expectation vs. Standard Deviation of trading strategies based on different
number of imbalance states and Q = −Q = 50. Each point represents a different value of φ, ranging

from 0 to 10−5 (larger values of φ correspond to smaller values of standard deviation).
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Figure 10: Annualized Sharpe ratio vs. φ of trading strategies based on different number of imbalance
states and Q = −Q = 50, and the risk-free rate is zero.
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In Table 2 we show the annualized Sharpe ratio for the zero-intelligence strategy when

applied to a set of large tick stocks for various values of the inventory constraint Q

(these results take place under Scenario 1 as discussed in Section 2.1). These values

show similar behaviour to what is seen in Figure 1 indicating the failure to make positive

profits through roundtrip trades when always posting LOs on both sides of the LOB.

In contrast, Tables 3, 4, and 5 show the annualized Sharpe ratio over the same set of

equities when employing our strategy with volume imbalance and spread information.

The results are for nZ = 1, 3, 5, and the spread is 1 or 2 ticks, i.e. n∆ = 2. We observe a

large boost in performance across the board. The results in Table 3 do not incorporate

observations of imbalance in the strategy since nZ = 1, but executions are dependent on

the spread. This explains the relatively poor performance when compared to the results

in Tables 4 and 5. Further, the Sharpe ratio generally increases with an increase in the

running inventory parameter φ.

Maximum Inventory Q
1 2 4 10 20 40 100 200

AA -29.62 -33.77 -31.57 -21.89 -15.00 -10.18 - 6.97 - 6.41
AMAT -34.20 -37.90 -33.66 -22.27 -15.15 -11.60 - 8.81 - 7.47
ARCC -14.46 -16.07 -14.11 -11.28 - 9.13 - 6.95 - 5.30 - 4.85
BXS -33.87 -27.24 -22.25 -17.15 -14.49 -12.12 -11.96 -11.96

CSCO - 8.50 -18.03 -20.56 -15.71 -11.24 - 9.26 - 7.04 - 6.18
EBAY -17.11 -20.55 -21.21 -18.08 -13.36 - 8.58 - 5.55 - 4.17
FMER -33.12 -34.11 -28.45 -18.63 -13.44 -11.30 -10.25 -10.22
IMGN -49.92 -40.68 -29.62 -18.39 -13.70 -10.54 - 8.33 - 7.90
INTC -20.97 -26.15 -26.53 -23.11 -17.37 -11.98 - 8.24 - 6.90
NTAP -45.96 -44.68 -37.70 -23.71 -15.08 - 9.75 - 8.06 - 8.04
ORCL -20.24 -28.23 -28.36 -20.89 -13.59 - 9.17 - 6.71 - 5.53

Table 2: Annualized Sharpe ratio of zero-intelligence trading strategies based on various values of Q.

So far the strategy assumes that the agent’s LOs are always at the front of the queue.

This assumption is unrealistic and introduces a bias in the profitability of the trading

strategy. We address this issue by assigning a fill probability to the LOs. This probability

depends on the type of MO and the state of imbalance immediately prior to the MO.

Define the two vectors

p+ = ( 0.20 0.35 0.50 0.65 0.80 ) ,

p− = ( 0.80 0.65 0.50 0.35 0.20 ) ,

which represent fill probabilities depending on the state of imbalance and the type of

MO. If ρ ∈
[
−1

5
, 1

5

]
indicating a neutral market in which Z = 3, then the agent’s LO

is filled with probability p+(3) = p−(3) = 0.5. If ρ ∈
(

1
5
, 3

5

]
indicating a buy-heavy

market in which Z = 4, then a buy (sell) MO fills an agent’s posted sell (buy) LO with
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Inventory Penalty Parameter φ
0 10−7 2 · 10−7 4 · 10−7 10−6 2 · 10−6 4 · 10−6 10−5

AA -3.78 - 6.42 - 5.93 - 5.06 - 3.68 - 0.71 3.00 8.75
AMAT -6.09 - 8.65 - 8.84 - 8.64 - 7.73 - 5.28 - 1.74 4.80
ARCC -4.94 - 8.41 - 8.52 - 9.06 - 8.73 - 7.16 - 4.09 - 0.53
BXS 1.50 2.68 3.29 3.78 4.49 5.21 5.81 6.01

