SOLARFLAREFE®

Onload User Guide

Copyright © 2015 SOLARFLARE Communications, Inc. All rights reserved.

The software and hardware as applicable (the “Product”) described in this document, and this document, are protected by
copyright laws, patents and other intellectual property laws and international treaties. The Product described in this document is
provided pursuant to a license agreement, evaluation agreement and/or non-disclosure agreement. The Product may be used only
in accordance with the terms of such agreement. The software as applicable may be copied only in accordance with the terms of
such agreement.

Onload is licensed under the GNU General Public License (Version 2, June 1991). See the LICENSE file in the distribution for details.
The Onload Extensions Stub Library is Copyright licensed under the BSD 2-Clause License.

Onload contains algorithms and uses hardware interface techniques which are subject to Solarflare Communications Inc patent
applications. Parties interested in licensing Solarflare's IP are encouraged to contact Solarflare's Intellectual Property Licensing
Group at:

Director of Intellectual Property Licensing
Intellectual Property Licensing Group
Solarflare Communications Inc,

7505 Irvine Center Drive

Suite 100

Irvine, California 92618

You will not disclose to a third party the results of any performance tests carried out using Onload or EnterpriseOnload without
the prior written consent of Solarflare.

The furnishing of this document to you does not give you any rights or licenses, express or implied, by estoppel or otherwise, with
respect to any such Product, or any copyrights, patents or other intellectual property rights covering such Product, and this
document does not contain or represent any commitment of any kind on the part of SOLARFLARE Communications, Inc. or its
affiliates.

The only warranties granted by SOLARFLARE Communications, Inc. or its affiliates in connection with the Product described in this
document are those expressly set forth in the license agreement, evaluation agreement and/or non-disclosure agreement
pursuant to which the Product is provided. EXCEPT AS EXPRESSLY SET FORTH IN SUCH AGREEMENT, NEITHER SOLARFLARE
COMMUNICATIONS, INC. NOR ITS AFFILIATES MAKE ANY REPRESENTATIONS OR WARRANTIES OF ANY KIND (EXPRESS OR IMPLIED)
REGARDING THE PRODUCT OR THIS DOCUMENTATION AND HEREBY DISCLAIM ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT, AND ANY WARRANTIES THAT MAY ARISE FROM COURSE OF
DEALING, COURSE OF PERFORMANCE OR USAGE OF TRADE. Unless otherwise expressly set forth in such agreement, to the extent
allowed by applicable law (a) in no event shall SOLARFLARE Communications, Inc. or its affiliates have any liability under any legal
theory for any loss of revenues or profits, loss of use or data, or business interruptions, or for any indirect, special, incidental or
consequential damages, even if advised of the possibility of such damages; and (b) the total liability of SOLARFLARE
Communications, Inc. or its affiliates arising from or relating to such agreement or the use of this document shall not exceed the
amount received by SOLARFLARE Communications, Inc. or its affiliates for that copy of the Product or this document which is the
subject of such liability.

The Product is not intended for use in medical, life saving, life sustaining, critical control or safety systems, or in nuclear facility
applications.

SF-104474-CD
Last Revised: October 2015

Issue 20

Issue 20 © Solarflare Communications 2015 i

. Onload User Guide
SOLARFLARE®

Issue 20 © Solarflare Communications 2015 i

Onload User Guide

SOLARFLARFE®
Table of Contents
1 What’ s NeW . ..ottt ittt ittt tieeetenerenaenenaesenaenananss 1
2 Low Latency Quickstart Guidettt it it i e e 4
3 Background it i i e i ettt et st 11
3.1 Introduction. o e 11
4 Installation.iiiiiiiii it i i i it i e st e e 15
4.1 Introduction. e 15
4.2 Onload Distributions. e 15
4.3 Hardware and Software Supported Platforms 16
4.4 Onload and the Network Adapter Driver 17
4.5 Removing Previously Installed Drivers., 17
4.6 Pre-installNotescc i e e 18
4.7 EnterpriseOnload - Build and Install from SRPM 18
4.8 EnterpriseOnload - Debian Source Packages. 20
4.9 OpenOnload DKMS Installation 20
4.10 Build OpenOnload Source RPM 21
4.11 OpenOnload - Installation. 21
4.12 Onload Kernel Modules 22
4.13 Configuring the Network Interfaces. 23
4.14 Installing Netperf. e e 24
4.15 HowtorunOnload ...t i 24
4.16 Testing the Onload Installation................................ 24
417 ApplyanOnloadPatch i, 24
S TuNINgONload i i e i et et ettt 26
5.1 Introduction. ... e 26
5.2 SystemM TUNING ..t e e e 27
5.3 Standard Tuning. i e e e 29
5.4 Onload Deploymenton NUMASystemscoivviiin.n.. 31
5.5 Interrupt Handling - KernelDriver i, 33
5.6 Performancelitter........ ... i e 39
5.7 Advanced TUNINGot e e et et e e 42
Issue 20 © Solarflare Communications 2015 iii

Onload User Guide

; SOLSRFLARE Table of Contents
6 Onload Functionality.cciitiiiiiiiiiiiiiininennerenrennannas 49
6.1 Onload TranspParenCy. . ..o ti it et ettt et ettt 49

6.2 Onload Stacks. i e 49

6.3 Virtual Network Interface (VNIC).co ... 50

6.4 Functional Overviewcco i 50

6.5 Onload with Mixed Network Adapters 50

6.6 Maximum Number of Network Interfaces 51

6.7 Whitelist and Blacklist Interfaces............. 51

6.8 Onloaded PIDsSot e 51

6.9 Onload and File Descriptors, Stacks and Sockets 52

6.10 System callsinterceptedbyOnload............... 52

6.11 Linux Sysctls.o e e 52

6.12 Changing Onload Control Plane Table Sizes 54

6.13 SO_TIMESTAMP and SO_TIMESTAMPNS (software timestamps)55

6.14 SO_TIMESTAMPING (Hardware Receive Timestamps)............. 55

6.15 SO_TIMESTAMPING (Hardware Transmit Timestamps) 56

6.16 SO_BINDTODEVICEttt e it e 57

6.17 Multiplexed I/O o 57

6.18 Wire Order Deliveryo i e 61

6.19 StackSharing i e e 62

6.20 Application Clustering. ...t 63

6.21 Bonding, Link aggregation and Failover......................... 65

6.22 VLANS . L 66

6.23 Accelerated pipe().o vi i 66

6.24 Zero-Copy APl ..o e 67

6.25 Debugandlogging i e 67

Issue 20 © Solarflare Communications 2015 iv

Onload User Guide

; SOLSRFLARE Table of Contents
720 111 [Y- T IR 69
7.1 TCP Operation e e e 69

7.2 TCP Handshake - SYN, SYNACK. 69

7.3 TCP SYN COOKIES v ittt e e e e e e e 70

7.4 TCPSocket Options . ..ot e et e e 70

7.5 TCPLevel Optionst e et e 72

7.6 TCP File DescriptorControl. ... 73

7.7 TCP CongestionControl. it i, 74

7.8 TCP SACK . .ttt e e 75

7.9 TCP QUICKACK . . ottt e e e e e e e e e e 75

7.10 TCPDelayed ACK . ..ot e e e e e et e 75

7.11 TCP Dynamic ACK ... i e e e e e e e 75

7.12 TCP Loopback Acceleration 76

7.3 TCP StriPINg « oottt e e e e e e e 77

7.14 TCP Connection Reset on RTO, 78

7.15 ONLOAD_MSG_WARM . ..ottt e e e e e 78

7.16 Listen/Accept SOCKetsot 79

7.17 Socket Caching. e 80

7.18 Scalable Filters. e 82

7.19 Transparent Reverse Proxy Modes., 84

7.20 Transparent Reverse Proxy on Multiple CPUs 85

8 ONload-UDP........iiiiiiiiiiii ittt tsatsnssnnsansnnsanns 86
8.1 UDP Operation. ...ttt e e e e e 86

8.2 Socket OptioNns. . ..ot e 86

8.3 Source Specific Socket Options 88

8.4 UDPSendandReceivePaths, 88

8.5 Fragmented UDP i e i e e e 89

8.6 User Level recymmsgforUDP i, 89

8.7 User-Level sendmmsgforUDP......... i ... 90

8.8 Multicast Replication.ot 90

8.9 Multicast Operation and Stack Sharing 91

8.10 Multicast Loopback.o i 94

8.11 Hardware Multicast Loopback i, 94

8.12 IP_MULTICAST _ALL . .ttt e 96

Issue 20 © Solarflare Communications 2015 v

SOLARFLAREFE®

Onload User Guide
Table of Contents

9 Packet Buffersc.ciiiiiiiiiiii ittt itiinetrnneennaesenaenanns 97
9.1 Introduction.t e 97

9.2 Network Adapter Buffer Table Mode. 97

9.3 Large Buffer Table Support. ...t 97

9.4 Scalable Packet BufferMode 98

9.5 Allocating Huge Pages.t e e e e 98

9.6 How Packet Buffers Are Used by Onload......................... 99

9.7 Configuring Scalable PacketBuffers.............. 102

9.8 Physical AddressingMode i 106

9.9 Programmed I/Ot 107

9.10 Templated Sendst e 108

10 Onload and Virtualizationttt it iinaennnans 109
10.1 Introduction. i e e e e 109

10.2 OVeIVIEBW ot e e e e e e e e 109

10.3 Onload and Linux KVM e 109

10.4 Onload and NIC Partitioning. 111

10.5 Onload ina Docker Container 113

10.6 Pre-Installation i 113

10.7 Installation. e 114

10.8 Create Onload Dockerlmage ..., 115

10.9 Migration i e 115

10.10 Copying Files Between Host and Container 116

11 Limitations.ottt ittt it i ittt it e e ettt e e 117
11.1 Introduction. o e 117

11.2 ChangestoBehavior............ ... i, 117

11.3 Limitsto Acceleration........ i 119

11.4 epoll -Known ISSUES oot i i e e e e 122

11.5 Configuration Issuest 124

12 Change Historyciiiiiiii ittt ittt iiietteneetonnssannnsannns 129
12,0 Features ... e e e e e e e 130

12.2 Environment Variables 135

12.3 Module Options.t e e 143

A Parameter Referencecoiiiiiitiiniiiinetrinnenenannnnanns 146
Al Parameter Listo e e 146

B MetaOptionscoiiiiiiiiiiiinriinenreneetosnsstonnsssnasssnnns 185
B.1 Environmentvariables 185

C BuildDependenciesc.cooiiiiiitinenneenornntonrsnssnssansnns 187
C.l General. ..ot e 187

Issue 20 © Solarflare Communications 2015 Vi

SOLARFLAREFE®

Onload User Guide
Table of Contents

D Onload Extensions APlcciitiiiniinneennneeenneennannnnans 189
D.1 Source Code. . vttt e 189

D.2 Common Componentsoit ittt et e e e e 189

D.3 Stacks APl ..ot 193

D.4 Stacks APIUSage .. .o v ittt e e e 198

D.5 Stacks API-Examplest e e 200

D.6 Zero-Copy APl ... e 201

D.7 Templated Sends.t e e e 212

D.8 Delegated Sends APl i e 213

E onload _stackdump ...ttt ittt tenneeenneennannnnnns 219
E.1 Introduction....... i e 219

E.2 General Uset e 219

F Solarflaresfnettestciiiiiiiiiiiiiii it it iiieeienannanans 238
F1 Introduction i e e 238

G onload_tcpdump i i i i et i e ettt 246
G.1 Introduction. e 246

G.2 Buildingonload_tcpdump 246

G.3 Usingonload tcpdump 246

[I =/ P 249
H.l Componentsttt et sttt e 249

H.2 Compilingand Linking i 249

H.3 Documentation.ot e et i e 250

Il onload_iptablesccciiiiiiiiiiiiiii it iieitnennernnrannnnnns 251
A B 7= T Y e o o 251

.2 Howitworks.o e 251

.3 Features. i e e e 252

LA RUIES .o e e 252

I.5 Preview firewallrules. i, 253

.6 Error MeSSages v it e e 255

J Solarflare efpio Test Application it 257
L efPiO o 257

Issue 20 © Solarflare Communications 2015 vii

SOLARFLAREFE®

1

Onload User Guide

What’s New

This issue of the user guide identifies changes introduced in OpenOnload 201509.

Refer to Change History on page 129 to confirm feature availability in the Enterprise
release.

For a complete list of features and enhancements refer to the release notes and the
release change log available from: http://www.openonload.org/download.html.

The changes and improvements in Onload-201509 are geared towards Internet
based services, ISP load balancing servers and CDN based infrastructures such as
those fronted by very high connection rate reverse proxy and transparent proxy
servers. The changes in Onload improve scalability by increasing socket connection
rates and by removing limitations on the number of listening sockets and active-
open network connections that can be sustained.

Netdriver and Firmware Updates

OpenOnload 201509 includes the 4.5.1.1026 net driver.

Users should refer to ReleaseNotes-sfc in the distribution package for details of
changes to the adapter driver. Many of the new features require a minimum 4.6
version firmware.

New Features OpenOnload 201509

Scalable Filters

On a selected interface, a MAC filter is used to receive all traffic to a single Onload
stack. The MAC filter overcomes the hardware limitations encountered when using
IP filters and allows a greater number of TCP listening sockets and active-open
connections to be maintained.

This feature is enabled with the EF_SCALABLE_FILTERS environment variable. Refer
to Scalable Filters on page 82 for more details.

Active Socket Caching

Active socket caching speeds up socket creation allowing Onload to reuse active-
open sockets which are recycled back to the Onload stack when an established TCP
connection has terminated. Passive Socket Caching was added in a previous Onload
release.

Refer to Socket Caching on page 80.

Issue 20

© Solarflare Communications 2015 1

http://www.openonload.org/download.html

SOLARFLAREFE®

Onload User Guide
What’s New

IP_TRANSPARENT Socket Option

Onload 201509 supports the IP_TRANSPARENT socket option on TCP sockets (Linux
since 2.6.24). Sockets having set this option are able to bind to a nonlocal IP address.
This feature is added to support Onload deployment in transparent and reverse
proxy configurations. For more information see Transparent Reverse Proxy Modes
on page 84.

Teaming

Onload now supports bonds/teams configured with the Linux "teaming" kernel
module and "teamd" daemon. This is in addition to the long-standing support for
bonds configured using the standard Linux "bonding" module. teamd is distributed
with RHEL 7 and other Linux OS variants.

ef_vi

The Onload layer 2 API now has support for IP-protocol and Ethertype filters. These
are only supported on SFN7000-series adapters and require a minimum firmware
version of at least 4.6. Further details are available in the ef vi Doxygen
documentation. Refer to Appendix H for details of ef _vi.

UDP recvmsg

In previous releases, when using recvmsg() to retrieve TX timestamps for UDP
packets, Onload would only return the UDP payload. In the 201509 release, Onload
will return the entire Ethernet frame. This matches the behaviour of the Linux
kernel.

Packet Buffers

With an aim to further reduce TLB thrashing and eliminate packets drops, Onload
will attempt to reuse buffers from the same set of packet buffers. Onload stackdump
can be used to identify the packets sets being used and free buffer status.

See Packet Sets on page 222 for a wider description and more information.

Environment Variables

Changes have been made affecting the following Onload environment variables.
Updates may include changes to the default value, removal or changes to the
variable definition. Users are advised to check by running the following command:

onload_stackdump doc

EF_MAX_ENDPOINTS

EF_LOG

EF_PIPE_SIZE
EF_MAX_PINNED_PAGES
EF_SCALABLE_FILTERS
EF_SCALABLE_FILTERS_ENABLE
EF_SCALABLE_FILTERS_MODE
EF_TCP_CONNECT_SPIN
EF_TCP_SYNCRECV_MAX

Issue 20

© Solarflare Communications 2015 2

‘ Onload User Guide
LARFLARE"®
; SO What’s New

EF_TCP_SNDBUF_MODE
EF_UDP_SEND_NONBLOCK_NO_PACKETS_MODE
EF_TCP_SOCKBUF_MAX_FRACTION
EF_RETRANSMIT_THRESHOLD_ORPHAN

New environment variables are listed in Chapter 12, Environment Variables on
page 135

Change History

The Change History section is updated with every revision of this document to
include the latest Onload features, changes or additions to environment variables
and changes or additions to Onload module options. Refer to Change History on

page 129.

Issue 20 © Solarflare Communications 2015

SOLARFLAREFE®

2

Onload User Guide

Low Latency Quickstart Guide

Introduction

This section demonstrates how to achieve very low latency coupled with minimum
jitter on a system fitted with the Solarflare SFN7122F network adapter and using
Solarflare’s kernel-bypass network acceleration middleware, OpenOnload.

The procedure will focus on the performance of the network adapter for TCP and
UDP applications running on Linux using the industry-standard Netperf network
benchmark application and the Solarflare supplied open source sfnettest network
benchmark suite.

Please read the Solarflare LICENSE file regarding the disclosure of benchmark test
results.

Software Installation

Before running Low Latency benchmark tests ensure that correct driver and
firmware versions are installed e.g. (minimum driver and firmware versions are
shown):

[root@server-N]# ethtool -i enp3sefo
driver: sfc

version: 4.5.1.1020
firmware-version: 4.4.2.1011 rx1 tx1

Firmware Variant

On SFN7000 series adapters, the adapter should use the ultra-low-latency firmware
variant —as indicated by the presence of rx1 tx1 as shown above. Firmware variants
are selected with the sfboot utility from the Solarflare Linux Utilities package
(SF-107601-LS).

Netperf

Netperf can be downloaded from http://www.netperf.org/netperf/
Unpack the compressed tar file using the tar command:
[root@system-N]# tar -zxvf netperf-<version>.tar.gz

This will create a sub-directory called netperf-<version> from which the
configure and make commands can be run (as root):

./configure
make install

Following installation the netperf and netserver applications are located in the
src subdirectory.

Issue 20

© Solarflare Communications 2015 4

http://www.netperf.org/netperf/
http://www.netperf.org/netperf/
http://www.netperf.org/netperf/DownloadNetperf.html

SOLARFLAREFE®

Onload User Guide

Low Latency Quickstart Guide

Solarflare sfnettest

Download the sfnettest-<version>.tgz source file from www.openonload.org
Unpack the tar file using the tar command:

[root@system-N]# tar -zxvf sfnettest-<version>.tgz

Run the make utility from the sfnettest-<version>/src subdirectory to build the
sfnt-pingpong application.

Solarflare Onload

Before Onload network and kernel drivers can be built and installed the system must
support a build environment capable of compiling kernel modules. Refer to Build
Dependencies on page 187 for more details.

Download the openonload-<version>.tgz file from www.openonload.org
Unpack the tar file using the tar command:
[root@system-N]# tar -zxvf onload-<version>.tgz

Run the onload_install command from the Onload-<version>/scripts
subdirectory:

[root@system-N]# ./onload_install

Test Setup

The diagram below identifies the required physical configuration of two servers
equipped with Solarflare network adapters connected back-to-back in order to
measure the latency of the adapter, drivers and acceleration middleware. If
required, tests can be repeated with a 10G switch on the link to measure the
additional latency delta using a particular switch.

System under test 10G link System under test
(direct attach or optical)

o

Q

Qo

Requirements:

e Two servers are equipped with Solarflare network adapters and connected
with a single cable between the Solarflare interfaces.

e The Solarflare interfaces are configured with an IP address so that traffic can
pass between them. Use ping to verify connection.

e Onload, netperf and sfnettest are installed on both machines.

Issue 20

© Solarflare Communications 2015 5

http://www.openonload.org
http://www.openonload.org

SOLARFLAREFE®

Onload User Guide

Low Latency Quickstart Guide

Pre-Test Configuration

On both machines:

1

Isolate the CPU cores that will be used from the general SMP balancing and
scheduler algorithms. Add the following option to the kernel line in /boot/
grub/grub.conf:

isolcpus=<comma separated cpu list>
Stop the cpuspeed service to prevent power saving modes from reducing CPU
clock speed.

RHEL6[root@system-N]# service cpuspeed stop
RHEL7[root@system-N]# sysctl stop cpupower

Stop the irgbalance service to prevent the OS from re-balancing interrupts
between available CPU cores.

RHEL6[root@system-N]# service irgbalance stop
RHEL7[root@system-N]# sysctl stop irgbalance

Stop the iptables service to eliminate overheads incurred by the firewall.
Solarflare recommend this step on RHEL6 for improved latency when using the
kernel network driver.

RHEL6[root@system-N]# service iptables stop
RHEL7[root@system-N]# sysctl stop iptables

Disable interrupt moderation.

[root@system-N]# ethtool -C eth<N> rx-usecs © adaptive-rx off
where <N> is the identifier of the Solarflare adapter Ethernet interface.

Refer to the Reference System Specification below for BIOS features.

Reference System Specification

The following latency measurements were recorded on twin Intel® Sandy Bridge
servers. The specification of the test systems is as follows:

DELL PowerEdge R210 servers equipped with Intel® Xeon® CPU E3-1280 V2
@3.60GHz, 2 x 2GB DIMMs.

BIOS: Turbo mode ENABLED, cstates DISABLED, IOMMU DISABLED.
Red Hat Enterprise Linux V7.0 (x86_64 kernel, version 3.10.0-123.el7.x86_64).

Solarflare SFN7122F NIC (driver and firmware — see Software Installation)
Direct attach cable at 10G.

Performance might be improved on some systems if the tuned service is
disabled. Users should experiment with tuned tuning profiles or disable the
tuned service.

OpenOnload distribution: openonload-201502-u3.

It is expected that similar results will be achieved on any Intel based, PCle Gen 3
server or compatible system.

Issue 20

© Solarflare Communications 2015 6

Onload User Guide

SOLARFLARE® . .
; Low Latency Quickstart Guide
UDP Latency: Netperf
Run the net-server application on system-1:
[root@system-1]# pkill -f netserver
[root@system-1]# onload --profile=latency taskset -c 1 ./netserver
Run the netperf application on system -2:
[root@system-2]# onload --profile=latency taskset -c 1 ./netperf -t UDP_RR
-H <systeml-ip> -1 10 -- -r 32
Socket Size Request Resp. Elapsed Trans.
Send Recv Size Size Time Rate
bytes Bytes bytes bytes secs. per sec
212992 212992 32 32 10.00 300351.00
300351 transactions/second means that each transaction takes 1/300351 seconds
resulting in a RTT/2 latency of (1/300351)/2 or 1.66ps.
UDP Latency: sfnt-pingpong
Run the sfnt-pingpong application on both systems:
[root@system-1]# onload --profile=latency taskset -c 1 ./sfnt-pingpong
[root@system-2]# onload --profile=latency taskset -c 1 ./sfnt-pingpong --
affinity "1;1" udp <systeml-ip>
size mean min median max %ile stddev iter
0 1636 1571 1625 10584 1791 79 911000
1 1637 1573 1625 9865 1896 89 911000
2 1634 1570 1628 9852 1731 67 912000
4 1639 1572 1627 9917 2056 85 910000
8 1639 1571 1627 10073 2000 95 910000
16 1636 1573 1629 10194 1732 68 911000
32 1663 1591 1647 10021 2198 102 897000
64 1693 1611 1670 10212 2400 133 880000
128 1763 1670 1755 9897 1887 85 846000
256 1882 1779 1850 10043 2477 141 793000
The output identifies mean, minimum, median and maximum (nanosecond) RTT/2
latency for increasing TCP packet sizes including the 99% percentile and standard
deviation for these results. A message size of 32 bytes has a mean latency of 1.66us
with a 99%ile latency under 2.2ps.
TCP Latency: Netperf
Run the netserver application on system-1:
[root@system-1]# pkill -f netserver
[root@system-1]# onload --profile=latency taskset -c 1 ./netserver
Run the netperf application on system-2:
[root@system-2]#onload --profile=latency taskset -c 1 ./netperf -t
TCP_RR -H <systeml-ip> -1 10 -- -r 32
Issue 20 © Solarflare Communications 2015 7

Onload User Guide

SOLARFLARFE® . .
; Low Latency Quickstart Guide
Socket Size Request Resp. Elapsed Trans.
Send Recv Size Size Time Rate
bytes Bytes bytes bytes secs. per sec
16384 87380 32 32 10.00 274853.34
274853 transactions/second means that each transaction takes 1/274853 seconds
resulting in a RTT/2 latency of (1/274853)/2 or 1.81ps.
TCP Latency: sfnt-pingpong
Run the sfnt-pingpong application on both systems:
[root@system-1]# onload --profile=latency taskset -c 1 ./sfnt-pingpong
[root@system-2]# onload --profile=latency taskset -c 1 ./sfnt-pingpong --
affinity "1;1" +tcp <systeml-ip>
size mean min median max %ile stddev iter
1 1798 1697 1757 10165 2514 164 829000
2 1794 1687 1749 10561 2936 198 831000
4 1765 1690 1749 10301 1922 80 845000
8 1772 1699 1755 10583 1930 93 842000
16 1804 1694 1751 10241 2925 211 827000
32 1786 1710 1767 10523 1973 98 835000
64 1847 1754 1833 11266 2020 99 808000
128 1929 1823 1908 10552 2460 114 774000
256 2014 1923 1998 9757 2199 89 741000
The output identifies mean, minimum, median and maximum (nanosecond) RTT/2
latency for increasing TCP packet sizes including the 99% percentile and standard
deviation for these results. A message size of 32 bytes has a mean latency of 1.78us
with a 99%ile latency under 2.0ps.
Layer 2 ef_vi Latency
The efpio UDP test application, supplied with the openonload package, can be used
to measure latency of the Solarflare ef_vi layer 2 API. efpio uses PIO.
Using the same back-to-back configuration described above, efpio latency tests
were recorded on DELL PowerEdge R210 servers.
ef _vi_version_str: 201306-7122preview2
udp payload len: 28
iterations: 100000
frame len: 70
round-trip time: 2.65 ps (1.32 RTT/2)
Solarflare efpio Test Application on page 257 describes the efpio application,
command line options and provides example command lines.
Issue 20 © Solarflare Communications 2015 8

SOLARFLAREFE®

Onload User Guide

Low Latency Quickstart Guide

Comparative Data

Adapter Comparison

The following table shows a comparison between latency tests conducted on the
SFN6000 and the SFN7000 series adapters - values shown are the RTT/2 value in
microseconds.

Table 1: Latency Tests - Comparative Data

Test SFN6000 SFN7000 Latency gain
uDP 2.2 1.6 27%
TCP 2.4 1.8 25%
ef _vi UDP efpingpong - 2.0 efpio- 1.3 40%

Testing Without Onload

The benchmark performance tests can be run without Onload using the regular
kernel network drivers. To do this remove the onload --profile=latency part
from the command line.

To get the best response and comparable latency results using kernel drivers,
Solarflare recommend setting interrupt affinity such that interrupts and the
application are running on different CPU cores but on the same processor package
- examples below.

Use the following command to identify receive queues created for an interface e.g:
cat /proc/interrupts | grep eth2

33: @ 0 0 @ IR-PCI-MSI-edge eth2-0
34: 0 0 0 @ IR-PCI-MSI-edge eth2-1

Direct IRQ 33 to CPU core 0 and IRQ 34 to CPU core 1:

echo 1 > /proc/irq/33/smp_affinity
echo 2 > /proc/irq/34/smp_affinity

Kernel latency has been measured at 3.66us with UDP traffic on a 3.11 kernel
supporting the new kernel “busy poll” feature where the following values are
recommended:

sysctl net.core.busy poll=50 && sysctl net.core.busy_read=50

Latency will be higher when busy poll is not applied or not supported in the kernel
version. Latency of less than 6us can be measured without busy poll on a standard
RHEL 6.4 kernel.

Issue 20

© Solarflare Communications 2015 9

Onload User Guide

SOLARFLARE® . .
; Low Latency Quickstart Guide

Further Information

For installation of Solarflare adapters and performance tuning of the network driver
when not using Onload refer to the Solarflare Server Adapter User Guide (SF-
103837-CD) available from https://support.solarflare.com/

Questions regarding Solarflare products, Onload and this user guide can be emailed
to support@solarflare.com.

Issue 20

© Solarflare Communications 2015 10

https://support.solarflare.com/
https://support.solarflare.com

SOLARFLAREFE®

3

Onload User Guide

Background

3.1 Introduction.

®
®

NOTE: This guide should be read in conjunction with the Solarflare Server Adapter
User’s Guide, SF-103837-CD, which describes procedures for hardware and
software installation of Solarflare network interfaces cards, network device drivers
and related software.

NOTE: Throughout this user guide the term Onload refers to both OpenOnload and
EnterpriseOnload unless otherwise stated.

Onload is the Solarflare accelerated network middleware. It is an implementation of
TCP and UDP over IP which is dynamically linked into the address space of user-
mode applications, and granted direct (but safe) access to the network-adapter
hardware. The result is that data can be transmitted to and received from the
network directly by the application, without involvement of the operating system.
This technique is known as 'kernel bypass'.

Kernel bypass avoids disruptive events such as system calls, context switches and
interrupts and so increases the efficiency with which a processor can execute
application code. This also directly reduces the host processing overhead, typically
by a factor of two, leaving more CPU time available for application processing. This
effect is most pronounced for applications which are network intensive, such as:

e Market-data and trading applications
e Computational fluid dynamics (CFD)
e HPC (High Performance Computing)

e HPMPI (High Performance Message Passing Interface), Onload is compatible
with MPICH1 and 2, HPMPI, OpenMPI and SCALI

e Other physical models which are moderately parallelizable
e High-bandwidth video-streaming

e Web-caching, Load-balancing and Memcached applications
e Content Delivery Networks (CDN) and HTTP servers

e Other system hot-spots such as distributed lock managers or forced
serialization points

The Onload library dynamically links with the application at runtime using the
standard BSD sockets API, meaning that no modifications are required to the
application being accelerated. Onload is the first and only product to offer full kernel
bypass for POSIX socket-based applications over TCP/IP and UDP/IP protocols

Issue 20

© Solarflare Communications 2015 11

Onload User Guide

SOLARFLARE®
; Background

Contrasting with Conventional Networking

When using conventional networking, an application calls on the OS kernel to send
and receive data to and from the network. Transitioning from the application to the
kernel is an expensive operation, and can be a significant performance barrier.

When an application accelerated using Onload needs to send or receive data, it
need not access the operating system, but can directly access a partition on the
network adapter. The two schemes are shown in Figure 1.

User Space User Space

Kernel |Domain
TCP/IP STACK
METWORK DRIVER
Y
VNIC VNIC

Solarstorm® Controller

Figure 1: Contrast with Conventional Networking.

An important feature of the conventional model is that applications do not get
direct access to the networking hardware and so cannot compromise system
integrity. Onload is able to preserve system integrity by partitioning the NIC at the
hardware level into many, protected 'Virtual NICs' (VNIC). An application can be
granted direct access to a VNIC without the ability to access the rest of the system
(including other VNICs or memory that does not belong to the application). Thus
Onload with a Solarflare NIC allows optimum performance without compromising
security or system integrity.

In summary, Onload can significantly reduce network processing overheads.

Issue 20 © Solarflare Communications 2015 12

SOLARFLAREFE®

Onload User Guide
Background

How Onload Increases Performance

Onload can significantly reduce the costs associated with networking by reducing
CPU overheads and improving performance for latency, bandwidth and application
scalability.

Overhead

Transitioning into and out of the kernel from a user-space application is a relatively
expensive operation: the equivalent of hundreds or thousands of instructions. With
conventional networking such a transition is required every time the application
sends and receives data. With Onload, the TCP/IP processing can be done entirely
within the user-process, eliminating expensive application/kernel transitions, i.e.
system calls. In addition, the Onload TCP/IP stack is highly tuned, offering further
overhead savings.

The overhead savings of Onload mean more of the CPU's computing power is
available to the application to do useful work.

Latency

Conventionally, when a server application is ready to process a transaction it calls
into the OS kernel to perform a 'receive' operation, where the kernel puts the calling
thread 'to sleep' until a request arrives from the network. When such a request
arrives, the network hardware 'interrupts' the kernel, which receives the request
and 'wakes' the application.

All of this overhead takes CPU cycles as well as increasing cache and translation
lookaside-buffer (TLB) footprint. With Onload, the application can remain at user
level waiting for requests to arrive at the network adapter and process them
directly. The elimination of a kernel-to-user transition, an interrupt, and a
subsequent user-to-kernel transition can significantly reduce latency. In short,
reduced overheads mean reduced latency.

Bandwidth

Because Onload imposes less overhead, it can process more bytes of network traffic
every second. Along with specially tuned buffering and algorithms designed for 10
gigabit networks, Onload allows applications to achieve significantly improved
bandwidth.

Scalability

Modern multi-core systems are capable of running many applications
simultaneously. However, the advantages can be quickly lost when the multiple
cores contend on a single resource, such as locks in a kernel network stack or device
driver. These problems are compounded on modern systems with multiple caches
across many CPU cores and Non-Uniform Memory Architectures.

Issue 20

© Solarflare Communications 2015 13

SOLARFLAREFE®

Onload User Guide
Background

Onload results in the network adapter being partitioned and each partition being
accessed by an independent copy of the TCP/IP stack. The result is that with Onload,

doubling the cores really can result in doubled throughput as demonstrated by

Figure 2.

‘ Onload Stack

‘ Onload Stack

[! 0S5 Kernel

 Solarflare NIC |

Figure 2: Onload Partitioned Network Adapter

Further Information
For detailed information refer to:
e Onload Functionality on page 49.
e Onload - TCP on page 69.
e Onload - UDP on page 86.

e Onload and Virtualization on page 109

Issue 20

Solarflare Communications 2015

14

SOLARFLAREFE®

4

Onload User Guide

Installation

4.1 Introduction

This chapter covers the following topics:

Onload Distributions on page 15

Hardware and Software Supported Platforms on page 16
Onload and the Network Adapter Driver on page 17
Removing Previously Installed Drivers on page 17
Pre-install Notes on page 18

EnterpriseOnload - Build and Install from SRPM on page 18
EnterpriseOnload - Debian Source Packages on page 20
OpenOnload DKMS Installation on page 20

Build OpenOnload Source RPM on page 21

OpenOnload - Installation on page 21

Onload Kernel Modules on page 22

Configuring the Network Interfaces on page 23

Installing Netperf on page 24

Testing the Onload Installation on page 24

Apply an Onload Patch on page 24

4.2 Onload Distributions

Onload is available in two distributions

“OpenOnload” is a free version of Onload available from http://
www.openonload.org/ distributed as a source tarball under the GPLv2 license.
OpenOnload is subject to a linear development cycle where major releases
every 3-4 months include the latest development features.

“EnterpriseOnload” is a commercial enterprise version of Onload distributed as
a source RPM under the GPLv2 license. EnterpriseOnload differs from
OpenOnload in that it is offered as a mature commercial product that is
downstream from OpenOnload having undergone a comprehensive software
product test cycle resulting in tested, hardened and validated code.

Issue 20

© Solarflare Communications 2015 15

http://www.openonload.org/
http://www.openonload.org/

Onload User Guide

SOLARFLARE® .
; Installation

The Solarflare product range offers a flexible and broad range of support options,
users should consult their reseller for details and refer to the Solarflare Enterprise
Service and Support information at http://www.solarflare.com/Enterprise-Service-
Support.

4.3 Hardware and Software Supported Platforms

e Onload can be run on the following Solarflare adapters:
- Solarflare Flareon Adapters
- Onload Network Adapters
- Solarflare mezzanine adapters
- SFA6902F and SFA7942Q ApplicationOnload™ Engine.

Refer to the Solarflare Server Adapter User Guide ‘Product Specifications’ for
adapter details.

e Onload canrunonall Intel and AMD x86 processors, 32 bit and 64 bit platforms.

e Table 2 identifies supported operating systems/kernels

Table 2: OS/Kernel Support

OS Version Notes

Red Hat Enterprise Linux 6.4 - 7.2 RHELG6 built-in Solarflare drivers
may not support SFN7000 series
adapters.

Red Hat Messaging Realtime and Grid 2.4, 2.5

Red Hat Enterprise Linux for Realtime 7.1

SuSE Linux Enterprise Server 11 sp2, sp3, sp4 Built-in Solarflare drivers may
not support SFN7000 series
adapters.

SuSE Linux Enterprise Realtime Extension 11

SuSE Linux Enterprise Server 12 base release

Canonical Ubuntu Server LTS 14.04

Canonical Ubuntu Server 14.10, 15.04, 15.10

Debian 7 “Wheezy” 7.x

Debian 8 “Jessie” 8.0

Issue 20 © Solarflare Communications 2015 16

http://www.solarflare.com/Enterprise-Service-Support
http://www.solarflare.com/Enterprise-Service-Support

SOLARFLAREFE®

Onload User Guide

Installation

Table 2: OS/Kernel Support

OS Version Notes

Linux kernels 2.6.18 - 4.2

Solarflare aim to support the OS current and previous major release at the point
these are released (plus the latest long term support release if this is not already
included). This includes all minor releases where the distributor has not yet
declared end of life/support.

Whilst the Onload QA test cycle predominantly focuses on the Linux OS versions
documented above, although not formally supported, Solarflare are not aware of
any issues preventing Onload installation on other Linux variants such as Centos,
Gentoo, and Fedora. Some versions of Ubuntu and Debian earlier than those listed
above are also known to support Onload.

4.4 Onload and the Network Adapter Driver

The Solarflare network adapter driver, the “net driver”, is generally available from
three sources:

e Download as source RPM from support.solarflare.com.
e Packaged ‘in box’ in many Linux distributions e.g Red Hat Enterprise Linux.
e Packaged in the OpenOnload/EnterpriseOnload distribution.

When using Onload you must use the adapter driver distributed with that version of
Onload.

4.5 Removing Previously Installed Drivers

The Solarflare adapter driver (sfc.ko) is distributed as part of many Linux based OS
distributions - this is often referred to as the ‘boxed driver’ or the ‘in-tree’ driver.

Depending on the OS version this driver may not support more recent Solarflare
adapters. Always check the driver release notes available from https://
support.solarflare.com/.

The ‘in-tree’ driver displays only Major and Minor revision numbers when displayed
by the ethtool command:

ethtool -i enp3sefe
driver: sfc
version: 4.0

Every Onload revised distribution includes a version of the net driver to support the
specific features of the Onload release — and this driver should always be used with
Onload. (The driver is installed along with the other Onload drivers.) Onload drivers
display detailed version information using the ethtool command:

Issue 20

© Solarflare Communications 2015 17

https://support.solarflare.com/index.php?view=categories&id=165&option=com_cognidox&Itemid=2
https://support.solarflare.com/
https://support.solarflare.com/

SOLARFLAREFE®

Onload User Guide

Installation

ethtool -i enp3sofo
driver: sfc
version: 4.5.1.1020

To ensure the Onload driver is always loaded following system reboot, the ‘in-tree’
driver can be removed from the OS entirely. Alternatively any Onload startup script
should include the command to reload the Onload drivers:

onload_tool reload
To remove the ‘in-tree’ driver (with Onload uninstalled or not yet installed):

find /lib/modules/$(uname -r) -name 'sfc*.ko' | xargs rm -rf
rmmod sfc
update-initramfs -u -k <kernel version>

initramfs commands may differ on different Linux based OS, e.g on Centos7 the
following dracut command can be used:

dracut -f /boot/initramfs-<version>.x86_64.img initramfs-<version>.x86_64

4.6 Pre-install Notes

®

®© OO

NOTE: If Onload is to accelerate a 32bit application on a 64bit architecture, the
32bit libc development headers should be installed before building Onload. Refer
to Appendix C for install instructions.