CSCO -4.18 - 8.81 - 9.71 -10.23 -10.06 - 8.65 - 5.92 - 0.49
EBAY 0.90 1.27 1.76 2.50 3.86 5.24 7.07 10.28
FMER 1.51 6.40 7.99 9.82 12.90 16.26 20.08 23.81
IMGN 1.40 - 0.91 - 1.08 - 1.25 - 1.22 - 1.20 - 0.85 - 0.07
INTC -7.52 -16.04 -16.69 -17.19 -17.36 -16.24 -14.43 - 9.42
NTAP 0.50 1.82 1.81 1.51 1.88 2.60 3.17 4.99
ORCL 0.88 5.36 7.13 9.67 13.13 16.65 20.58 26.30

Table 3: Annualized Sharpe ratio of trading strategies based on various values of φ, the number of
imbalance states here is nZ = 1 and n∆ = 2 and the maximum inventory constraint is Q = 50.

Inventory Penalty Parameter φ
0 10−7 2 · 10−7 4 · 10−7 10−6 2 · 10−6 4 · 10−6 10−5

AA 6.11 9.24 11.13 12.74 17.82 22.10 24.90 28.32
AMAT 5.32 10.03 12.09 14.62 17.95 20.99 24.56 28.64
ARCC - 0.85 - 0.41 0.19 0.73 2.10 3.44 5.39 8.18
BXS 2.66 2.86 3.11 3.68 3.93 4.70 6.49 7.96

CSCO 8.19 10.11 11.67 13.86 17.99 21.04 24.82 30.78
EBAY 3.13 5.51 6.28 7.49 9.43 11.17 14.14 18.17
FMER 5.31 7.00 7.92 9.30 12.05 14.45 17.02 22.02
IMGN 2.08 1.65 1.62 1.67 1.98 1.92 2.20 3.60
INTC 1.90 8.04 9.94 12.51 15.96 18.70 21.38 25.13
NTAP 1.98 2.32 2.33 2.73 3.10 4.34 5.88 7.64
ORCL 11.65 16.76 18.74 20.86 23.71 26.94 29.17 34.25

Table 4: Annualized Sharpe ratio of trading strategies based on various values of φ, the number of
imbalance states here is nZ = 3 and n∆ = 2 and the maximum inventory constraint is Q = 50.

probability p+(4) = 0.65 (p−(4) = 0.35). If ρ ∈
(

3
5
, 1
]

indicating a strongly buy-heavy

market in which Z = 5, then a buy (sell) MO fills an agent’s posted sell (buy) LO with

probability p+(5) = 0.80 (p−(5) = 0.20). The probabilities for imbalance states Z = 1

and Z = 2 are defined similarly.

Table 6 shows the Sharpe ratio of the strategy with nZ = 5 and when fill rates depend

on type of MO and the state of imbalance as described. As expected, the Sharpe ratios

of the strategy are lower than those shown in Table 5, where the only difference is

the fill rates, but the ratios are still considerable higher than those obtained with the

zero-intelligence strategy.
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Inventory Penalty Parameter φ
0 10−7 2 · 10−7 4 · 10−7 10−6 2 · 10−6 4 · 10−6 10−5

AA 6.12 8.35 9.79 12.06 17.34 20.33 23.99 27.93
AMAT 6.81 9.49 10.91 12.79 16.53 19.67 23.72 28.49
ARCC -0.66 -0.01 0.73 1.40 3.07 4.35 5.85 9.34
BXS 4.25 4.50 4.78 5.08 6.45 6.43 7.57 9.42

CSCO 9.48 11.60 12.91 15.38 18.94 22.73 27.14 32.85
EBAY 3.41 4.59 6.00 7.74 9.96 12.42 16.12 20.91
FMER 5.24 6.57 7.02 8.05 10.48 12.69 15.77 20.71
IMGN 2.83 2.75 2.73 2.43 2.05 2.06 2.49 3.15
INTC 4.49 9.68 11.25 12.85 15.60 17.93 20.88 24.45
NTAP 1.63 2.29 2.63 2.73 2.74 3.79 4.53 7.32
ORCL 11.75 14.28 16.09 18.32 21.90 25.20 28.99 33.29

Table 5: Annualized Sharpe ratio of trading strategies based on various values of φ, the number of
imbalance states here is nZ = 5 and n∆ = 2 and the maximum inventory constraint is Q = 50.