NOTE: You must remove any existing Solarflare RPM driver packages before
installing Onload.

NOTE: When migrating between Onload versions or between OpenOnload and
EnterpriseOnload, a previously installed version must first be removed using the
onload_uninstall command.

NOTE: The Solarflare drivers are currently classified as unsupported in SLES11,12,
the certification process is underway. To overcome this (SLES 11) add
‘allow_unsupported_modules 1’ tothe /etc/modprobe.d/unsupported-
modules file. For SLES 12 add the same to the /etc/modprobe.d/10-
unsupported-modules. conf file.

4.7 EnterpriseOnload - Build and Install from SRPM

The following steps identify the procedures to build and install EnterpriseOnload.
SRPMs can be built by the ‘root’ or ‘non-root’ user, but the user must have
superuser privileges to install RPMs. Customers should contact their Solarflare
customer sales representative for access to the EnterpriseOnload SRPM resources.

Build the RPM

®

NOTE: Refer to Appendix C for details of build dependencies.

As root:

Issue 20

© Solarflare Communications 2015 18

SOLARFLAREFE®

Onload User Guide

Installation

rpmbuild --rebuild enterpriseonload-<version>.src.rpm
Or as a non-root user:

It is advised to use _topdir to ensure that RPMs are built into a directory to which
the user has permissions. The directory structure must pre-exist for the rpmbuild
command to succeed.

mkdir -p /tmp//myrpm/{SOURCES,BUILD,RPMS,SRPMS}
rpmbuild --define "_topdir /tmp/myrpm" \
--rebuild enterpriseonload-<version>.src.rpm

NOTE: On some non-standard kernels the rpmbuild might fail because of build
dependencies. In this event retry, adding the - -nodeps option to the command
line.

Building the source RPM will produce 2 binary RPM files which can be found in the
e /usr/src/*/RPMS/ directory
e or, when built by a non-root user in _topdir/RPMS

e or,when _topdir was defined in the rpombuild command line in /tmp/myrpm/
RPMS/x86_64/

for example the EnterpriseOnload user-space components:
/usr/src/redhat/RPMS/x86_64/enterpriseonload-<version>.x86_64.rpm
and the EnterpriseOnload kernel components:

/usr/src/redhat/RPMS/x86_64/enterpriseonload-kmod-2.6.18-92.el15-
<version>.x86_64.rpm

Install the EnterpriseOnload RPM

(1)
(1)

The EnterpriseOnload RPM and the kernel RPM must be installed for
EnterpriseOnload to function correctly.

rpm -ivf enterpriseonload-<version>.x86_64.rpm
rpm -ivf enterpriseonload-kmod-2.6.18-92.el5-<version>.x86_64.rpm
NOTE: EnterpriseOnload is now installed but the kernel modules are not yet loaded.

NOTE: The EnterpriseOnload-kmod filename is specific to the kernel that it is built
for.

Installing the EnterpriseOnload Kernel Module

This will load the EnterpriseOnload kernel driver and other driver dependencies and
create any device nodes needed for EnterpriseOnload drivers and utilities. The
command should be run as root.

/etc/init.d/openonload start

Following successful execution this command produces no output, but the ‘onload’
script will identify that the kernel module is now loaded.

Issue 20

© Solarflare Communications 2015 19

SOLARFLAREFE®

®

Onload User Guide

Installation

onload

EnterpriseOnload <version>

Copyright 2006-2013 Solarflare Communications, 2002-2005 Level 5 Networks
Built: Oct 15 2013 ©9:19:23 12:23:12 (release)

Kernel module: <version>

NOTE: At this point EnterpriseOnload is loaded, but until the network interface has
been configured and brought into service EnterpriseOnload will be unable to
accelerate traffic.

4.8 EnterpriseOnload - Debian Source Packages

From version 4.0, Debian install packages are available for EnterpriseOnload.
Packages are named in the following format:

enterpriseonload_<version>-debiansource.tgz
1 Untar source package

$ tar xf enterpriseonload_<version>-debiansource.tgz

2 Extract source

$ dpkg-source -x enterpriseonload_<version>-1.dsc

3 Build packages

$ cd enterpriseonload-<version>
$ debuild -i -uc -us

4 Install packages

$ sudo dpkg -i ../enterpriseonload-user_<version>-1_amd64.deb
$ sudo dpkg -i ../enterpriseonload-source_<version>-1_all.deb

5 Build and install modules

$ sudo m-a a-i enterpriseonload

4.9 OpenOnload DKMS Installation

OpenOnload DKMS packages are available by contacting support@solarflare.com.

1 DKMS must be installed on the server. DKMS can be downloaded from http://
linux.dell.com/dkms/ or from the OS distribution. To check this run the
following command which will return nothing if DKMS is not installed:

dkms --version
dkms: 2.2.0.3

2 Install the Onload dkms package:

rpm -i openonload-dkms-<version>.noarch.rpm

3 Ensure drivers and kernel module are loaded:

onload_tool reload

Issue 20

© Solarflare Communications 2015 20

http://linux.dell.com/dkms/

Onload User Guide

SOLARFLARE® .
; Installation

4.10 Build OpenOnload Source RPM

A source RPM can be built from the OpenOnload distribution tar file.

1 Download the required tar file from the following location:
http://www.openonload.org/download.html
Copy the file to a directory on the machine where the source RPM is to be
created.

2 Asroot, execute the following command:

rpmbuild -ts openonload-<version>.tgz*
x86_64 Wrote: /root/rpmbuild/SRPMS/openonload-<version>.src.rpm

The output identifies the location of the source RPM. Use the -ta option to get
a binary RPM.

4.11 OpenOnload - Installation

The following procedure demonstrates how to download, untar and install
OpenOnload.

Download and untar OpenOnload

1 Download the required tar file from the following location:
http://www.openonload.org/download.html
The compressed tar file (.tgz) should be downloaded/copied to a directory on
the machine on which it will be installed.

2 Asroot, unpack the tar file using the tar command.
tar -zxvf openonload-<version>.tgz

This will unpack the tar file and, within the current directory, create a sub-
directory called openonload-<version> which contains other sub-directories
including the scripts directory from which subsequent install commands can
be run.

Building and Installing OpenOnload
@ NOTE: Refer to Appendix C for details of build dependencies.

The following command will build and install OpenOnload and required drivers in
the system directories:

./onload_install

Successful installation will be indicated with the following output
“onload_install: Install complete” — possibly followed by a warning that the
sfc (net driver) driver is already installed.

@ NOTE: The onload_install script does not create RPMs.

Issue 20 © Solarflare Communications 2015 21

http://www.openonload.org/download.html
http://www.openonload.org/download.html

Onload User Guide

SOLARFLARE® .
; Installation

Load Onload Drivers

Following installation it is necessary to load the Onload drivers:
onload_tool reload

When used with OpenOnload this command will replace any previously loaded
network adapter driver with the driver from the OpenOnload distribution.

Check that Solarflare drivers are loaded using the following commands:

lsmod | grep sfc
lsmod | grep onload

An alternative to the reload command is to reboot the system to load Onload
drivers.

Confirm Onload Installation
When the Onload installation is complete run the onload command to confirm
installation of Onload software and kernel module:
[root@serverl] onload
Will display the Onload product banner and usage:

OpenOnload 201405

Copyright 2006-2012 Solarflare Communications, 2002-2005 Level 5 Networks
Built: May 20 2014 16:46:33 (release)

Kernel module: 201405

usage:
onload [options] <command> <command-args>

options:
--profile=<profile> -- comma sep list of config profile(s)
--force-profiles -- profile settings override environment
--no-app-handler -- do not use app-specific settings
--app=<app-name> -- identify application to run under onload
--version -- print version information
-V -- verbose
-h --help -- this help message

4.12 Onload Kernel Modules

To identify Solarflare drivers already installed on the server:

modprobe -1 | grep -e sfc -e onloa

Issue 20 © Solarflare Communications 2015 22

SOLARFLAREFE®

Onload User Guide

Installation
d

Driver Name Description

sfc.ko A Linux net driver provides the interface between the Linux
network stack and the Solarflare network adapter.

sfc_char.ko Provides low level access to the Solarflare network adapter
virtualized resources. Supports direct access to the network
adapter for applications that use the ef_vi user-level interface
for maximum performance.

sfc_tune.ko This is used to prevent the kernel during idle periods from
putting the CPUs into a sleep state.
Removed in openonload-201405.

sfc_aoe.ko Solarflare ApplicationOnload™ Engine driver for the SFA6902F

adapter.

sfc_affinity.ko Used to direct traffic flow managed by a thread to the core the
thread is running on, inserts packet filters that override the
RSS behaviour.

sfc_resource.ko Manages the virtualization resources of the adapter and
shares the resources between other drivers.

onload.ko The kernel component of Onload.

To unload any loaded drivers:

onload_tool unload

To remove the installed files of a previous Onload:
onload_uninstall

To load the Solarflare net driver (if not already loaded):
modprobe sfc

Reload drivers following upgrade or changed settings:

onload_tool reload

4.13 Configuring the Network Interfaces

Network interfaces should be configured according to the Solarflare Server Adapter
User’s Guide.

When the interface(s) have been configured, the dmesg command will display
output similar to the following (one entry for each Solarflare interface):

sfc 0000:13:00.0: INFO: eth2 Solarflare Communications NIC PCI(1924:803)
sfc 0000:13:00.1: INFO: eth3 Solarflare Communications NIC PCI(1924:803)

Issue 20

© Solarflare Communications 2015 23

SOLARFLAREFE®

Onload User Guide

Installation

NOTE: IP address configuration should be carried out using normal OS tools e.g.
system-config-network (Red Hat) or yast (SUSE).

4.14 Installing Netperf

Refer to the Low Latency Quickstart Guide on page 4 for instructions to install
Netperf and Solarflare sfnettest applications.

4.15 How to run Onload

Once Onload has been installed there are different ways to accelerate applications.
Exporting LD_PRELOAD will mean that all applications started in the same
environment will be accelerated.

export LD_PRELOAD=libonload.so

Pre-fixing the application command line with the onload command will accelerate
the application.

onload <app_name> [app_options]

4.16 Testing the Onload Installation

The the Low Latency Quickstart Guide on page 4 demonstrates testing of Onload
with Netperf and the Solarflare sfnettest benchmark tools.

4.17 Apply an Onload Patch

Occasionally, the Solarflare Support Group may issue a software ‘patch’ which is
applied to onload to resolve a specific bug or investigate a specific issue. The
following procedure describes how a patch should be applied to the installed
OpenOnload software.

1 Copy the patch to a directory on the server where onload is already installed.

2 Goto the onload directory and apply the patch e.g.

cd openonload-<version>
[openonload-<version>]$ patch -pl < ~/<path>/<name of patch file>.patch

3 Uninstall the old onload drivers

[openonload-<version>]$ onload_uninstall

4 Build and re-install the onload drivers

[openonload-<version>]$./scripts/onload _install
[openonload-<version>]$ onload_tool reload

The following procedure describes how a patch should be applied to the installed
EnterpriseOnload RPM. (This example patches EnterpriseOnload version 2.1.0.3).

Issue 20

© Solarflare Communications 2015 24

SOLARFLAREFE®

Onload User Guide

Installation

Copy the patch to the directory on the server where the EnterpriseOnload RPM
package exists and carry out the following commands:

rpm2cpio enterpriseonload-2.1.0.3-1.src.rpm | cpio -id
tar -xzf enterpriseonload-2.1.0.3.tgz

cd enterpriseonload-2.1.0.3

patch -pl < $PATCHNAME

This can now be installed directory from this directory:

./scripts/onload_install

Or it can be repackaged as a new RPM:

cd ..
tar czf enterpriseonload-2.1.0.3.tgz enterpriseonload-2.1.0.3
rpmbuild -ts enterpriseonload-2.1.0.3.tgz

The rpmbuild procedure will display a ‘Wrote’ line identifying the location of
the built RPM e.g

Wrote: /root/rpmbuild/SRPMS/enterpriseonload-2.1.0.3-1.el6.src.rpm

Install the RPM in the usual way:
rpm -ivh /root/rpmbuild/SRPMS/enterpriseonload-2.1.0.3-1.el6.src.rpm

Issue 20

© Solarflare Communications 2015 25

‘ Onload User Guide
SOLARFLARE®

5 Tuning Onload

5.1 Introduction

This chapter documents the available tuning options for Onload, and the expected
results. The options can be split into the following categories:

e System Tuning
e Standard Latency Tuning.

e Advanced Tuning driven from analysis of the Onload stack using
onload_stackdump.

Most of the Onload configuration parameters, including tuning parameters, are set
by environment variables exported into the accelerated applications environment.
Environment variables can be identified throughout this manual as they begin with
EF_. All environment variables are described in Appendices A and B of this manual.
Examples throughout this guide assume the use of the bash or sh shells; other shells
may use different methods to export variables into the applications environment.

e System Tuning on page 27 describes tools and commands which can be used to
tune the server and OS.

e Standard Tuning on page 29 describes how to perform standard heuristic
tuning, which can help improve the application’s performance. There are also
benchmark examples running specific tests to demonstrate the improvements
Onload can have on an application.

e Advanced Tuning on page 42 introduces advanced tuning options using
onload_stackdump. There are worked examples to demonstrate how to
achieve the application tuning goals.

NOTE: Onload tuning and kernel driver tuning are subject to different

@ requirements. This section describes the steps to tune Onload. For details on how
to tune the Solarflare kernel driver, refer to the 'Performance Tuning on Linux'
section of the Solarflare Server Adapter User Guide.

Issue 20 © Solarflare Communications 2015 26

https://support.solarflare.com/index.php?view=categories&id=165&option=com_cognidox&Itemid=2

Onload User Guide

SOLARFLARFE® ,
; Tuning Onload

5.2 System Tuning

This section details steps to tune the server and operating system for lowest latency.

Sysjitter

The Solarflare sysjitter utility measures the extent to which the system introduces
jitter and so impacts on the user-level process. Sysjitter runs a thread on each
processor core and when the thread is de-scheduled from the core it measures for
how long. Sysjitter produces summary statistics for each processor core. The
sysjitter utility can be downloaded from www.openonload.org

Sysjitter should be run on a system that is idle. When running on a system with
cpusets enabled - run sysjitter as root.

Refer to the sysjitter README file for further information on building and running
sysjitter.

The following is an example of the output from sysjitter on a single CPU socket
server with 4 CPU cores.

./sysjitter --runtime 10 200 | column -t

core_i: (4] 1 2 3
threshold(ns): 200 200 200 200
cpu_mhz: 3215 3215 3215 3215
runtime(ns): 9987653973 9987652245 9987652070 9987652027
runtime(s): 9.988 9.988 9.988 9.988
int_n: 10001 10130 10012 10001
int_n_per_sec: 1001.336 1014.252 1002.438 1001.336
int_min(ns): 1333 1247 1299 1446
int_median(ns): 1390 1330 1329 1470
int_mean(ns): 1424 1452 1452 1502
int_90(ns): 1437 1372 1357 1519
int_99(ns): 1619 5046 2392 1688
int_999(ns): 5065 22977 15604 3694
int_9999(ns): 31260 39017 184305 36419
int_99999(ns): 40613 45065 347097 49998
int_max(ns): 40613 45065 347097 49998
int_total(ns): 14244846 14719972 14541991 15031294
int_total(%): 0.143 0.147 0.146 0.150

The table below describes the output fields of the sysjitter utility.

Field Description

threshold (ns) ignore any interrupts shorter than this period

cpu_mhz CPU speed

runtime (ns) runtime of sysjitter - nanoseconds

runtime (s) runtime of sysjitter - seconds

int_n number of interruptions to the user thread

Issue 20 © Solarflare Communications 2015 27

www.openonload.org

SOLARFLAREFE®

Onload User Guide
Tuning Onload

Field

Description

int_n_per_sec

number of interruptions to the user thread per second

int_min (ns)

minimum time taken away from the user thread due to an
interruption

int_median (ns)

median time taken away from the user thread due to an
interruption

int_mean (ns)

mean time taken away from the user thread due to an
interruption

int_90 (ns)

90%percentile value

int_99 (ns)

99% percentile value

int_999 (ns)

99.9% percentile value

int_9999 (ns)

99.99% percentile value

int_99999 (ns)

99.999% percentile value

int_max (ns)

max time taken away from the user thread

int_total (ns)

total time spent not processing the user thread

int_total (%)

int_total (ns) as a percentage of total runtime

Timer (TSC) Stability

Onload uses the Time Stamp Counter (TSC) CPU registers to measure changes in
time with very low overhead. Modern CPUs support an “invariant TSC”, which is
synchronized across different CPUs and ticks at a constant rate regardless of the
current CPU frequency and power saving mode. Onload relies on this to generate
accurate time calculations when running across multiple CPUs. If run on a system

which does not have an invariant TSC, Onload may calculate wildly inaccurate time
values and this can, in extreme cases, lead to some connections becoming stuck.

Users should consult their server vendor documentation and OS documentation to
ensure that servers can meet the invariant TSC requirement.

CPU Power Saving Mode

Modern processors utilize design features that enable a CPU core to drop into
lowering power states when instructed by the operating system that the CPU core
is idle. When the OS schedules work on the idle CPU core (or when other CPU cores
or devices need to access data currently in the idle CPU core’s data cache) the CPU
core is signaled to return to the fully-on power state. These changes in CPU core
power states create additional network latency and jitter.

Issue 20

© Solarflare Communications 2015 28

Onload User Guide

SOLARFLARFE® ,
; Tuning Onload

Solarflare therefore recommend that customers wishing to achieve the lowest
latency and lowest jitter disable the “C1E power state” or “CPU power saving mode”
within the machine's BIOS.

Disabling the CPU power saving modes is required if the application is to realize low
latency with low jitter.

NOTE: To ensure C states are not enabled, overriding the BIOS settings, it is

@ recommended to put the line ‘intel_idle.max_cstate=0 idle=poll’into the
kernel command line /boot/grub/grub. conf. The settings will produce consistent
results and are particularly useful when benchmarking, but allowing some cores to
enable Turbo modes while others are idle can produce best latency in some servers.
Users should refer to vendor documentation and experiment with C states for
different applications.

Customers should consult their system vendor and documentation for details
concerning the disabling of C1E, C states or CPU power saving states.

5.3 Standard Tuning

This section details standard tuning steps for Onload.

Spinning (busy-wait)

Conventionally, when an application attempts to read from a socket and no data is
available, the application will enter the OS kernel and block. When data becomes
available, the network adapter will interrupt the CPU, allowing the kernel to
reschedule the application to continue.

Blocking and interrupts are relatively expensive operations, and can adversely affect
bandwidth, latency and CPU efficiency.

Onload can be configured to spin on the processor in user mode for up to a specified
number of microseconds waiting for data from the network. If the spin period
expires the processor will revert to conventional blocking behavior. Non-blocking
sockets will always return immediately as these are unaffected by spinning.

Onload uses the EF_POLL_USEC environment variable to configure the length of the
spin timeout.

export EF_POLL_USEC=100000

will set the busy-wait period to 100 milliseconds. See Meta Options on page 185 for
more details.

Issue 20 © Solarflare Communications 2015 29

SOLARFLAREFE®

Onload User Guide
Tuning Onload

Enabling spinning

To enable spinning in Onload:

Set EF_POLL_USEC. This causes Onload to spin on the processor for up to the
specified number of microseconds before blocking. This setting is used in TCP and
UDP and also in recv (), select(), pselect() and poll(), ppoll() and

epoll wait(), epoll pwait() and onload ordered epoll wait().Use the
following command:

export EF_POLL_USEC=100000

NOTE: If neither of the spinning options EF_POLL_USEC and EF_SPIN_USEC are set,
Onload will resort to default interrupt driven behavior because the EF_INT_DRIVEN
environment variable is enabled by default.

Setting the EF_POLL_USEC variable also sets the following environment variables.

EF_SPIN_USEC=EF_POLL_USEC
EF_SELECT_SPIN=1
EF_EPOLL_SPIN=1
EF_POLL_SPIN=1
EF_PKT_WAIT_SPIN=1
EF_TCP_SEND_SPIN=1
EF_UDP_RECV_SPIN=1
EF_UDP_SEND_SPIN=1
EF_TCP_RECV_SPIN=1
EF_BUZZ_USEC=EF_POLL_USEC
EF_SOCK_LOCK_BUZZ=1
EF_STACK_LOCK_BUZZ=1

Turn off adaptive moderation and set interrupt moderation to a high value
(microseconds) to avoid flooding the system with interrupts. Use the following
command:

/sbin/ethtool -C eth2 rx-usecs 60 adaptive-rx off

See Meta Options on page 185 for more details

When to Use Spinning

The optimal setting is dependent on the nature of the application. If an application
is likely to find data soon after blocking, or the system does not have any other
major tasks to perform, spinning can improve latency and bandwidth significantly.

In general, an application will benefit from spinning if the number of active threads
is less than the number of available CPU cores. However, if the application has more
active threads than available CPU cores, spinning can adversely affect application
performance because a thread that is spinning (and therefore idle) takes CPU time
away from another thread that could be doing work. If in doubt, it is advisable to try
an application with a range of settings to discover the optimal value.

Issue 20

© Solarflare Communications 2015 30

SOLARFLAREFE®

Onload User Guide
Tuning Onload

Polling vs. Interrupts

Interrupts are useful because they allow the CPU to do other useful work while
simultaneously waiting for asynchronous events (such as the reception of packets
from the network). The historical alternative to interrupts was for the CPU to
periodically poll for asynchronous events and on single processor systems this could
result in greater latency than would be observed with interrupts. Historically it was
accepted that interrupts were “good for latency”.

On modern, multicore systems the tradeoffs are different. It is often possible to
dedicate an entire CPU core to the processing of a single source of asynchronous
events (such as network traffic). The CPU dedicated to processing network traffic
can be spinning (aka busy waiting), continuously polling for the arrival of packets.
When a packet arrives, the CPU can begin processing it almost immediately.

Contrast the polling model to an interrupt-driven model. Here the CPU is likely in its
“idle loop” when an interrupt occurs. The idle loop is interrupted, the interrupt
handler executes, typically marking a worker task as runnable. The OS scheduler will
then run and switches to the kernel thread that will process the incoming packet.
There is typically a subsequent task switch to a user-mode thread where the real
work of processing the event (e.g. acting on the packet payload) is performed.
Depending on the system, it can take on the order of a microsecond to respond to
an interrupt and switch to the appropriate thread context before beginning the real
work of processing the event. A dedicated CPU spinning in a polling loop can begin
processing the asynchronous event in a matter of nanoseconds.

It follows that spinning only becomes an option if a CPU core can be dedicated to
the asynchronous event. If there are more threads awaiting events than CPU cores
(i.e.if all CPU cores are oversubscribed to application worker threads), then spinning
is not a viable option, (at least, not for all events). One thread will be spinning,
polling for the event while another could be doing useful work. Spinning in such a
scenario can lead to (dramatically) increased latencies. But if a CPU core can be
dedicated to each thread that blocks waiting for network 1/0, then spinning is the
best method to achieve the lowest possible latency.

5.4 Onload Deployment on NUMA Systems

When deployed on NUMA systems, application load throughput and latency
performance can be adversely affected unless due consideration is given to the
selection of the NUMA node, the allocation of cache memory and the affinitization
of drivers, processes and interrupts.

For best performance the accelerated application should always run on the NUMA
node nearest to the Solarflare adapter. The correct allocation of memory is
particularly important to ensure that packet buffers are allocated on the correct
NUMA node to avoid unnecessary increases in QPI traffic and to avoid dropped
packets.

Issue 20

© Solarflare Communications 2015 31

SOLARFLAREFE®

Onload User Guide
Tuning Onload

Useful commands

e To identify NUMA nodes, socket memory and CPU core allocation:
numactl -H

¢ To identify the NUMA node local to a Solarflare adapter:

cat /sys/class/net/<interface>/device/numa_node

e To identify memory allocation and use on a particular NUMA node:

cat /sys/devices/system/node/node<N>/numastat

Driver Loading

When loading, the Onload module will create a variety of common data structures.
To ensure that these are created on the NUMA node nearest to the Solarflare
adapter, onload_tool reload should be affinitized to a core on the correct NUMA
node.

numactl --cpunodebind=1 onload_tool reload

Memory Policy

To guarantee that memory is appropriately allocated - and to ensure that memory
allocations do not fail, a memory policy that binds to a specific NUMA node should
be selected. When no policy is specified the system will generally use a default
policy allocating memory on the node on which a process is executing.

Application Processing

The majority of processing by Onload occurs in the context of the Onloaded
application. Various methods can be used to affinitize the Onloaded process;
numactl, taskset or cpusets or the CPU affinity can be set programatically.

Workqueues

An Onloaded application will create two shared workqueues and one per-stack
workqueue. The implementation of the workqueue differs between Linux kernels -
and so does the method used to affinitize workqueues.

On more recent Linux kernels (3.10+) the Onload work queues will be initially
affinitized to the node on which they are created. Therefore if the driver load is
affinitized and the Onloaded application affinitized to the correct node, Onload
stacks will be created on the correct node and there will be no further work
required.

Specifying a cpumask via sysfs for a workqueue is NOT recommended as this can
break ordering requirements.

On older Linux kernels dedicated workqueue threads are created - and these can be
affinitized using taskset or cpusets. Identify the two workqueues shared by all
Onload stacks:

Issue 20

© Solarflare Communications 2015 32

SOLARFLAREFE®

Onload User Guide
Tuning Onload

onload-wqueue
sfc_vi

Identify the per-stack workqueue which has a name in the format onload-
wg<stack id> (e.g onload-wq:1 for stack 1).

Use the onload_stackdump command to identify Onload stacks and the PID of the
process that created the stack:

onload_stackdump
#stack-id stack-name pids
0 - 106913

Use the Linux pidof command to identify the PIDs for Onload workqueues:

pidof onload-wqg:0 sfc_vi onload-wqueue
106930 105409 105431

Itisrecommended that the shared workqueues are affinitized immediately after the
driver is loaded and the per-stack queue immediately after stack creation.

Interrupts

When Onload is being used in an interrupt-driven mode (see Interrupt Handling -
Using Onload on page 38) interrupts should affinitized to the same NUMA node
running the Onload application, but not on the same CPU core as the application.

When Onload is spinning (busy-wait) there will be few (if any) interrupts, so it is not
a real concern where these are handled.

Verification

The onload_stackdump lots command is used to verify that allocations occur on the
required NUMA node:

onload_stackdump lots | grep numa
numa nodes: creation=0 load=0
numa node masks: packet alloc=1 sock alloc=1 interrupt=1

The cpu affinity of individual Onloaded threads can be identified with the following
command:

onload_stackdump threads

5.5 Interrupt Handling - Kernel Driver

Default Behavior

Using the value identified from the rss_cpus option, the Solarflare NET driver will
create a number of receive (and transmit) queues (termed an “RSS channel”) for
each physical interface. By default the driver creates one RSS channel per CPU core
detected in the sever up to a maximum of 32.

Issue 20

© Solarflare Communications 2015 33

SOLARFLAREFE®

®

Onload User Guide
Tuning Onload

The rss_cpus sfc driver module option can be set in a user created file <sfc.conf> in
the /etc/modprobe.d directory. The driver must be reloaded before the option
becomes effective. For example, rss_cpus can be set to an integer value:

options sfc rss_cpus=4

In the above example 4 receive queues are created per Solarflare interface. The
default value is rss_cpus=cores. Other available options are rss_cpus=<int>,
rss_cpus=hyperthreads and rss_cpus=packages.

NOTE: If the sfc driver module parameter ‘rss_numa_local’ is enabled, RSS will be
restricted to use cores/hyperthreads on the NUMA node local to the Solarflare
adapter.

Affinitizing RSS Channels to CPUs

®

As described in the previous section, the default behavior of the Solarflare network
driver is to create one RSS channel per CPU core. At load time the driver affinitizes
the interrupt associated with each RSS channel to a separate CPU core so the
interrupt load is evenly distributed over the available CPU cores.

NOTE: These initial interrupt affinities will be disrupted and changed if the Linux
IRQ balancer daemon is running. To stop the IRQ balancer use the following
command:

service irgbalance stop

In the following example, we have a server with 2 Solarflare dual-port adapters
(total of network 4 interfaces), installed in a server with 2 CPU sockets with 8 cores
per socket (hyperthreading is disabled).

If we set rss_cpus=4, each interface will create 4 RSS channels. The driver takes
care to spread the affinitized interrupts evenly over the CPU topology i.e. evenly
between the two CPU sockets and evenly over shared L2/L3 caches.

The driver also attempts to spread the interrupt load of the multiple network
interfaces by using different CPU cores for different interfaces:

Table 3: Example RSS Channel Mapping

Interface Num of rx queues Map to cores
1 4 0,1,2,3

2 4 4,5,6,7

3 4 8,9,10,11

4 4 12,13,14,15

Issue 20

© Solarflare Communications 2015 34

Onload User Guide

SOLARFLARFE® ,

; Tuning Onload
With 4 receive queues created per interface this results, on this machine, to the first
network interface mapping to the four lowest number CPU cores i.e. two cores from
each CPU socket as illustrated below. The next network interface uses the next four
CPUs until each CPU core is loaded with a single RSS channel — as illustrated in
Figure 3 below.

[Adapter # 1 A Socket # 0
o s ooreld
ethd e e — — = core 2
= Tore 4
P ______~ core &
__:—_—';*.‘E?_—-: —_— core 8
e ‘\‘\‘;\, core 10
.\\ \‘l‘\\ core 12
\\ >\ \\\\ core 14
f Adapter# 2 \ \\\“:‘C:w.\‘ 0 . Socket # 1
"\\:‘ . \\\\‘i core 1
eths ‘\\"‘a " core 3
\‘\\\ = core 5
\‘_\‘; core 7
= core 9
=t core 11
core 13
k _/ core 15
Figure 3: Mapping RSS Channels to CPU cores.
To identify the mapping of receive queues to CPU cores, use the following
command:
cat /proc/interrupts | grep eth4
106: 19 © 0 0 0 0 0 0 0 0 © @ @ © O O IR-PCI-MSI-edge eth4-0
107: @ 11 © © 0 © 0 © 0 © 0 0 @ O © O IR-PCI-MSI-edge eth4-1
108: © 0 10 © 0 © 0 © 0 © 0 0 @ @ © O IR-PCI-MSI-edge eth4-2
109: 8 @ 8 2 0 @ 0 @ 0 @ 0 @ @0 © @ © IR-PCI-MSI-edge eth4-3
Note that each receive queue has an assigned IRQ. Receive queue eth4-0 is served
by IRQ 106, eth4-1 by IRQ 107 etc.
sfcaffinity_config
The OpenOnload distribution also includes the sfcaffinity config script which
can also be used to affinitize RSS channel interrupts. sfcaffinity confighasa
number of command line options but a common way of running it is with the auto
command:
sfcaffinity_config auto
Autoinstructs sfcaffinity_configto setinterrupts affinities to evenly spread the
RSS channels over the available CPU cores. Using the above scenario as an example,
where rss_cpus has been set to 4, the command will affinitize the interrupt
associated with each receive queue evenly over the CPU topology — in this case the
first four CPU cores.
Issue 20 © Solarflare Communications 2015 35

SOLARFLAREFE®

®

Onload User Guide
Tuning Onload

sfcaffinity_config: INFO: eth4: Spreading 4 interrupts evenly over 2 shared caches
sfcaffinity_config: INFO: eth4: bind rxq @ (irq 106) to core 1

sfcaffinity_config: INFO: eth4: bind rxq 1 (irq 107) to core ©

sfcaffinity_config: INFO: eth4: bind rxq 2 (irq 108) to core 3

sfcaffinity _config: INFO: ethd4: bind rxq 3 (irq 109) to core 2

sfcaffinity_config: INFO: eth4: configure sfc_affinity n_rxqs=4
cpu_to_rxg-=1,9,3,2,1,9,3,2,1,0,3,2,1,0,3,2

[Adapter# 1 A

cthd — — — J_,_ L= coTe 2
- - core 4

Socket # 0
= wored

core &

— core 8
= core 10

core 12

core 14

f Adapter# 2 \

ethé

eth?

core 11

core 13

\ _/, core 15

Figure 4: Mapping with sfcaffinity_config auto

In this example, after running the sfcaffinity config autocommand, interrupts
for the 4 receive queues from the 4 interfaces are now all directed to the same 4
cores 0,1,2,3 as illustrated by Figure 4.

NOTE: Running the sfcaffinity config auto command also disables the kernel
IRQ balance service to prevent interrupts being redirected by the kernel to other
cores.

Restrict RSS to local NUMA node

The sfc driver module parameter rss_numa_local will restrict RSS to only use CPU
cores or hypterthreads (if hyperthreading is enabled) on the NUMA node local to the
Solarflare adapter.

rss_numa_local does NOT restrict the number of RSS channels created by the
driver —itinstead works by restricting the RSS spreading so only the channels on the
local NUMA node will receive kernel driver traffic.

In the default case (where rss_cpus=cores), one RSS channel is created per CPU
core. However, the driver adjusts the RSS settings such that only the RSS channels
affinitized to the local CPU socket receive traffic. It therefore has no effect on the
Onload allocation and use of receive queues and interrupts.

Issue 20

© Solarflare Communications 2015 36

SOLARFLAREFE®

Onload User Guide
Tuning Onload

Figure 5 below identifies the receive queue interrupts spread when rss_cpus=4
and rss_numa_local=1. In this machine adapter 1 is attached to the PCle bus on
socket #0 with adapter #2 attached to the PCle bus on socket #1.

| Adapter# 1 \

eth4

eth5

-

[Adapter # 2 A

eth&

eth?

-

/

Socket # 0
= core 0

— = tore

2 Core 4
————2 Core &
= core 8
———2 core 10
3 core 12

T2, core 14

Socket & 1
core 1
core 3
core 5
core 7
core 9
core 11
core 13
core 15

Figure 5: Mapping with rss_numa_local

Restrict RSS Receive Queues

The ethtool -Xcommand can also be used to restrict the receive queues accessible
by RSS. In the following example rss_cpus=4 and ethtool -x identifies the 4

receive queues per interface:

ethtool

-x eth4

RX flow hash indirection table for eth4 with 4 RX ring(s):

0:
8:
16:
24:
32:
40:
48:
56:
64:
72:
80:
88:
96:
104:
112:
120:

[OREGIE RO RGBSR OB RE BN O RN RE O RO R RN

[

1

R R RPRRRPRRPRRRRRERERRR

NNNMNNMNNMNNMNMNMNNMNNMNMNNMNNMNMNNDNNODN

0

W wwwwwwwwwwwwwww
OO0 00O

1

RPRRRPRRPRRPRRPRRPRRPRPRRRLRRPRLPR

2 3

NNNNNNNNNNNDNNNNDNNDDNDDN
W wwwwwwwwwwwwww

To restrict RSS to spread receive flows evenly over the first 2 receive queues. Use

ethtool -X:

ethtool -X eth4 equal 2

Issue 20

© Solarflare Communications 2015

37

SOLARFLAREFE®

Onload User Guide
Tuning Onload

RX flow hash indirection table for eth4 with 4 RX ring(s):

9: 0 1 0 1 0 1 0 1
8: 0 1 0 1 0 1 (4] 1
16: 0 1 0 1 0 1 (4] 1
24: 0 1 (%] 1 (%] 1 (4] 1
32: 0 1 0 1 0 1 0 1
40: 0 1 0 1 0 1 0 1
48: 0 1 0 1 0 1 0 1
56: 0 1 0 1 0 1 (4] 1
64: 0 1 0 1 0 1 (4] 1
72: 0 1 (%] 1 (%] 1 (4] 1
80: 0 1 0 1 0 1 0 1
88: 0 1 0 1 0 1 0 1
96: 0 1 0 1 0 1 0 1
104: 0 1 0 1 0 1 0 1
112: 0 1 0 1 0 1 (4] 1
120: 0 1 (%] 1 (%] 1 (4] 1

Interrupt Handling - Using Onload

A thread accelerated by Onload will either be interrupt driven or it will be spinning.

When the thread is interrupt driven, a thread which calls into Onload to read from
its receive queue and for which there are no received packets to be processed, will
‘sleep’ until an interrupt(s) from the kernel informs it that there is more work to do.

When a thread is spinning, it is busy waiting on its receive queue until packets are
received - in which case the packets are retrieved and the thread returns
immediately to the receive queue, or until the spin period expires. If the spin period
expires the thread will relinquish the CPU core and ‘sleep’ until an interrupt from the
kernel informs it that further packets have been received. If the spin period is set
greater than the packet inter-arrival rate, the spinning thread can continue to spin
and retrieve packets without interrupts occurring. Even when spinning, an
application might experience a few interrupts.

As a general rule, when spinning, only a few interrupts will be expected so
performance is typically insensitive as to which CPU core processes the interrupts.
However, when Onload is interrupt driven performance can be sensitive to where
the interrupts are handled and will typically benefit to be on the same CPU socket
as the application thread handling the socket I/O. To control the CPU core processing
Onload interrupts use the EF_IRQ_CORE or EF_IRQ_CHANNEL environment variables.

Using EF_PACKET_BUFFER_MODE © or 2, an onload stack will use one or more of the
interrupts assigned to the NET driver receive queues where the CPU core handling
the interrupts is defined by the RSS mapping of receive queues to CPU cores.

Issue 20

© Solarflare Communications 2015 38

SOLARFLAREFE®

Onload User Guide
Tuning Onload

Using EF_PACKET_BUFFER_MODE 1 or 3, the onload stack creates dedicated
interrupts. See Table 4 below for details.

Table 4: Selecting Onload interrupts

EF_PACKET_BUFFER_MODE EF_IRQ_CORE

0 (default) or 2 Onload interrupts are handled via the NET driver
receive channel interrupts.

It is only possible for interrupts to be handled on
the requested core if a NET driver interrupt is
assigned to the selected core.

lor3 Onload creates dedicated interrupts for each
onload stack and an interrupt is assigned to the
requested core.

Another environment variable, EF_IRQ_ CHANNEL, can be used to select the NET
driver receive channel that will be used to handle interrupts for an onload stack.
Onload interrupts are handled by the same core assigned to the NET driver receive
channel.

When Onload is using a NET driver RSS channel for its source of interrupts, it can be
useful to dedicate this channel to Onload and prevent the driver from using this
channel for RSS traffic. See above sections on “Restricting RSS receive queues” and
“Restrict RSS to local NUMA node” for methods of how to achieve this.

5.6 Performance lJitter

On any system reducing or eliminating jitter is key to gaining optimum performance,
however the causes of jitter leading to poor performance can be difficult to define
and difficult to remedy. The following section identifies some key points that should
be considered.

e Afirst step towards reducing jitter should be to consider the configuration
settings specified in the Low Latency Quickstart Guide on page 4 - this includes
the disabling of the irgbalance service, interrupt moderation settings and
measures to prevent CPU cores switching to power saving modes.

e Use isolcpus to isolate CPU cores that the application - or at least the critical
threads of the application will use and prevent OS housekeeping tasks and
other non-critical tasks from running on these cores.

e Set an application thread running on one core and the interrupts for that
thread on a separate core - but on the same physical CPU package. Even when
spinning, interrupts may still occur, for example, if the application fails to call
into the Onload stack for extended periods because it is busy doing other work.

Issue 20

© Solarflare Communications 2015 39

SOLARFLAREFE®

Onload User Guide
Tuning Onload

Ideally each spinning thread will be allocated a separate core so that, in the
event that it blocks or is de-scheduled, it will not prevent other important
threads from doing work. A common cause of jitter is more than one spinning
thread sharing the same CPU core. Jitter spikes may indicate that one thread is
being held off the CPU core by another thread.

When EF_STACK_LOCK_BUZZ=1, threads will spin for the EF_BUZZ_USEC
period while they wait to acquire the stack lock. Lock buzzing can lead to
unfairness between threads competing for a lock, and so result in resource
starvation for one. Occurrences of this are counted in the 'stack_lock _buzz'
counter. EF_STACK LOCK_BUZZ is enabled by default when EF_POLL_USEC
(spinning) is enabled.

If a multi-thread application is doing lots of socket operations, stack lock
contention will lead to send/receive performance jitter. In such cases improved
performance can be had when each contending thread has its own stack. This
can be managed with EF_STACK_PER_THREAD which creates a separate Onload
stack for the sockets created by each thread. If separate stacks are not an
option then it may be beneficial to reduce the EF_BUZZ USEC period or to
disable stack lock buzzing altogether.

It is always important that threads that need to communicate with each other
are running on the same CPU package so that these threads can share a
memory cache.

Jitter may also be introduced when some sockets are accelerated and others
are not. Onload will ensure that accelerated sockets are given priority over non-
accelerated sockets, although this delay will only be in the region of a few
microseconds - not milliseconds, the penalty will always be on the side of the
non-accelerated sockets. The environment variables EF_POLL_FAST_USEC and
EF_POLL_NONBLOCK_FAST_USEC can be configured to manage the extent of
priority of accelerated sockets over non-accelerated sockets.

If traffic is sparse, spinning will deliver the same latency benefits, but the user
should ensure that the spin timeout period, configured using the
EF_POLL_USEC variable, is sufficiently long to ensure the thread is still spinning
when traffic is received.

When applications only need to send and receive occasionally it may be
beneficial to implement a keepalive - heartbeat mechanism between peers.
This has the effect of retaining the process data in the CPU memory cache.
Calling send or receive after a delay can result in the call taking measurably
longer, due to the cache effects, than if this is called in a tight loop.

On some servers BIOS settings such as power and utilization monitoring can
cause unnecessary jitter by performing monitoring tasks on all CPU cores. The
user should check the BIOS and decide if periodic tasks (and the related SMls)
can be disabled.

The Solarflare sysjitter utility can be used to identify and measure jitter on all
cores of an idle system - refer to Sysjitter on page 27 for details.

Issue 20

© Solarflare Communications 2015 40

SOLARFLAREFE®

Onload User Guide
Tuning Onload

Using Onload Tuning Profiles

Environment variables set in the application user-space can be used configure and
control aspects of the accelerated application’s performance. These variables can be
exported using the Linux export command e.g.

export EF_POLL_USEC=100000

Onload supports tuning profile script files which are used to group environment
variables within a single file to be called from the Onload command line.

The latency profile sets the EF_POLL_USEC=100000 setting the busy-wait spin
timeout to 100 milliseconds. The profile also disables TCP faststart for new or idle
connections where additional TCP ACKs will add latency to the receive path. To use
the profile include it on the onload command line e.g

onload --profile=latency netperf -H onload2-sfc -t TCP_RR

Following Onload installation, profiles provided by Solarflare are located in the
following directory - this directory will be deleted by the onload_uninstall
command:

/usr/libexec/onload/profiles

User-defined environment variables can be written to a user-defined profile script
file (having a .opf extension) and stored in any directory on the server. The full path
to the file should then be specified on the onload command line e.g.

onload --profile=/tmp/myprofile.opf netperf -H onload2-sfc -t TCP_RR

As an example the latency profile, provided by the Onload distribution is shown
below:

Onload low latency profile.

Enable polling / spinning. When the application makes a blocking call
such as recv() or poll(), this causes Onload to busy wait for up to
100ms

before blocking.

onload_set EF_POLL_USEC=100000

Disable FASTSTART when connection is new or has been idle for a while.
The additional acks it causes add latency on the receive path.
onload_set EF_TCP_FASTSTART_INIT ©

onload_set EF_TCP_FASTSTART_IDLE ©

For a complete list of environment variables refer to Parameter Reference on
page 146

Benchmark Testing

Benchmark procedures using Onload, netperf and sfnt_pingpong are described in
the Low Latency Quickstart Guide on page 4.

Issue 20

© Solarflare Communications 2015 41

SOLARFLAREFE®

Onload User Guide
Tuning Onload

5.7 Advanced Tuning

Advanced tuning requires closer examination of the application performance. The
application should be tuned to achieve the following objectives:

e To have as much processing at user-level as possible.
e To have as few interrupts as possible.

e To eliminate drops.

e To minimize lock contention.

Onload includes a diagnostic application called onload_stackdump, which can be
used to monitor Onload performance and to set tuning options.

The following sections demonstrate the use of onload _stackdump to examine
aspects of the system performance and set environment variables to achieve the
tuning objectives.

For further examples and use of onload_stackdump refer to onload_stackdump on
page 219.

Monitoring Using onload_stackdump

To use onload_stackdump, enter the following command:
onload_stackdump [command]

To list available commands and view documentation for onload_stackdump enter
the following commands:

onload_stackdump doc
onload_stackdump -h

A specific stack number can also be provided on the onload_stackdump command
line.

Worked Examples

Prefault Packet Buffers

The Onload environment variable EF_PREFAULT_PACKETS will cause the user
process to ‘touch’ the specified number of packet buffers when an Onload stack is
created. This means that memory for these packet buffers is pre-allocated and
memory-mapped into the user-process address space.

Pre allocation is advised to prevent latency jitter caused by the allocation and
memory-mapping overheads.

When deciding how many packets to prefault, the user should look at the alloc value
when the onload_stackdump packets command is run. The alloc value is a high
water mark identifying the maximum the number of packets being used by the stack
at any singular point. Setting EF_PREFAULT_PACKETS to at least this value is
recommended.

Issue 20

© Solarflare Communications 2015 42

Onload User Guide

SOLARFLARFE® ,
; Tuning Onload

onload_stackdump packets
$ onload_stackdump packets
ci_netif pkt_dump_all: id=6
pkt_bufs: size=2048 max=32768 alloc=576 free=50 async=0
pkt_bufs: rx=525 rx_ring=522 rx_queued=3
pkt_bufs: tx=1 tx_ring=0 tx_oflow=0 tx_other=1
509: Ox8000 Rx
1: 0x4000 Nonb
n_zero_refs=66 n_freepkts=50 estimated_free_nonb=16
free_nonb=0 nonb_pkt_pool=a39ffff

@ NOTE: It is not possible to prefault a number of packets exceeding the current value
of EF_MAX_PACKETS — and attempts to do this will result in a warning similar to the
following:

ci_netif_pkt_prefault_reserve: Prefaulted only 63488 of 64000

The warning message is harmless, this informs the user that not all the requested
packets could be prefaulted (because some have already been allocated to receive
rings).

When deciding how many packets to prefault the user should consider that Onload
must allocate from the EF_MAX_PACKET pool, a number of packet buffers per receive

ring per interface. Once these have been allocated, any remainder can be
prefaulted.

Users who require to prefault the maximum possible number of available packets
can set EF_PREFAULT_PACKETS and EF_MAX_PACKETS to the same value and just
ignore the warnings from Onload:

EF_PREFAULT_PACKETS=64000 EF_MAX_PACKETS=64000 onload <myapplication>...
Refer to Appendix A on page 146 for details of the EF_PREFAULT_PACKETS variable.

CAUTION: Prefaulting packet buffers for one stack will reduce the number of

A available buffers available for others. Users should consider that over allocation to
one stack might mean spare (redundant) packet buffer capacity that could be better
allocated elsewhere.

Processing at User-Level

Many applications can achieve better performance when most processing occurs at
user-level rather than kernel-level. To identify how an application is performing,
enter the following command:

onload_stackdump lots | grep polls

Issue 20 © Solarflare Communications 2015 43

‘ Onload User Guide
SOLARFLARE®

Tuning Onload

Counter Description

k_polls Number of times the socket event queue was
polled from the kernel.

u_polls Number of times the socket event queue was
polled from user space.

periodic_polls Number of times a periodic timer has polled for
events.

interrupt_polls Number of times an interrupt polled for
network events.

deferred_polls Number of times poll has been deferred to the

stack lock holder.

timeout_interrupt_polls ~ Number of times timeout interrupts polled for
network events.

$ onload_stackdump lots | grep poll
k _polls: 673
u_polls: 41

The output identifies many more k_polls than u_polls indicating that the
stack is operating mainly at kernel-level and may not be achieving optimal
performance.

Solution

Terminate the application and set the EF_POLL_USEC parameter to 100000. Re-start
the application and re-run onload_stackdump:

export EF_POLL_USEC=100000
onload_stackdump lots | grep polls

$ onload_stackdump lots | grep polls
k_polls: 673
u_polls: 1289

The output identifies that the number of u_polls is far greater than the
number of k_polls indicating that the stack is now operating mainly at
user-level.

Issue 20 © Solarflare Communications 2015 44

Onload User Guide

SOLARFLARFE® ,
; Tuning Onload

As Few Interrupts as Possible

A tuned application will reach a balance between the number/rate of interrupts
processed and the amount of real work that gets done e.g. process multiple packets
per interrupt rather than one. Even spinning applications can benefit from the
occasional interrupt, e.g. when a spinning thread has been de-scheduled from a
CPU, an interrupt will prod the thread back to action when further work has to be
done.

onload_stackdump lots | grep “~interrupt

Counter Description

Interrupts Total number of interrupts received for the stack.

Interrupt polls Number of times the stack is polled - invoked by interrupt.
Interrupt evs Number of events processed when invoked by an interrupt.
Interrupt wakes Number of times the application is woken by interrupt.
Interrupt primes Number of times interrupts are re-enabled (after spinning or

polling the stack).

Interrupt no events Number of stack polls for which there there was no event to
recover.

Interrupt lock The application polled the stack and has the lock before an

contends interrupt fired.

Interrupt budget Number of times, when handling a poll in an interrupt, the poll

limited was stopped when the NAPI budget was reached. Any remaining

events are then processed on the stack workqueue.

Solution

If an application is observed taking lots of interrupts it may be beneficial to increase
the spin time with the EF_POLL_USEC variable or setting a high interrupt
moderation value for the net driver using ethtool.

The number of interrupts on the system can also be identified from /proc/
interrupts.

Eliminating Drops

The performance of networks is impacted by any packet loss. This is especially
pronounced for reliable data transfer protocols that are built on top of unicast or
multicast UDP sockets.

First check to see if packets have been dropped by the network adapter before
reaching the Onload stack. Use ethtool to collect stats directly from the network
adapter:

ethtool -S enps@f@ | grep drop
rx_noskb_drops: @
port_rx_nodesc_drops: ©

Issue 20 © Solarflare Communications 2015 45

SOLARFLAREFE®

Onload User Guide

Tuning Onload
port_rx_dp_di_dropped_packets: 681618610
Solution

Counter Description

rx_noskb_drops Number of packets dropped when there are
no further socket buffers to use.

port_rx_nodesc_drops Number of packets dropped when there are
no further descriptors in the rx ring buffer to
receive them.

port_rx_dp_di_dropped_packets Number of packets dropped because filters

indicate the packets should be dropped - this
can happen when packets don’t match any
filter or the matched filter indicates the
packet should be dropped.

If packet loss is observed at the network level due to a lack of receive buffering try
increasing the size of the receive descriptor queue size via EF_RXQ_SIZE. If packet
drops are observed at the socket level consult the application documentation - it
may also be worth experimenting with socket buffer sizes (see EF_UDP_RCVBUF).
Setting the EF_EVS_PER_POLL variable to a higher value may also improve efficiency
- refer to Appendix A for a description of this variable.

Minimizing Lock Contention

Lock contention can greatly affect performance. When threads share a stack, a
thread holding the stack lock will prevent another thread from doing useful work.
Applications with fewer threads may be able to create a stack per thread (see
EF_STACK_PER_THREAD and Stacks API on page 193).

Use onload_stackdump to identify instances of lock contention:

onload_stackdump lots | egrep "(lock_)|(sleep)"

Counter Description

periodic_lock_contends Number of times periodic timer could not get the
stack lock.

interrupt_lock_contends Number of times the user level got the stack lock.

timeout_interrupt_lock_conte Number of times timeout interrupts could not lock
nds the stack.

sock_sleeps Number of times a thread has blocked on a single
socket.
sock_sleep_primes Number of times select/poll/epoll enabled
interrupts.
Issue 20 © Solarflare Communications 2015 46

SOLARFLAREFE®

Onload User Guide

Tuning Onload

Counter

Description

unlock_slow

Number of times the slow path was taken to unlock
the stack lock.

unlock_slow_pkt_waiter

Number of times packet memory shortage
provoked the unlock slow path.

unlock_slow_socket_list

Number of times the deferred socket list provoked
the unlock slow path.

unlock_slow_need_prime

Number of times interrupt priming provoked the
unlock slow path.

unlock_slow_wake

Number of times the unlock slow path was taken to
wake threads.

unlock_slow_swf_update

Number of times the unlock slow path was taken to
update sw filters.

unlock_slow_close

Number of times the unlock slow path was taken to
close sockets/pipes.

unlock_slow_syscall

Number of times a syscall was needed on the
unlock slow path.

lock_wakes

Number of times a thread is woken when blocked
on the stack lock.

stack_lock_buzz

Number of times a thread has spun waiting for the
stack lock.

sock_lock_sleeps

Number of times a thread has slept waiting for a
sock lock.

sock_lock_buzz

Number of times a thread has spun waiting for a
sock lock.

tcp_send_ni_lock_contends

Number of times TCP sendmsg() contended the
stack lock

udp_send_ni_lock_contends

Number of times UDP sendmsg() contended the
stack lock

getsockopt_ni_lock_contends

Number of times getsockopt() contended the stack
lock.

setsockopt_ni_lock_contends

Number of times setsockopt() contended the stack
lock.

lock_dropped_icmps

Number of dropped ICMP messages not processed
due to contention.

Issue 20

© Solarflare Communications 2015

47

SOLARFLAREFE®

Onload User Guide
Tuning Onload

Solution

Performance will be improved when stack contention is kept to a minimum. When
threads share a stack it is preferable for a thread to spin rather than sleep when
waiting for a stack lock. The EF_BUZZ_USEC value can be increased to reduce
‘sleeps’. Where possible use stacks per process.

Issue 20

© Solarflare Communications 2015 48

‘ Onload User Guide
SOLARFLARE®

6 Onload Functionality

This chapter provides detailed information about specific aspects of Solarflare
Onload operation and functionality.

6.1 Onload Transparency

Onload provides significantly improved performance without the need to rewrite or
recompile the user application, whilst retaining complete interoperability with the
standard TCP and UDP protocols.

In the regular kernel TCP/IP architecture an application is dynamically linked to the
libc library. This OS library provides support for the standard BSD sockets API via a
set of ‘wrapper’ functions with real processing occurring at the kernel-level. Onload
also supports the standard BSD sockets API. However, in contrast to the kernel TCP/
IP, Onload moves protocol processing out of the kernel-space and into the user-level
Onload library itself.

As a networking application invokes the standard socket API function calls e.g.
socket (), read(),write() etc, these are intercepted by the Onload library making
use of the LD_PRELOAD mechanism on Linux. From each function call, Onload will
examine the file descriptor identifying those sockets using a Solarflare interface -
which are processed by the Onload stack, whilst those not using a Solarflare
interface are transparently passed to the kernel stack.

6.2 Onload Stacks

An Onload 'stack' is an instance of a TCP/IP stack. The stack includes transmit and
receive buffers, open connections and the associated port numbers and stack
options. Each stack has associated with it one or more Virtual NICs (typically one per
physical port that stack is using).

In normal usage, each accelerated process will have its own Onload stack shared by
all connections created by the process. It is also possible for multiple processes to
share a single Onload stack instance (refer to Stack Sharing on page 62), and for a
single application to have more than one Onload stack. Refer to Onload Extensions
APl on page 189.

Issue 20 © Solarflare Communications 2015 49

Onload User Guide

SOLARFLARFE® , .
; Onload Functionality

6.3 Virtual Network Interface (VNIC)

The Solarflare network adapter supports 1024 transmit queues, 1024 receive
queues, 1024 event queues and 1024 timer resources per network port. A VNIC
(virtual network interface) consists of one unique instance of each of these
resources which allows the VNIC client i.e. the Onload stack, an isolated and safe
mechanism of sending and receiving network traffic. Received packets are steered
to the correct VNIC by means of IP/MAC filter tables on the network adapter and/or
Receive Side Scaling (RSS). An Onload stack allocates one VNIC per Solarflare
network port so it has a dedicated send and receive channel from user mode.

Following a reset of the Solarflare network adapter driver, all virtual interface
resources including Onload stacks and sockets will be re-instated. The reset
operation will be transparent to the application, but traffic will be lost during the
reset.

6.4 Functional Overview

When establishing its first socket, an application is allocated an Onload stack which
allocates the required VNICs.

When a packet arrives, IP filtering in the adapter identifies the socket and the data
is written to the next available receive buffer in the corresponding Onload stack. The
adapter then writes an event to an “event queue” managed by Onload. If the
application is regularly making socket calls, Onload is regularly polling this event
gueue, and then processing events directly rather than interrupts are the normal
means by which an application is able to rendezvous with its data.

User-level processing significantly reduces kernel/user-level context switching and
interrupts are only required when the application blocks - since when the
application is making socket calls, Onload is busy processing the event queue picking
up new network events.

6.5 Onload with Mixed Network Adapters

A server may be equipped with Solarflare network interfaces and non-Solarflare
network interfaces. When an application is accelerated, Onload reads the Linux
kernel routing table (Onload will only consider the kernel default routing table) to
identify which network interface is required to make a connection. If a non-
Solarflare interface is required to reach a destination Onload will pass the
connection to the kernel TCP/IP stack. No additional configuration is required to
achieve this as Onload does this automatically by looking in the IP route table.

Issue 20 © Solarflare Communications 2015 50

SOLARFLAREFE®

Onload User Guide

Onload Functionality

6.6 Maximum Number of Network Interfaces

Onload supports up to 8 Solarflare network interfaces by default. If an application
requires more Solarflare interfaces the following values can be altered in the source
code: src/include/ci/internal/transport_config opt.h header file

CI_CFG_MAX_INTERFACES and CI_CFG_MAX_REGISTER_INTERFACES

Following changes to these values it is necessary to rebuild and reinstall Onload.

6.7 Whitelist and Blacklist Interfaces

By default Onload will use the first ‘N’ Solarflare network interfaces for network 1/0
where N is equal to CI_CFG_MAX_REGISTER_INTERFACES (default value 8).
Supported from Onload 201502, the user is able to select which Solarflare interfaces
are to be used by Onload.

The intf_white_list Onload module option is a space-separated list of Solarflare
network adapter interfaces that Onload will use for network 1/0.

¢ Interfaces identified in the whitelist will always be accelerated by Onload.
e Interfaces NOT identified in the whitelist will not be accelerated by Onload.
e An empty whitelist means that ALL Solarflare interfaces will be accelerated.

The intf_black_list Onload module option is a space-separated list of Solarflare
network adapter interfaces that Onload will not use for network 1/0.

When an interface appears in both lists, blacklist takes priority. Renaming of
interfaces after Onload has started will not be reflected in the access lists and
changes to lists will only affect Onload stacks created after such changes - not
currently running stacks.

Onload module options can be specified in a user created file in the /etc/
modprobe.d directory:

options onload intf_white_list=eth4
options onload intf_black_list="eth5 eth6"

These options are applied globally and cannot be applied to individual stacks.

6.8 Onloaded PIDs

To identify processes accelerated by Onload use the onload_fuser command:

onload_fuser -v
9886 ping

Only processes that have created an Onload stack are present. Processes which are
loaded under Onload, but have not created any sockets are not present. The

onload_stackdump command can also list accelerated processes - see List
Onloaded Processes on page 220 for details.

Issue 20

© Solarflare Communications 2015 51

SOLARFLAREFE®

Onload User Guide

Onload Functionality

6.9 Onload and File Descriptors, Stacks and Sockets

For an Onloaded process it is possible to identify the file descriptors, Onload stacks
and sockets being accelerated by Onload. Use the /proc/<PID>/fd file - supplying
the PID of the accelerated process e.g.

1s -1 /proc/9886/fd

total o

lrwx------ 1 root root 64 May 14 14:09 © -> /dev/pts/@
lrwx------ 1 root root 64 May 14 14:09 1 -> /dev/pts/@
lrwx------ 1 root root 64 May 14 14:09 2 -> /dev/pts/@
lrwx------ 1 root root 64 May 14 14:09 3 -> onload:[tcp:6:3]
lrwx------ 1 root root 64 May 14 14:09 4 -> /dev/pts/@
lrwx------ 1 root root 64 May 14 14:09 5 -> /dev/onload
lrwx------ 1 root root 64 May 14 14:09 6 -> onload:[udp:6:2]

Accelerated file descriptors are listed as symbolic links to /dev/onload. Accelerated
sockets are described in [protocol:stack:socket] format.

6.10 System calls intercepted by Onload

System calls intercepted by the Onload library are listed in the following file:

[onload]/src/include/onload/declare_syscalls.h.tmpl

6.11 Linux Sysctls

The Linux directory/proc/sys/net/ipv4 contains default settings which tune
different parts of the IPv4 networking stack. In many cases Onload takes its default
settings from the values in this directory. In some cases the default can be
overridden, for a specified processes or socket, using socket options or with Onload
environment variables. The following tables identify the default Linux values and
how Onload tuning parameters can override the Linux settings._

Kernel Value tcp_slow_start_after _idle

Description controls congestion window validation as per RFC2861. This is
“off” by default in Onload, as it's not usually useful in modern
switched networks

Onload value #define CI_CFG_CONGESTION_WINDOW_VALIDATION

Comments in transport_config opt.h - recompile after changing.
Kernel Value tcp_congestion_control

Description determines what congestion control algorithm is used by TCP.

Valid settings include reno, bic and cubic

Issue 20

© Solarflare Communications 2015 52

SOLARFLAREFE®

Onload User Guide

Onload Functionality

Onload value no direct equivalent - see the section on TCP Congestion
Control

Comments see EF_CONG_AVOID_SCALE_BACK

Kernel Value tcp_adv_win_scale

Description defines how quickly the TCP window will advance

Onload value no direct equivalent - see the section on TCP Congestion
Control

Comments see EF_TCP_ADV_WIN_SCALE_MAX

Kernel Value tcp_rmem

Description the default size of sockets' receive buffers (in bytes)

Onload value defaults to the currently active Linux settings, but is ignored
on TCP accepted sockets. Refer to
EF_TCP_RCVBUF_ESTABLISHED DEFAULT.

Comments can be overriden with the SO_RCVBUF socket option.
can be set with EF_TCP_RCVBUF

Kernel Value tcp_wmem

Description the default size of sockets' send buffers (in bytes)

Onload value defaults to the currently active Linux settings

Comments EF_TCP_SNDBUF overrides SO_SNDBUF which overrides
tcp_wmem

Kernel Value tcp_dsack

Description allows TCP to send duplicate SACKS

Onload value uses the currently active Linux settings

Comments

Kernel Value tcp_fack

Description enables fast retransmissions

Onload value fast retransmissions are always enabled - Onload uses the
currently active Linux setting

Comments

Issue 20 © Solarflare Communications 2015 53

SOLARFLAREFE®

Onload User Guide

Onload Functionality

Kernel Value

tcp_sack

Description

enable TCP select acknowledgements, as per RFC2018

Onload value

enabled by default - Onload uses the currently active Linux
setting

Comments clear bit 2 of EF_TCP_SYN_OPTS to disable
Kernel Value tcp_max_syn_backlog
Description the maximum size of a listening socket's backlog

Onload value

set with EF_TCP_BACKLOG_MAX

Comments
Kernel Value tcp_synack_retries
Description the maximum number of retries of SYN-ACKs

Onload value

set with EF_RETRANSMIT_THRESHOLD_SYNACK

Comments

Default value 5

Refer to the Parameter Reference on page 146 for details of environment variables.

6.12 Changing Onload Control Plane Table Sizes

Onload supports the following runtime configurable options which determine the
size of control plane tables:

Option Description Default

Sets the maximum number of network 50
interfaces, including physical interfaces,

VLANs and bonds, supported in Onload’s

control plane.

max_layer2_interfaces

Sets the maximum number of rows in the 1024
Onload ARP/neighbour table. The value is
rounded up to a power of two.

max_neighs

Sets the maximum number of entries in the 256
Onload route table.

max_routes

The table above identifies the default values for the Onload control plane tables. The
default values are normally sufficient for the majority of applications and creating
larger tables may impact application performance. If non-default values are needed,

Issue 20 © Solarflare Communications 2015 54

SOLARFLAREFE®

Onload User Guide

Onload Functionality

the user should create a file in the /etc/modprobe.d directory. The file must have a
.conf extension and Onload options can be added to the file, a single option per line,
in the following format:

options onload max_neighs=512
Following changes Onload should be restarted using the reload command:

onload_tool reload

6.13 SO_TIMESTAMP and SO_TIMESTAMPNS (software
timestamps)

Setting the SO_TIMESTAMP option using setsockopt () enables timestamping on
TCP or UDP sockets. Functions such as cmesg(), recvmsg() and recvmmsg() can
then recover timestamp data for packets received at the socket.

Onload implements a microsecond resolution software timestamping mechanism,
which avoids the need for a per-packet system call thereby reducing the normal
timestamp overheads.

The Solarflare adapter will always deliver received packets to the receive ring buffer
in the order that these arrive from the network. Onload will append a software
timestamp to the packet meta data when it retrieves a packet from the ring buffer -
before the packet is transferred to a waiting socket buffer. From a TCP stream the
timestamp returned is that for the first available byte. Due to retransmissions and
any reordering, timestamps may not be monotonically increasing as these are
delivered to the application.

When the Onload application is interrupt driven, a received packet is timestamped
when the event interrupt for the packet fires. If the Onload application is spinning,
a received packet is timestamped when the application calls receive. Spinning will
generally produce more accurate timestamps so long as the receiving application is
able to keep pace with the packet arrival rate.

The system call used to get a timestamp is clock_gettime() and the format of
timestamps is defined by struct_timeval.

Applications preferring timestamps with nanosecond resolution can use
SO_TIMESTAMPNS in place of the normal (microsecond resolution) SO_TIMESTAMP
value.

6.14 SO_TIMESTAMPING (Hardware Receive Timestamps)

Setting the SO_TIMESTAMPING option using setsockopt() enables hardware
timestamping on TCP or UDP sockets. Timestamps are generated by the adapter for
each received packet. Functions such as cmesg(), recvmsg() and recvmmsg() can
then recover hardware timestamps for packets recovered from a socket.

e Supported only on Solarflare Flareon SFN7000 series adapters.

Issue 20

© Solarflare Communications 2015 55

SOLARFLAREFE®

Onload User Guide

Onload Functionality

e An AppFlex license for hardware timestamps must be installed on the adapter.
The PTP/timestamping license is installed on the SFN7322F during
manufacture, such a license can be installed on other SFN7000 series adapters
by the user.

¢ The Onload stack for the socket must have the environment variable
EF_RX_TIMESTAMPING set - see Appendix A on page 146 for details.

e Received packets are timestamped when they enter the MAC on the SFN7000
series adapter.

The format of timestamps is defined by struct_timespec. Interested users should
read the kernel SO_TIMESTAMPING documentation for more details of how to use
this socket APl — kernel documentation can be found, for example, at:

https://www.kernel.org/doc/Documentation/networking/timestamping/

The onload distribution includes an example application to demonstrate transmit
hardware timestamping:

/openonload-<version>/src/tests/onload/hwtimestamping

6.15 SO_TIMESTAMPING (Hardware Transmit Timestamps)

Onload from 201405 supports hardware timestamping of UDP and TCP packets
transmitted over a Solarflare interface.

Because the Linux kernel does not support hardware timestamps for TCP, Onload
provides an extension to the standard SO_TIMESTAMPING API with the
ONLOAD_SOF_TIMESTAMPING_STREAM socket option to support this. To receive
hardware timestamps for transmitted TCP packets, set the following socket options:

SOF_TIMESTAMPING_TX_HARDWARE | SOF_TIMESTAMPING_SYS_HARDWARE |
ONLOAD_SOF_TIMESTAMPING_STREAM

To receive hardware timestamps for transmitted UDP packets, set the following
socket options:

SOF_TIMESTAMPING_TX_HARDWARE | SOF_TIMESTAMPING_SYS_HARDWARE
Other socket flag combinations, not listed above, will be silently ignored.
To receive hardware transmit timestamps:

e Only supported on Solarflare Flareon™ SFN7000 series adapters.

e The adapter must have a PTP/HW timestamping license.

e The adapter must have a SolarCapture Pro license or Performance Monitoring
license.

e Set EF_TX_TIMESTAMPING on stacks where transmit timestamping is required.

e Set EF_TIMESTAMPING_REPORTING to control the type of timestamp returned
to the application. This is optional, by default Onload will report translated
timestamps if the adapter clock has been fully synchronized to correct time by

Issue 20

© Solarflare Communications 2015 56

https://www.kernel.org/doc/Documentation/networking/timestamping/

Onload User Guide

SOLARFLARFE® , .
; Onload Functionality

the Solarflare PTP daemon. In all cases Onload will always report raw
timestamps. Refer to Parameter Reference on page 146 for full details of the
EF_TIMESTAMPING_REPORTING variable.

e Solarflare PTP (sfptpd) must be running if timestamps are to be synchronized
with an external PTP master clock.

For details of the SO_TIMESTAMPING API refer to the Linux documentation:
https://www.kernel.org/doc/Documentation/networking/timestamping/

The onload distribution includes an example application to demonstrate transmit
hardware timestamping:

/openonload-<version>/src/tests/onload/hwtimestamping

6.16 SO_BINDTODEVICE

In response to the setsockopt() function call with SO_BINDTODEVICE, sockets
identifying non-Solarflare interfaces will be handled by the kernel and all sockets
identifying Solarflare interfaces will be handled by Onload. All sends from a socket
are sent via the bound interface and all TCP, UDP and Multicast packets received via
the bound interface are delivered only to the socket bound to the interface.

6.17 Multiplexed 1/0

Linux supports three common methods for handling multiplexed 1/0 operation;
poll(), select() and the epoll set of functions.

The general behavior of the poll(), select() and epoll_wait() functions with
OpenOnload is as follows:

e If there are operations ready on any file descriptors, poll(), select() and
epoll wait() will return immediately. Refer to the Poll, Select and Epoll
subsections for specific behavior details.

e If there are no file descriptors ready and spinning is not enabled, calls to
poll(), select() and epoll _wait() will enter the kernel and block.

* Inthe cases of poll()and select(), when the set contains file descriptors
that are not accelerated sockets, there is a slight latency overhead as Onload
must make a system call to determine the readiness of these sockets. There is
no such cost when using epoll _wait() andasystem callis only needed when
non-Onload descriptors become ready.

e Ifthere are no file descriptors ready and spinning is enabled, OpenOnload will
spin to ensure that accelerated sockets are polled a specified number of times
before unaccelerated sockets are examined. This reduces the overhead
incurred when OpenOnload has to call into the kernel and reduces latency on
accelerated sockets.

Issue 20 © Solarflare Communications 2015 57

https://www.kernel.org/doc/Documentation/networking/timestamping/

SOLARFLAREFE®

Onload User Guide

Onload Functionality

The following subsections discuss the use of these 1/0 functions and OpenOnload
environment variables that can be used to manipulate behavior of the I/0
operation.

Poll, ppoll

The poll(), ppoll() file descriptor set can consist of both accelerated and non-
accelerated file descriptors. The environment variable EF_UL_POLL enables/
disables acceleration of the poll(), ppoll() function calls. Onload supports the
following options for the EF_UL_POLL variable:

Value Behaviour

0 Disable acceleration at user-level. Calls to pol1(), ppoll() are
handled by the kernel.

Spinning cannot be enabled.

1 Enable acceleration at user-level. Calls to pol1(), ppoll() are
processed at user level.

Spinning can be enabled and interrupts are avoided until an application
blocks.

Additional environment variables can be employed to control the pol1(), ppoll()
functions and to give priority to accelerated sockets over non-accelerated sockets
and other file descriptors. Refer to EF_POLL_FAST, EF_POLL_FAST_USEC and
EF_POLL_SPIN in Parameter Reference on page 146.

Select, pselect

The select(), pselect() file descriptor set can consist of both accelerated and
non-accelerated file descriptors. The environment variable EF_UL_SELECT enables/
disables acceleration of the select(), pselect() function calls. Onload supports
the following options for the EF_UL_SELECT variable:

Value Epoll Behaviour

0 Disable acceleration at user-level. Calls to select(), pselect() are
handled by the kernel.

Spinning cannot be enabled.

1 Enable acceleration at user-level. Calls to select(), pselect() are
processed at user-level.

Spinning can be enabled and interrupts are avoided until an application
blocks.

Issue 20

© Solarflare Communications 2015 58

Onload User Guide

SOLARFLARE® , .

; Onload Functionality
Additional environment variables can be employed to control the select(),
pselect() functions and to give priority to accelerated sockets over non-
accelerated sockets and other file descriptors. Refer to EF_SELECT_FAST and
EF_SELECT_SPINin Parameter Reference on page 146.

Epoll

The epoll set of functions, epoll create(), epoll ctl(), epoll wait(),
epoll pwait(), are accelerated in the same way as poll and select. The
environment variable EF_UL_EPOLL enables/disables epoll acceleration. Refer to
the release change log for enhancements and changes to epoll behavior.

Using Onload an epoll set can consist of both Onload file descriptors and kernel file
descriptors. Onload supports the following options for the EF_UL_EPOLL
environment variable:

Value Epoll Behaviour

0 Accelerated epoll is disabled and epoll ctl(), epoll wait() and
epoll pwait() function calls are processed in the kernel. Other
functions calls such as send() and recv () are still accelerated.

Interrupt avoidance does not function and spinning cannot be enabled.

If a socket is handed over to the kernel stack after it has been added to
an epoll set, it will be dropped from the epoll set.

onload_ordered_epoll _wait() is not supported.

1 Function calls to epoll_ctl(), epoll wait(), epoll pwait() are
processed at user level.

Delivers best latency except when the number of accelerated file
descriptors in the epoll set is very large. This option also gives the best
acceleration of epoll_ctl() calls.

Spinning can be enabled and interrupts are avoided until an application
blocks.

CPU overhead and latency increase with the number of file descriptors
in the epoll set.

onload_ordered_epoll wait() is supported.

Issue 20 © Solarflare Communications 2015 59

SOLARFLAREFE®

Onload User Guide

Onload Functionality

Value Epoll Behaviour

2 Callstoepoll ctl(),epoll wait(),epoll pwait() areprocessedin
the kernel.

Delivers best performance for large numbers of accelerated file
descriptors.

Spinning can be enabled and interrupts are avoided until an application
blocks.

CPU overhead and latency are independent of the number of file
descriptors in the epoll set.

onload_ordered_epoll wait() is not supported.

3 Function calls to epoll_ctl(), epoll wait(), epoll pwait() are
processed at user level.

Delivers best acceleration latency for epoll _ct1() calls and scales well
when the number of accelerated file descriptors in the epoll set is very
large - and all sockets are in the same stack. The cost of the

epoll wait() is independent of the number of accelerated file
descriptors in the set and depends only on the number of descriptors
that become ready. The benefits will be less if sockets exist in different
Onload stacks and in this case the recommendation is to use
EF_UL_EPOLL=2.

EF_UL_EPOLL=3 does not allow monitoring the readiness of the epoll
file descriptors from another epoll/poll/select.

EF_UL_EPOLL=3 cannot support epoll sets which exist across fork().

Spinning can be enabled and interrupts are avoided until an application
blocks.

onload_ordered_epoll wait() is supported.

The relative performance of epoll options 1 and 2 depends on the details of
application behavior as well as the number of accelerated file descriptors in the
epoll set. Behavior may also differ between earlier and later kernels and between
Linux realtime and non-realtime kernels. Generally the OS will allocate short time
slices to a user-level CPU intensive application which may result in performance
(latency spikes). A kernel-level CPU intensive process is less likely to be de-scheduled
resulting in better performance. Solarflare recommend the user evaluate options 1
and 2 for applications that manages many file descriptors, or try option 3 (onload-
201502 and later) when using very large sets and all sockets are in the same stack.

Additional environment variables can be employed to control the epoll _ctl(),
epoll wait() and epoll pwait() functions and to give priority to accelerated
sockets over non-accelerated sockets and other file descriptors. Refer to
EF_EPOLL_CTL_FAST, EF_EPOLL_SPIN and EF_EPOLL_MT_SAFE in Parameter
Reference on page 146.

Issue 20

© Solarflare Communications 2015 60

SOLARFLAREFE®

Onload User Guide

Onload Functionality

Refer to epoll - Known Issues on page 122.

6.18 Wire Order Delivery

When a TCP or UDP application is working with multiple network sockets
simultaneously it is difficult to ensure data is delivered to the application in the strict
order it was received from the wire across these sockets.

The onload_ordered_epoll wait() APlisan Onload alternative implementation
of epoll_wait() providing additional data allowing a receiving application to
recover in-order timestamped data from multiple sockets. To maintain wire order
delivery, only a specific number of bytes, as identified by the
onload_ordered_epoll event, should be recovered from a ready socket.

e Ordering is done on a per-stack basis - for TCP and UDP sockets. Sockets must
be in the same onload stack.

¢ Only data received from an Onload stack with a hardware timestamp will be
ordered. The environment variable EF_RX_TIMESTAMPING should be enabled.
File descriptors where timestamping information is not available may be
included in the epoll set, but received data will be returned from these
unordered.

e The application must use the epoll APl and the
onload_ordered _epoll wait() function.

e The application must set the per-process environment variable
EF_UL_EPOLL=1.

e EPOLLET and ONESHOT flags should NOT be used.

e Areturn value of zero from the wait function indicates there are no file
descriptors ready with ordered data - unordered data may still be available.

Figure 6 demonstrates the Wire Order Delivery feature.

SktAa 1 4

Skt B 2

[#5]
e

data arrival order

Figure 6: Wire Order Delivery
onload_ordered_epoll wait() returning at point X would allow the following
data to be recovered:

e Socket A: timestamp of packet 1, bytes in packet 1.
e Socket B: timestamp of packet 2, bytes in packets 2 and 3.

Issue 20

© Solarflare Communications 2015 61

SOLARFLAREFE®

Onload User Guide

Onload Functionality

e onload_ordered_epoll wait() returningagain would recover timestamp of
packet 4 and bytes in packet 4.

The Wire Order Delivery feature is only available on Solarflare Flareon adapters
having a PTP/HW timestamping license. When receiving across multiple adapters,
Solarflare sfptpd (PTP) can ensure that adapters are closely synchronized with each
other and, if required, with an external PTP clock source.

Wire Order Delivery - Example API:

®

The Onload distribution includes example client/server applications to demonstrate
the wire order feature:

wire_order_server - uses onload ordered epoll_ wait to receive ordered
data over a set of sockets. Received data is echoed back to the client on a single reply
socket.

wire_order_client - Sends sequenced data across the socket set, reads the reply
data from the server and ensures data is received in sequence.