Inventory Penalty Parameter φ
0 10−7 2 · 10−7 4 · 10−7 10−6 2 · 10−6 4 · 10−6 10−5

AA 2.42 3.96 4.92 4.46 6.83 10.85 12.81 17.28
AMAT 3.90 4.17 4.66 5.83 8.99 8.94 12.88 17.83
ARCC -2.22 -2.62 - 2.23 - 2.63 - 1.26 - 1.27 - 0.68 2.03
BXS 1.83 1.89 1.48 0.68 1.00 1.92 2.45 1.62

CSCO 6.46 7.68 7.56 10.00 11.95 14.12 17.18 20.79
EBAY 1.99 2.71 5.11 4.92 3.84 6.34 7.77 11.02
FMER 1.42 2.96 2.78 4.05 5.61 5.48 7.46 9.65
IMGN 0.79 0.47 0.19 0.11 1.54 0.28 1.52 2.08
INTC 0.43 5.23 5.87 7.63 9.96 9.66 12.57 15.91
NTAP -0.22 1.62 - 0.57 1.89 - 0.47 - 0.34 0.70 0.81
ORCL 7.87 9.68 10.65 11.71 13.00 15.87 15.78 21.14

Table 6: Annualized Sharpe ratio of trading strategies with modified fill probabilities depending on the
level of imbalance. The trading strategy here is based on a number of imbalance states equal to nZ = 5
and n∆ = 2 and the maximum inventory constraint is Q = 50.

We finish this section by adding a few remarks about the strategy’s performance. First,

for the purposes of this historical test, and indeed for the entire optimization problem

as stated, here we focused on an agent who utilizes LOs on both sides of the market.

The performance of the strategy is expected to improve if the agent also uses MOs

to take advantage of price innovations which are anticipated by the volume imbalance

process. Moreover, the use of volume imbalance can be implemented in a vast range of

other optimal execution problems. For example, algorithms to acquire/liquidate a large

number of shares, as well as ‘Pairs Trading’ algorithms.
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Finally, we acknowledge that measures based on the volume of shares resting in the LOB,

or number of LOs in the LOB, may be subject to manipulation. In most equity markets

it is costless to cancel or amend an LO and although illegal, market participants may

artificially tilt the LOB by submitting LOs on one side of the book, only to withdraw

them quickly enough whilst taking advantage of traders that employ strategies like the

one described, and those suggested, in this paper. This illegal activity is commonly

referred to as ‘spoofing’ and very difficult to detect in modern electronic exchanges

where a large number of market participants employ different trading strategies and

some can trade at extremely low latencies. In the particular cases discussed here, one

cannot tell if throughout 2014 the stocks we study are subject to spoofing at any point

in time. Even if this is the case, the statistical properties of volume imbalance as a

predictor of MO activity and price innovations seem robust to this manipulation of LOs

which would certainly erode the predictive power of volume imbalance.

5. Conclusions

We employ message data from the Nasdaq exchange to build a measure of volume

imbalance and show that it predicts type of MO arrival (buy or sell) as well as predict

price innovations. This measure captures buying and selling pressure in the LOB. In

particular we show that when the LOB is buy-heavy the probability of the next MO

being a buy order is much higher than it being a sell order. Moreover, we also show

that when the LOB is buy-heavy, price revisions after MO arrival are on average large

and positive, i.e. larger than the average price revision seen when the LOB is neither

buy-heavy nor sell-heavy. We observe the same empirical behavior when the book is

sell-heavy. This relationship between volume imbalance and market order activity is

consistent across a large sample of Nasdaq stocks we examined.

This measure is simple to build and can be employed by a wide range of trading algo-

rithms. A clear effect of using this information in a trading model is to reduce adverse

selection costs and to take advantage of favorable price movements.