Source code for the wire order APl is available in:
openonload-<version>/src/tests/onload/wire_order

Although not compiled as part of the Onload install process, to build the example
API do the following:

Ensure mmaketool is in the current path (can be found in the openonload-
<version>/scripts directory):

export PATH=$PATH:/openonload-<version>/scripts
cd /openonload-<version>/build/gnu_x86_64/tests/onload/wire_order
USEONLOADEXT=1 make

To run the server:

EF_RX_TIMESTAMPING=3 onload ./wire_order_server

To run the client:

onload --profile=latency ./wire_order_client <ip server>

By default the client will send data over 100 TCP sockets controlled with the -s
option. UDP can be selected using the -U option.

NOTE: To prevent sends being re-ordered between streams, the latency profile
should be used on the client side. The environment variable EF_RX_TIMESTAMPING
must be set on the server side.

6.19 Stack Sharing

By default each process using Onload has its own 'stack'. Refer to Onload Stacks for
definition. Several processes can be made to share a single stack, using the EF_NAME
environment variable. Processes with the same value for EF_NAME in their
environment will share a stack.

Issue 20

© Solarflare Communications 2015 62

SOLARFLAREFE®

Onload User Guide

Onload Functionality

Stack sharing is one supported method to enable multiple processes using Onload
to be accelerated when receiving the same multicast stream or to allow one
application to receive a multicast stream generated locally by a second application.
Other methods to achieve this are Multicast Replication and Hardware Multicast
Loopback.

Stacks may also be shared by multiple processes in order to preserve and control
resources within the system. Stack sharing can be employed by processes handling
TCP as well as UDP sockets.

Stack sharing should only be requested if there is a trust relationship between the
processes. If two processes share a stack then they are not completely isolated: a
bug in one process may impact the other, or one process can gain access to the
other's privileged information (i.e. breach security). Once the EF_NAME variable is
set, any process on the local host can set the same value and gain access to the
stack.

By default Onload stacks can only be shared with processes having the same UID.
The EF_SHARE_WITH environment variable provides additional security while
allowing a different UID to share a stack. Refer to Parameter Reference on page 146
for a description of the EF_NAME and EF_SHARE_WITH variables.

Processes sharing an Onload stack should also not use huge pages. Onload will
issue a warning at startup and prevent the allocation of huge pages if
EF_SHARE_WITH identifies a UID of another process or is set to -1. If a process P1
creates an Onload stack, but is not using huge pages and another process P2
attempts to share the Onload stack by setting EF_NAME, the stack options set by P1
will apply, allocation of huge pages in P2 will be prevented.

An alternative method of implementing stack sharing is to use the Onload
Extensions APl and the onload_set_stackname() function which, through its
scope parameter, can limit stack access to the processes created by a particular user.
Refer to Onload Extensions APl on page 189 for details.

6.20 Application Clustering

An application cluster is the set of Onload TCP or UDP stack sockets bound to the
same port. This feature dramatically improves the scaling of some applications
across multiple CPUs (especially those establishing many sockets from a TCP
listening socket).

Onload from version 201405 automatically creates a cluster using the
SO_RESUSEPORT socket option. TCP or UDP processes running on RHEL 6.5 (and
later) setting this option can bind multiple sockets to the same TCP or UDP port.

NOTE: Some older Linux kernel/distributions do not have kernel support for
SO_REUSEPORT (introduced in the Linux 3.9 kernel). Onload contains experimental
support for SO_REUSEPORT on older kernel versions but this has yet to be fully
tested and verified by Solarflare. Users are free to try the Onload application
clustering feature on these kernels and report their findings via email to
support@solarflare.com.

Issue 20

© Solarflare Communications 2015 63

SOLARFLAREFE®

Onload User Guide

Onload Functionality

For TCP, clustering allows the established connections resulting from a listening
socket to be spread over a number of Onload stacks. Each thread/process creates its
own listening socket (using SO_REUSEPORT) on the same port, with each listening
socket residing in its own Onload stack. Handling of incoming new TCP connections
are spread via the adapter (using RSS) over the application cluster and therefore
over each of the listening sockets resulting in each Onload stack and therefore each
thread/process, handling a subset of the total traffic as illustrated in Figure 7 below.

Onload Stack Onload Stack

Solarflare NIC

_ /

Figure 7: Application Clustering - TCP

For UDP, clustering allows UDP unicast traffic to be spread over multiple applications
with each application receiving a subset of the total traffic load.

Existing applications that do not use SO_RESUSEPORT can use the application
clustering feature without the need for re-compilation by using the Onload
EF_TCP_FORCE_REUSEPORT or EF_UDP_FORCE_REUSEPORT environment variables
identifying the list of ports to which SO_RESUSEPORT will be applied.

The size or number of socket members of a cluster in Onload is controlled with
EF_CLUSTER_SIZE. To create a cluster the application sets the cluster name with
EF_CLUSTER_NAME. A cluster of EF_CLUSTER_SIZE is then created.

NOTE: The number of socket members must equal the EF_CLUSTER_SIZE value
otherwise a portion of the received traffic will be lost.

The spread of received traffic between cluster sockets employs Receive Side Scaling
(RSS). For TCP the RSS hash is a function of the src_ip: src_port, dst_ip: dst_port. For
UDP the RSS hash is a function of the src_ip and dst_ip only.

Issue 20

© Solarflare Communications 2015 64

SOLARFLAREFE®

Onload User Guide

Onload Functionality

The reception of traffic within a cluster is dependent on port numbers only. If two
sockets bind to the same port, but different IP addresses, a portion of traffic
destined for one socket can be received (but dropped by Onload) on the other
socket. For correct behavior, all cluster members should bind to the same IP address.
This limitation has been removed in the Onload-201509 release so that it is possible
to create multiple listening sockets bound to the same port but to different
addresses.

Restarting an application that includes cluster socket members can fail when orphan
stacks are still present. Use EF_CLUSTER_RESTART to force termination of orphaned
stacks allowing the creation of the new cluster.

Refer to Limitations on page 117 for details of Application Clustering limitations.

6.21 Bonding, Link aggregation and Failover

Bonding (aka teaming) allows for improved reliability and increased bandwidth by
combining physical ports from one or more Solarflare adapters into a bond. A bond
has a single IP address, single MAC address and functions as a single port or single
adapter to provide redundancy.

Onload monitors the OS configuration of the standard kernel bonding module and
accelerates traffic over bonds that are detected as suitable (see limitations). As a
result no special configuration is required to accelerate traffic over bonded
interfaces.

e.g. To configure an 802.3ad bond of two SFC interfaces (eth2 and eth3):

modprobe bonding miimon=100 mode=4 xmit_hash_policy=layer3+4
ifconfig bond@ up

Interfaces must be down before adding to the bond.

echo +eth2 > /sys/class/net/bond@/bonding/slaves
echo +eth3 > /sys/class/net/bond@/bonding/slaves
ifconfig bonde@ 192.168.1.1/24

The file /var/log/messages should then contain a line similar to:
[onload] Accelerating bond@ using Onload
Traffic over this interface will then be accelerated by Onload.

To disable Onload acceleration of bonds set CI_CFG_TEAMING=@ in the file
transport_config_opt.h at compile time.

In addition to the Linux “bonding” driver, Onload from the 201509 version also
supports the “teaming” driver and “teamd”.

Refer to the Limitations section, Bonding, Link aggregation on page 120 for further
information.

Issue 20

© Solarflare Communications 2015 65

SOLARFLAREFE®

6.22 VLANS

Onload User Guide

Onload Functionality

The division of a physical network into multiple broadcast domains or VLANs offers
improved scalability, security and network management.

Onload will accelerate traffic over suitable VLAN interfaces by default with no
additional configuration required.

e.g. to add an interface for VLAN 5 over an SFC interface (eth2)

modprobe onload

modprobe 8021q

vconfig add eth2 5

ifconfig eth2.5 192.168.1.1/24

Traffic over this interface will then be transparently accelerated by Onload.

Refer to the Limitations section, VLANs on page 120 for further information.

6.23 Accelerated pipe()

Onload supports the acceleration of pipes, providing an accelerated IPC mechanism
through which two processes on the same host can communicate using shared
memory at user-level. Accelerated pipes do not invoke system calls. Accelerated
pipes therefore, reduce the overheads for read/write operations and offer improved
latency over the kernel implementation.

To create a user-level pipe, and before the pipe() or pipe2() function is called, a
process must be accelerated by Onload and must have created an Onload stack. By
default, an accelerated process that has not created an Onload stack is granted only
a non-accelerated pipe. See EF_PIPE for other options.

The accelerated pipe is created from the pool of available packet buffers..

The following function calls, related to pipes, will be accelerated by Onload and will
not enter the kernel unless they block:

* pipe()

e read()

e write()

e readv()

e writev()
e send()

e recv()

e recvmsg()
e sendmsg()
* poll()

e select()

Issue 20

© Solarflare Communications 2015 66

SOLARFLAREFE®

®

Onload User Guide

Onload Functionality

e epoll ctl()
e epoll wait()

As with TCP/UDP sockets, the Onload tuning options such as EF_POLL_USEC and
EF_SPIN_USEC will also influence performance of the user-level pipe.

Refer also to EF_PIPE, EF_PIPE_RECV_SPIN, EF_PIPE_SEND_SPINin Parameter
Reference on page 146.

NOTE: Only anonymous pipes created with the pipe() or pipe2() function calls
will be accelerated.

6.24 Zero-Copy API

The Onload Extensions APl includes support for zero-copy of TCP transmit packets
and UDP receive packets. Refer to Zero-Copy APl on page 201 for detailed
descriptions and example source code of the API.

6.25 Debug and Logging

Onload supports various debug and logging options. Logging and debug information
will be displayed on an attached console or will be sent to the syslog. To force all
debug to the syslog set the Onload environment variable EF_LOG_VIA IOCTL=1.

For more information about debug/logging environment variables refer to
Parameter Reference on page 146.

To enable debug and logging using the options below, Onload must be installed with
debug enabled e.g:

onload_install --debug

If Onload is already installed, uninstall, then re-install with the --debug option as
shown above.

Log Levels:
e EF_UNIX_LOG.
e EF_LOG.

® EF_LOG_FILE-WhenEF_LOG_VIA_IOCTL is unset, the useris able to redirect
Onload output to a specified directory and file using the EF_LOG_FILE option.
Timestamps can also be added to the logfile when EF_LOG_TIMESTAMPS is also
enabled.

EF_LOG_FILE=<path/file>
Note that kernel logging is still directed to the syslog.

e TP_LOG (bitmask) - useful for stack debugging. See Onload source code /src/
include/ci/internal/ip_log.h for bit values.

¢ Onload module options:

Issue 20

© Solarflare Communications 2015 67

SOLARFLAREFE®

Onload User Guide

Onload Functionality

oo_debug_bits=[bitmask] - useful for kernel logging and events not
involving an onload stack. See src/include/onload/debug.h for bit
values.

ci_tp log=[bitmask] - useful for kernel logging and events involving an
onload stack. See Onload source code /src/include/ci/internal/
ip_log.h for details.

Issue 20

© Solarflare Communications 2015 68

SOLARFLAREFE®

7

7.1 TCP Operation

Onload User Guide

Onload - TCP

The table below identifies the Onload TCP implementation RFC compliance.

RFC Title Compliance

793 Transmission Control Protocol Yes

813 Window and Acknowledgement Strategy in TCP Yes

896 Congestion Control in IP/TCP Yes

1122 Requirements for Hosts Yes

1191 Path MTU Discovery Yes

1323 TCP Extensions for High Performance Yes

2018 TCP Selective Acknowledgment Options Yes

2581 TCP Congestion Control Yes

2582 The NewReno Modification to TCP’s Fast Recovery Yes
Algorithm

2883 An Extension to the Selective Acknowledgement Yes
(SACK) Option for TCP

2988 Computing TCP’s Retransmission Timer Yes

3128 Protection Against a Variant of the Tiny Fragment Yes
Attack

3168 The Addition of Explicit Congestion Notification (ECN) Yes
to IP

3465 TCP Congestion Control with Appropriate Byte Yes

Counting (ABC)

7.2 TCP Handshake - SYN, SYNACK

During the TCP connection establishment 3-way handshake, Onload negotiates the
MSS, Window Scale, SACK permitted, ECN, PAWS and RTTM timestamps.

Issue 20

© Solarflare Communications 2015

69

SOLARFLAREFE®

Onload User Guide
Onload - TCP

For TCP connections Onload will negotiate an appropriate MSS for the MTU
configured on the interface. However, when using jumbo frames, Onload will
currently negotiate an MSS value up to a maximum of 2048 bytes minus the number
of bytes required for packet headers. This is due to the fact that the size of buffers
passed to the Solarflare network interface card is 2048 bytes and the Onload stack
cannot currently handle fragmented packets on its TCP receive path.

TCP options advertised during the handshake can be selected using the
EF_TCP_SYN_OPTS environment variable. Refer to Parameter Reference on
page 146 for details of environment variables.

7.3 TCP SYN Cookies

The Onload environment variable EF_TCP_SYNCOOKIES can be enabled on a per
stack basis to force the use of SYNCOOKIES thereby providing a degree of protection
against the Denial of Service (DOS) SYN flood attack. EF_TCP_SYNCOOKIES is
disabled by default. Refer to Parameter Reference on page 146 for details of
environment variables.

7.4 TCP Socket Options

Onload TCP supports the following socket options which can be used in the
setsockopt() and getsockopt() function calls.

Option Description

SO_PROTOCOL retrieve the socket protocol as an integer.

SO_ACCEPTCONN determines whether the socket can accept incoming
connections - true for listening sockets. (Only valid as a
getsockopt()).

SO_BINDTODEVICE bind this socket to a particular network interface.

SO_CONNECT_TIME number of seconds a connection has been established.

(Only valid as a getsockopt()).

SO_DEBUG enable protocol debugging.

SO_DONTROUTE outgoing data should be sent on whatever interface the
socket is bound to and not routed via another interface.

SO_ERROR the errno value of the last error occurring on the
socket. (Only valid as a getsockopt()).

SO_EXCLUSIVEADDRUSE prevents other sockets using the SO_REUSEADDR
option to bind to the same address and port.

SO_KEEPALIVE enable sending of keep-alive messages on connection
oriented sockets.

Issue 20

© Solarflare Communications 2015 70

SOLARFLAREFE®

Onload User Guide
Onload - TCP

SO_LINGER

when enabled, a close() or shutdown () will not
return until all queued messages for the socket have
been successfully sent or the linger timeout has been
reached. Otherwise the close() or shutdown()
returns immediately and sockets are closed in the
background.

SO_OOBINLINE

indicates that out-of-bound data should be returned in-
line with regular data. This option is only valid for
connection-oriented protocols that support out-of-
band data.

SO_PRIORITY

set the priority for all packets sent on this socket.
Packets with a higher priority may be processed first
depending on the selected device queueing discipline.

SO_RCVBUF

sets or gets the maximum socket receive buffer in
bytes. The value set is doubled by the kernel and by
Onload to allow for bookkeeping overheads when it is
set by the setsockopt () function call. Note that
EF_TCP_RCVBUF overrides this value and
EF_TCP_RCVBUF_ESTABLISHED DEFAULT can also
override this value.

Setting SO_RCVBUF to a value < MTU can result in
poorer performance and is not recommended.

SO_RCVLOWAT

sets the minimum number of bytes to process for
socket input operations.

SO_RCVTIMEO

sets the timeout for input function to complete.

SO_RECVTIMEO

sets the timeout in milliseconds for blocking receive
calls.

SO_REUSEADDR

can reuse local port numbers i.e. another socket can
bind to the same port except when there is an active
listening socket bound to the port.

SO_RESUSEPORT

allows multiple sockets to bind to the same port.

SO_SNDBUF

sets or gets the maximum socket send buffer in bytes.
The value set is doubled by the kernel and by Onload to
allow for bookkeeping overhead when it is set by the
setsockopt () function call. Note that
EF_TCP_SNDBUF, EF_TCP_SNDBUF_MODE and
EF_TCP_SNDBUF_ESTABLISHED_DEFAULT can override
this value.

SO_SNDLOWAT

sets the minimum number of bytes to process for
socket output operations. Always set to 1 byte.

Issue 20

© Solarflare Communications 2015 71

SOLARFLAREFE®

Onload User Guide
Onload - TCP

SO_SNDTIMEO

set the timeout for sending function to send before
reporting an error.

SO_TIMESTAMP

enable/disable receiving the SO_TIMESTAMP control
message.

SO_TIMESTAMPNS

enable/disable receiving the SO_TIMESTAMP control
message.

SO_TIMESTAMPING

enable/disable hardware timestamps for received
packets. See SO_TIMESTAMPING (Hardware Receive
Timestamps) on page 55.

SOF_TIMESTAMPING_TX_
HARDWARE

obtain a hardware generated transmit timestamp.

SOF_TIMESTAMPING_SYS
_HARDWARE

obtain a hardware transmit timestamp adjusted to the
system time base.

SOF_TIMESTAMPING_OPT
_CMSG

deliver timestamps using the cmsg API.

ONLOAD_SOF_TIMESTAMP
ING_STREAM

Onload extension to the standard SO_TIMESTAMPING
API to support hardware timestamps on TCP sockets.

SO_TYPE

returns the socket type (SOCK_STREAM or SOCK_DGRAM).
(Only valid as a getsockopt()).

IP_TRANSPARENT

this socket option allows the calling application to bind
the socket to a nonlocal IP address.

7.5 TCP Level Options

Onload TCP supports the following TCP options which can be used in the
setsockopt() and getsockopt () function calls

Option

Description

TCP_CORK

stops sends on segments less than MSS size until the
connection is uncorked.

TCP_DEFER_ACCEPT

a connection is ESTABLISHED after handshake is

complete instead of leaving it in SYN-RECV until the
first real data packet arrives. The connection is placed
in the accept queue when the first data packet arrives.

TCP_INFO

populates an internal data structure with tcp statistic
values.

TCP_KEEPALIVE_ABORT_
THRESHHOLD

how long to try to produce a successful keepalive
before giving up.

Issue 20

© Solarflare Communications 2015 72

SOLARFLAREFE®

Onload User Guide
Onload - TCP

TCP_KEEPALIVE_THRESH
HOLD

specifies the idle time for keepalive timers.

TCP_KEEPCNT

number of keepalives before giving up.

TCP_KEEPIDLE

idle time for keepalives.

TCP_KEEPINTVL

time between keepalives.

TCP_MAXSEG

gets the MSS size for this connection.

TCP_NODELAY

disables Nagle’s Algorithm and small segments are sent
without delay and without waiting for previous
segments to be acknowledged.

TCP_QUICKACK

when enabled ACK messages are sent immediately
following reception of the next data packet. This flag
will be reset to zero following every use i.e. it is a one
time option. Default value is 1 (enabled).

7.6 TCP File Descriptor Control

Onload supports the following options in socket() and accept() calls.

Option

Description

SOCK_CLOEXEC

supported in socket() and accept(). Sets the
O_NONBLOCK file status flag on the new open file
descriptor saving extra calls to fcnt1(2) to achieve the
same result.

SOCK_NONBLOCK

supported in accept(). Sets the close-on-exec
(FD_CLOEXEC) flag on the new file descriptor.

Issue 20

© Solarflare Communications 2015 73

SOLARFLAREFE®

Onload User Guide
Onload - TCP

7.7 TCP Congestion Control

Onload TCP implements congestion control in accordance with RFC3465 and
employs the NewReno algorithm with extensions for Appropriate Byte Counting
(ABC).

On new or idle connections and those experiencing loss, Onload employs a Fast
Start algorithm in which delayed acknowledgments are disabled, thereby creating
more ACKs and subsequently ‘growing’ the congestion window rapidly. Two
environment variables; EF_TCP_FASTSTART_INIT and EF_TCP_FASTSTART_LOSS
are associated with the fast start - Refer to Parameter Reference on page 146 for
details.

During Slow Start, the congestion window is initially set to 2 x maximum segment
size (MSS) value. As each ACK is received the congestion window size is increased by
the number of bytes acknowledged up to a maximum 2 x MSS bytes. This allows
Onload to transmit the minimum of the congestion window and advertised window
size i.e.

transmission window (bytes) = min(CWND, receiver advertised window size)

If loss is detected - either by retransmission timeout (RTO), or the reception of
duplicate ACKs, Onload will adopt a congestion avoidance algorithm to slow the
transmission rate. In congestion avoidance the transmission window is halved from
its current size - but will not be less than 2 x MSS. If congestion avoidance was
triggered by an RTO timeout the Slow Start algorithm is again used to restore the
transmit rate. If triggered by duplicate ACKs Onload employs a Fast Retransmit and
Fast Recovery algorithm.

If Onload TCP receives 3 duplicate ACKs this indicates that a segment has been lost
- rather than just received out of order and causes the immediate retransmission of
the lost segment (Fast Retransmit). The continued reception of duplicate ACKs is an
indication that traffic still flows within the network and Onload will follow Fast
Retransmit with Fast Recovery.

During Fast Recovery Onload again resorts to the congestion avoidance (without
Slow Start) algorithm with the congestion window size being halved from its present
value.

Onload supports a number of environment variables that influence the behavior of
the congestion window and recovery algorithms Refer to Parameter Reference on
page 146.:

e EF_TCP_INITIAL_CWND - sets the initial size (bytes) of congestion window

e EF_TCP_LOSS_MIN_CWND - sets the minimum size of the congestion window
following loss.

e EF_CONG_AVOID_SCALE_BACK - slows down the rate at which the TCP
congestion window is opened to help reduce loss in environments already
suffering congestion and loss.

The congestion variables should be used with caution so as to avoid violating TCP
protocol requirements and degrading TCP performance.

Issue 20

© Solarflare Communications 2015 74

SOLARFLAREFE®

Onload User Guide
Onload - TCP

7.8 TCP SACK

Onload will employ TCP Selective Acknowledgment (SACK) if the option has been
negotiated and agreed by both ends of a connection during the connection
establishment 3-way handshake. Refer to RFC 2018 for further information.

7.9 TCP QUICKACK

TCP will generally aim to defer the sending of ACKs in order to minimize the number
of packets on the network. Onload supports the standard TCP_QUICKACK socket
option which allows some control over this behavior. Enabling TCP_QUICKACK
causes an ACK to be sent immediately in response to the reception of the following
data packet. This is a one-shot operation and TCP_QUICKACK self clears to zero
immediately after the ACK is sent.

7.10 TCP Delayed ACK

By default TCP stacks delay sending acknowledgments (ACKs) to improve efficiency
and utilization of a network link. Delayed ACKs also improve receive latency by
ensuring that ACKs are not sent on the critical path. However, if the sender of TCP
packets is using Nagle’s algorithm, receive latency will be impaired by using delayed
ACKs.

Using the EF_DELACK_THRESH environment variable the user can specify how many
TCP segments can be received before Onload will respond with a TCP ACK. Refer to
the Parameter List on page 146 for details of the Onload environment delayed TCP
ACK variables.

7.11 TCP Dynamic ACK

The sending of excessive TCP ACKs can impair performance and increase receive
side latency. Although TCP generally aims to defer the sending of ACKs, Onload also
supports a further mechanism. The EF_DYNAMIC ACK_THRESHenvironment variable
allows Onload to dynamically determine when it is non-detrimental to throughput
and efficiency to send a TCP ACK. Onload will force an TCP ACK to be sent if the
number of TCP ACKs pending reaches the threshold value.

Refer to the Parameter List on page 146 for details of the Onload environment
delayed TCP ACK variables.

NOTE: When used together with EF_DELACK_THRESH or EF_DYNAMIC_ACK_THRESH,
the socket option TCP_QUICKACK will behave exactly as stated above. Both onload
environment variables identify the maximum number of segments that can be
received before an ACK is returned. Sending an ACK before the specified maximum
is reached is allowed.

Issue 20

© Solarflare Communications 2015 75

SOLARFLAREFE®

Onload User Guide
Onload - TCP

NOTE: TCP ACKS should be transmitted at a sufficient rate to ensure the remote end
does not drop the TCP connection.

7.12 TCP Loopback Acceleration

Onload supports the acceleration of TCP loopback connections, providing an
accelerated mechanism through which two processes on the same host can
communicate. Accelerated TCP loopback connections do not invoke system calls,
reduce the overheads for read/write operations and offer improved latency over the
kernel implementation.

The server and client processes who want to communicate using an accelerated TCP
loopback connection do not need to be configured to share an Onload stack.
However, the server and client TCP loopback sockets can only be accelerated if they
are in the same Onload stack. Onload has the ability to move a TCP loopback socket
between Onload stacks to achieve this.

TCP loopback acceleration is configured via the environment variables
EF_TCP_CLIENT_LOOPBACK and EF_TCP_SERVER_LOOPBACK.As well as enabling TCP
loopback acceleration these environment variables control Onload’s behavior when
the server and client sockets do not originate in the same Onload stack. This gives
the user greater flexibility and control when establishing loopback on TCP sockets
either from the listening (server) socket or from the connecting (client) socket. The
connecting socket can use any local address or specify the loopback address.

The following diagram illustrates the client and server loopback options. Refer to
Parameter Reference on page 146 for a description of the loopback variables.

Issue 20

© Solarflare Communications 2015 76

Onload User Guide

SOLGRFLARE Onload - TCP

ETACK ETACK STACK

EF_TCP_SERVER_LOCPEACK=0 STACK
EF_TCP_CLIENT_LOOPEACK=0
SKT SKT EKT Seryer iz not sccelerated ST
Chent iz not accelerated
EF_TCF_CLIENT LOOFBACK=1 SIACE STACK EF_TCF_SERVER_LOOFBACK=1
: - - KT
Accelerate if istening zockst = SKT Accelerate if conmecting
from the same stack KT kT zocket i from the same stack
- — EF_TCP_CLIENT_LOCPBACK=2 - — . — EF_TCP_SERVER_LOOFBACK=2 - -~
STACK STACK STACK STACK
Accelerate and move accepted KT Accelerate and move accepted T
socket to the stack of the St socket to the stack of the r
o o ETah 1,- = \I KT connecting socket - . -\.I
¥
- e el TS
STack EF_TCP_CLIENT_LOOPBEACK=3 STACK
SKT Accelerate and move
——— connecting socket to the stack
s, b = SKT
| 5K .ri of the Estening socket
- o2 —
STACK EF_TCP_CLIENT_LOCPEACK=4 sTack | EF_TCP_SERVER_LOOFBACK=2 STACK
I‘_‘\ :
| sk)€ SKT
F
s |
=KT ==
s)

Figure 8: EF_TCP_CLIENT/SERVER_LOOPBACK

The client loopback option EF_TCP_CLIENT_LOOPBACK=4, when used with the
server loopback option EF_TCP_SERVER_LOOPBACK=2, differs from other loopback
options such that rather than move sockets between existing stacks they will create
an additional stack and move sockets from both ends of the TCP connection into this
new stack. This avoids the possibility of having many loopback sockets sharing and
contending for the resources of a single stack.

When client and server are not the same UUID, set the environment variable
EF_SHARE_WITH to allow both processes to share the created shared stack.

7.13 TCP Striping

Onload supports a Solarflare proprietary TCP striping mechanism that allows a
single TCP connection to use both physical ports of a network adapter. Using the
combined bandwidth of both ports means increased throughput for TCP streaming
applications. TCP striping can be particularly beneficial for Message Passing
Interface (MPI) applications.

Issue 20 © Solarflare Communications 2015 77

SOLARFLAREFE®

®

Onload User Guide
Onload - TCP

If the TCP connection’s source IP address and destination IP address are on the same
subnet as defined by EF_STRIPE_NETMASK then Onload will attempt to negotiate
TCP striping for the connection. Onload TCP striping must be configured at both
ends of the link.

TCP striping allows a single TCP connection to use the full bandwidth of both
physical ports on the same adapter. This should not be confused with link
aggregation/port bonding in which any one TCP connection within the bond can
only use a single physical port and therefore more than one TCP connection would
be required to realize the full bandwidth of two physical ports.

NOTE: TCP striping is disabled by default. To enable this feature set the parameter
CI_CFG_PORT_STRIPING=1 in the onload distribution source directory src/
include/internal/tranport_config _opt.h file.

7.14 TCP Connection Reset on RTO

Under certain circumstances it may be preferable to avoid re-sending TCP data to a
peer service when data delivery has been delayed. Once data has been sent, and for
which no acknowledgment has been received, the TCP retransmission timeout
period represents a considerable delay. When the retransmission timeout (RTO)
eventually expires it may be preferable not to retransmit the original data.

Onload can be configured to reset a TCP connection rather than attempt to
retransmit data for which no acknowledgment has be received.

This feature is enabled with the EF_TCP_RST_DELAYED_CONN per stack environment
variable and applies to all TCP connections in the onload stack. On any TCP
connection in the onload stack, if the RTO timer expires before an ACK is received
the TCP connection will be reset.

7.15 ONLOAD_MSG_WARM

Applications that send data infrequently may see increased send latency compared
to an application that is making frequent sends. This is due to the send path and
associated data structures not being cache and TLB resident (which can occur even
if the CPU has been otherwise idle since the previous send call).

Onload therefore supports applications repeatedly calling send to keep the TCP fast
send path ‘warm’ in the cache without actually sending data. This is particularly
useful for applications that only send infrequently and helps to maintain low latency
performance for those TCP connections that do not send often. These “fake” sends
are performed by setting the ONLOAD_MSG_WARM flag when calling the TCP send calls.
The message warm feature does not transmit any packets.

char buf[10];
send(fd, buf, 10, ONLOAD_MSG_WARM);

Onload stackdump supports new counters to indicate the level of message warm
use:

Issue 20

© Solarflare Communications 2015 78

Onload User Guide

SOLARFLARE®
; Onload - TCP

e warm_aborted is a count of the number of times a message warm send
function was called, but the sendpath was not exercised due to Onload locking
constraints.

e warmis a count of the number of times a message warm send function was
called when the send path was exercised.

NOTE: If the ONLOAD_MSG_WARM flag is used on sockets which are not accelerated -
@ including those handed off to the kernel by Onload, it may cause the message warm
packets to be actually sent. This is due to a limitation in some Linux distributions
which appear to ignore this flag. The Onload extensions API can be used to check
whether a socket supports the MSG_WARM feature via the
onload_fd_check_feature() API (onload_fd_check_feature on page 191).

@ NOTE: Onload versions earlier than 201310 do not support the ONLOAD_MSG_WARM
socket flag, therefore setting the flag will cause message warm packets to be sent.

7.16 Listen/Accept Sockets

TCP sockets accepted from a listening socket will share a wildcard filter with the
parent socket. The following Onload module options can be used to control
behavior when the parent socket is closed.

oof_shared_keep_thresh - default 100, is the number of accepted sockets sharing
a wildcard filter that will cause the filter to persist after the listening socket has
closed.

oof_shared_steal_thresh - default 200, is the number of sockets sharing a
wildcard filter that will cause the filter to persist even when a new listening socket
needs the filter.

If the listening socket is closed the behavior depends on the number of remaining
accepted sockets as follows:

Number of accepted sockets Onload Action

> o0of_shared_keep_threshbut Retain the wildcard filter shared by all
< oof_shared_steal thresh accepted sockets.

If a new listening socket requires the filter,
Onload will install a full-match filter for each
accepted socket allowing the listening socket
to use the wildcard filter.

> oof_shared_steal thresh Retain the wildcard filter shared by all
accepted sockets.

A new listening socket can be created but a
filter cannot be installed meaning the socket
will receive no traffic until the number of
accepted connections is reduced.

Issue 20 © Solarflare Communications 2015 79

Onload User Guide

SOLARFLARE®
; Onload - TCP

7.17 Socket Caching

Socket caching means Onload can further reduce the overhead of setting up new
TCP connections by reusing existing sockets instead of creating from new.

A cached socket retains a file descriptor and socket buffer when it is returned to the
cache of the Onload stack from which it originated.

Socket caching is enabled when EF_SOCKET_CACHE_MAX is set to a value greater
than zero. Onload will decide whether to apply passive or active caching depending
on the type of sockets created by the user application.

EF_SOCKET_CACHE_MAX applies to both active and passive sockets, i.e. if set to 100
the cache limit is 100 of each socket type.

TCP Passive Socket Caching

Passive socket caching, supported from the Onload 201502 release, means Onload
will re-use socket buffers and file descriptors from passive-open (listening sockets).

This can improve the accept rate of active-open TCP connections and will benefit
processes which need to accept lots of connections from these listening sockets.

TCP Active Socket Caching

Active socket caching, supported from the Onload 201509 release, means Onload
will re-use socket buffers and file descriptors from active-open sockets when an
established TCP connection has terminated.

Active-open sockets setting the IP_TRANSPARENT socket option can be cached.

Caching Stackdump

Onload stackdump can be used to monitor caching activity on Onload stacks.

onload_stackdump lots [| grep cache]

Counter Description

active cache: TCP socket caching:

hit=0 hit = number of cache hits (were cached)
2;2:122(E)MPTY avail = number of sockets available for caching
pending=EMPTY current cache state

sockcache_cached Number of sockets cached over the lifetime of the stack

sockcache_contenti Number of sockets not cached due to lock contention
on

passive_sockcache_ Number of passive sockets not cached due to stack limit
stacklim

Issue 20 © Solarflare Communications 2015 80

SOLARFLAREFE®

Onload User Guide
Onload - TCP

Counter Description

active_sockcache_s Number of active sockets not cached due to stack limit
tacklim

sockcache_socklim Number of sockets not cached due to socket limit

sockcache_hit Number of socket cache hits (were cached)

sockcache_hit_reap Number of socket cache hits (were cached) after reaping

sockcache_miss_int Number of socket cache misses due to mismatched interfaces
mismatch

activecache_cached Number of active sockets cached over the lifetime of the stack.

activecache_stackl Number of active sockets not cached due to stack limit
im

activecache_hit Number of active socket cache hits (were cached)

activecache_hit_re Number of active socket cache hits (were cached) after reaping
ap

Caching - Requirements

There are some necessary pre-requisites when using socket caching:

e setEF_UL_EPOLL=3 and set EF_FDS_MT_SAFE=1

e socket caching is not supported after fork()

e sockets that have been dup()ed will not be cached

e sockets that use the O_ASYNC or O_APPEND modes will not be cached

e caching offers no benefit if a single socket accepts connections on multiple
local addresses (applicable to passive caching only).

e Set O_NONBLOCK or O_CLOEXEC if required on the socket, when creating the
socket.

When socket caching cannot be enabled, sockets will be processed as normal
Onload sockets.

Users should refer to details of the following environment variables:
e EF_SOCKET_CACHE_MAX

e EF_PER_SOCKET_CACHE_MAX

e EF_SOCKET CACHE_PORTS

NOTE: Allowing more sockets to be cached than there are file descriptors available
can result in drastically reduced performance and users should consider that the
socket cache limit, EF_SOCKET_CACHE_MAX, applies per stack, unlike the per-
process EF_SOCKET_CACHE_PORTS limits.

Refer to Parameter Reference on page 146 for details of Onload environment
variables.

Issue 20

© Solarflare Communications 2015 81

SOLARFLAREFE®

Onload User Guide
Onload - TCP

7.18 Scalable Filters

®

Using scalable filters, an Onload stack can install a MAC filter to receive all traffic
from a specified interface.

NOTE: Once the MAC filter is inserted on an interface, ARP, ICMP and IGMP traffic
is directed to the kernel, but all other traffic is directed to a single Onload stack.

Using scalable filters removes limitations on:
e the number of listening sockets in scalable filters passive mode

e the number of active-open connections in scalable filters transparent-active
mode. This works only for sockets having the IP_TRANSPARENT option set. See
Transparent Reverse Proxy Modes on page 84 below.

Itis suggested that a dedicated interface is used by the stack inserting the MACfilter.
This allows the kernel stack or another application using scalable filters to use the
same physical port.

The Solarflare SFN7000 series adapter can be partitioned to expose up to 16 PCle
physical functions (PF). Each PF is presented to the OS as a standard network
interface. The adapter is partitioned with the sfboot utility - see example below.

Once a MAC filter has been installed on a PF, other Onload stacks can still receive
other traffic on the same PF, but sockets will have to insert IP filters for the required
traffic. Apart from ARP, ICMP and IGMP packets, OS kernel sockets, using the same
PF, will not receive any traffic.

Per interface, the MAC filter can only be installed by a single Onload stack. If a
process creates multiple stacks, the EF_SCALABLE_FILTERS ENABLE per-stack
variable can be used to enable/disable this feature for individual stacks using the
existing Onload extensions APl e.g.

onload_stack_opt_set_int(EF_SCALABLE_FILTERS_ENABLE, 1);

The MAC filter is inserted when the stack is created - i.e. before sockets are created,
and sockets need to be created to receive any traffic destined for this stack.

Issue 20

© Solarflare Communications 2015 82

SOLARFLAREFE®

Onload User Guide
Onload - TCP

Scalable Filters - Restrictions

e Scalable filters are only used for TCP traffic.

e UDP traffic can be received and accelerated by Onload on interfaces where
scalable filters are enabled, but kernel UDP sockets will not receive traffic.

e UDP fragmented frames cannot be received on interfaces where scalable filters
are enabled. Users should avoid having fragmented frames on these interfaces.

e The adapter must use the full-feature or low-latency firmware variants.
e Minimum firmware version: 4.6.5.1000.

e Stack per thread options (EF_STACK PER_THREAD) cannot be used with this
feature.

e By default the scalable filters feature requires CAP_NET_RAW. Onload can be
configured to avoid capability checks for this using the Onload module option
scalable_filter_gid. See Module Options on page 143 for details.

Scalable Filters - Configuration

To enable scalable filters on a specific interface:
EF_SCALABLE_FILTERS=enps0fo

Per interface, the MAC filter can only be installed by a single Onload stack. A cluster
(see Application Clustering on page 63) might have multiple stacks and each stack
could install a MAC filter on a different interface.

Sockets must be bound to the IP address of the interface.

This feature is targeted at TCP listening sockets only and connections accepted from
a listening socket will share the MAC filter.

Partition the NIC

The sfboot utility is available in the Solarflare Linux Utilities package (SF-107601-LS),
the following example demonstrates how to partition the adapter to expose more
than one PF (A cold reboot of the server is needed after changes using sfboot).

sfboot pf-count=2 vf-count=0 switch-mode=partitioning

Scalable Filters and Bonding

Bonded interfaces - created with the standard Linux bonding or teaming driver can
be used for scalable filters.

Every interface that is part of the bond must be present in the system when the
scalable filters stack is created. Removing the bond will cause the scalable filter to
stop receiving traffic. After a new bond interface is created, the application must be
restarted to use the bond.

Issue 20

© Solarflare Communications 2015 83

SOLARFLAREFE®

Onload User Guide
Onload - TCP

7.19 Transparent Reverse Proxy Modes

Enhancements such as Scalable Filters, Socket Caching and support for the
IP_TRANSPARENT socket option support Onload with greater efficiency and
increased scalability in transparent reverse proxy mode server deployments.

These features reduce to a minimum the overheads associated with creating and
connecting transparent sockets. Onload can use of up to 2 million transparent
active-open sockets per Onload stack.

A transparent socket is created when a socket sets the IP_TRANSPARENT socket
option and explicitly binds to IP addresses and port. The ipaddress can be on a
foreign host. IP_TRANSPARENT must be set before the bind.