As an example of an algorithmic trading strategy we solve an optimal investment prob-

lem of an agent who provides liquidity to the LOB. The agent’s objective is to maximize

expected terminal wealth by completing roundtrip trades whilst penalizing inventory

positions. We use trade data to show the out-of-sample performance of the strategy

during the period 1 July to 31 December 2014. We demonstrate that including the

volume imbalance process considerably boosts the strategy’s process and the Sharpe

ratio of the strategy is considerable higher than that obtained by most models proposed

in the literature, i.e. Avellaneda and Stoikov (2008), Guéant et al. (2012), Fodra and

Labadie (2012), Cartea and Jaimungal (2015), and Cartea et al. (2014).
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Appendix A. Proofs

Appendix A.1. Proof of Proposition 1

Proof of Proposition 1 Define the process Ft = E[Φ(JT )|Ft] = f(t,J t) for some

function Φ to be specified later. Using Ito’s Lemma and the fact that Ft is a martingale,

we have that f satisfies the following equation

∂tf(t,J) +

∫
y∈R3

(
f(t, y2, y3)− f(t,J)

)(∑
i

λi(J)F i
J(dy)

)
= 0

∂tf(t,J) +
∑
K

∫
y∈R3

(
f(t, y2, y3)− f(t,J)

)
1(y2,y3)=K

(∑
i

λi(J)F i
J(dy)

)
= 0

∂tf(t,J) +
∑
K

(
f(t,K)− f(t,J)

)∫
y∈R3

1(y2,y3)=K

(∑
i

λi(J)F i
J(dy)

)
= 0

∂tf(t,J) +
∑
K

(
f(t,K)− f(t,J)

)(∑
i

λi(J)T iJ ,K

)
= 0 .

Letting [f(t)]J = f(t,J) and using the matrix G introduced in the proposition, the

matrix form of this equation is

∂tf +Gf = 0 ,

which has solution

f(t) = eG(T−t)Φ .

If Φ(J) is defined as the indicator function for a particular state J0, then f(t) is a vector

of transition probabilities to state J0 from each arbitrary state J over a time of T − t.
This is the same expression which dictates transition probabilities for a continuous time

Markov chain with generator matrix G.

Appendix A.2. Proof of Proposition 2

Proof of Proposition 2 Equation (12) can be written in the form:

∂th = F (h) ,

where F is a vector valued function of a vector argument. Each component of F is a

piecewise linear function of h, the coefficients of which depend on the regions defined

by the inequalities in (13a) and (13b). Since inventory, imbalance, and spread are all

bounded, the number of regions defined by the inequalities in (13a) and (13b) is finite.

Therefore, F is Lipschitz, and equation (12) has a unique classical solution.

32



Appendix A.3. Proof of Theorem 3

Proof of Theorem 3 Let h be the solution to equation (12) and define a candidate

optimal value function Ĥ(t, x, q, S,J) = x+ qS + h(t, q,J). From Ito’s Lemma we have

Ĥ(T,Xγ±

T− , q
γ±

T− , ST− ,JT−) = Ĥ(t, x, q, S,J) +

∫ T

t

∂th(u,Xγ±

u , qγ
±

u , Su,Ju)du

+

∫ T

t

∫
y∈R3

qγ
±

u y1 + h(t, qγ
±

u , y2, y3)− h(t, qγ
±

u ,Ju)µ
l(dy, du)

+

∫ T

t

∫
y∈R3

γ+
u

∆u

2
+ (qγ

±

u − γ+
u )y1 + h(t, qγ

±

u − γ+
u , y2, y3)− h(t, qγ

±

u ,Ju)µ
+(dy, du)

+

∫ T

t

∫
y∈R3

γ−u
∆u

2
− (qγ

±

u + γ−u )y1 + h(t, qγ
±

u + γ−u , y2, y3)− h(t, qγ
±

u ,Ju)µ
−(dy, du) .

Taking an expectation conditional on Ft on both sides and rearranging yields

Ĥ(t, x, q, S,J) = E
[
Ĥ(T,Xγ±

T− , q
γ±

T− , ST− ,JT−)

∣∣∣∣Ft]− E
[∫ T

t

∂th(u, qγ
±

u ,Ju)du

+

∫ T

t

∫
y∈R3

qγ
±

u y1 + h(t, qγ
±

u , y2, y3)− h(t, qγ
±

u ,Ju)ν
l(dy, du)

+

∫ T

t

∫
y∈R3

γ+
u

∆u

2
+ (qγ

±

u − γ+
u )y1 + h(t, qγ

±

u − γ+
u , y2, y3)− h(t, qγ

±

u ,Ju)ν
+(dy, du)