The EF_SCALABLE_FILTERS variable is used to enable scalable filters and to configure
the transparent proxy mode.

Restrictions

e The IP_TRANSPARENT option must be set before the socket is bound.

e The IP_TRANSPARENT option cannot be cleared after bind on accelerated
sockets.

e |P_TRANSPARENT sockets cannot be accelerated if they are bound to port 0 or
to INADDR_ANY.

e |P_TRANSPARENT sockets cannot be passed to the kernel stack when bound to
a port that is in the list specified by EF_FORCE_TCP_REUSEPORT.

e When using the rss:transparent_active mode (see below), EF_CLUSTER_NAME
must be explicitly set by the process sharing the cluster AND the stack cannot
be named by either EF_NAME or onload_set_stackname().

Config (example) Settings

Below are examples of configurations using the EF_SCALABLE_FILTERS environment
option to set transparent proxy modes.

e Enable scalable filters on interface plpl - this inserts a MAC address filter on
the adapter. The filter is shared by all active open connections on the interface.
Socket caching will be applied to the passive side of the TCP connection.

EF_SCALABLE_FILTERS=plpl=passive

e Enable scalable filters on enps0f0, then all sockets using this interface that have
the IP_TRANSPARENT flag set will use the MAC filter, other sockets will
continue to use normal IP filters on this interface. Socket caching will be applied
to the active side of a TCP connection:

EF_SCALABLE_FILTERS=enps@f@=transparent_active

Issue 20

© Solarflare Communications 2015 84

SOLARFLAREFE®

Onload User Guide
Onload - TCP

e Asfor the example above, but uses symmetrical RSS to ensure that requests/
responses between clients and backend servers are processed by the same
thread.

EF_SCALABLE_FILTERS=enps@f@=rss:transparent_active

e Enable scalable fitlers on enps0f0, then all sockets using this interface that have
the IP_TRANSPARENT flag set will use the MAC filter, other sockets will
continue to use normal IP filters on this interface. Socket buffers are cached
from active and passive sides of the TCP connection.

EF_SCALABLE_FILTERS=enps@f@=transparent_active:passive

7.20 Transparent Reverse Proxy on Multiple CPUs

Used together with Application Clustering, transparent scalable modes can deliver
linear scalability using multiple CPU cores.

This uses RSS to distribute traffic, both upstream and downstream of the proxy
application, mapping streams to the correct Onload stack. When each CPU core is
associated exclusively with a single clustered stack there can be no contention
between stacks.

For this usecase to function correctly, the proxy application will use the downstream
client address:port on the upstream (to server) side of the TCP connection. In this
way RSS and hardware filters ensure that client side and server side are handled by
the same worker thread and traffic is directed to the correct stack.

In this scenario the client thinks it communicates directly with the server, and the
server thinks it communicates directly with the client - the transparent proxy server
is ‘transparent’.

Issue 20

© Solarflare Communications 2015 85

SOLARFLAREFE®

Onload User Guide

8 Onload - UDP

8.1 UDP Operation

The table below identifies the Onload UDP implementation RFC compliance.

RFC Title Compliance
768 User Datagram Protocol Yes
1122 Requirements for Hosts Yes

3678 Socket Interface Extensions for Partial
Multicast Source Filters

See Source Specific Socket Options
on page 88

8.2 Socket Options

Onload UDP supports the following socket options which can be used in the
setsockopt() and getsockopt() function calls.

Option

Description

SO_PROTOCOL

retrieve the socket protocol as an integer.

SO_BINDTODEVICE

bind this socket to a particular network interface. See
SO_BINDTODEVICE on page 57.

SO_BROADCAST

when enabled datagram sockets can send and receive
packets to/from a broadcast address.

SO_DEBUG

enable protocol debugging.

SO_DONTROUTE

outgoing data should be sent on whatever interface the
socket is bound to and not routed via another interface.

SO_ERROR

the errno value of the last error occurring on the
socket. (Only valid as a getsockopt()).

SO_EXCLUSIVEADDRUSE

prevents other sockets using the SO_REUSEADDR
option to bind to the same address and port.

Issue 20 © Solarflare Communications 2015 86

SOLARFLAREFE®

Onload User Guide
Onload - UDP

SO_LINGER

when enabled a close() or shutdown () will not return
until all queued messages for the socket have been
successfully sent or the linger timeout has been
reached. Otherwise the call returns immediately and
sockets are closed in the background.

SO_PRIORITY

set the priority for all packets sent on this socket.
Packets with a higher priority may be processed first
depending on the selected device queuing discipline.

SO_RCVBUF

sets or gets the maximum socket receive buffer in
bytes. The value set is doubled by the kernel and by
Onload to allow for bookkeeping overhead when it is
set by the setsockopt () function call. Note that
EF_UDP_RCVBUF overrides this value.

Setting SO_RCVBUF to a value < MTU can result in
poorer performance and is not recommended.

SO_RCVLOWAT

sets the minimum number of bytes to process for
socket input operations.

SO_RECVTIMEO

sets the timeout for input function to complete.

SO_REUSEADDR

canreuse local portsi.e. another socket can bind to the
same port number except when there is an active
listening socket bound to the port.

SO_RESUSEPORT

allow multiple sockets to bind to the same port.

SO_SNDBUF

sets or gets the maximum socket send buffer in bytes.
The value set is doubled by the kernel and by Onload to
allow for bookkeeping overhead when it is set by the
setsockopt () function call. Note that EF_UDP_SNDBUF
overrides this value.

SO_SNDLOWAT

sets the minimum number of bytes to process for
socket output operations. Always set to 1 byte.

SO_SNDTIMEO

set the timeout for sending function to send before
reporting an error.

SO_TIMESTAMP

enable or disable receiving the SO_TIMESTAMP control
message (microsecond resolution). See below.

SO_TIMESTAMPNS

enable or disable receiving the SO_TIMESTAMP control
message (nanosecond resolution). See SO_TIMESTAMP
and SO_TIMESTAMPNS (software timestamps) on
page 55.

SO_TIMESTAMPING

enable/disable hardware timestamps for received
packets. See SO_TIMESTAMPING (Hardware Receive
Timestamps) on page 55.

Issue 20

© Solarflare Communications 2015 87

SOLARFLAREFE®

Onload User Guide
Onload - UDP

SOF_TIMESTAMPING_TX_

HARDWARE

obtain a hardware generated transmit timestamp.

SOF_TIMESTAMPING_SYS
_HARDWARE

obtain a hardware transmit timestamp adjusted to the
system time base.

SO_TYPE

returns the socket type (SOCK_STREAM or SOCK_DGRAM).
(Only valid as a getsockopt()).

8.3 Source Specific Socket Options

The following table identifies source specific socket options supported from onload-
201210-ul onwards. Refer to release notes for Onload specific behavior regarding

these options.

Option

Description

IP_ADD_SOURCE_MEMBER
SHIP

Join the supplied multicast group on the given interface
and accept data from the supplied source address.

IP_DROP_SOURCE_MEMBE
RSHIP

Drops membership to the given multicast group,
interface and source address.

MCAST_JOIN_SOURCE_GR
ouP

Join a source specific group.

MCAST_LEAVE_SOURCE_G
ROUP

Leave a source specific group.

8.4 UDP Send and Receive Paths

For each UDP socket, Onload creates both an accelerated socket and a kernel socket.
There is usually no file descriptor for the kernel socket visible in the user’s file
descriptor table. When a UDP process is ready to transmit data, Onload will check a
cached ARP table which maps IP addresses to MAC addresses. A cache ‘hit’ results
in sending via the Onload accelerated socket. A cache ‘miss’ results in a syscall to
populate the user mode cached ARP table. If no MAC address can be identified via
this process the packet is sent via the kernel stack to provoke ARP resolution.
Therefore, it is possible that some UDP traffic will be sent occasionally via the kernel

stack.

Issue 20 © Solarflare Communications 2015 88

SOLARFLAREFE®

Onload User Guide
Onload - UDP

Application

Onload Stack

bypass kerns
stack UDP socket

kernel stack

Mon Solarfiate NIC

Figure 9: UDP Send and Receive Paths

Figure 9 illustrates the UDP send and receive paths. Lighter arrows indicate the
accelerated ‘kernel bypass’ path. Darker arrows identify fragmented UDP packets
received by the Solarflare adapter and UDP packets received from a non-Solarflare
adapter. UDP packets arriving at the Solarflare adapter are filtered on source and
destination address and port number to identify a VNIC the packet will be delivered
to. Fragmented UDP packets are received by the application via the kernel UDP
socket. UDP packets received by a non-Solarflare adapter are always received via the
kernel UDP socket.

8.5 Fragmented UDP

When sending datagrams which exceed the MTU, the Onload stack will send
multiple Ethernet packets. On hosts running Onload, fragmented datagrams are
always received via the kernel stack.

8.6 User Level recvmmsg for UDP

The recvmmsg() function is intercepted for UDP sockets which are accelerated by
Onload.

The Onload user-level recvmmsg() is available to systems that do not have kernel/
libc support for this function. The recvmmsg()is not supported for TCP sockets.

Issue 20

© Solarflare Communications 2015 89

SOLARFLAREFE®

Onload User Guide
Onload - UDP

8.7 User-Level sendmmsg for UDP

The sendmmsg() function is intercepted for UDP sockets which are accelerated by
Onload.

The Onload user-level sendmmsg() is available to systems that do not have kernel/
libc support for this function. The sendmmsg() is not supported for TCP sockets.

8.8 Multicast Replication

The Solarflare SFN7000 series adapters support multicast replication where
received packets are replicated in hardware and delivered to multiple receive
qgueues. This feature allows any number of Onload clients, listening to the same
multicast data stream, to receive their own copy of the packets, without an
additional software copy and without the need to share Onload stacks. As illustrated
below, the packets are delivered multiple times by the controller to each receive
qgueue that has installed a hardware filter to receive the specified multicast stream.

Application Application Application
Onload Stack Cnload Stack Cnload Stack
Kerme kerne
bypass
B
— - rd s
“— & k]

— ;_}v«.—l)\,_1

Figure 10: Hardware Multicast Replication

Multicast replication is performed in the adapter transparently and does not need
to be explicitly enabled.

This feature removes the need to share Onload stacks using the EF_NAME
environment variable. Users using EF_NAME exclusively for sharing multicast traffic
can now remove EF_NAME from the configurations.

Issue 20

© Solarflare Communications 2015 90

SOLARFLAREFE®

Onload User Guide
Onload - UDP

8.9 Multicast Operation and Stack Sharing

®

To illustrate shared stacks, the following examples describe Onload behavior when
two processes, on the same host, subscribe to the same multicast stream:

e Multicast Receive Using Different Onload Stacks on page 91

e Multicast Transmit Using Different Onload Stacks on page 92

e Multicast Receive Sharing an Onload Stack on page 92

e Multicast Transmit Sharing an Onload Stack on page 93

e Multicast Receive - Onload Stack and Kernel Stack on page 93.

NOTE: The following subsections use two processes to demonstrate Onload
behavior. In practice multiple processes can share the same Onload stack. Stack
sharing is not limited to multicast subscribers and can be employed by any TCP and
UDP applications.

Multicast Receive Using Different Onload Stacks

Running on SFN5000 or SFN6000 series adapters (for SFN7000 series - see Multicast
Replication above), Onload will notice if two Onload stacks on the same host
subscribe to the same multicast stream and will respond by redirecting the stream
to gothrough the kernel. Handing the stream to the kernel, though still using Onload
stacks, allows both subscribers to receive the datagrams, but user-space
acceleration is lost and the receive rate is lower that it could otherwise be. Figure 11
below illustrates the configuration. Arrows indicate the receive path and
fragmented UDP path.

Application Application

Onload Stack Onload Stack

UDP socket UDP socket

kernel stack

kernel stack

2 |

TCR/IR

muticast stream

Solarflare NIC

Figure 11: Multicast Receive Using Different Onload Stacks.

Issue 20

© Solarflare Communications 2015 91

SOLARFLAREFE®

Onload User Guide
Onload - UDP

The reason for this behavior is because the Solarflare NIC will not deliver a single
received multicast packet multiple times to multiple stacks — the packet is delivered
only once. If a received packet is delivered to kernel-space, then the kernel TCP/IP
stack will copy the received data multiple times to each socket listening on the
corresponding multicast stream. If the received packet were delivered directly to
Onload, where the stacks are mapped to user-space, it would only be delivered to a
single subscriber of the multicast stream.

Multicast Transmit Using Different Onload Stacks

Referring to Figure 11, if one process were to transmit multicast datagrams, these
would not be received by the second process. Onload is only able to accelerate
transmitted multicast datagrams when they do not need to be delivered to other
applications in the same host. Or more accurately, the multicast stream can only be
delivered within the same Onload stack.

Onload by default changes the default state of the IP_MULTICAST_LOOP socket
option to @ rather than 1. This change allows Onload to accelerate multicast transmit
for most applications, but means that multicast traffic is not delivered to other
applications on the same host unless the subscriber sockets are in the same stack.
The normal behavior can be restored by setting EF_FORCE_SEND MULTICAST=0, but
this limits multicast acceleration on transmit to sockets that have manually set the
IP_MULTICAST_LOOP socket option to zero.

Multicast Receive Sharing an Onload Stack

Setting the EF_NAME environment variable to the same string (max 8 chars) in both
processes means they can share an Onload stack. The stream is no longer redirected
through the kernel resulting in a much higher receive rate than can be observed with
the kernel TCP/IP stack (or with separate Onload stacks where the data path is via
the kernel TCP/IP stack). This configuration is illustrated in Figure 12 below. Lighter
arrows indicate the accelerated (kernel bypass) path. Darker arrows indicate the
fragmented UDP path.

Issue 20

© Solarflare Communications 2015 92

SOLARFLAREFE®

Onload User Guide
Onload - UDP

Apphication Applicaticn

UDP socket kerne UDP socket

bypass

kerne| stack kernel stack

;\ | multicast stream |

Figure 12: Sharing an Onload Stack

Multicast Transmit Sharing an Onload Stack

Referring to Figure 12, datagrams transmitted by one process would be received by
the second process because both processes share the Onload stack.

Multicast Receive - Onload Stack and Kernel Stack

If a multicast stream is being accelerated by Onload, and another application that is
not using Onload subscribes to the same stream, then the second application will
not receive the associated datagrams. Therefore if multiple applications subscribe
to a particular multicast stream, either all or none should be run with Onload.

To enable multiple applications accelerated with Onload to subscribe to the same
multicast stream, the applications must share the same Onload stack. Stack sharing
is achieved by using the EF_NAME environment variable (max 8 chars).

Multicast Receive and Multiple Sockets

When multiple sockets join the same multicast group, received packets are
delivered to these sockets in the order that they joined the group.

When multiple sockets are created by different threads and all threads are spinning
on recv(), the thread which is able to receive first will also deliver the packets to
the other sockets.

If a thread ‘A’ is spinning on poll(), and another thread ‘B’, listening to the same
group, calls recv() but does not spin, ‘A" will notice a received packet first and
deliver the packet to ‘B’ without an interrupt occurring.

Issue 20

© Solarflare Communications 2015 93

SOLARFLAREFE®

Onload User Guide
Onload - UDP

8.10 Multicast Loopback

The socket option IP_MULTICAST_LOOP controls whether multicast traffic sent on a
socket can be received locally on the machine. With Onload, the default value of the
IP_MULTICAST_LOOP socket option is O (the kernel stack defaults
IP_MULTICAST_LOOP to 1). Therefore by default with Onload multicast traffic sent
on a socket will not be received locally.

As well as setting IP_MULTICAST_LOOP to 1, receiving multicast traffic locally
requires both the sender and receiver to be using the same Onload stack. Therefore,
when a receiver is in the same application as the sender it will receive multicast
traffic. If sender and receiver are in different applications then both must be running
Onload and must be configured to share the same Onload stack.

For two processes to share an Onload stack both must set the same value for the
EF_NAME parameter (max 8 chars). If one local process is to receive the data sent by
a sending local process, EF_MCAST_SEND must be set to 1 or 3 on the thread creator
of the stack.

User of earlier Onload versions and users of EF_MULTICAST_LOOP_OFF should refer
to the Parameter Reference table Parameter Reference on page 146 for details of
deprecated features.

8.11 Hardware Multicast Loopback

An alternative to the Onload stack sharing scheme described in Multicast Loopback,
Hardware Multicast Loopback, available from openonload-201405, enables the
passing of multicast traffic between Onload stacks allowing applications running on
the same server to benefit from Onload acceleration without the need to share an
Onload stack thereby reducing the risk of stack lock and resource contention.

Issue 20

© Solarflare Communications 2015 94

SOLARFLAREFE®

Onload User Guide
Onload - UDP

Application Application Application

Onload Stack Onload Stack Onload Stack

_—

kerne

bypass
1 A .,
Ny’/ Y

Figure 13: Hardware Multicast Loopback

e Only available on the Solarflare Flareon SFN7000 series adapters.

e Adapters must have a minimum firmware version v4.0.7.6710 and “full
featured” firmware must be selected using the firmware-variant option via
the “sfboot” utility. Refer to the Solarflare Server User Guide ‘sfboot
parameters’ for further details.

Hardware Multicast Loopback allows data generated by one process to be received
by another process on the same host - Multicast Replication does not support local
loopback.

Reception of looped back traffic is enabled by default on a per Onload stack basis. A
stack can choose not to receive looped back traffic by setting the environment
variable EF_MCAST_RECV_HW_LOOP=0.

NOTE: Hardware Multicast Loopback is enabled through a single hardware filter.
For this reason, if any single process chooses to receive multicast loopback traffic
by EF_MCAST_RECV_HW_LOOP=1, then all other processes joined to the same
multicast group will also receive the loopback traffic regardless of their setting for
EF_MCAST_RECV_HW_LOOP.

Sending of looped back trafficis disabled by default. On a per-stack basis this feature
can be enabled by setting the environment variable EF_MCAST_SEND to either 2 or 3.

Setting the socket option MULTICAST_TTL=0 will disable the sending of traffic on the
normal network path and prevent traffic being looped back. The value of the socket
option IP_MULTICAST_LOOP has no effect on Hardware Multicast Loopback. Refer
to Onload and IP_MULTICAST_TTL on page 119 for differences in Linux kernel and

Onload behavior.

Issue 20

© Solarflare Communications 2015 95

‘ Onload User Guide
| SOLARFLARE Onload - UDP

8.12 IP_MULTICAST_ALL

For an accelerated socket, Onload will always behave as if IP_MULTICAST_ALL=0.
There is always the potential for messages to arrive at a the host - perhaps from a
non-Solarflare interface or via the loopback interface - which will also be delivered
to the socket under normal UDP port matching rules so the socket could receive
traffic for groups not explicitly joined on this socket.

Issue 20 © Solarflare Communications 2015 96

‘ Onload User Guide
SOLARFLARE®

9 Packet Buffers

9.1 Introduction

Packet buffers describe the memory used by the Onload stack (and Solarflare
adapter) to receive, transmit and queue network data. Packet buffers provide a
method for user-mode accessible memory to be directly accessed by the network
adapter without compromising system integrity.

Onload will request huge pages if these are available when allocating memory for
packet buffers. Using huge pages can lead to improved performance for some
applications by reducing the number of Translation Lookaside Buffer (TLB) entries
needed to describe packet buffers and therefore minimize TLB ‘thrashing’.

@ NOTE: Onload huge page support should not be enabled if the application uses IPC
namespaces and the CLONE_NEWIPC flag.

Onload offers two configuration modes for network packet buffers:

9.2 Network Adapter Buffer Table Mode

Solarflare network adapters employ a proprietary hardware-based buffer address
translation mechanism to provide memory protection and translation to Onload
stacks accessing a VNIC on the adapter. This is the default packet buffer mode and
is suitable for the majority of applications using Onload.

This scheme employs a buffer table residing on the network adapter to control the
memory an Onload stack can use to send and receive packets.

While the adapter’s buffer table is sufficient for the majority of applications, on
adapters prior to the SFN7000 series, it is limited to approximately 120,000 x 2Kbyte
buffers which have to be shared between all Onload stacks.

If the total packet buffer requirements of all applications using Onload require more
than the number of packet buffers supported by the adapter’s buffer table, the user
should consider changing to the Scalable Packet Buffers configuration.

9.3 Large Buffer Table Support

The Solarflare SFN7000 series adapters alleviate the packet buffer limitations of
previous generation Solarflare adapters and support many more than the 120,000
packet buffer without the need to switch to Scalable Packet Buffer Mode.

Issue 20 © Solarflare Communications 2015 97

Onload User Guide

SOLARFLARFE®
; Packet Buffers

Each buffer table entry in the SFN7000 series adapter can describe a 4Kbyte,
64Kbyte, 1Mbyte or 4Mbyte block of memory where each table entry is the page
size as directed by the operating system.

9.4 Scalable Packet Buffer Mode

Scalable Packet Buffer Mode is an alternative packet buffer mode which allows a
much higher number of packet buffers to be used by Onload. Using the Scalable
Packet Buffer Mode Onload stacks employ Single Root I/0O Virtualization (SR-I0V)
virtual functions (VF) to provide memory protection and translation. This
mechanism removes the 120K buffers limitation imposed by the Network Adapter
Buffer Table Mode.

For deployments where using SR-IOV and/or the IOMMU is not an option, Onload
also supports an alternative Scalable Packet Buffer Mode scheme called Physical
Addressing Mode. Physical addressing also removes the 120K packet buffer
limitation, however physical addressing does not provide the memory protection
provided by SR-IOV and an IOMMU. For details of Physical Addressing Mode see
Physical Addressing Mode on page 106.

NOTE: Enabling SR-I0V, which is needed for Scalable Packet Buffer Mode, has a

@ latency impact which depends on the adapter model. For the SFN5000 adapter
series, latency increases by approximately 50ns for the 1/2 RTT latency. The
SFN6000 adapter series has equivalent latency to the SFN5000 adapter series when
operating in this mode.

@ NOTE: MRG users should refer to Red Hat MRG 2 and SR-IOV on page 128.

For further details on SR-I0V configuration refer to Configuring Scalable Packet
Buffers on page 102.

9.5 Allocating Huge Pages

Using huge pages can lead to improved performance for some applications by
reducing the number of Translation Lookaside Buffer (TLB) entries needed to
describe packet buffers and therefore minimize TLB ‘thrashing’. Huge pages also
deliver many packets buffers, but consume only a a single entry in the buffer table.
Explicit huge pages are recommended.

The current hugepage allocation can be checked by inspection of /proc/meminfo
cat/proc/meminfo | grep Huge
This should return something similar to:

AnonHugePages: 2048 kB
HugePages_Total: 2050
HugePages Free: 2050
HugePages_Rsvd: ©
HugePages_Surp: ©
Hugepagesize: 2048 kB

Issue 20 © Solarflare Communications 2015 98

Onload User Guide

SOLARFLARFE®
; Packet Buffers

The total number of hugepages available on the system is the value
HugePages_Total.The following command can be used to dynamically set and/or
change the number of huge pages allocated on a system to (<N> is a non-negative
integer):

echo <N> > /proc/sys/vm/nr_hugepages

On a NUMA platform, the kernel will attempt to distribute the huge page pool over
the set of all allowed nodes specified by the NUMA memory policy of the task that
modifies nr_hugepages. The following command can be used to check the per node
distribution of huge pages in a NUMA system:

cat /sys/devices/system/node/node*/meminfo | grep Huge

Huge pages can also be allocated on a per-NUMA node basis (rather than have the
hugepages allocated across multiple NUMA nodes). The following command can be
used to allocate <N> hugepages on NUMA node <M>:

echo <N> > /sys/devices/system/node/node<M>/hugepages/hugepages-2048kB/nr_hugepages

9.6 How Packet Buffers Are Used by Onload

Each packet buffer is allocated to exactly one Onload stack and is used to receive,
transmit or queue network data. Packet buffers are used by Onload in the following
ways:

1 Receive descriptor rings. By default the RX descriptor ring will hold 512 packet
buffers at all times. This value is configurable using the EF_RXQ_SIZE (per
stack) variable.

2 Transmit descriptor rings. By default the TX descriptor ring will hold up to 512
packet buffers. This value is configurable using the EF_TXQ_SIZE (per stack)
variable.

3 To queue data held in receive and transmit socket buffers.

4 TCP sockets can also hold packet buffers in the socket’s retransmit queue and
in the reorder queue.

5 User-level pipes also consume packet buffer resources.

Identifying Packet Buffer Requirements

When deciding the number of packet buffers required by an Onload stack
consideration should be given to the resource needs of the stack to ensure that the
available packet buffers can be shared efficiently between all Onload stacks.

e Example 1:
If we consider a hypothetical case of a single host:
- which employs multiple Onload stacks e.g 10
- each stack has multiple sockets e.g 6

- and each socket uses many packet buffers e.g 2000

Issue 20 © Solarflare Communications 2015 99

SOLARFLAREFE®

Onload User Guide
Packet Buffers

This would require a total of 120000 packet buffers

e Example 2:

If on a stack the TCP receive queue is 1 Mbyte and the MSS value is 1472 bytes,
this would require at least 700 packet buffers - (and a greater number if
segments smaller that the MSS were received).

e Example 3:

A UDP receive queue of 200 Kbytes where received datagrams are each 200
bytes would hold 1000 packet buffers.

The examples above use only approximate calculated values. The
onload_stackdump command provides accurate measurements of packet buffer
allocation and usage.

Consideration should be given to packet buffer allocation to ensure that each stack
is allocated the buffers it will require rather than a ‘one size fits all’ approach.

When using the Buffer Table Mode the system is limited to 120K packet buffers -
these are allocated symmetrically across all Solarflare interfaces.

NOTE: Packet buffers are accessible to all network interfaces and each packet buffer
requires an entry in every network adapters’ buffer table. Adding more network
adapters - and therefore more interfaces does not increase the number of packet
buffers available.

For large scale applications the Scalable Packet Buffer Mode removes the limitations
imposed by the network adapter buffer table. See Configuring Scalable Packet
Buffers on page 102 for details.

Running Out of Packet Buffers

When Onload detects that a stack is close to allocating all available packet buffers it
will take action to try and avoid packet buffer exhaustion. Onload will automatically
start dropping packets on receive and, where possible, will reduce the receive
descriptor ring fill level in an attempt to alleviate the situation. A ‘memory pressure’
condition can be identified using the onload_stackdump lots command where
the pkt_bufs field will display the CRITICAL indicator. See Identifying Memory
Pressure below.

Complete packet buffer exhaustion can result in deadlock. In an Onload stack, if all
available packet buffers are allocated (for example currently queued in socket
buffers) the stack is prevented from transmitting further data as there are no packet
buffers available for the task.

If all available packet buffers are allocated then Onload will also fail to keep its
adapters receive queues replenished. If the queues fall empty further data received
by the adapter is instantly dropped. On a TCP connection packet buffers are used to
hold unacknowledged data in the retransmit queue, and dropping received packets
containing ACKs delays the freeing of these packet buffers back to Onload. Setting
the value of EF_MIN_FREE_PACKETS=0 can result in a stack having no free packet
buffers and this, in turn, can prevent the stack from shutting down cleanly.

Issue 20

© Solarflare Communications 2015 100

SOLARFLAREFE®

Onload User Guide
Packet Buffers

Identifying Memory Pressure

The following extracts from the onload_stackdump command identify an Onload
stack under memory pressure.

The EF_MAX_PACKETS value identifies the maximum number of packet buffers that
can be used by the stack. EF_MAX_RX_PACKETS is the maximum number of packet
buffers that can be used to hold packets received. EF_MAX_TX_PACKETS is the
maximum number of packet buffers that can be used to hold packets to send. These
two values are always less that EF_MAX_PACKETS to ensure that neither the transmit
or receive paths can starve the other of packet buffers. Refer to Parameter
Reference on page 146 for detailed descriptions of these per stack variables.

The example Onload stack has the following default environment variable values:

EF_MAX_PACKETS: 32768
EF_MAX_RX_PACKETS: 24576
EF_MAX_TX_PACKETS: 24576

The onload_stackdump lots command identifies packet buffer allocation and the
onset of a memory pressure state:

pkt_bufs: size=2048 max=32768 alloc=24576 free=32 async=0 CRITICAL
pkt_bufs: rx=24544 rx_ring=9 rx_queued=24535

There are potentially 32768 packet buffers available and the stack has allocated
(used) 24576 packet buffers.

In the socket receive buffers there are 24544 packets buffers waiting to be
processed by the application - this is approaching the EF_MAX_RX_PACKETS limitand
is the reason the CRITICAL flag is present i.e. the Onload stack is under memory
pressure. Only 9 packet buffers are available to the receive descriptor ring.

Onload will aim to keep the RX descriptor ring full at all times. If there are not
enough available packet buffers to refill the RX descriptor ring this is indicated by the
LOW memory pressure flag.

The onload_stackdump lots command will also identify the number of memory
pressure events and number of packets dropped as a result of memory pressure.

memory_pressure: 1
memory_pressure_drops: 22096

Controlling Onload Packet Buffer Use

A number of environment variables control the packet buffer allocation on a per
stack basis. Refer to Parameter Reference on page 146 for a description of
EF_MAX_PACKETS.

Unless explicitly configured by the user, EF_MAX_RX_PACKETS and
EF_MAX_TX_PACKETS will be automatically set to 75% of the EF_MAX_PACKETS
value. This ensures that sufficient buffers are available to both receive and transmit.
The EF_MAX_RX_PACKETS and EF_MAX_TX_PACKETS are not typically configured by
the user.

Issue 20

© Solarflare Communications 2015 101

SOLARFLAREFE®

Onload User Guide
Packet Buffers

If an application requires more packet buffers than the maximum configured, then
EF_MAX_PACKETS may be increased to meet demand, however it should be
recognized that larger packet buffer queues increase cache footprint which can lead
to reduced throughput and increased latency.

EF_MAX_PACKETS is the maximum number of packet buffers that could be used by
the stack. Setting EF_MAX_RX_PACKETS to a value greater than EF_MAX_PACKETS
effectively means that all packet buffers (EF_MAX_PACKETS) allocated to the stack
will be used for RX - with nothing left for TX. The safest method is to only increase
EF_MAX_PACKETS which keeps the RX and TX packet buffers values at 75% of this
value.

9.7 Configuring Scalable Packet Buffers

®

NOTE: SR-I0V and therefore Scalable Packet Buffer Mode is not currently supported
on the SFN7000 series adapter but will be available in a future release.

Using the Scalable Packet Buffer Mode Onload stacks are bound to virtual functions
(VFs) and provide a PCI SR-IOV compliant means to provide memory protection and
translation. VFs employ the kernel IOMMU.

Refer to Chapter 11 and Scalable Packet Buffer Mode on page 127 for 32-bit kernel
limitations.

Procedure:

e Step 1. Platform Support on page 102

e Step 2. BIOS and Linux Kernel Configuration on page 103

e Step 3. Update adapter firmware and enable SR-IOV on page 104
e Step 4. Enable VFs for Onload on page 105

e Step 5. Check PCle VF Configuration on page 105

e Step 6. Check VFs in onload_stackdump on page 105

Step 1. Platform Support

Scalable Packet Buffer Mode is implemented using SR-IOV, support for which is a
relatively recent addition to the Linux kernel. There were several kernel bugs in early
incarnations of SR-IOV support, up to and including kernel.org 2.6.34. The fixes have
been back-ported to recent Red Hat kernels. Users are advised to enable scalable
packet buffer mode on Red Hat kernel 2.6.32-131.0.15 or later, or kernel.org 2.6.35
or later. In other distributions, it is recommended that the most recent patched
kernel version is used

e The system hardware must have an IOMMU and this must be enabled in the
BIOS.

¢ The kernel must be compiled with support for OMMU and kernel command
line options are required to select the IOMMU mode.

Issue 20

© Solarflare Communications 2015 102

SOLARFLAREFE®

©

Onload User Guide
Packet Buffers

e The kernel must be compiled with support for SR-IOV APIs (CONFIG-PCI-IOV).
e SR-IOV must be enabled on the network adapter using the sfboot utility.

e When more than 6 VFs are needed, the system hardware and kernel must
support PCle Alternative Requester ID (ARI) - a PCle Gen 2 feature.

e Onload options EF_PACKET_BUFFER_MODE=1 must be set in the environment.

e The sfc driver module option max_vfs should be set to the required number of
VFs.

NOTE: The Scalable Packet Buffer feature can be susceptible to known kernel issues
observed on RHEL6 and SLES 11. (See http://www.spinics.net/lists/linux-pci/
msg10480.html for details. The condition can result in an unresponsive server if
intel iommu has been enabled in the grub. conf file, as per the procedure at Step
2. BIOS and Linux Kernel Configuration on page 103, and if the Solarflare
sfc_resource driver is reloaded. This issue has been addressed in newer kernels.

Step 2. BIOS and Linux Kernel Configuration

To use SR-IOV, hardware virtualization must be enabled. Refer to RedHat Enabling
Intel VT-x and AMD-V Virtualization in BIOS for more information. Take care to
enable VT-d as well as VT on an Intel platform.

To verify that the extensions have been correctly enabled refer to RedHat Verifying
virtualization extensions.For best kernel configuration performance and to avoid
kernel bugs exhibited when IOMMU is enabled for all devices, Solarflare
recommend the kernel is configured to use the IOMMU in pass-through mode -
append the following lines to kernel line in the /boot/grub/grub. conf file:

On an Intel system:
intel_iommu=on iommu=on,pt
On an AMD system:
amd_iommu=on, iommu=on,pt

In pass-through mode the IOMMU is bypassed for regular devices. Refer to Red Hat:
PCl passthrough for more information.

NOTE: On Linux Red Hat 5 servers (2.6.18) it is necessary to also use the
iommu_type=2 option.

NOTE: EnterpriseOnload v2.1.0.0 users and OpenOnload v201109-u2 (onwards)
users:

Recent kernels are compiled with support for IOMMUs by default, but
unfortunately the realtime (-rt) kernel patches are not currently compatible with
IOMMUs (Red Hat MRG kernels are compiled with CONFIG_PCI_IOV disabled). It is
possible to use scalable packet buffer mode on some systems without IOMMU
support, but in an insecure mode. In this configuration the IOMMU is bypassed, and
there is no checking of DMA addresses provided by Onload in user-space. Bugs or
mis-behavior of user-space code can compromise the system.

Issue 20

© Solarflare Communications 2015 103

http://www.spinics.net/lists/linux-pci/msg10480.html
http://www.spinics.net/lists/linux-pci/msg10480.html
https://access.redhat.com/knowledge/docs/en-US/Red_Hat_Enterprise_Linux/6/html/Virtualization_Administration_Guide/sect-Virtualization-Troubleshooting-Enabling_Intel_VT_and_AMD_V_virtualization_hardware_extensions_in_BIOS.html
http://docs.fedoraproject.org/en-US/Fedora/13/html/Virtualization_Guide/sect-Virtualization-Tips_and_tricks-Verifying_virtualization_extensions.html
http://docs.fedoraproject.org/en-US/Fedora/13/html/Virtualization_Guide/sect-Virtualization-Tips_and_tricks-Verifying_virtualization_extensions.html
http://docs.redhat.com/docs/en-US/Red_Hat_Enterprise_Linux/6/html/Virtualization/chap-Virtualization-PCI_passthrough.html
http://docs.redhat.com/docs/en-US/Red_Hat_Enterprise_Linux/6/html/Virtualization/chap-Virtualization-PCI_passthrough.html

SOLARFLAREFE®

®
®

Onload User Guide
Packet Buffers

To enable this insecure mode, set the Onload module option
unsafe_sriov_without iommu=1 for the sfc_resource kernel module.

Linux MRG users are urged to use MRGu2 and kernel 3.2.33-rt50.66.el6rt.x86_64
or later to avoid known issues and limitations of earlier versions.

The unsafe_sriov_without_iommu option is obsoleted in OpenOnload 201210. It
is replaced by physical addressing mode - see Physical Addressing Mode on
page 106 for details.

Step 3. Update adapter firmware and enable SR-IOV

1 Download and install the Solarflare Linux Utilities RPM from
support.solarflare.com and unzip the utilities file to reveal the RPM:
2 Install the RPM:

rpm -Uvh sfutils-<version>.rpm

3 Identify the current firmware version on the adapter:
sfupdate

4 Upgrade the adapter firmware with sfupdate:
sfupdate --write
Full instructions on using sfupdate can be found in the Solarflare Network
Server Adapter User Guide.

5 Use sfboot to enable SR-IOV and enable the VFs. You can enable up to 127 VFs
per port, but the host BIOS may only be able to support a smaller number. The
following example will configure 16 VFs on each Solarflare port:

sfboot sriov=enabled vf-count=16 vf-msix-limit=1

Option Default Value Description

sriov=<enabled | disabled> Disabled Enable/Disable hardware SRIOV
support

vf-count=<n> 127 Number of virtual functions
advertised per port. See the
note below.

vf-msix-limit=<n> 1 Number of MSI-X interrupts per
VF

6 Itis necessary to reboot the server following changes using sfboot and
sfupdate.

NOTE: Enabling all 127 VVFs per port with more than one MSI-X interrupt per VF may
not be supported by the host BIOS. If the BIOS doesn't support this then you may
get 127 VFs on one port and no VFs on the other port. You should contact your BIOS
vendor for an upgrade or reduce the VF count.

NOTE: On Red Hat 5 servers the vf-count should not exceed 32.

Issue 20

© Solarflare Communications 2015 104

https://support.solarflare.com/index.php?view=categories&id=165&option=com_cognidox&Itemid=2

SOLARFLAREFE®

®

Onload User Guide
Packet Buffers

NOTE: VF allocation must be symmetric across all Solarflare interfaces.

Step 4. Enable VFs for Onload
#export EF_PACKET_BUFFER_MODE=1

The sfc driver module max_v+s should specify the number of required VFs. The
driver module option can be set in a user-created file (e.g. sfc.conf) in the /etc/
modprobe.d directory:

options sfc max_vfs=N

Refer to Parameter Reference on page 146 for other values.

Step 5. Check PCle VF Configuration

The network adapter sfc driver will initialize the VFs, which can be displayed by the
1spci command:

lspci -d 1924:

05:00.0 Ethernet controller: Solarflare Communications SFC9020 [Solarflare]
05:00.1 Ethernet controller: Solarflare Communications SFC9020 [Solarflare]
05:00.2 Ethernet controller: Solarflare Communications SFC9020 Virtual Function
[Solarflare]

05:00.3 Ethernet controller: Solarflare Communications SFC9020 Virtual Function
[Solarflare]

05:00.4 Ethernet controller: Solarflare Communications SFC9020 Virtual Function
[Solarflare]

05:00.5 Ethernet controller: Solarflare Communications SFC9020 Virtual Function
[Solarflare]

05:00.6 Ethernet controller: Solarflare Communications SFC9020 Virtual Function
[Solarflare]

05:00.7 Ethernet controller: Solarflare Communications SFC9020 Virtual Function
[Solarflare]

05:01.0 Ethernet controller: Solarflare Communications SFC9020 Virtual Function
[Solarflare]

05:01.1 Ethernet controller: Solarflare Communications SFC9020 Virtual Function
[Solarflare]

The Ispci example output above identifies one physical function per physical port
and the virtual functions (four for each port) of a single Solarflare dual-port network
adapter.