+

∫ T

t

∫
y∈R3

γ−u
∆u

2
− (qγ

±

u + γ−u )y1 + h(t, qγ
±

u + γ−u , y2, y3)− h(t, qγ
±

u ,Ju)ν
−(dy, du)

∣∣∣∣Ft] .
(A.1)

Equation (12) then yields the inequality

Ĥ(t, x, q, S,J) ≥ E
[
Ĥ(T,Xγ±

T− , q
γ±

T− , ST− ,JT−)− φ
∫ T

t

(qγ
±

u )2du

∣∣∣∣Ft]
= E

[
Ĥ(T,Xγ±

T , qγ
±

T , ST ,JT )− φ
∫ T

t

(qγ
±

u )2du

∣∣∣∣Ft]
= E

[
Xγ±

T + qγ
±

T (ST − `(qγ
±

T ,∆T ))− φ
∫ T

t

(qγ
±

u )2du

∣∣∣∣Ft] .
Since this inequality holds for arbitrary controls γ±, we have:

Ĥ(t, x, q, S,J) ≥ sup
(γ±s )t≤s≤T∈A

E
[
Xγ±

T + qγ
±

T (ST − `(qγ
±

T ,∆T ))− φ
∫ T

t

(qγ
±

u )2du

∣∣∣∣Ft]
= H(t, x, q, S,J) . (A.2)
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Now, if γ±∗ is selected to be of the form in (13a) and (13b), then (A.1) implies:

Ĥ(t, x, q, S,J) = E
[
Ĥ(T,Xγ±∗

T− , q
γ±∗

T− , ST− ,JT−)− φ
∫ T

t

(qγ
±

u )2du

∣∣∣∣Ft]
= E

[
Ĥ(T,Xγ±∗

T , qγ
±∗

T , ST ,JT )− φ
∫ T

t

(qγ
±

u )2du

∣∣∣∣Ft]
= E

[
Xγ±∗

T + qγ
±∗

T (ST − `(qγ
±∗

T ,∆T ))− φ
∫ T

t

(qγ
±

u )2du

∣∣∣∣Ft]
≤ sup

(γ±s )t≤s≤T∈A
E
[
Xγ±

T + qγ
±

T (ST − `(qγ
±

T ,∆T ))− φ
∫ T

t

(qγ
±

u )2du

∣∣∣∣Ft]
= H(t, x, q, S,J) . (A.3)

Combining (A.2) and (A.3) yields the result.

Appendix B. Market Behavior Across Equities

In this section we show that several equities demonstrate the same behavior which is

illustrated in Table 1 and Figures 3 and 4. We begin with Table B.7 which shows

how many market orders are filled only at the best posted price versus how many walk

through more than one full level of the book. We see that GOOG has the smallest

percentage or orders remaining strictly within the best price at 91.6%, but this number

is often higher than 99%. Generally, stocks that can be considered large tick exhibit a

larger percentage of trades strictly within the best price.

Table B.8 shows the average trade intensities for buy and sell market orders depending

on the state of volume imbalance. Generally we see that the frequency of buy (sell)

orders increases as imbalance becomes more buy-heavy (sell-heavy).

Finally, in Table B.9 we show the average midprice change 10 ms after an MO that

occurred within each state of imbalance. Once again we see a clear tendency for the

midprice change to have a larger (smaller) magnitude after a market buy (sell) order

when imbalance is more buy-heavy.
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First Tick Only Beyond First Tick P(VMO ≤ VLO)
Buys Sells Buys Sells

AAPL 100,362 105,655 4,581 4,527 0.958
FARO 1,745 2,374 64 109 0.960
GOOG 32,096 34,969 3,085 3,075 0.916
INTC 35,595 38,451 54 50 0.999
MMM 22,996 25,745 130 118 0.995
NTAP 28,519 27,118 104 123 0.996
ORCL 30,001 27,502 41 45 0.999
SMH 3,087 3,084 7 4 0.998

Table B.7: Number of MOs that touch only the first tick or go beyond the first tick. Data is taken from
a full month of trading in January, 2014 (first and last 30 minutes of each day removed). The column
labelled P(VMO ≤ VLO) is the probability that an MO has smaller volume than all limit orders posted
at the best price, and hence only engages the best quote.

Average Buy Intensity Average Sell Intensity
Sell-Heavy Neutral Buy-Heavy Sell-Heavy Neutral Buy-Heavy

AAPL 0.223 0.257 0.276 0.293 0.271 0.228
FARO 0.005 0.005 0.003 0.008 0.007 0.004
GOOG 0.060 0.090 0.112 0.102 0.095 0.071
INTC 0.024 0.048 0.232 0.288 0.056 0.021
MMM 0.034 0.058 0.080 0.072 0.063 0.046
NTAP 0.031 0.050 0.167 0.133 0.045 0.031
ORCL 0.022 0.041 0.181 0.213 0.037 0.015
SMH 0.002 0.004 0.020 0.017 0.004 0.002

Table B.8: Average trade intensities within each state of imbalance. Data is taken from a full month
of trading in January, 2014 (first and last 30 minutes of each day removed).

Appendix C. Parameter Sets

The entire calibrated parameter set is available upon request.

Appendix C.1. Parameters of Section 3.4

The full set of parameters used to compute the optimal trading strategy in Figures 6

are given here. In this example, the number of imbalance regimes is nZ = 3 and the

number of spread values is n∆ = 3 giving a total of nZn∆ = 6 states. These states are

ordered in the same convention as used previously: the first three states correspond to

∆ = 1 and Z = 1, 2, 3 and the last three states correspond to ∆ = 2 and Z = 1, 2, 3.
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Market Buy Order Market Sell Order
Sell-Heavy Neutral Buy-Heavy Sell-Heavy Neutral Buy-Heavy

AAPL 2.212 2.527 3.098 −3.245 −2.751 −2.388
FARO 1.846 3.047 4.251 −4.414 −3.781 −2.602
GOOG 8.115 8.866 10.619 −10.678 −9.191 −8.432
INTC 0.044 0.211 0.457 −0.494 −0.208 −0.057
MMM 1.134 1.507 1.613 −1.716 −1.496 −1.177
NTAP 0.270 0.498 0.723 −0.668 −0.477 −0.291
ORCL 0.031 0.290 0.570 −0.603 −0.376 −0.128
SMH 0.262 0.411 0.759 −0.730 −0.450 −0.217

Table B.9: Average midprice change (in units of ticks) after an MO within each state of imbalance.
Data is taken from a full month of trading in January, 2014 (first and last 30 minutes of each day
removed).

Due to the form of equation (12), the full form of each compensator is not required.

Rather, we only require λi(J), εi(J) =
∑

y1,K
y1F

i
J(y1,K), and T iJ ,K =

∑
y1
F i
J(y1,K).

λ̂l = ( 1.257 0.538 1.257 85.187 23.132 85.187 ) ,

λ̂+ = ( 0.038 0.121 0.600 1.711 1.188 3.042 ) ,

λ̂− = ( 0.600 0.121 0.038 3.042 1.188 1.711 ) ,

ε̂l = ( −0.137 0.000 0.137 −0.160 0.000 0.160 ) ,

ε̂+ = ( 0.240 0.306 0.713 −0.111 0.152 0.469 ) ,

ε̂− = ( 0.713 0.306 0.240 0.469 0.152 −0.111 ) .
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T l =



0.00 0.73 0.00 0.05 0.21 0.01

0.50 0.00 0.50 0.00 0.00 0.00

0.00 0.73 0.00 0.01 0.21 0.05

0.04 0.01 0.33 0.00 0.61 0.01

0.06 0.00 0.06 0.44 0.00 0.44

0.33 0.01 0.04 0.01 0.61 0.00


,

T+ =



0.40 0.36 0.24 0.00 0.00 0.00

0.01 0.61 0.34 0.00 0.02 0.01

0.02 0.40 0.53 0.00 0.03 0.03

0.00 0.33 0.22 0.33 0.11 0.00

0.02 0.26 0.04 0.00 0.67 0.00

0.00 0.69 0.25 0.00 0.00 0.06


,

T− =



0.53 0.40 0.02 0.03 0.03 0.00

0.34 0.61 0.01 0.01 0.02 0.00

0.24 0.36 0.40 0.00 0.00 0.00

0.25 0.69 0.00 0.06 0.00 0.00

0.04 0.26 0.02 0.00 0.67 0.00

0.22 0.33 0.00 0.00 0.11 0.33


, .
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