Step 6. Check VFs in onload_stackdump

The onload_stackdump netif command will identify VFs being used by Onload
stacks as in the following example:

onload_stackdump netif
ci_netif dump: stack=0 name=
ver=201109 uid=0 pid=3354
lock=10000000 UNLOCKED nics=3 primed=3
sock_bufs: max=1024 n_allocated=4
pkt_bufs: size=2048 max=32768 alloc=1152 free=128 async=0
pkt_bufs: rx=1024 rx_ring=1024 rx_queued=0
pkt_bufs: tx=0 tx_ring=0 tx_oflow=0 tx_other=0

Issue 20

© Solarflare Communications 2015 105

Onload User Guide

SOLARFLARFE®
; Packet Buffers

time: netif=3df7d2 poll=3df7d2 now=3df7d2 (diff=0.000sec)
ci_netif dump_vi: stack=0 intf=0 vi=67 dev=0000:05:01.0 hw=0C0
evq: cap=2048 current=8 is_32_evs=0 is_ev=0
rxq: cap=511 1im=511 spc=15 level=496 total_desc=0
txq: cap=511 lim=511 spc=511 level=0 pkts=0 oflow_pkts=0
txq: tot_pkts=0 bytes=0
ci_netif _dump_vi: stack=0 intf=1 vi=67 dev=0000:05:01.1 hw=0CO
evq: cap=2048 current=8 is_32_evs=0 is_ev=0
rxq: cap=511 1im=511 spc=15 level=496 total_desc=0
txq: cap=511 lim=511 spc=511 level=0 pkts=0 oflow_pkts=0
txq: tot_pkts=0 bytes=0

The output above corresponds to VFs advertised on the Solarflare network adapter
interface identified using the 1spci command - Refer to Step 5 above.

9.8 Physical Addressing Mode

Physical addressing mode is a Scalable Packet Buffer Mode that also allows Onload
stacks to use large amounts of packet buffer memory (avoiding the limitations of the
address translation table on the adapter), but without the requirement to configure
and use SR-10V virtual functions.

Physical addressing mode, does however, remove memory protection from the
network adapter’s access of packet buffers. Unprivileged user-level code is provided
and directly handles the raw physical memory addresses of packets buffers. User-
level code provides physical memory addresses directly to the adapter and
therefore has the ability to direct the adapter to read or write arbitrary memory
locations. A result of this is that a malicious or buggy application can compromise
system integrity and security. OpenOnload versions earlier than onload-201210 and
EnterpriseOnload-2.1.0.0 are limited to 1 million packet buffers. This limit was
raised to 2 million packets buffers in 201210-ul and EnterpriseOnload-2.1.0.1.

To enable physical addressing mode:

1 Ignore configuration steps 1-4 above.

2 Putthe following option into a user-created .conf file in the /etc/modprobe.d
directory:
options onload phys_mode_gid=<n>
Where setting <n>to be -1 allows all users to use physical addressing mode and
setting to an integer x restricts use of physical addressing mode to the specific
user group X.

3 Reload the Onload drivers

onload_tool reload
4 Enable the Onload environment using EF_PACKET_BUFFER_MODE 2 or 3.

EF_PACKET_BUFFER_MODE=2 is equivalent to mode 0, but uses physical
addresses. Mode 3 uses SR-IOV VFs with physical addresses, but does not use
the IOMMU for memory translation and protection. Refer to Parameter
Reference on page 146 for a complete description of all
EF_PACKET_BUFFER_MODE options.

Issue 20 © Solarflare Communications 2015 106

SOLARFLAREFE®

Onload User Guide
Packet Buffers

9.9 Programmed I/O

PIO (programmed input/output) describes the process whereby data is directly
transferred by the CPU to or from an I/O device. It is an alternative to bus master
DMA techniques where data are transferred without CPU involvement.

Solarflare 7000 series adapters support TX PIO, where packets on the transmit path
can be “pushed” to the adapter directly by the CPU. This improves the latency of
transmitted packets but can cause a very small increase in CPU utilization. TX PIO is
therefore especially useful for smaller packets.

The Onload TX PIO feature is enabled by default but can be disabled via the
environment variable EF_PIO. An additional environment variable,
EF_PIO_THRESHOLD specifies the size of the largest packet size that can use TX PIO.

PIO buffers on the adapter are limited to a maximum of 8 Onload stacks. For
optimum performance, P10 buffers should be reserved for critical processes and
other processes should set EF_PIO to O (zero).

The Onload stackdump utility provides additional counters to indicate the level of
PIO use - see TX PIO Counters on page 220 for details.

The Solarflare net driver will also use P10 buffers for non-accelerated sockets and
this will reduce the number of PIO buffers available to Onload stacks. To prevent this
set the driver module option piobuf_size=0.

When both accelerated and non-accelerated sockets are using PIO, the number of
P10 buffers available to Onload stacks can be calculated from the total 16 available
P10 regions:

Description Example value
piobuf_size driver module parameter 256
rss_cpus driver module parameter 4
region a chunk of memory 2048 bytes 2048 bytes

Using the above example values, each port on the adapter requires:

piobuf_size * rss_cpus / region size = 0.5 regions - (round up - so each port needs 1
region).

This leaves 16-2 = 14 regions for Onload stacks which also require one region per
port, per stack. Therefore from our example we can have 7 onload stacks using PIO
buffers.

P10 buffers are allocated on a first-come, first-served basis. The following warning
might be observed when stacks cannot be allocated any more PIO buffers:

WARNING: all PIO bufs allocated to other stacks. Continuing without PIO.
Use EF_PIO to control this

Issue 20

© Solarflare Communications 2015 107

SOLARFLAREFE®

Onload User Guide
Packet Buffers

To ensure more buffers are available for Onload, it is possible to prevent the net
driver from using P10 buffers. This can be done by setting the sfc driver module
option in a user-created file in the Zetc/modprobe.d directory:

options sfc piobuf_size=0
Drivers should be reloaded for the changes to be effective:
onload_tool reload

The per-stack EF_PIO variable can also be unset for stacks where PIO buffers are not
required.

9.10 Templated Sends

“Templated sends” is another SFN7000 series adapter feature that builds on top of
TX PIO to provide further transmit latency improvements. This can be used in
applications that know the majority of the content of packets in advance of when
the packet is to be sent. For example, a market feed handler may publish packets
that vary only in the specific value of certain fields, possibly different symbols and
price information, but are otherwise identical. Templated sends involve creating a
template of a packet on the adapter containing the bulk of the data prior to the time
of sending the packet. Then, when the packet is to be sent, the remaining data is
pushed to the adapter to complete and send the packet.

The Onload templated sends feature uses the Onload Extensions API to generate the
packet template which is then instantiated on the adapter ready to receive the
“missing” data before each transmission.

The API details are available in the Onload 201310 distribution at /src/include/
onload/extensions_zc.h

Refer to Onload Extensions API for further information on the use of packet
templates including code examples of using this feature.

Issue 20

© Solarflare Communications 2015 108

SOLARFLAREFE®

10

Onload User Guide

Onload and Virtualization

10.1 Introduction

Using Onload-201502 accelerated applications are able to benefit from the inherent
security through isolation, ease of deployment through migration and increased
resource management supported by Linux virtualized environments.

This chapter identifies the following:
e Onload and Linux KVM on page 109
® Onload and NIC Partitioning on page 111

e Onload in a Docker Container on page 113

10.2 Overview

* Running Onload in a Virtual Machine (VM) or Docker Container means the
Onload accelerated application benefits from the inherent isolation policy of
the virtualized environment.

e There is minimal degradation of latency and throughput performance. Near
native network I/O performance is possible because there is direct hardware
access (no hardware emulation) with the guest kernel (and virtualization
platform hypervisor) being bypassed.

e Multiple containers/virtual machines can co-exist on the same host and all are
isolated from each other.

10.3 Onload and Linux KVM

OpenOnload 201502 includes support to accelerate applications running within
Linux VMs on a KVM host. This feature is supported on Solarflare SFN7000 series
adapters where each physical interface on the adapter can be exposed to the host
as up to 16 PCle physical functions (PF) and up to 240 virtual functions (VF). The
adapter also supports up to 2048 MSI-X interrupts.

This support requires a VF (or PF) to be exposed directly into the Linux VM — KVM
call this network configuration “Network hostdev”. Onload provides user-level
access to the adapter via the VF in exactly the same way as is achieved on a non-
virtualized Linux install. Firmware on the Solarflare SFN7000 series adapter
configures layer 2 switching capability that supports the transport of network
packets between PCI physical functions and virtual functions. This feature supports

Issue 20

© Solarflare Communications 2015 109

Onload User Guide

SOLARFLARE® . .
; Onload and Virtualization

the transport of network traffic between Onload applications running in different
virtual machines. This allows traffic to be replicated across multiple functions and
traffic transmitted from one VM can be received on another VM.

Figure 14 below illustrates Onload deployed into the Linux KVM Network Hostdev
architecture which exposes Virtual Functions (VF) directly to the VM guest. This
configuration allows the Onload data path to fully bypass the host operating system
and provides maximum acceleration for network traffic.

WM WM
as as
Application Application
ONLOAD ONLOAD
A A
Host
sfc.ko
Adapter !
VF PF VF
‘ L2 Switch ‘
| Physical Port J

Figure 14: Onload and Network Hostdev Configuration

To deploy Onload in a Linux KVM:

e Asdetailed inthe Solarflare Server Adapter User Guide (SF-103837-CD) chapter
7 SRIOV:

- Install the Solarflare NET driver version 4.4.1.1017 (or later)
- Ensure the adapter is using firmware version 4.4.2.1011 (or later)

- Run sfboot to select the full-feature firmware variant, set the switch-mode
and identify the required number of VFs:

sfboot firmware-variant=full-feature switch-mode=sriov vf-count=4
- Reboot the server, so the Linux KVM host can enumerate the VFs
e Follow the instructions in Solarflare Server Adapter User Guide (SF-103837-CD)
section KVM Libvirt network hostdev - Configuration to:
- Create a VM
- Configure the VFs
- Unbind VFs from the host

Issue 20 © Solarflare Communications 2015 110

SOLARFLAREFE®

®

Onload User Guide

Onload and Virtualization

- Pass VFs to the VM

Example virsh command line and XML file configuration instructions are
provided.

e Install Onload in the VM as in a non-virtualized host - see OpenOnload -
Installation on page 21.

e Set the sfc driver module option num_vis to create the number of virtual
interfaces. A Vlis needed for each Onload stack created on a VF. Driver module
options should be set in a user created file (e.g sfc.conf) in the /etc/
modprobe.d directory.

options sfc num_vis=<NUM>
NOTE: When using Onload with multiple virtual functions (VF) it is necessary to

set the Onload module option oof_all ports_required to zero. See Module
Options on page 143 for details.

The Solarflare Server Adapter User Guide is available from https://
support.solarflare.com/.

10.4 Onload and NIC Partitioning

Each physical interface on the Solarflare SFN7000 series adapter can be exposed to
the host as multiple PCle physical functions (PF). Up to 16 PFs, each having a unique
MAC address, are supported per adapter. To Onload, each PF represents a virtual
adapter.

Issue 20

© Solarflare Communications 2015 111

https://support.solarflare.com/

SOLARFLAREFE®

On the adapter each PF is backed by a virtual adapter and virtual port - these
components are created by the Solarflare NET driver when it finds a partitioned

Onload User Guide

Onload and Virtualization

Host Machine

Application

ONLOAD

ethA

ethB

ethC

ethD

L2 Switch

Figure 15: Onload and NIC Partitioning

Physical Port

adapter. The PFs can be configured to transparently place traffic on separate VLANS

(so each partition is on a separate broadcast domain).

To configure Onload to use the partitioned NIC:

Ensure the adapter is using firmware version 4.4.2.1011 (minimum)

Use sfboot to select the full-feature firmware variant

Use sfboot to partition the NIC into multiple PFs

Rebooting the host allows the firmware to partition the NIC into multiple PFs.

To identify which physical port a network interface is using:

cat /sys/class/net/eth<N>/device/physical_port

For complete details of configuring NIC Partitioning refer to the Solarflare Server

Adapter User Guide (SF-103837-CD) chapter 7 SRIOV available from https://

support.solarflare.com/.

Issue 20

Solarflare Communications 2015

112

Onload User Guide

SOLARFLARE® . .
) Onload and Virtualization

10.5 Onload in a Docker Container

Figure 16 illustrates the Onload deployment in a Docker container environment.
Only the user-level components are created in the container. Onload in the
container uses the Onload drivers installed on the host for network I/0. Network
interfaces configured on the host are also visible and usable directly from the

container.
/ Docker Container \ Host Machine
os
Application
ONLOAD

ethX I | ethy

~
s

0S (RHEL 7)

ONLOAD

SFN7000 series Adapter

Figure 16: Onload in a Docker Container

In keeping with the containerization theory, it is envisaged that only a single Onload
instance will be running in each container, however, there are no restrictions
preventing multiple instances running in the same container.

10.6 Pre-Installation

This install procedure makes the following assumptions - ensure these components
are created/installed before continuing:

e Docker is installed on the host server.

e Onload 201502 (or later version) must be installed on the host. An identical
version will be installed in the container.

@ NOTE: Onload does not currently support Linux namespaces. Support for Linux
Network namespaces may be added in a future release.

Issue 20 Solarflare Communications 2015 113

Onload User Guide

SOLARFLARE® . .
; Onload and Virtualization

10.7 Installation

1 The docker run command will create a container named onload. The container
is created from the centos:latest base image and a bash shell terminal will be
started.

[root@host]# docker run --net=host --device=/dev/onload --device=/dev/onload epoll --
name=onload -it -v /src/openonload-201502.tgz:/tmp/openonload-201502.tgz
centos:latest /bin/bash

The example above copies the openonload-201502.tgz file from the /src
directory on the host and placed this file into /tmp in the container root file
system. All subsequent commands are run inside the container unless host is
specified.

2 Install required OS tools/packages in the container.

yum install perl autoconf automake libtool tar gcc make net-tools ethtool

Different docker base images may require additional OS packages installed.

3 Unpack the tarball to build the openonload-<version> sub-directory.
/usr/bin/tar -zxvf /tmp/openonload-201502.tgz
Note: it is not possible to use tools/utilities (such as tar) from the host file
system on files in the container file system.
4 Change directory to the openonload-<version>/scripts directory
cd /tmp/openonload-201502/scripts

5 Build and install the Onload user-level components in the container:
./onload_build --user

If the build process identifies any missing dependencies, return to step 2 to
install missing components.

./onload_install --userfiles --nobuild

The following warning may appear at the end of the install process, but it is not
necessary to reload the drivers

onload_install: To load the newly installed drivers run: onload_tool reload

6 Check Onload installation
onload

OpenOnload 201502

Copyright 2006-2012 Solarflare Communications, 2002-2005 Level 5
Networks

Built: Feb 5 2015 12:41:04 (release)

Kernel module: 201502

usage:
onload [options] <command> <command-args>

options:
--profile=<profile> -- comma sep list of config profile(s)
--force-profiles -- profile settings override environment
--no-app-handler -- do not use app-specific settings
--app=<app-name> -- identify application to run under onload

Issue 20 © Solarflare Communications 2015 114

SOLARFLAREFE®

Onload User Guide

Onload and Virtualization

--version -- print version information
-v -- verbose
-h --help -- this help message

On the host, check that the container has been created and is running:
docker ps -a

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
€2a12a635359 centos:latest "/bin/bash™ 15 seconds ago Up 14 seconds onload

Configure network interfaces.

Configure network adapter interfaces in the host. Interfaces will also be visible
and usable from the container:

ifconfig -a

Onload is now installed and ready to use in the container.

10.8 Create Onload Docker Image

10.9 Migration

To create a new docker image that includes the Onload installation prior to
migration. All commands are run on the host.

1

Identify the container (note CONTAINER ID or NAME)
docker ps -a

CONTAINER ID IMAGE COMMAND CREATED STATUS PORTS NAMES
35bfeceb7022 centos:latest "/bin/bash" 24 hours ago Exited onload

Create new image (this example uses the NAME value)

docker commit -m "installed onload 201502" onload onload:vl
89e95645d5Ff11a02880deed44b433ab577f5a2715dat944fdob393620d8253F1

List images

/docker images

REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
onload vl 89e95645d5ff 28 seconds ago 486 MB
centos latest dade6cb4530a 3 days ago 224 MB

The docker save command can be used to archive a docker image which includes
the Onload installation. This image can then be migrated to other servers having the
following configuration:

Docker is installed and docker service is running
Host operating system RHEL 7

The Onload version running on the host must be the same as the migrated
image Onload version

The target server does not need to have the same Solarflare adapter types
installed.

Issue 20

© Solarflare Communications 2015 115

Onload User Guide

SOLARFLARE® . .
; Onload and Virtualization

1 Create a tar file of the container image:

docker save -o <dir path to store image>/<name of image>.tar
<current name of image>

Example (store image tar file in host /tmp directory):
docker save -o /tmp/dk-onload-201502.tar onload
2 The image tar file can then be copied to the target server where it can be
loaded with the docker load command:
docker load -i /<path to transferred file>/dk-onload-201502.tar

docker images
REPOSITORY TAG IMAGE 1ID CREATED VIRTUAL SIZE
onload vl 303ec2d3e2b5 About an hour ago 486 MB

3 Create/run a container from the transferred image.

docker run --net=host --device=/dev/onload --device=/dev/
onload_epoll --name=onload -it onload:vl /bin/bash

When the container has been created, Onload will be running within it.

Onload Docker Images

Onload images are not currently available from the default docker registry hub.
Images may be made available if there is sufficient customer interest and
requirement for this feature.

10.10 Copying Files Between Host and Container

The following example demonstrates how to copy files from the host to a container.
All commands are run on the host.
1 Getthe container Short Name (output truncated):

[root@hostname]# docker ps -a
CONTAINER ID
bdlea8d5526¢

2 Discover the container Long Name:

[root@hostname]# docker inspect -f '{{.Id}}' bdlea8d5526c
bdlea8d5526c55df4740de9ba5afelded28ac3d127901ccb1653e187962c5156

The container long name can also be discovered using the container name in
place of the container identifier.

3 Copy afile to root file system (/tmp) on the container:

[root@hostname]# cp myfile.txt /var/lib/docker/devicemapper/mnt/
bdlea8d5526c55df4740de9ba5afelded28ac3d127901ccb1653e187962c5156/
rootfs/tmp/myfile.txt

Issue 20 © Solarflare Communications 2015 116

SOLARFLAREFE®

11

Onload User Guide

Limitations

Users are advised to read the latest release_notes distributed with the Onload
release for a comprehensive list of Known Issues.

11.1 Introduction

This chapter outlines configurations that Onload does not accelerate and ways in
which Onload may change behavior of the system and applications. It is a key goal
of Onload to be fully compatible with the behavior of the regular kernel stack, but
there are some cases where behavior deviates.

11.2 Changes to Behavior

Multithreaded Applications Termination

As Onload handles networking in the context of the calling application's thread it is
recommended that applications ensure all threads exit cleanly when the process
terminates. In particular the exit () function causes all threads to exit immediately
- even those in critical sections. This can cause threads currently within the Onload
stack holding the per stack lock to terminate without releasing this shared lock - this
is particularly important for shared stacks where a process sharing the stack could
‘hang’ when Onload locks are not released.

An unclean exit can prevent the Onload kernel components from cleanly closing the
application's TCP connections, a message similar to the following will be observed:

[onload] Stack [@] released with lock stuck

and any pending TCP connections will be reset. To prevent this, applications should
always ensure that all threads exit cleanly.

Thread Cancellation

Unexpected behavior can result when an accelerated application uses a
pthread_cancel function. There is increased risk from multi-threaded applications or
a PTHREAD _CANCEL_ASYNCHRONOUS thread calling a non-async safe function.
Onload users are strongly advised that applications should not use pthread_cancel
functions.

Issue 20

© Solarflare Communications 2015 117

SOLARFLAREFE®

Onload User Guide

Limitations

Packet Capture

Packets delivered to an application via the accelerated path are not visible to the OS
kernel. As a result, diagnostic tools such as tcpdump and wireshark do not capture
accelerated packets. The Solarflare supplied onload_tcpdump does support capture
of UDP and TCP packets from Onload stacks - Refer to onload_tcpdump on page 246
for details.

Firewalls

®

Packets delivered to an application via the accelerated path are not visible to the OS
kernel. As a result, these packets are not visible to the kernel firewall (iptables) and
therefore firewall rules will not be applied to accelerated traffic. The
onload_iptables feature can be used to enforce Linux iptables rules as hardware
filters on the Solarflare adapter, refer to onload_iptables on page 251.

NOTE: Hardware filtering on the network adapter will ensure that accelerated
applications receive traffic only on ports to which they are bound.

System Tools

Signals

With the exception of ‘listening’ sockets, TCP sockets accelerated by Onload are not
visible to the netstat tool. UDP sockets are visible to netstat.

Accelerated sockets appear in the /proc directory as symbolic links to /dev/
onload. Tools that rely on /proc will probably not identify the associated file
descriptors as being sockets. Refer to Onload and File Descriptors, Stacks and
Sockets on page 52 for more details.

Accelerated sockets can be inspected in detail with the Onload onload_stackdump
tool, which exposes considerably more information than the regular system tools.
For details of onload_stackdump refer to onload_stackdump on page 219.

If an application receives a SIGSTOP signal, it is possible for the processing of
network events to be stalled in an Onload stack used by the application. This
happens if the application is holding a lock inside the stack when the application is
stopped, and if the application remains stopped for a long time, this may cause TCP
connections to time-out.

A signal which terminates an application can prevent threads from exiting cleanly.
Refer to Multithreaded Applications Termination on page 117 for more information.

Undefined content may result when a signal handler uses the third argument
(ucontext) and if the signal is postponed by Onload. To avoid this, use the Onload
module option safe_signals_and_exit=0 or use EF_SIGNALS_NOPOSTPONE to
prevent specific signals being postponed by Onload.

Issue 20

© Solarflare Communications 2015 118

Onload User Guide

SOLARFLARE® e .
; Limitations

Onload and IP_MULTICAST_TTL

Onload will actin accordance with RFC 791 when it comes to the IP_MULTICAST_TTL
setting. Using Onload, if IP_MULTICAST_TTL=0, packets will never be transmitted on
the wire.

This differs from the Linux kernel where the following behavior has been observed:

Kernel - IP_MULTICAST _TTL O - if there is a local listener, packets will not be
transmitted on the wire.

Kernel - IP_MULTICAST_TTL O - if there is NO local listener, packets will always be
transmitted on the wire.

Source/Policy Based Routing and Routing Metrics

Onload does not currently support source based or policy based routing. Whereas
the Linux kernel will select a route based on routing metrics, Onload will select any
of the valid routes to a destination that are available.

11.3 Limits to Acceleration

IP Fragmentation

Fragmented IP traffic is not accelerated by Onload on the receive side, and is instead
received transparently via the kernel stack. IP fragmentation is rarely seen with TCP,
because the TCP/IP stacks segment messages into MTU-sized IP datagrams. With
UDP, datagrams are fragmented by IP if they are too large for the configured MTU.
Refer to Fragmented UDP on page 89 for a description of Onload behavior.

Broadcast Traffic

Broadcast sends and receives function as normal but will not be accelerated.
Multicast traffic can be accelerated.

IPv6 Traffic

IPv6 traffic functions as normal but will not be accelerated.

Raw Sockets

Raw Socket sends and receives function as normal but will not be accelerated.

Socketpair and UNIX Domain Sockets

Onload will intercept, but does not accelerate the socketpair() system call.
Sockets created with socketpair () will be handled by the kernel. Onload also does
not accelerate UNIX domain sockets.

Issue 20 © Solarflare Communications 2015 119

SOLARFLAREFE®

Onload User Guide

Limitations

Statically Linked Applications

Onload will not accelerate statically linked applications. This is due to the method in
which Onload intercepts libc function calls (using LD_PRELOAD).

Local Port Address

Onload is limited to OOF_LOCAL_ADDR_MAX number of local interface addresses. A
local address can identify a physical port or a VLAN, and multiple addresses can be
assigned to a single interface where each address contributes to the maximum
value. Users can allocate additional local interface addresses by increasing the
compile time constant OOF_LOCAL_ADDR_MAX in the /src/1lib/efthrm/
oof_impl.h file and rebuilding Onload. In onload-201205 OOF _LOCAL_ADDR_MAX
was replaced by the onload module option max_layer2_interfaces.

Bonding, Link aggregation

VLANs

e Onload will only accelerate traffic over 802.3ad and active-backup bonds.

e Onload will not accelerate traffic if a bond contains any slave interfaces that are
not Solarflare network devices. Adding a non-Solarflare network device to a
bond that is currently accelerated by Onload may result in unexpected results
such as connections being reset.

e Acceleration of bonded interfaces in Onload requires a kernel configured with
sysfs support and a bonding module version of 3.0.0 or later.

In cases where Onload will not accelerate the traffic it will continue to work via the
OS network stack.

For more information and details of configuration options refer to the Solarflare
Server Adapter User Guide section ‘Setting Up Teams'.

e Onload will only accelerate traffic over VLANs where the master device is either
a Solarflare network device, or over a bonded interface that is accelerated. i.e.
If the VLAN's master is accelerated, then so is the VLAN interface itself.

e Nested VLAN tags are not accelerated, but will function as normal.

¢ Theifconfigcommand will return inconsistent statistics on VLAN interfaces (not
master interface).

e ASolarflare VLAN tagged interface that is subsequently placed in a bond will
not be accelerated.

e Hardware filters installed by Onload on the Solarflare adapter will only consider
the IP address and port, but not the VLAN identifier. Therefore if the same IP
address:port combination exists on different VLAN interfaces, only the first
interface to install the filter will receive the traffic.

Issue 20

© Solarflare Communications 2015 120

SOLARFLAREFE®

Onload User Guide

Limitations

In cases where Onload will not accelerate the traffic it will continue to work via the
OS network stack.

For more information and details and configuration options refer to the Solarflare
Server Adapter User Guide section ‘Setting Up VLANS'.

TCP RTO During Overload Conditions

Under very high load conditions an increased frequency of TCP retransmission
timeouts (RTOs) might be observed. This has the potential to occur when a thread
servicing the stack is descheduled by the CPU whilst still holding the stack lock thus
preventing another thread from accessing/polling the stack. A stack not being
serviced means that ACKs are not received in a timely manner for packets sent and
results in RTOs for the unacknowledged packets.

Enabling the per stack environment variable EF_INT_DRIVEN can reduce the
likelihood of this behavior by ensuring the stack is serviced promptly.

TCP with Jumbo Frames

When using jumbo frames with TCP, Onload will limit the MSS to 2048 bytes to
ensure that segments do not exceed the size of internal packet buffers.

This should present no problems unless the remote end of a connection is unable to
negotiate this lower MSS value.

Transmission Path - Packet Loss

Occasionally Onload needs to send a packet, which would normally be accelerated,
via the kernel. This occurs when there is no destination address entry in the ARP
table or to prevent an ARP table entry from becoming stale.

By default, the Linux sysctl, unres_glen, will enqueue 3 packets per unresolved
address when waiting for an ARP reply, and on a server subject to a very high UDP
or TCP traffic load this can result in packet loss on the transmit path and packets
being discarded.

The unres_glen value can be identified using the following command:

sysctl -a | grep unres_qglen

net.ipv4.neigh.eth2.unres_qglen
net.ipv4.neigh.eth@.unres_glen =
net.ipv4.neigh.lo.unres_qglen = 3
net.ipv4.neigh.default.unres_qglen = 3

1]
w

Changes to the queue lengths can be made permanent in the /etc/sysctl.conf
file. Solarflare recommend setting the unres_glen value to at least 50.

If packet discards are suspected, this extremely rare condition can be indicated by

the cp_defer counter produced by the onload_stackdump lots commandon UDP
sockets or from the unresolved_discards counter in the Linux /proc/net/stat

arp_cache file.

Issue 20

© Solarflare Communications 2015 121

SOLARFLAREFE®

Onload User Guide

Limitations

Application Clustering

Onload matches the Linux kernel implementation such that clustering is not
supported for multicast traffic and where setting of SO_REUSEPORT has the
same affect as SO_REUSEADDR.

Calling connect () on a TCP socket which was previously subject to a bind()
call is not currently supported. This will be supported in a future release.

An application cluster will not persist over adapter/server/driver reset. Before
restarting the server or resetting the adapter the Onload applications should be
terminated. This limitation will be removed in a future release.

The environment variable EF_CLUSTER_RESTART determines the behavior of
the cluster when the application process is restarted - refer to
EF_CLUSTER_RESTART in Parameter Reference on page 146.

If the number of sockets in a cluster is less than EF_CLUSTER_SIZE, a portion of
the received traffic will be lost.

There is little benefit when clustering involves a TCP loopback listening socket
as connections will not be distributed amongst all threads. A non-loopback
listening socket - which might occasionally get some loopback connections can
benefit from Application Clustering.

11.4 epoll - Known Issues

Onload supports different implementations of epoll controlled by the EF_UL_EPOLL
environment variable - see Multiplexed I/0 on page 57 for configuration details.

When using EF_UL_EPOLL=1 or 3, it has been identified that the behavior of
epoll wait() differs from the kernel when the EPOLLONESHOT event is
requested, resulting in two ‘wakeups’ being observed, one from the kernel and
one from Onload. This behavior is apparent on SOCK_DGRAM and SOCK_STREAM
sockets for all combinations of EPOLLONESHOT, EPOLLIN and EPOLLOUT events.
This applies for TCP listening sockets and UDP sockets, but not for TCP
connected sockets.

EF_EPOLL_CTL_FAST is enabled by default and this modifies the semantics of
epoll. In particular, it buffers up calls to epoll _ctl() and only applies them
when epoll wait() is called. This can break applications that do

epoll wait() in one thread and epoll _ctl() in another thread. The issue
only affects EF_UL_EPOLL=2 and the solution is to set EF_EPOLL_CTL_FAST=0
if this is a problem. The described condition does not occur if EF_UL_EPOLL=1
or EF_UL_EPOLL=3.

When EF_EPOLL_CTL_FAST is enabled and an application is testing the
readiness of an epoll file descriptor without actually calling epoll _wait(), for
example by doing epoll within epoll or epoll within select(), if one thread is
calling select() orepoll wait() and another thread is doing epoll ctl(),
then EF_EPOLL_CTL_FAST should be disabled. This applies when using
EF_UL_EPOLL 1,2 or 3.

Issue 20

© Solarflare Communications 2015 122

SOLARFLAREFE®

Onload User Guide

Limitations

If the application is monitoring the state of the epoll file descriptor indirectly,
e.g. by monitoring the epoll fd with poll, then EF_EPOLL_CTL_FAST can cause
issues and should be set to zero.

A socket should be removed from an epoll set only when all references to the
socket are closed.

With EF_UL_EPOLL=1 (default) or EF_UL_EPOLL=3, a socket is removed from
the epoll set if the file descriptor is closed, even if other references to the
socket exist. This can cause problems if file descriptors are duplicated using
dup(). For example:

s = socket();

s2 = dup(s);

epoll_ctl(epoll_fd, EPOLL_CTL_ADD, s, ...);

close(s); /* socket referenced by s is removed from epoll set when using onload */

Workaround is set EF_UL_EPOLL=2.

When Onload is unable to accelerate a connected socket, e.g. because no route
to the destination exists which uses a Solarflare interface, the socket will be
handed off to the kernel and is removed from the epoll set. Because the socket
is no longer in the epoll set, attempts to modify the socket with epoll ctl()
will fail with the ENOENT (descriptor not present) error. The described condition
does not occur if EF_UL_EPOLL=1 or 3.

If an epoll file descriptor is passed to the read() orwrite () functions these
will return a different errorcode than that reported by the kernel stack. This
issue exists for all implementations of epoll.

When EPOLLET is used and the event is ready, epoll _wait() is triggered by
ANY event on the socket instead of the requested event. This issue should not
affect application correctness. The problem exists for both implementations of
epoll.

Users should be aware that if a server is overclocked the epoll wait()
timeout value will increase as CPU MHz increases resulting in unexpected
timeout values. This has been observed on Intel based systems and when the
Onload epoll implementation is EF_UL_EPOLL=1 or 3. Using EF_UL_EPOLL=2
this behavior is not observed.

On a spinning thread, if epoll acceleration is disabled by setting
EF_UL_EPOLL=0, sockets on this thread will be handed off to the kernel, but
latency will be worse than expected kernel socket latency.

Issue 20

© Solarflare Communications 2015 123

SOLARFLAREFE®

Onload User Guide

Limitations

11.5 Configuration Issues

Mixed Adapters Sharing a Broadcast Domain

Onload should not be used when Solarflare and non-Solarflare interfaces in the
same network server are configured in the same broadcast domain? as depicted by
the following diagram.

Sarver-51 Serrer-52

Broadcast Domain

nan-Solarflare

When an originating server (S1) sends an ARP request to a remote server (52) having
more than one interface within the same broadcast domain, ARP responses from S2
will be generated from all interfaces and it is non-deterministic which response the
originator uses. When Onload detects this situation, it prompts a message
identifying 'duplicate claim of ip address'to appear inthe (S1) host syslog
as a warning of potential problems.

Problem 1

Traffic from S1 to S2 may be delivered through either of the interfaces on S2,
irrespective of the IP address used. This means that if one interface is accelerated by
Onload and the other is not, you may or may not get acceleration.

To resolve the situation (for the current session) issue the following command:
echo 1 >/proc/sys/net/ipv4/conf/all/arp_ignore

or to resolve it permanently add the following line to the /etc/sysctl. conf file:
net.ipv4.conf.all.arp_ignore = 1

and run the sysctl command for this be effective.

sysctl -p

These commands ensure that an interface will only respond to an ARP request when
the IP address matches its own. Refer to the Linux documentation Linux/
Documentation/networking/ip-sysctl.txt for further details.

1. A Broadcast domain can be a local network segment or VLAN.

Issue 20

© Solarflare Communications 2015 124

SOLARFLAREFE®

Onload User Guide

Limitations

Problem 2

A more serious problem arises if one interface on S2 carries Onload accelerated TCP
connections and another interface on the same host and same broadcast domain is
non-Solarflare:

A TCP packet received on the non-Solarflare interface can result in accelerated TCP
connections being reset by the kernel stack and therefore appear to the application
as if TCP connections are being dropped/terminated at random.

To prevent this situation the Solarflare and non-Solarflare interfaces should not be
configured in the same broadcast domain. The solution described for Problem 1
above can reduce the frequency of Problem 2, but does not eliminate it.

TCP packets can be directed to the wrong interface because:

e the originator S1 needs to refresh its ARP table for the destination IP address -
so sends an ARP request and subsequently directs TCP packets to the non-
Solarflare interface

e aswitch within the broadcast domain broadcasts the TCP packets to all
interfaces.

Virtual Memory on 32 Bit Systems

On 32 bit Linux systems the amount of allocated virtual address space defaults,
typically, to 128 Mb which limits the number of Solarflare interfaces that can be
configured. Virtual memory allocation can be identified in the /proc/meminfo file

e.g.

grep Vmalloc /proc/meminfo
VmallocTotal: 122880 kB
VmallocUsed: 76380 kB
VmallocChunk: 15600 kB

The Onload driver will attempt to map all PCI Base Address Registers for each
Solarflare interface into virtual memory where each interface requires 16Mb.

Examination of the kernel logs in /var/log/messages at the point the Onload
driver is loading, would reveal a memory allocation failure as in the following
extract:

allocation failed: out of vmalloc space - use vmalloc=<size> to increase size.
[sfc efrm] Failed (-12) to map bar (16777216 bytes)
[sfc efrm] efrm_nic_add: ERROR: linux_efrm_nic_ctor failed (-12)

One solution is to use a 64 bit kernel. Another is to increase the virtual memory
allocation on the 32 bit system by setting vmalloc size on the ‘kernel line’ in the /
boot/grub/grub. conf file to 256, for example,

kernel /vmlinuz-2.6.18-238.el5 ro root=/dev/sda7 vmalloc=256M

The system must be rebooted for this change to take effect.

Issue 20

© Solarflare Communications 2015 125

SOLARFLAREFE®

Onload User Guide

Limitations

Hardware Resources

Onload uses certain physical resources on the network adapter. If these resources
are exhausted, it is not possible to create new Onload stacks and not possible to
accelerate new sockets. These physical resources include:

1 Virtual NICs. Virtual NICs provide the interface by which a user level application
sends and receives network traffic. When these are exhausted it is not possible
to create new Onload stacks, meaning new applications cannot be accelerated.
However, Solarflare network adapters support large numbers of Virtual NICs,
and this resource is not typically the first to run out.

2 Filters. Filters are used to demultiplex packets received from the wire to the
appropriate application. When these are exhausted it is not possible to create
new accelerated sockets. Solarflare recommend that applications do not
allocate more than 4096 filters.

3 Buffer table entries. The buffer table provides address protection and
translation for DMA buffers. When these are exhausted it is not possible to
create new Onload stacks, and existing stacks are not able to allocate more
DMA buffers.

When any of these resources are exhausted, normal operation of the system should
continue, but it will not be possible to accelerate new sockets or applications.

Under severe conditions, after resources are exhausted, it may not be possible to
send or receive traffic resulting in applications getting ‘stuck’. The
onload_stackdump utility should be used to monitor hardware resources.

IGMP Operation and Multicast Process Priority

It is important that the priority of processes using UDP multicast do not have a
higher priority than the kernel thread handling the management of multicast group
membership.

Failure to observe this could lead to the following situations:
1 Incorrect kernel IGMP operation.

2 The higher priority user process is able to effectively block the kernel thread
and prevent it from identifying the multicast group to Onload which will react
by dropping packets received for the multicast group.

A combination of indicators may identify this:

e ethtoolreports good packets being received while multicast mismatch does not
increase.

¢ ifconfig identifies data is being received.

e onload_stackdump will show the rx_discard_mcast_mismatch counter
increasing.

Lowering the priority of the user process will remedy the situation and allow the
multicast packets through Onload to the user process.

Issue 20

© Solarflare Communications 2015 126

SOLARFLAREFE®

Onload User Guide

Limitations

Dynamic Loading

If the onload library libonload is opened with dlopen () and closed with d1close()
it can leave the application in an unpredictable state. Users are advised to use the
RTLD_NODELETE flag to prevent the library from being unloaded when dlclose() is
called.

Scalable Packet Buffer Mode

Support for SR-IOV is disabled on 32-bit kernels, therefore the following features are
not available on 32-bit kernels.

e Scalable Packet Buffer Mode (EF_PACKET BUFFER_MODE=1)
e ef_viwith VFs

On some kernel versions, configuring the adapter to have a large number of VFs (via
sfboot) can cause kernel panics. Affecting kernel versions in the range 3.0 to 3.3
inclusive, this is due to the large netlink messages that include information about
network interfaces.

The problem can be avoided by limiting the total number of physical network
interfaces, including VFs, to a maximum 30.

SLES11 SR-IOV

It has been noted that some SLES11 kernels (3.1 and earlier) exhibit a bug, typically
seen when loading Onload drivers, when running OpenOnload with SR-IOV and Intel
IOMMUs. This bug has been fixed in more recent kernels 3.2 stable and 3.6.

Huge Pages with IPC namespace

Huge page support should not be enabled if the application uses IPC namespaces
and the CLONE_NEWIPC flag. Failure to observe this may result in a segfault.

Huge Pages with Shared Stacks

Processes which share an Onload stack should not attempt to use huge pages. Refer
to Stack Sharing on page 62 for limitation details.

Huge Pages - Size

When using huge pages, it is recommended to avoid setting the page size greater
than 2 Mbyte. A failure to observe this could lead to Onload unable to allocate
further buffer table space for packet buffers.

Huge Pages - AMD IOMMU

Due to the AMD IOMMU not returning aligned PCl addresses, the use of huge pages
on systems with AMD IOMMU:s is not supported.

Issue 20

© Solarflare Communications 2015 127

Onload User Guide

SOLARFLARE® e .
; Limitations

Huge Pages and shmmni

Users should ensure that the number of system wide shared memory segments
(shmmni) exceeds the number of huge pages required.

e Toidentify current shmmni setting:

cat /proc/sys/kernel/shmmni

e To set (no reboot required - but not permanent):
echo 8000 > /proc/sys/kernel/shmmni

e To set (permanent - reboot required):

echo "kernel.shmmni=8000" >> /etc/sysctl.conf

For example, if 4000 huge pages are required, increase the current shmmni value by
4000.

Red Hat MRG 2 and SR-IOV

EnterpriseOnload from version 2.1.0.1 includes support for Red Hat MRG2 update 3
and the 3.6.11-rt kernel. Solarflare do not recommend the use of SR-IOV or the
IOMMU when using Onload on these systems due to a number of known kernel
issues. The following Onload features should not be used on MRG2u3:

e Scalable packet buffer mode (EF_PACKET_BUFFER_MODE=1)
e ef_viwith VFs

PowerPC Architecture

e 32 bit applications are known not to work correctly with onload-201310. This
has been corrected in onload-201310-ul.

e SR-IOV is not supported by onload-201310 on PowerPC systems.
Recommended setting is EF_PACKET_BUFFER_MODE==0 or 2, but not 1 or 3.

e PowerPC architectures do not currently support PIO for reduced latency.
EF_PIO should be set to zero.

Java 7 Applications - use of vfork()

Onload accelerated Java 7 applications that call vfork() should set the
environment variable EF_VFORK_MODE=2 and thereafter the application should not
create sockets or accelerated pipes in vfork() child before exec.

Issue 20 © Solarflare Communications 2015 128

SOLARFLAREFE®

12

Onload User Guide

Change History

This chapter provides a brief history of changes, additions and removals to Onload
releases affecting Onload behavior and Onload environment variables.

e Features on page 130
e Environment Variables on page 135
e Module Options on page 143

The OOL column identifies the OpenOnload release supporting the feature. The EOL
column identifies the EnterpriseOnload release supporting the feature (NS = not
supported).

The following table maps major EnterpriseOnload releases to the closest
functionally equivalent OpenOnload release. Users should always also refer to the
Release notes and Changelogs to identify feature support in the Enterprise release.

OpenOnload EnterpriseOnload
201011-ul 1.0
201109-u2 2.0
201310-u2 3.0
201502-u2 4.0

Issue 20

© Solarflare Communications 2015 129

SOLARFLAREFE®

12.1 Features

Onload User Guide
Change History

Feature ooL EOL Description/Notes

4.5.1.1026 net driver 201509 NS Adapter net driver.

Application Clustering 201405 NS 201509 Remove the same port, same address
limitation.

CI_CFG_MAX_INTERFACES ALL NS Increase default to 8 (previously 6). This

CI_CFG_MAX_REGISTER_INT remains a compile time option.

ERFACES

onload_set_recv_filter() 201509 NS UDP sockets calls is deprecated in 201509.

Teaming driver 201509 NS Accelerate links aggregated using teamd and
the teaming driver.

Transparent Proxy 201509 NS See Transparent Reverse Proxy Modes on
page 84.

Scalable Filters 201509 NS See Scalable Filters on page 82.

IP_TRANSPARENT 201509 NS TCP socket option.

4.5.1.1010 net driver 201502-u2 4.0 Adapter net driver.

4.4.1.1021net driver 201502-ul NS Adapter net driver.

SO_PROTOCOL 201502-u2 4.0 Socket option to retrieve a socket protocol as an
integer.

4.4.1.1017 net driver 201502 NS Adapter net driver.

Linux Docker Containers 201502 4.0 See Onload in a Docker Container on page 113

Onload in KVM 201502 4.0 Onload and Linux KVM on page 109

Socket caching 201502 4.0 See Listen/Accept Sockets on page 79

Remote Monitoring 201502 4.0 See Remote Monitoring on page 236

Blacklist/Whitelist 201502 4.0 See Whitelist and Blacklist Interfaces on
page 51

TCP delegated send 201502 4.0 Seelisten/Accept Sockets on page 79

Syn Cookies 201502 4.0

Receive queue drop counters 201502 4.0

Ubuntu/Debian supported 201502 4.0 See Hardware and Software Supported

Platforms on page 16 for supported versions.

Issue 20

© Solarflare Communications 2015 130

SOLARFLAREFE®

Onload User Guide

Change History
Feature ooL EOL Description/Notes
4.1.2.1003 net driver 201405-u2 NS Net driver supporting RHEL7 and later kernels.
201405-ul
SIOCOUTQ 201405-ul 4.0 TCP socket ioctl that returns the amount of data
not yet acknowledged.
SIOCOUTQNSD 201405-ul 4.0 TCP socket ioctl that returns the amount of data
not yet sent.
ef_pd_interface_name() 201405-ul 4.0 Identifies the interface used by a protection
domain.
ef_vi_prime() 201405-ul 4.0 Prime interrupts so can block on a file
descriptor (including any virtual interface) until
events are ready to be processed.
ef_filter_spec_set_tx_port 201405-ul 4.0 New filter type to sniff TX traffic.
_sniff()
ONLOAD_SOF_TIMESTAMPING_ST 201405 4.0 Onload extension to the standard
REAM SO_TIMESTAMPING API to support hardware
timestamps on TCP sockets.
onload_move_fd 201405 4.0 Move sockets between stacks.
SolarCapture Pro - 201405 4.0 Onload distribution includes the solar-clusterd
application clustering daemon for SolarCapture Pro application
clustering feature.
4.1.0.6734 net driver 201405 3.0.0.8 Net driver supporting SFN5xxx, 6xxx and 7xxx
3007 Series adapters - including SFN7x42Q.
3.0.0.6
3.0.0.5
3.0.04
SO_REUSEPORT 201405 4.0 Allow multiple sockets to bind to the same port
- supports the Application Clustering feature -
see Application Clustering on page 63.
HW Multicast Loopback 201405 4.0 Refer to Hardware Multicast Loopback on
page 94.
onload_ordered_epoll_ 201405 4.0 Wire order delivery of packets.
wait()
Refer to Wire Order Delivery on page 61.
onload_ordered_epoll_
event
TCP SYN cookies 201405 4.0 Force use of TCP SYN cookies to protect against
a SYN flood attack.
Issue 20 © Solarflare Communications 2015 131

SOLARFLAREFE®

Onload User Guide

Change History

Feature ooL EOL Description/Notes

onload_tool disable_cstates 201405 - Removed along with the sfc_tune driver.

sfc_aoe driver 201405 NS ApplicationOnload™ driver included in the
Onload distribution.

4.0.2.6645 net driver 201310-u2 3.0 Net driver supporting SEN5xxx, 6xxx and 7xxx
series adapters introducing hardware packet
timestamps and PTP on 7xxx series adapters.
SFN7142Q not supported.

SO_TIMESTAMPING 201310-ul 3.0 Socket option to receive hardware timestamps
for received packets.

onload_fd_check_feature() 201310-ul 3.0 onload_fd_check_feature on page 191

4.0.2.6628 net driver 201310-ul NS Net driver supporting SEN5xxx, 6xxx and 7xxx
series adapters introducing hardware packet
timestamps and PTP on 7xxx series adapters.

4.0.0.6585 net driver 201310 3.0 Net driver supporting SEN5xxx, 6xxx and 7xxx
series adapters and Solarflare PTP and
hardware packet timestamps.

Multicast Replication 201310 3.0 Bonding, Link aggregation and Failover on
page 65

TXPIO 201310 3.0 Debug and Logging on page 67

Large Buffer Table Support 201310 3.0 Large Buffer Table Support on page 97

Templated Sends 201310 3.0 Templated Sends on page 108

ONLOAD_MSG_WARM 201310 3.0 ONLOAD_MSG_WARM on page 78

SO_TIMESTAMP 201310 3.0 Supported for TCP sockets

SO_TIMESTAMPNS

dup3() 201310 3.0 Onload will intercept calls to create a copy of a
file descriptor using dup3().

3.3.0.6262 net driver NS 2.1.0.1 Support Solarflare Enhanced PTP (sfptpd).

IP_ADD_SOURCE_MEMBERS 201210-ul 3.0 Join the supplied multicast group on the given

HIP interface and accept data from the supplied
source address.

IP_DROP_SOURCE_MEMBER 201210-ul 3.0 Drops membership to the given multicast

SHIP group, interface and source address.

MCAST_JOIN_SOURCE_GRO 201210-ul 3.0 Join a source specific group.

up

Issue 20

© Solarflare Communications 2015

132

SOLARFLAREFE®

Onload User Guide
Change History

Feature

ooL EOL

Description/Notes

MCAST_LEAVE_SOURCE_GR
oup

201210-ul 3.0

Leave a source specific group.

3.3.0.6246 net driver

201210-ul NS

Support Solarflare Enhanced PTP (sfptpd).

Huge pages support

201210 3.0

Packet buffers use huge pages. Controlled by
EF_USE_HUGE_PAGES

Default is 1 - use huge pages if available

See Limitations on page 117

onload_iptables

201210 3.0

Apply Linux iptables firewall rules or user-
defined firewall rules to Solarflare interfaces

onload_stackdump
processes

onload_stackdump affinities

onload_stackdump env

201210 3.0

Show all accelerated processes by PID

Show CPU core accelerated process is running
on

Show environment variables -
EF_VALIDATE_ENV

Physical addressing mode

201210 3.0

Allows a process to use physical addresses
rather than controlled I/O addresses. Enabled
by EF_PACKET_BUFFER_MODE 2 or 3

UDP sendmmsg()

201210 3.0

Send multiple msgs in a single function call

I/0 Multiplexing

201210 3.0

Support for ppoll(), pselect() and
epoll pwait()

DKMS 201210 NS OpenOnload available in DKMS RPM binary
format

3.2.1.6222B net driver 201210 NS OpenOnload only

3.2.1.6110 net driver NS 2.1.0.0 EnterpriseOnload only

3.2.1.6099 net driver

201205-ul NS

Removing zombie stacks 201205-ul 2.1.0.0 onload_stackdump -z kill will terminate
stacks lingering after exit

Compatibility 201205-ul 2.1.0.0 Compatibility with RHEL6.3 and Linux 3.4.0

TCP striping 201205 2.1.0.0 Single TCP connection can use the full
bandwidth of both ports on a Solarflare adapter

TCP loopback acceleration 201205 2.1.0.0 EF_TCP_CLIENT_LOOPBACK &
EF_TCP_SERVER_LOOPBACK

TCP delayed 201205 2.1.0.0 EF_DYNAMIC_ACK_THRESH

acknowledgments

Issue 20 © Solarflare Communications 2015 133

SOLARFLAREFE®

Onload User Guide

Change History

Feature ooL EOL Description/Notes
TCP reset following RTO 201205 2.1.0.0 EF_TCP_RST_DELAYED_CONN
Configure control plane 201205 2.1.0.0 max_layer_2_interface
tables max_neighs

max_routes
Onload adapter support 201109-u2 2.0.0.0 Onload support for SFN5322F & SFN6x22F
Accelerate pipe2() 201109-u2 2.0.0.0 Accelerate pipe2() function call
SOCK_NONBLOCK 201109-u2 2.0.0.0 TCP socket types
SOCK_CLOEXEC
Extensions API 201109-u2 2.0.0.0 Support for onload_thread_set_spin()
3.2 net driver 201109-ul 2.0.0.0
Onload_tcpdump 201109 2.0.0.0
Scalable Packet Buffer 201109 2.0.0.0 EF_PACKET_BUFFER_MODE=1
Zero-Copy UDP RX 201109 2.0.0.0
Zero-Copy TCP TX 201109 2.0.0.0
Receive filtering 201109 2.0.0.0
TCP_QUICKACK 201109 2.0.0.0 setsockopt() option
Benchmark tool sfnettest 201109 2.0.0.0 Support for sfnt-stream
3.1 net driver 201104
Extensions API 201104 2.0.0.0 Initial publication
SO_BINDTODEVICE 201104 2.0.0.0 setsockopt() and getsockopt() options
SO_TIMESTAMP
SO_TIMESTAMPNS
Accelerated pipe() 201104 2.0.0.0 Accelerate pipe() function call
UDP recvmmsg() 201104 2.0.0.0 Deliver multiple msgs in a single function call
Benchmark tool sfnettest 201104 2.0.0.0 Supports only sfnt-pingpong

Issue 20

© Solarflare Communications 2015 134

SOLARFLAREFE®

12.2 Environment Variables

Onload User Guide
Change History

Variable ooL EOL Changed Notes
EF_UDP_SEND_NONBLOC 201509 NS Control behaviour of non-block
K_NO_PACKETS_MODE UDP send() calls when
insufficient buffers can be
allocated.
EF_TCP_SYNRECV_MAX 201509 NS Limit the number of half-open
connections that can be created
in an Onload stack.
EF_TCP_SOCKBUF_MAX_ 201509 NS Control the fraction of total TX
FRACTION buffers allocated to a single
socket.
EF_TCP_CONNECT_SPIN 201509 NS Calls to connect() for TCP
sockets will spin until a
connection is established or the
spin timeout expires or the
socket timeout expires.
Default = disabled.
EF_SCALABLE_FILTERS_E 201509 NS Toggle scalable filters mode for
NABLE a stack.
EF_SCALABLE_FITLERS_M 201509 NS Stores the scalable filter mode
ODE set with EF_SCALABLE_FILTERS.
NOT SET DIRECTLY.
EF_SCALABLE_FILTERS 201509 NS Identify the interface to use and
set mode for scalable listening
sockets.
EF_RETRANSMIT_THRESH 201509 NS Number of retransmit timeouts
OLD_ORPHAN before a TCP connection is
aborted in case of orphaned
connection.
EF_MAX_EP_PINNED_PA NS 1.0 201509 Not used in previous release
GES and removed from 201509.
EF_OFE_ENGINE_SIZE 201502 NS Size (bytes) of the Onload filter
engine allocated when a new
stack is created.
EF_TCP_SNDBUF_ESTABLI 201502 4.0 Override OS default value for
SHED_DEFAULT SO_SNDBUF for TCP sockets in
the ESTABLISHED state.
Issue 20 © Solarflare Communications 2015 135

SOLARFLAREFE®

Onload User Guide

Change History

Variable ooL EOL Changed Notes

EF_TCP_RCVBUF_STRICT 201502 4.0 Prevent TCP small segment
attack by limiting number of
packets in a TCP receive queue
and reorder buffer.

EF_TCP_RCVBUF_ESTABLI 201502 4.0 Override OS default value for

SHED_DEFAULT SO_RCVBUF for TCP sockets in
the ESTABLISHED state.

EF_SO BUSY_POLL_SPIN 201502 4.0 Spin only if a spinning socket is
present in the poll/select/epoll
set.

EF_SELECT_NONBLOCK_FA 201502 4.0 Non-accelerated sockets are

ST_USEC polled only every N usecs.

EF_SELECT_FAST_USEC 201502 4.0 Accelerated sockets are polled
for N usecs before
unaccelerated sockets.

EF_PIPE_SIZE 201502 4.0 201509 Default size of a pipe.

Default decreased to 229376
from 237568.

EF_SOCKET_CACHE_MAX 201502 4.0 Set the maximum number of
TCP sockets to cache per stack.

EF_SOCKET_CACHE_PORTS 201502 4.0 Allow caching of sockets bound
to specified ports.

EF_PER_SOCKET_CACHE_M 201502 4.0 Limit the size of a socket cache.

AX

EF_COMPOUND_PAGES_MOD 201502 4.0 Control Onload use of

E compound pages.

EF_UL_EPOLL=3 201502 4.0

EF_ACCEPT_INHERIT_NOD NS 3.0 201502/4.0 Removed (O0L)201502, (EOL)

ELAY 4.0.

EF_TCP_SEND_NONBLOCK_ 201502 3.0.0.3 Control non-blocking TCP send()

NO_PACKETS_MODE call behavior when unable to
allocate sufficient packet
buffers.

EF_CLUSTER_IGNORE 201405-ul 4.0 Ignore attempts to use clusters

EF_CLUSTER_RESTART 201405 4.0 Determine Onload cluster
behavior following restart.

Issue 20 © Solarflare Communications 2015 136

SOLARFLAREFE®

Onload User Guide

Change History
Variable ooL EOL Changed Notes
EF_CLUSTER_SIZE 201405 4.0 Size (number of socket
members) of application
cluster.
EF_CLUSTER_NAME 201405 4.0 Create an application cluster.
EF_UDP_FORCE_REUSEPOR 201405 4.0 Support Application clustering
T for legacy applications.
EF_TCP_FORCE_REUSEPOR 201405 4.0 Support Application clustering
T for legacy applications.
EF_MCAST_SEND 201405 4.0 Enable/Disable multicast
loopback.
EF_MCAST_RECV_HW_LOOP 201405 4.0 Enable/Disable hardware
multicast loopback - receive.
EF_TX_TIMESTAMPING 201405 4.0 Per stack hardware
timestamping control.
EF_TIMESTAMPING_REPOR 201405 4.0 Control timestamp reporting.
TING
EF_TCP_SYNCOOKIES 201405 4.0 Use TCP syncookies to protect
against SYN flood attack.
EF_SYNC_CPLANE_AT_CRE 201405 3.0 Synchronize control plane when
ATE a stack is created.
EF_MULTICAST LOOP_OFF - 3.0 201405 Deprecated in favor of

EF_MCAST_SEND

EF_TX_PUSH_THRESHOLD

201310 ul 3.0

Improve EF_TX_PUSH low
latency transmit feature.

EF_RX_TIMESTAMPING

201310 ul 3.0

Control of receive packet
hardware timestamps.

EF_RETRANSMIT THRESHO 201104 1.0.0.0 201310-ul Default changed from 4 to 5.
LD_SYNACK
EF_PIO 201310 3.0 Enable/disable PIO
Default value 1.
EF_PIO_THRESHOLD 201310 3.0 Identifies the largest packet size
that can use PIO. Default value
is 1514.
EF_VFORK_MODE 201310 3.0 Dictates how vfork() intercept
should work.
Issue 20 © Solarflare Communications 2015 137

SOLARFLAREFE®

Onload User Guide
Change History

Variable

ooL EOL

Changed

Notes

EF_FREE_PACKETS_LOW_W
ATERMARK

201310 3.0

201405-ul

Level of free packets to be
retained during runtime.

Default changed to 0
(interpreted as EF_RXQ_SIZE/2)
from 100.

EF_TCP_SNDBUF_MODE

201310 2.0.0.6

201502
4.0
201509

Limit TCP packet buffers used
on the send queue and
retransmit queue.

Default changed to 1 from 0 in
201502/4.0.

Added mode 2 in 201509.

EF_TXQ_SIZE

3.0

201310

Limited to 2048 for SFN7000
series.

EF_MAX_ENDPOINTS

201104 1.1.0.3

201310

201509

Default changed to 1024 from
10.

Default changes to 8192 from
1024. Min (default) changes to
4 from 0.

EF_SO_TIMESTAMP_RESYN
C_TIME

201104 2.1.0.1

201310

Removed from OOL.

EF_SIGNALS_NOPOSTPONE

201210-ul 2.1.01

Prevent the specified list of
signals from being postponed
by onload.

EF_FORCE_TCP_NODELAY

201210 3.0

Force use of TCP_NODELAY.

EF_USE_HUGE_PAGES

201210 3.0

Enables huge pages for packet
buffers.

EF_VALIDATE_ENV

201210 3.0

Will warn about obsolete or
misspelled options in the
environment

Default value 1.

EF_PD_VF

201205-ul 2.1.0.0

201210

Allocate VIs within SR-IOV VFs
to allocate unlimited memory.

Replaced with new options on
EF_PACKET_BUFFER_MODE

Issue 20

© Solarflare Communications 2015 138

SOLARFLAREFE®

Onload User Guide

Change History

Variable ooL EOL Changed Notes

EF_PD_PHYS_MODE 201205 _ul 2.1.0.0 201210 Allows a VI to use physical
addressing rather than
protected I/O addresses
Replaced with new options on
EF_PACKET_BUFFER_MODE

EF_MAX_PACKETS 20101111 1.0.0.0 201210 Onload will round the specified
value up to the nearest multiple
of 1024.

EF_EPCACHE_MAX 20101111 1.0.0.0 201210 Removed from OOL

EF_TCP_MAX_SEQERR_MSG NS 201210 Removed

S

EF_STACK_LOCK_BUZZ 20101111 1.0.0.0 201210 OOL Change to per_process,
from per_stack. EOL is per
stack.

EF_RFC_RTO_INITIAL 20101111 1.0.0.0 201210 Change default to 1000 from

2.1.0.0 3000

EF_DYNAMIC_ ACK_THRESH 201205 2.1.0.0 201210 Default value changed to 16
from 32in 201210

EF_TCP_SERVER_LOOPBAC 201205 2.1.0.0 201210 TCP loopback acceleration

K Added option 4 for client

EF_TCP_CLIENT_LOOPBAC loopback to cause both ends of

K a TCP connection to share a
newly created stack.
Option 4 is supported from
EnterpriseOnload v3.0.

EF_TCP_RST_DELAYED 201205 2.1.0.0 Reset TCP connection following
RTO expiry

EF_SA_ONSTACK_INTERCE 201205 2.1.0.0 Default value 0

PT

EF_SHARE_WITH 201109-u2 2.0.0.0

EF_EPOLL_CTL_HANDOFF 201109-u2 2.0.0.0 Default value 1

EF_CHECK_STACK_USER NS 201109-u2 Renamed EF_SHARE_WITH

EF_POLL_USEC 201109-ul 1.0.0.0

EF_DEFER_WORK_LIMIT 201109-ul 2.0.0.0 Default value 32

Issue 20

© Solarflare Communications 2015 139

SOLARFLAREFE®

Onload User Guide

Change History
Variable ooL EOL Changed Notes
EF_POLL_FAST_LOOPS 20101111 1.0.0.0 201109-ul Renamed EF_POLL_FAST_USEC
2.0.0.0
EF_POLL_NONBLOCK_ 201104 2.0.0.0 201109-ul Renamed EF_POLL_NONBLOCK_
FAST_LOOPS 2001 FAST_USEC
EF_PIPE_RECV_SPIN 201104 2.0.0.0 201109-ul Becomes per-process, was
previously per-stack
EF_PKT_WAIT_SPIN 20101111 1.0.0.0 201109-ul Becomes per-process, was
previously per-stack
EF_PIPE_SEND_SPIN 201104 2.0.0.0 201109-ul Becomes per-process, was
previously per-stack
EF_TCP_ACCEPT_SPIN 20101111 1.0.0.0 201109-ul Becomes per-process, was
previously per-stack
EF_TCP_RECV_SPIN 20101111 1.0.0.0 201109-ul Becomes per-process, was
previously per-stack
EF_TCP_SEND_SPIN 20101111 1.0.0.0 201109-ul Becomes per-process, was
previously per-stack
EF_UDP_RECV_SPIN 20101111 1.0.0.0 201109-ul Becomes per-process, was
previously per-stack
EF_UDP_SEND_SPIN 20101111 1.0.0.0 201109-ul Becomes per-process, was
previously per-stack
EF_EPOLL_NONBLOCK_FAS 201104-u2 2.0.0.0 201109-ul Removed
T_LOOPS
EF_POLL_AVOID_INT 20101111 1.0.0.0 201109-ul Removed
EF_SELECT_AVOID_INT 20101111 1.0.0.0 201109-ul Removed
EF_SIG_DEFER 20101111 1.0.0.0 201109-ul Removed
EF_IRQ_CORE 201109 2.0.0.0 201109-u2 Non-root user can now set it
when using scalable packet
buffer mode
EF_IRQ_CHANNEL 201109 2.0.0.0
EF_IRQ_MODERATION 201109 2.0.0.0 Default value 0

Issue 20

© Solarflare Communications 2015

140

SOLARFLAREFE®

Onload User Guide

Change History
Variable ooL EOL Changed Notes
EF_PACKET_BUFFER_MODE 201109 2.0.0.0 201210 In 201210 options 2 and 3
enable physical addressing
mode.
EOL only supports option 1.
EOLv3.0 supports options 2 and
3.
Default - disabled
EF_SIG_REINIT 201109 NS Default value 0.
201109-ul Removed in 201109-ul
EF_POLL_TCP_LISTEN_UL 201104 2.0.0.0 201109 Removed
_ONLY
EF_POLL_UDP 20101111 1.0.0.0 201109 Removed
EF_POLL_UDP_TX_FAST 20101111 1.0.0.0 201109 Removed
EF_POLL_UDP_UL_ONLY 201104 2.0.0.0 201109 Removed
EF_SELECT_UDP 20101111 1.0.0.0 201109 Removed
EF_SELECT_UDP_TX_FAST 20101111 1.0.0.0 201109 Removed
EF_UDP_CHECK_ERRORS 20101111 1.0.0.0 201109 Removed
EF_UDP_RECV_FAST_LOOP 20101111 1.0.0.0 201109 Removed
S
EF_UDP_RECV_MCAST UL_ 20101111 1.0.0.0 201109 Removed
ONLY
EF_UDP_RECV_UL_ONLY 20101111 1.0.0.0 201109 Removed
EF_TX_QOS_CLASS 201104-u2 2.0.0.0 Default value 0
EF_TX_MIN_IPG_CNTL 201104-u2 2.0.0.0 Default value 0
EF_TCP_LISTEN_HANDOVE 201104-u2 2.0.0.0 Default value 0
R
EF_TCP_CONNECT_HANDOV 201104-u2 2.0.0.0 Default value 0
ER
EF_EPOLL_NONBLOCK_FAS 201104-u2 2.0.0.0 Default value 32
T_LOOPS
- 201109-ul Removed in 201109-ul
EF_TCP_SNDBUF_MODE 2.0.0.6 Default value 0
Issue 20 © Solarflare Communications 2015 141

‘ Onload User Guide
SOLARFLARE®

Change History

Variable ooL EOL Changed Notes
EF_UDP_PORT_HANDOVER2 201104-ul 2.0.0.0 Default value 1
_MAX
EF_UDP_PORT_HANDOVER2 201104-ul 2.0.0.0 Default value 2
_MIN
EF_UDP_PORT_HANDOVER3 201104-ul 2.0.0.0 Default value 1
_MAX
EF_UDP_PORT_HANDOVER3 201104-ul 2.0.0.0 Default value 2
_MIN
EF_STACK_PER_THREAD 201104-ul 2.0.0.0 Default value 0
EF_PREFAULT_PACKETS 20101111 1.0.0.0 201104-ul Enabled by default, was

previously disabled
EF_MCAST_RECV 201104-ul 2.0.0.0 Default value 1
EF_MCAST_JOIN_BINDTOD 201104-ul 2.0.0.0 Default value 0
EVICE
EF_MCAST_JOIN HANDOVE 201104-ul 2.0.0.0 Default value 0
R
EF_DONT_ACCELERATE 201104-ul 2.0.0.0 Default value 0
EF_MULTICAST 20101111 1.0.0.0 201104-ul Removed
EF_TX_ PUSH 20101111-u1 1.0.0.0 201104 Enabled by default, was

previously disabled

201109 No longer set by the latency
profile script

Issue 20 © Solarflare Communications 2015 142

SOLARFLAREFE®

12.3 Module Options

To list all onload module options:

modinfo onload

Onload User Guide
Change History

Option

ooL

EOL

Changed

Notes

scalable_filter_gid

201509

NS

Set to a group Identifier of
users allowed to use the
scalable filters feature.

Set to -2 means that
CAP_NET_RAW srequired-and
checking is enforced.

Set to -1 to avoid capability
(CAP_NET_RAW) check.

oof_shared_steal thre
sh

See Listen/Accept Sockets on
page 79

oof_shared_keep_thres
h

See Listen/Accept Sockets on
page 79

oof_all ports_require
d

When set to 1, Onload will
return an error if it is unable to
install a filter on all required
interfaces.

Set this to 0 when using
multiple PFs or VFs with Onload.

intf white_list

201502

NS

See Whitelist and Blacklist
Interfaces on page 51

intf_black_list

201502

NS

See Whitelist and Blacklist
Interfaces on page 51

timesync_period

201502

NS

Period in milliseconds between
synchronizing the Onload clock
with the system clock.

max_packets_per_stack

201210

3.0

Limit the number of packet
buffers that each Onload stack
can allocate. This module
option places an upper limit on
the EF_MAX_PACKETS option

Issue 20

© Solarflare Communications 2015 143

SOLARFLAREFE®

Onload User Guide
Change History

Option

ooL

EOL

Changed

Notes

epoll2 max_stacks

201210

3.0

Identifies the maximum
number of stacks that an epoll
file descriptor can handle when
EF_UL_EPOLL=2

phys_mod_gid

201210

3.0

sfc_char module parameter to
restrict which ef_vi users can
use physical addressing mode.

phys_mode_gid

201210

3.0

Enable physical addressing
mode and restrict which users
can use it

shared_buffer_table

201210

NS

This option should be set to
enable ef_vi applications that
use the ef _iobufset API. Setting
shared_buffer_table=10000
will make 10000 buffer table
entries available for use with
ef _iobufset.

safe_signals_and_exit

201205

2.1.0.0

When Onload intercepts a
termination signal it will
attempt a clean exit by releasing
resources including stack locks
etc. The default is (1) enabled
and it is recommended that this
remains enabled unless signal
handling problems occur when
it can be disabled (0).

max_layer2_interfaces

201205

2.1.0.0

Maximum number of network
interfaces (includes physical,
VLAN and bonds) supported in
the control plane.

max_routes

201205

2.1.0.0

Maximum number of entries in
the Onload route table. Default
is 256.

max_neighs

201205

2.1.0.0

Maximum number of entries in
Onload ARP/neighbour table.
Rounded up to power of two
value. Default is 1024.

Issue 20

© Solarflare Communications 2015 144

‘ Onload User Guide
SOLARFLARE®

Change History

Option ooL EOL Changed Notes
unsafe_sriov_without 201209-u2 2.0.0.0 201210 Removed, obsoleted by physical
iommu addressing modes and

phys_mode_gid.

Obsolete in EOL from v3.0.
buffer_table min 2.0.0.0 201210 Obsolete - Removed.
buffer_table_max Obsolete in EOL from v3.0.

@ NOTE: The user should always refer to the Onload distribution Release Notes and
Change Log. These are available from http://www.openonload.org/
download.html.

Issue 20 © Solarflare Communications 2015 145

http://www.openonload.org/download.html

‘ Onload User Guide
SOLARFLARE®

A Parameter Reference

A.1 Parameter List

The parameter list details the following:

e The environment variable used to set the parameter.

e Parameter name: the name used by onload_stackdump.

e The default, minimum and maximum values.

e Whether the variable scope applies per-stack or per-process.

e Description.

EF_ACCEPTQ_MIN_BACKLOG

Name: acceptq_min_backlog default: 1 per-stack

Sets a minimum value to use for the 'backlog' argument to the listen() call. If the
application requests a smaller value, use this value instead.

EF_ACCEPT_INHERIT_NONBLOCK

Name: accept_force_inherit_nonblock default:0 min:0 max:1 per-
process

If set to 1, TCP sockets accepted from a listening socket inherit the O_NONBLOCK flag
from the listening socket.

EF_BINDTODEVICE_HANDOVER

Name: bindtodevice handover default:0 min:0 max:1 per-stack

Hand sockets over to the kernel stack that have the SO_BINDTODEVICE socket option
enabled.

Issue 20 © Solarflare Communications 2015 146

SOLARFLAREFE®

Onload User Guide

Parameter Reference

EF_BURST_CONTROL_LIMIT

Name: burst_control _limit default: 0 per-stack

If non-zero, limits how many bytes of data are transmitted in a single burst. This can be
useful to avoid drops on low-end switches which contain limited buffering or limited
internal bandwidth. This is not usually needed for use with most modern, high-

performance switches.

EF_BUZZ_USEC

Name: buzz_usec default: 0 per-stack

Sets the timeout in microseconds for lock buzzing options. Set to zero to disable lock
buzzing (spinning). Will buzz forever if set to -1. Also set by the EF_POLL_USEC option.

EF_CLUSTER_IGNORE

Name: cluster_ignore default: 0 min:0 max:1 per-stack

When set, this option instructs Onload to ignore attempts to use clusters and effectively
ignore attempts to set SO_REUSEPORT.

EF_CLUSTER_RESTART

Name: cluster_restart _opt default:0 min:0 max:1 per-process

This option controls the behaviour when recreating a stack (e.g. due to restarting a
process) in an SO_REUSEPORT cluster and it encounters a resource limitation such as an
orphan stack from the previous process: 0 - return an error. 1 - terminate the orphan to
allow the new process to continue

EF_CLUSTER_SIZE

Name: cluster_size default:2 min:2 per-process

If use of SO_REUSEPORT creates a cluster, this option specifies size of the cluster to be
created. This option has no impact if use of SO_REUSEPORT joins a cluster that already
exists. Note that if fewer sockets than specified here join the cluster, then some traffic
will be lost. Refer to the SO_REUSEPORT section in the manual for more detail.

Issue 20

© Solarflare Communications 2015 147

Onload User Guide

SOLARFLARE®
; Parameter Reference

EF_COMPOUND_PAGES_MODE

Name: compound_pages default: 0 min:0 max:2 per-stack

Debug option, not suitable for normal use.For packet buffers, allocate system pages in
the following way: O - try to use compound pages if possible (default); 1 - do not use
compound pages of high order; 2 - do not use compound pages at all.

EF_CONG_AVOID_SCALE_BACK

Name: cong_avoid_scale_back default:0 per-stack

When >0, this option slows down the rate at which the TCP congestion window is
opened. This can help to reduce loss in environments where there is lots of congestion

and loss.

EF_DEFER_WORK_LIMIT

Name: defer_work_limit default: 32 per-stack

The maximum number of times that work can be deferred to the lock holder before we
force the unlocked thread to block and wait for the lock

EF_DELACK_THRESH

Name: delack_thresh default: 1 min:0 max: 65535 per-stack

This option controls the delayed acknowledgement algorithm. A socket may receive up
to the specified number of TCP segments without generating an ACK. Setting this option
to 0 disables delayed acknowledgements.NB. This option is overridden by
EF_DYNAMIC_ACK_THRESH, so both options need to be set to 0 to disable delayed
acknowledgements.

EF_DONT_ACCELERATE

Name: dont_accelerate default:0 min:0 max:1 per-process

Do not accelerate by default. This option is usually used in conjuction with
onload_set_stackname() to allow individual sockets to be accelerated selectively.

Issue 20 © Solarflare Communications 2015 148

SOLARFLAREFE®

Onload User Guide

Parameter Reference

EF_DYNAMIC_ACK_THRESH

Name: dynack thresh default: 16 min:0 max: 65535 per-stack

If set to >0 this will turn on dynamic adapation of the ACK rate to increase efficiency by
avoiding ACKs when they would reduce throughput. The value is used as the threshold
for number of pending ACKs before an ACK is forced. If set to zero then the standard
delayed-ack algorithm is used.

EF_EPOLL_CTL_FAST

Name:ul_epoll_ctl_fast default:1 min:0 max:1l per-process

Avoid system calls in epoll_ctl() when using an accelerated epoll implementation.
System calls are deferred until epoll_wait() blocks, and in some cases removed
completely. This option improves performance for applications that call epoll_ctl()
frequently.CAVEATS:* This option has no effect when EF_UL_EPOLL=0.* Do not turn this
option on if your application uses dup(), fork() or exec() in cojuction with epoll file
descriptors or with the sockets monitored by epoll.* If you monitor the epoll fd in
another poll, select or epoll set, and the effects of epoll_ctl() are latency critical, then
this option can cause latency spikes or even deadlock.* With EF_UL_EPOLL=2, this
option is harmful if you are calling epoll_wait() and epoll_ctl() simultaneously from
different threads or processes.

EF_EPOLL_CTL_HANDOFF

Name: ul_epoll_ctl_handoff default: 1 min:0 max:1 per-process

Allow epoll_ctl() calls to be passed from one thread to another in order to avoid lock
contention, in EF_UL_EPOLL=1 or 3 case. This optimisation is particularly important
when epoll_ctl() calls are made concurrently with epoll_wait() and spinning is
enabled.This option is enabled by default.CAVEAT: This option may cause an error code
returned by epoll_ctl() to be hidden from the application when a call is deferred. In such
cases an error message is emitted to stderr or the system log.

EF_EPOLL_MT_SAFE

Name: ul_epoll_mt_safe default:0 min:0 max:1 per-process

This option disables concurrency control inside the accelerated epoll implementations,
reducing CPU overhead. It is safe to enable this option if, for each epoll set, all calls on
the epoll set and all calls that may modify a member of the epoll set are concurrency
safe. Calls that may modify a member are bind(), connect(), listen() and close().This

Issue 20

© Solarflare Communications 2015 149

Onload User Guide

SOLARFLARE®
; Parameter Reference

option improves performance with EF_UL_EPOLL=1 or 3 and also with EF_UL_EPOLL=2
and EF_EPOLL_CTL_FAST=1.

EF_EPOLL_SPIN

Name: ul_epoll_spin default: 0 min:0 max:1 per-process

Spin in epoll_wait() calls until an event is satisfied or the spin timeout expires
(whichever is the sooner). If the spin timeout expires, enter the kernel and block. The
spin timeout is set by EF_SPIN_USEC or EF_POLL_USEC.

EF_EVS_PER_POLL

Name: evs_per_poll default: 64 min:0 max: OX7FFFFFFF per-stack

Sets the number of hardware network events to handle before performing other work.
The value chosen represents a trade-off: Larger values increase batching (which
typically improves efficiency) but may also increase the working set size (which harms
cache efficiency).

EF_FDS_MT_SAFE

Name: fds_mt_safe default: 1 min:0 max:1 per-process

This option allows less strict concurrency control when accessing the user-level file
descriptor table, resulting in increased performance, particularly for multi-threaded
applications. Single-threaded applications get a small latency benefit, but multi-
threaded applications benefit most due to decreased cache-line bouncing between CPU
cores.This option is unsafe for applications that make changes to file descriptors in one
thread while accessing the same file descriptors in other threads. For example, closing a
file descriptor in one thread while invoking another system call on that file descriptor in
a second thread. Concurrent calls that do not change the object underlying the file
descriptor remain safe.Calls to bind(), connect(), listen() may change underlying object.
If you call such functions in one thread while accessing the same file descriptor from the
other thread, this option is also unsafe. In some special cases, any functions may
change underlying object.Also concurrent calls may happen from signal handlers, so set
this to 0 if your signal handlers call bind(), connect(), listen() or close()

Issue 20 © Solarflare Communications 2015 150

Onload User Guide

SOLARFLARE®
; Parameter Reference

EF_FDTABLE_SIZE

Name: fdtable_size default:0 per-process

Limit the number of opened file descriptors by this value. If zero, the initial hard limit of
open files (‘ulimit -n -H") is used. Hard and soft resource limits for opened file
descriptors (help ulimit, man 2 setrlimit) are bound by this value.

EF_FDTABLE_STRICT

Name: fdtable_strict default:0 min:0 max:1 per-process

Enables more strict concurrency control for the user-level file descriptor table. Enabling
this option can reduce performance for applications that create and destroy many
connections per second.

EF_FORCE_SEND_MULTICAST

Name: force_send_multicast default:1 min:0 max:1 per-stack

This option causes all multicast sends to be accelerated. When disabled, multicast
sends are only accelerated for sockets that have cleared the IP_MULTICAST_LOOP
flag.This option disables loopback of multicast traffic to receivers on the same host,
unless(a) those receivers are sharing an OpenOnload stack with the sender (see
EF_NAME) and EF_MCAST_SEND is set to 1 or 3, or(b) prerequisites to support loopback
to other OpenOnload stacks are met (see EF_MCAST_SEND).See the OpenOnload
manual for further details on multicast operation.

EF_FORCE_TCP_NODELAY

Name: tcp_force nodelay default:0 min:0 max:2 per-stack

This option allows the user to override the use of TCP_NODELAY. This may be useful in
cases where 3rd-party software is (not) setting this value and the user would like to
control its behaviour: 0 - do not override 1 - always set TCP_NODELAY 2 - never set
TCP_NODELAY

EF_FORK_NETIF

Name: Fork_netif default: 3 min: CI_UNIX_FORK _NETIF_NONE max:
Cl1_UNIX_FORK_NETIF_BOTH per-process

This option controls behaviour after an application calls fork(). 0 - Neither fork parent

Issue 20 © Solarflare Communications 2015 151

Onload User Guide

SOLARFLARE®
; Parameter Reference

nor child creates a new OpenOnload stack 1 - Child creates a new stack for new sockets
2 - Parent creates a new stack for new sockets 3 - Parent and child each create a new

stack for new sockets

EF_FREE_PACKETS_LOW_ WATERMARK

Name: free_packets_low default: 0 per-stack

Keep free packets number to be at least this value. EF_MIN_FREE_PACKETS defines
initialisation behaviour; this value is about normal application runtime. In some
combinations of hardware and software, Onload is not able allocate packets at any
context, so it makes sense to keep some spare packets. Default value O is interpreted as
EF_RXQ_SIZE/2

EF_HELPER_PRIME_USEC

Name: timer_prime_usec default: 250 per-stack

Sets the frequency with which software should reset the count-down timer. Usually set
to a value that is significantly smaller than EF_HELPER_USEC to prevent the count-down
timer from firing unless needed. Defaults to (EF_HELPER_USEC / 2).

EF_HELPER_USEC

Name: timer_usec default: 500 per-stack

Timeout in microseconds for the count-down interrupt timer. This timer generates an
interrupt if network events are not handled by the application within the given time. It
ensures that network events are handled promptly when the application is not invoking
the network, or is descheduled.Set this to 0 to disable the count-down interrupt timer.
It is disabled by default for stacks that are interrupt driven.

EF_INT_DRIVEN

Name: int_driven default:1 min:0 max:1 per-stack

Put the stack into an 'interrupt driven' mode of operation. When this option is not
enabled Onload uses heuristics to decide when to enable interrupts, and this can cause
latency jitter in some applications. So enabling this option can help avoid latency
outliers.This option is enabled by default except when spinning is enabled.This option
can be used in conjunction with spinning to prevent outliers caused when the spin
timeout is exceeded and the application blocks, or when the application is descheduled.

Issue 20 © Solarflare Communications 2015 152

Onload User Guide

SOLARFLARE®
; Parameter Reference

In this case we recommend that interrupt moderation be set to a reasonably high value
(eg. 100us) to prevent too high a rate of interrupts.

EF_INT_REPRIME

Name: int_reprime default:0 min:0 max:1 per-stack

Enable interrupts more aggressively than the default.

EF_IRQ_CHANNEL

Name: irg_channel default: 4294967295 min: -1 max: SMAX per-stack

Set the net-driver receive channel that will be used to handle interrupts for this stack.
The core that receives interrupts for this stack will be whichever core is configured to
handle interrupts for the specified net driver receive channel.This option only takes
effect EF_PACKET_BUFFER_MODE=0 (default) or 2.

EF_IRQ_CORE

Name: irg_core default: 4294967295 min: -1 max: SMAX per-stack

Specify which CPU core interrupts for this stack should be handled on.With
EF_PACKET_BUFFER_MODE=1 or 3, Onload creates dedicated interrupts for each stack,
and the interrupt is assigned to the requested core.With EF_PACKET_BUFFER_MODE=0
(default) or 2, Onload interrupts are handled via net driver receive channel interrupts.
The sfc_affinity driver is used to choose which net-driver receive channel is used. It is
only possible for interrupts to be handled on the requested core if a net driver interrupt
is assigned to the selected core. Otherwise a nearby core will be selected.Note that if
the IRQ balancer service is enabled it may redirect interrupts to other cores.

EF_IRQ_MODERATION

Name: irg_usec default: 0 min:0 max: 1000000 per-stack

Interrupt moderation interval, in microseconds.This option only takes effective with
EF_PACKET_BUFFER_MODE=1 or 3. Otherwise the interrupt moderation settings of the
kernel net driver take effect.

Issue 20 © Solarflare Communications 2015 153

Onload User Guide

SOLARFLARE®
; Parameter Reference

EF_KEEPALIVE_INTVL

Name: keepalive_intvl default: 75000 per-stack

Default interval between keepalives, in milliseconds.

EF_KEEPALIVE_PROBES

Name: keepalive_probes default: 9 per-stack

Default number of keepalive probes to try before aborting the connection.

EF_KEEPALIVE_TIME

Name: keepalive_time default: 7200000 per-stack

Default idle time before keepalive probes are sent, in milliseconds.

EF_LOAD_ENV

Name: load_env default: 1 min:0 max:1 per-process

OpenOnload will only consult other environment variables if this option is set. i.e.
Clearing this option will cause all other EF_ environment variables to be ignored.

EF_LOG

Name: log_category default: 27 min: 0 per-stack

Designed to control how chatty Onload's informative/warning messages are. Specified
as a comma seperated list of options to enable and disable (with a minus sign). Valid
options are 'banner' (on by default), 'resource_warnings' (on by default),
'config_warnings' (on by default) 'conn_drop' (off by default) and 'usage_warnings' (on
by default). E.g.: To enable conn_drop: EF_LOG=conn_drop. E.g.: To enable conn_drop
and turn off resource warnings: EF_LOG=conn_drop,-resource_warnings

Issue 20 © Solarflare Communications 2015 154

Onload User Guide

SOLARFLARE®
; Parameter Reference

EF_LOG_FILE

Scope: per-stack

When EF_LOG_VIA_IOCTL is unset, the user can direct Onload debug and output data to
a directory/file instead of stdout and instead of the syslog.

EF_LOG_TIMESTAMPS

Name: EF_LOG_TIMESTAMPS default:0 min:0 max:1 global

If enabled this will add a timestamp to every Onload output log entry. Timestamps are
originated from the FRC counter.

EF_LOG_VIA_IOCTL

Name: log_via_ ioctl default:0 min:0 max:1 per-process

Causes error and log messages emitted by OpenOnload to be written to the system log
rather than written to standard error. This includes the copyright banner emitted when
an application creates a new OpenOnload stack.By default, OpenOnload logs are written
to the application standard error if and only if it is a TTY.Enable this option when it is
important not to change what the application writes to standard error.Disable it to
guarantee that log goes to standard error even if it is not a TTY.

EF_MAX_ENDPOINTS

Name: max_ep_bufs default: 8192 min:4 max:
Cl_CFG_NETIF_MAX ENDPOINTS_MAX per-stack

This option places an upper limit on the number of accelerated endpoints (sockets,
pipes etc.) in an Onload stack. This option should be set to a power of two between 4
and 2721.When this limit is reached listening sockets are not able to accept new
connections over accelerated interfaces. New sockets and pipes created via socket()
and pipe() etc. are handed over to the kernel stack and so are not accelerated.Note: ~4
syn-receive states consume one endpoint, see also EF_TCP_SYNRECV_MAX.

Issue 20 © Solarflare Communications 2015 155

SOLARFLAREFE®

Onload User Guide

Parameter Reference

EF_MAX_PACKETS

Name: max_packets default: 32768 min: 1024 per-stack

Upper limit on number of packet buffers in each OpenOnload stack. Packet buffers
require hardware resources which may become a limiting factor if many stacks are each
using many packet buffers. This option can be used to limit how much hardware
resource and memory a stack uses. This option has an upper limit determined by the
max_packets_per_stack onload module option.Note: When 'scalable packet buffer
mode' is not enabled (see EF_PACKET_BUFFER_MODE) the total number of packet
buffers possible in aggregate is limited by a hardware resource. The SFN5x series
adapters support approximately 120,000 packet buffers.

EF_MAX_RX_PACKETS

Name: max_rx_packets default: 24576 min:0 max: 21000000000 per-
stack

The maximum number of packet buffers in a stack that can be used by the receive data
path. This should be set to a value smaller than EF_MAX_PACKETS to ensure that some
packet buffers are reserved for the transmit path.

EF_MAX_TX_PACKETS

Name: max_tx_packets default: 24576 min:0 max: 1000000000 per-
stack

The maximum number of packet buffers in a stack that can be used by the transmit data
path. This should be set to a value smaller than EF_MAX_PACKETS to ensure that some
packet buffers are reserved for the receive path.

EF_MCAST_JOIN_BINDTODEVICE

Name: mcast_join_bindtodevice default:0 min:0 max:1 per-stack

When a UDP socket joins a multicast group (using IP_ADD_MEMBERSHIP or similar), this
option causes the socket to be bound to the interface that the join was on. The benefit
of this is that it ensures the socket will not accidentally receive packets from other
interfaces that happen to match the same group and port. This can sometimes happen
if another socket joins the same multicast group on a different interface, or if the switch
is not filtering multicast traffic effectively.If the socket joins multicast groups on more
than one interface, then the binding is automatically removed.

Issue 20

© Solarflare Communications 2015 156

SOLARFLAREFE®

Onload User Guide

Parameter Reference

EF_MCAST_JOIN_HANDOVER

Name: mcast_join_handover default:0 min:0 max:2 per-stack

When this option is set to 1, and a UDP socket joins a multicast group on an interface
that is not accelerated, the UDP socket is handed-over to the kernel stack. This can be a
good idea because it prevents that socket from consuming Onload resources, and may
also help avoid spinning when it is not wanted.When set to 2, UDP sockets that join
multicast groups are always handed-over to the kernel stack.

EF_MCAST_RECV

Name: mcast_recv default:1 min:0 max:1 per-stack

Controls whether or not to accelerate multicast receives. When set to zero, multicast
receives are not accelerated, but the socket continues to be managed by Onload.See

also EF_MCAST_JOIN_HANDOVER.See the OpenOnload manual for further details on

multicast operation.

EF_MCAST_RECV_HW_LOOP

Name: mcast_recv_hw_loop default:1 min:0 max:1 per-stack

When enabled allows udp sockets to receive multicast traffic that originates from other
OpenOnload stacks.See the OpenOnload manual for further details on multicast

operation.

EF_MCAST_SEND

Name: mcast_send default:0 min:0 max:3 per-stack

Controls loopback of multicast traffic to receivers in the same and other OpenOnload
stacks.When set to 0 (default) disables loopback within the same stack as well as to
other OpenOnload stacks.When set to 1 enables loopback to the same stackWhen set to
2 enables loopback to other OpenOnload stacks.When set to 3 enables loopback to the
same as well as other OpenOnload stacks.In respect to loopback to other OpenOnload
stacks the options is just a hint and the feature requires: (a) 7000-series or newer
device, and (b) selecting firmware variant with loopback support.See the OpenOnload
manual for further details on multicast operation.

Issue 20

© Solarflare Communications 2015 157

SOLARFLAREFE®

Onload User Guide

Parameter Reference

EF_MIN_FREE_PACKETS

Name: min_free_packets default: 100 min:0 max: 1000000000 per-
stack

Minimum number of free packets to reserve for each stack at initialisation. If Onload is
not able to allocate sufficient packet buffers to fill the RX rings and fill the free pool with
the given number of buffers, then creation of the stack will fail.

EF_MULTICAST_LOOP_OFF

Name: multicast loop off default:1 min:0 max:1 per-stack

EF_MULTICAST_LOOP_OFF is deprecated in favour of EF_MCAST_SENDWhen set,
disables loopback of multicast traffic to receivers in the same OpenOnload stack.This
option only takes effect when EF_MCAST_SEND is not set and is equivalent to
EF_MCAST_SEND=1 or EF_MCAST_SEND=0 for values of 0 and 1 respectively.See the
OpenOnload manual for further details on multicast operation.

EF_NETIF_DTOR

Name: netif _dtor default:1 min:0 max:2 per-process

This option controls the lifetime of OpenOnload stacks when the last socket in a stack is
closed.

EF_NAME

Default: none min: 8 chars per-stack

The environment variable EF_NAME will be honored to control Onload stack sharing.
However, a call to onload_set_stackname overrides this variable and ,
EF_DONT_ACCELERATE and EF_STACK_PER_THREAD both take precedence over
EF_NAME.

EF_NONAGLE_INFLIGHT _MAX

Name: nonagle_inflight_max default: 50 min:1 per-stack

This option affects the behaviour of TCP sockets with the TCP_NODELAY socket option.
Nagle's algorithm is enabled when the number of packets in-flight (sent but not
acknowledged) exceeds the value of this option. This improves efficiency when sending
many small messages, while preserving low latency.Set this option to -1 to ensure that

Issue 20

© Solarflare Communications 2015 158

SOLARFLAREFE®

Onload User Guide

Parameter Reference

Nagle's algorithm never delays sending of TCP messages on sockets with TCP_NODELAY
enabled.

EF_NO_FAIL

Name: no_fail default:1 min:0 max:1l per-process

This option controls whether failure to create an accelerated socket (due to resource
limitations) is hidden by creating a conventional unaccelerated socket. Set this option
to 0 to cause out-of-resources errors to be propagated as errors to the application, or to
1 to have Onload use the kernel stack instead when out of resources.Disabling this
option can be useful to ensure that sockets are being accelerated as expected (ie. to find
out when they are not).

EF_PACKET BUFFER_MODE

Name: packet_buffer_mode default:0 min:0 max:3 per-stack

This option affects how DMA buffers are managed. The default packet buffer mode
uses a limited hardware resource, and so restricts the total amount of memory that can
be used by Onload for DMA.Setting EF_PACKET_BUFFER_MODE!=0 enables 'scalable
packet buffer mode' which removes that limit. See details for each mode below. 1 -
SR-IOV with IOMMU. Each stack allocates a separate PCI Virtual Function. IOMMU
guarantees that different stacks do not have any access to each other data. 2 - Physical
address mode. Inherently unsafe; no address space separation between different
stacks or net driver packets. 3 - SR-IOV with physical address mode. Each stack
allocates a separate PCI Virtual Function. IOMMU is not used, so this mode is unsafe in
the same way as (2).To use odd modes (1 and 3) SR-IOV must be enabled in the BIOS, OS
kernel and on the network adapter. In these modes you also get faster interrupt
handler which can improve latency for some workloads.For mode (1) you also have to
enable IOMMU (also known as VT-d) in BIOSand in your kernel.For unsafe physical
address modes (2) and (3), you should tune phys_mode_gid module parameter of the
onload module.

EF_PER_SOCKET_CACHE_MAX

Name: per_sock_cache_max default: 0 per-stack

When socket caching is enabled, (i.e. when EF_SOCKET_CACHE_MAX > 0), this sets a
further limit on the size of the cache for each socket. If set to zero, no limit is set beyond
the global limit specified by EF_SOCKET_CACHE_MAX.

Issue 20

© Solarflare Communications 2015 159

Onload User Guide

SOLARFLARE®
; Parameter Reference

EF_PIO

Name: pio default:1 min:0 max:2 per-stack

Control of whether Programmed 1/0 is used instead of DMA for small packets: 0 -no
(use DMA); 1 - use PIO for small packets if available (default); 2 - use PIO for small
packets and fail if PIO is not available.Mode 1 will fall back to DMA if PIO is not currently
available.Mode 2 will fail to create the stack if the hardware supports PIO but PIO is not
currently available. On hardware that does not support PIO there is no difference
between mode 1 and mode 2In all cases, PIO will only be used for small packets (see
EF_PIO_THRESHOLD) and if the VI's transmit queue is currently empty. If these
conditions are not met DMA will be used, even in mode 2.Note: PIO is currently only
available on x86_64 systemsNote: Mode 2 will not prevent a stack from operating
without PIO in the event that PIO allocation is originally successful but then fails
after an adapter is rebooted or hotplugged while that stack exists.

EF_PIO_THRESHOLD

Name: pio_thresh default: 1514 min: 0 per-stack

Sets a threshold for the size of packet that will use PIO, if turned on using EF_PIO.
Packets up to the threshold will use PIO. Larger packets will not.

EF_PIPE

Name: ul_pipe default:2 min: CI_UNIX_PIPE_DONT_ ACCELERATE max:
CI_UNIX_PIPE_ACCELERATE_IF_NETIF per-process

0 - disable pipe acceleration, 1 - enable pipe acceleration, 2 - acclerate pipes only if an
Onload stack already exists in the process.

EF_PIPE_RECV_SPIN

Name: pipe_recv_spin default: 0 min:0 max:1 per-process

Spin in pipe receive calls until data arrives or the spin timeout expires (whichever is the
sooner). If the spin timeout expires, enter the kernel and block. The spin timeout is set
by EF_SPIN_USEC or EF_POLL_USEC.

Issue 20 © Solarflare Communications 2015 160

SOLARFLAREFE®

Onload User Guide

Parameter Reference

EF_PIPE_SEND_SPIN

Name: pipe_send_spin default: 0 min:0 max:1 per-process

Spin in pipe send calls until space becomes available in the socket buffer or the spin
timeout expires (whichever is the sooner). If the spin timeout expires, enter the kernel
and block. The spin timeout is set by EF_SPIN_USEC or EF_POLL_USEC.

EF_PIPE_SIZE

Name: pipe_size default: 229376 min: 00_PIPE_MIN_SIZE max:
Cl_CFG_MAX_PIPE_SIZE per-process

Default size of the pipe in bytes. Actual pipe size will be rounded up to the size of packet
buffer and subject to modifications by fcntl F_SETPIPE_SZ where supported.

EF_PKT_WAIT_SPIN

Name: pkt_wait_spin default:0 min:0 max:1 per-process

Spin while waiting for DMA buffers. If the spin timeout expires, enter the kernel and
block. The spin timeout is set by EF_SPIN_USEC or EF_POLL_USEC.

EF_POLL_FAST

Name: ul_poll_fast default:1 min:0 max:1 per-process

Allow a poll() call to return without inspecting the state of all polled file descriptors
when at least one event is satisfied. This allows the accelerated poll() call to avoid a
system call when accelerated sockets are 'ready’, and can increase performance
substantially.This option changes the semantics of poll(), and as such could cause
applications to misbehave. It effectively gives priority to accelerated sockets over non-
accelerated sockets and other file descriptors. In practice a vast majority of applications
work fine with this option.

EF_POLL_FAST_USEC

Name: ul_poll_fast usec default: 32 per-process

When spinning in a poll() call, causes accelerated sockets to be polled for N usecs before
unaccelerated sockets are polled. This reduces latency for accelerated sockets, possibly
at the expense of latency on unaccelerated sockets. Since accelerated sockets are
typically the parts of the application which are most performance-sensitive this is

Issue 20

© Solarflare Communications 2015 161

SOLARFLAREFE®

Onload User Guide

Parameter Reference

typically a good tradeoff.

EF_POLL_NONBLOCK_FAST_USEC

Name: ul_poll_nonblock_fast_usec default: 200 per-process

When invoking poll() with timeout==0 (non-blocking), this option causes non-
accelerated sockets to be polled only every N usecs.This reduces latency for accelerated
sockets, possibly at the expense of latency on unaccelerated sockets. Since accelerated
sockets are typically the parts of the application which are most performance-sensitive
this is often a good tradeoff.Set this option to zero to disable, or to a higher value to
further improve latency for accelerated sockets.This option changes the behaviour of
poll() calls, so could potentially cause an application to misbehave.

EF_POLL_ON_DEMAND

Name: poll_on_demand default:1 min:0 max:1 per-stack

Poll for network events in the context of the application calls into the network stack.
This option is enabled by default.This option can improve performance in multi-
threaded applications where the Onload stack is interrupt-driven (EF_INT_DRIVEN=1),
because it can reduce lock contention. Setting EF_POLL_ON_DEMAND=0 ensures that
network events are (mostly) processed in response to interrupts.

EF_POLL_SPIN

Name:ul_poll_spin default:0 min:0 max:1 per-process

Spin in poll() calls until an event is satisfied or the spin timeout expires (whichever is the
sooner). If the spin timeout expires, enter the kernel and block. The spin timeout is set
by EF_SPIN_USEC or EF_POLL_USEC.

EF_POLL_USEC

Name: ef_poll_usec_meta option default: 0 per-process

This option enables spinning and sets the spin timeout in microseconds.Setting this
option is equivalent to: Setting EF_SPIN_USEC and EF_BUZZ_USEC, enabling spinning for
UDP sends and receives, TCP sends and receives, select, poll and epoll_wait(), and
enabling lock buzzing.Spinning typically reduces latency and jitter substantially, and can
also improve throughput. However, in some applications spinning can harm
performance; particularly application that have many threads. When spinning is

Issue 20

© Solarflare Communications 2015 162

SOLARFLAREFE®

Onload User Guide

Parameter Reference

enabled you should normally dedicate a CPU core to each thread that spins.You can use
the EF_*_SPIN options to selectively enable or disable spinning for each APl and
transport. You can also use the onload_thread_set_spin() extension API to control
spinning on a per-thread and per-API basis.

EF_PREFAULT_PACKETS

Name: prefault_packets default:1 min: 0 max: 1000000000 per-stack

When set, this option causes the process to 'touch' the specified number of packet
buffers when the Onload stack is created. This causes memory for the packet buffers to
be pre-allocated, and also causes them to be memory-mapped into the process address
space. This can prevent latency jitter caused by allocation and memory-mapping
overheads.The number of packets requested is in addition to the packet buffers that are
allocated to fill the RX rings. There is no guarantee that it will be possible to allocate the
number of packet buffers requested.The default setting causes all packet buffers to be
mapped into the user-level address space, but does not cause any extra buffers to be
reserved. Set to O to prevent prefaulting.

EF_PROBE

Name: probe default:1 min:0 max:1 per-process

When set, file descriptors accessed following exec() will be 'probed' and OpenOnload
sockets will be mapped to user-land so that they can be accelerated. Otherwise
OpenOnload sockets are not accelerated following exec().

EF_RETRANSMIT_THRESHOLD

Name: retransmit_threshold default: 15 min:0 max: SMAX per-stack

Number of retransmit timeouts before a TCP connection is aborted.

EF_RETRANSMIT_THRESHOLD_ORPHAN

Name: retransmit_threshold_orphan default:8 min: 0 max: SMAX
per-stack

Number of retransmit timeouts before a TCP connection is aborted in case of orphaned
connection.

Issue 20

© Solarflare Communications 2015 163

SOLARFLAREFE®

Onload User Guide

Parameter Reference

EF_RETRANSMIT_THRESHOLD_SYN

Name: retransmit_threshold_syn default:4 min:0 max: SMAX per-
stack

Number of times a SYN will be retransmitted before a connect() attempt will be
aborted.

EF_RETRANSMIT_THRESHOLD_SYNACK

Name: retransmit_threshold_synack default:5 min:0 max:
CI_CFG_TCP_SYNACK_RETRANS_MAX per-stack

Number of times a SYN-ACK will be retransmitted before an embryonic connection will
be aborted.

EF_RFC_RTO_INITIAL

Name: rto_initial default: 1000 per-stack

Initial retransmit timeout in milliseconds. i.e. The number of milliseconds to wait for an
ACK before retransmitting packets.

EF_RFC_RTO_MAX

Name: rto_max default: 120000 per-stack

Maximum retransmit timeout in milliseconds.

EF_RFC_RTO_MIN

Name: rto_min default: 200 per-stack

Minimum retransmit timeout in milliseconds.

EF_RXQ_LIMIT

Name: rxg_limit default: 65535 min: CI_CFG_RX DESC_BATCH max:
65535 per-stack

Maximum fill level for the receive descriptor ring. This has no effect when it has a value
larger than the ring size (EF_RXQ_SIZE).

Issue 20

© Solarflare Communications 2015 164

Onload User Guide

SOLARFLARE®
; Parameter Reference

EF_RXQ_MIN

Name: rxq_min default: 256 min:2 * Cl_CFG_RX_DESC_BATCH + 1 per-

stack

Minimum initial fill level for each RX ring. If Onload is not able to allocate sufficient
packet buffers to fill each RX ring to this level, then creation of the stack will fail.

EF_RXQ_SIZE

Name: rxq_size default: 512 min: 512 max: 4096 per-stack

Set the size of the receive descriptor ring. Valid values: 512, 1024, 2048 or 4096.A larger
ring size can absorb larger packet bursts without drops, but may reduce efficiency
because the working set size is increased.

EF_RX_TIMESTAMPING

Name: rx_timestamping default: 0 min:0 max:3 per-stack

Control of hardware timestamping of received packets, possible values: 0 - do not do
timestamping (default); 1 - request timestamping but continue if hardware is not
capable or it does not succeed; 2 - request timestamping and fail if hardware is capable
and it does not succeed; 3 - request timestamping and fail if hardware is not capable or
it does not succeed;

EF_SA_ONSTACK_INTERCEPT

Name: sa_onstack_intercept default:0 min:0 max:1 per-process

Intercept signals when signal handler is installed with SA_ONSTACK flag. 0 - Don't
intercept. If you call socket-related functions such as send, file-related functions such as
close or dup from your signal handler, then your application may deadlock. (default) 1 -
Intercept. There is no guarantee that SA_ONSTACK flag will really work, but
OpenOnload library will do its best.

Issue 20 © Solarflare Communications 2015 165

Onload User Guide

SOLARFLARE®
; Parameter Reference

EF_SCALABLE_FILTERS

Name: scalable_filter_ifindex default:0 min: 0 max: SMAX per-
stack

Specifies the interface on which to enable support for scalable filters, and configures the
scalable filter mode(s) to use. Scalable filters allow Onload to use a single hardware
MAC-address filter to avoid hardware limitations and overheads. This removes
restrictions on the number of simultaneous connections and increases performance of
active connect calls, but kernel support on the selected interface is limited to ARP/
DHCP/ICMP protocols and some Onload features that rely on unaccelerated traffic (such
as receiving fragmented UDP datagrams) will not work. Please see the Onload user
guide for full details.Depending on the mode selected this option will enable support
for: - scalable listening sockets; - IP_TRANSPARENT socket option;The interface specified
must be a SFN7000 or later NIC.Format of EF_SCALABLE_FILTERS variable is as follows:
EF_SCALABLE_FILTERS=<interface-name>[=mode[:mode]] = where mode is one of:
transparent_active,passive,rss. The following modes and their combinations can be
specified: transparent_active, passive, rss:transparent_active,
transparent_active:passive

EF_SCALABLE_FILTERS_ENABLE

Name: scalable_filter_enable default:0 min:0 max:1 per-stack

Turn the scalable filter feature on or off on a stack. If thisis set to 1 then the
configuration selected in EF_SCALABLE_FILTERS will be used. If this is set to 0 then
scalable filters will not be used for this stack. If unset this will default to 1 if
EF_SCALABLE_FILTERS is configured.

EF_SCALABLE_FILTERS_MODE

Name: scalable_filter_mode default: 4294967295 min:-1 max: 6
per-stack

Stores scalable filter mode set with EF_SCALABLE_FILTERS. To be set indirectly with
EF_SCALABLE_FILTERS variable

Issue 20 © Solarflare Communications 2015 166

SOLARFLAREFE®

Onload User Guide

Parameter Reference

EF_SELECT_FAST

Name: ul_select_fast default:1 min:0 max:1 per-process

Allow a select() call to return without inspecting the state of all selected file descriptors
when at least one selected event is satisfied. This allows the accelerated select() call to
avoid a system call when accelerated sockets are 'ready', and can increase performance
substantially.This option changes the semantics of select(), and as such could cause
applications to misbehave. It effectively gives priority to accelerated sockets over non-
accelerated sockets and other file descriptors. In practice a vast majority of applications
work fine with this option.

EF_SELECT_FAST_USEC

Name: ul_select_fast _usec default: 32 per-process

When spinning in a select() call, causes accelerated sockets to be polled for N usecs
before unaccelerated sockets are polled. This reduces latency for accelerated sockets,
possibly at the expense of latency on unaccelerated sockets. Since accelerated sockets
are typically the parts of the application which are most performance-sensitive this is
typically a good tradeoff.

EF_SELECT_NONBLOCK_FAST_USEC

Name: ul_select_nonblock fast usec default: 200 per-process

When invoking select() with timeout==0 (non-blocking), this option causes non-
accelerated sockets to be polled only every N usecs.This reduces latency for accelerated
sockets, possibly at the expense of latency on unaccelerated sockets. Since accelerated
sockets are typically the parts of the application which are most performance-sensitive
this is often a good tradeoff.Set this option to zero to disable, or to a higher value to
further improve latency for accelerated sockets.This option changes the behaviour of
select() calls, so could potentially cause an application to misbehave.

EF_SELECT_SPIN

Name: ul_select_spin default:0 min:0 max:1 per-process

Spin in blocking select() calls until the select set is satisfied or the spin timeout expires
(whichever is the sooner). If the spin timeout expires, enter the kernel and block. The
spin timeout is set by EF_SPIN_USEC or EF_POLL_USEC.

Issue 20

© Solarflare Communications 2015 167

SOLARFLAREFE®

Onload User Guide

Parameter Reference

EF_SEND_POLL_MAX_EVS

Name: send_poll_max_events default: 96 min:1 max: 65535 per-stack

When polling for network events after sending, this places a limit on the number of
events handled.

EF_SEND_POLL_THRESH

Name: send_poll_thresh default: 64 min:0 max: 65535 per-stack

Poll for network events after sending this many packets.Setting this to a larger value
may improve transmit throughput for small messages by allowing batching. However,
such batching may cause sends to be delayed leading to increased jitter.

EF_SHARE_WITH

Name: share_with default: 0 min: -1 max: SMAX per-stack

Set this option to allow a stack to be accessed by processes owned by another user. Set
it to the UID of a user that should be permitted to share this stack, or set it to -1 to allow
any user to share the stack. By default stacks are not accessible by users other than
root.Processes invoked by root can access any stack. Setuid processes can only access
stacks created by the effective user, not the real user. This restriction can be relaxed by
setting the onload kernel module option allow_insecure_setuid_sharing=1.WARNING: A
user that is permitted to access a stack is able to: Snoop on any data transmitted or
received via the stack; Inject or modify data transmitted or received via the stack;
damage the stack and any sockets or connections in it; cause misbehaviour and crashes
in any application using the stack.

EF_SIGNALS_NOPOSTPONE

Name: signals_no_postpone default: 67109952 min:0 max:
(ci_uint64)(-1) per-process

Comma-separated list of signal numbers to avoid postponing of the signal handlers.
Your application will deadlock if one of the handlers uses socket function. By default,
the list includes SIGBUS, SIGSEGV and SIGPROF.Please specify numbers, not string
aliases: EF_SIGNALS_NOPOSTPONE=7,11,27 instead of
EF_SIGNALS_NOPOSTPONE=SIGBUS,SIGSEGV,SIGPROF.You can set
EF_SIGNALS_NOPOSTPONE to empty value to postpone all signal handlers in the same
way if you suspect these signals to call network functions.

Issue 20

© Solarflare Communications 2015 168

Onload User Guide

SOLARFLARE®
; Parameter Reference

EF_SOCKET_CACHE_MAX

Name: sock_cache_max default: 0 per-stack

Sets the maximum number of TCP sockets to cache for this stack. When set >0,
OpenOnload will cache resources associated with sockets in order to improve
connection set-up and tear-down performance. This improves performance for
applications that make new TCP connections at a high rate.

EF_SOCKET_CACHE_PORTS

Name: sock _cache_ports default: 0 per-process

This option specifies a comma-separated list of port numbers. When set (and socket
caching is enabled), only sockets bound to the specified ports will be eligible to be
cached.

EF_SOCK_LOCK_BUZZ

Name: sock _lock buzz default:0 min:0 max:1 per-process

Spin while waiting to obtain a per-socket lock. If the spin timeout expires, enter the
kernel and block. The spin timeout is set by EF_BUZZ_USEC.The per-socket lock is taken
in recv() calls and similar. This option can reduce jitter when multiple threads invoke
recv() on the same socket, but can reduce fairness between threads competing for the
lock.

EF_SO_BUSY_POLL_SPIN

Name: so_busy poll_spin default:0 min:0 max:1 per-process

Spin poll,select and epoll in a Linux-like way: enable spinning only if a spinning soclet is
preset in the poll/select/epoll set. See Linux documentation on SO_BUSY_POLL socket
option for details.You should also enable spinning via EF_POLL,SELECT,EPOLL_SPIN
variable if you'd like to spin in poll,select or epoll correspondingly. The spin duration is
set via EF_SPIN_USEC, which is equivalent to the Linux sysctl.net.busy_poll value.
EF_POLL_USEC s all-in-one variable to set for all 4 variables mentioned here.Linux never
spins in epoll, but Onload does. This variable does not affect epoll behaviour if
EF_UL_EPOLL=2.

Issue 20 © Solarflare Communications 2015 169

SOLARFLAREFE®

Onload User Guide

Parameter Reference

EF_SPIN_USEC

Name: ul_spin_usec default: 0 per-process

Sets the timeout in microseconds for spinning options. Set this to to -1 to spin forever.
The spin timeout may also be set by the EF_POLL_USEC option.Spinning typically
reduces latency and jitter substantially, and can also improve throughput. However, in
some applications spinning can harm performance; particularly application that have
many threads. When spinning is enabled you should normally dedicate a CPU core to
each thread that spins.You can use the EF_*_SPIN options to selectively enable or
disable spinning for each APl and transport. You can also use the
onload_thread_set_spin() extension API to control spinning on a per-thread and per-API
basis.

EF_STACK_LOCK_BUZZ

Name: stack_lock buzz default:0 min:0 max:1 per-process

Spin while waiting to obtain a per-stack lock. If the spin timeout expires, enter the
kernel and block. The spin timeout is set by EF_BUZZ_USEC.This option reduces jitter
caused by lock contention, but can reduce fairness between threads competing for the
lock.

EF_STACK_PER_THREAD

Name: stack_per_thread default:0 min:0 max:1 per-process

Create a separate Onload stack for the sockets created by each thread.

EF_SYNC_CPLANE_AT_CREATE

Name: sync_cplane default:2 min:0 max:2 per-stack

When this option is set to 2 Onload will force a sync of control plane information from
the kernel when a stack is created. This can help to ensure up to date information is
used where a stack is created immediately following interface configuration.If this
option is set to 1 then Onload will only force a sync for the first stack created. This can
be used if stack creation time for later stacks is time critical.Setting this option to 0 will
disable forced sync. Synchronising data from the kernel will continue to happen
periodically.

Issue 20

© Solarflare Communications 2015 170

SOLARFLAREFE®

Onload User Guide

Parameter Reference

EF_TCP

Name: ul_tcp default: 1 min:0 max:1 per-process

Clear to disable acceleration of new TCP sockets.

EF_TCP_ACCEPT_SPIN

Name: tcp_accept_spin default:0 min:0 max:1 per-process

Spin in blocking TCP accept() calls until incoming connection is established, the spin
timeout expires or the socket timeout expires(whichever is the sooner). If the spin
timeout expires, enter the kernel and block. The spin timeout is set by EF_SPIN_USEC or
EF_POLL_USEC.

EF_TCP_ADV_WIN_SCALE_MAX

Name: tcp_adv_win_scale_max default: 14 min:0 max: 14 per-stack

Maximum value for TCP window scaling that will be advertised.

EF_TCP_BACKLOG_MAX

Name: tcp_backlog_max default: 256 per-stack

Places an upper limit on the number of embryonic (half-open) connections for one
listening socket; see also EF_TCP_SYNRECV_MAX. This value is overridden by /proc/sys/
net/ipv4/tcp_max_syn_backlog.

EF_TCP_CLIENT_LOOPBACK

Name: tcp_client_loopback default:0 min:0 max:
CITP_TCP_LOOPBACK_TO_NEWSTACK per-stack

Enable acceleration of TCP loopback connections on the connecting (client) side: 0 -
not accelerated (default); 1 - accelerate if the listening socket is in the same stack (you
should also set EF_TCP_SERVER_LOOPBACK!=0); 2 - accelerate and move accepted
socket to the stack of the connecting socket (server should allow this via
EF_TCP_SERVER_LOOPBACK=2); 3 - accelerate and move the connecting socket to the
stack of the listening socket (server should allow this via
EF_TCP_SERVER_LOOPBACK!=0). 4 - accelerate and move both connecting and
accepted sockets to the new stack (server should allow this via
EF_TCP_SERVER_LOOPBACK=2).NOTES:Options 3 and 4 break some applications using

Issue 20

© Solarflare Communications 2015 171

Onload User Guide

SOLARFLARE®
; Parameter Reference

epoll, fork and dup calls.Options 2 and 4 makes accept() to misbehave if the client exist
too early.Option 4 is not recommended on 32-bit systems because it can create a lot of
additional Onload stacks eating a lot of low memory.

EF_TCP_CONNECT_HANDOVER

Name: tcp_connect_handover default: 0 min:0 max:1 per-stack

When an accelerated TCP socket calls connect(), hand it over to the kernel stack. This
option disables acceleration of active-open TCP connections.

EF_TCP_CONNECT_SPIN

Name: tcp_connect_spin default:0 min:0 max:1 per-process

Spin in blocking TCP connect() calls until connection is established, the spin timeout
expires or the socket timeout expires(whichever is the sooner). If the spin timeout
expires, enter the kernel and block. The spin timeout is set by EF_SPIN_USEC or
EF_POLL_USEC.

EF_TCP_FASTSTART _IDLE

Name: tcp_faststart_idle default: 65536 min: 0 per-stack

The FASTSTART feature prevents Onload from delaying ACKs during times when doing
so may reduce performance. FASTSTART is enabled when a connection is new,
following loss and after the connection has been idle for a while.This option sets the
number of bytes that must be ACKed by the receiver before the connection exits
FASTSTART. Set to zero to prevent a connection entering FASTSTART after an idle
period.

EF_TCP_FASTSTART_INIT

Name: tcp_faststart_init default: 65536 min: 0 per-stack

The FASTSTART feature prevents Onload from delaying ACKs during times when doing
so may reduce performance. FASTSTART is enabled when a connection is new,
following loss and after the connection has been idle for a while.This option sets the
number of bytes that must be ACKed by the receiver before the connection exits
FASTSTART. Set to zero to disable FASTSTART on new connections.

Issue 20 © Solarflare Communications 2015 172

SOLARFLAREFE®

Onload User Guide

Parameter Reference

EF_TCP_FASTSTART_LOSS

Name: tcp_faststart_loss default: 65536 min: 0 per-stack

The FASTSTART feature prevents Onload from delaying ACKs during times when doing
so may reduce performance. FASTSTART is enabled when a connection is new,
following loss and after the connection has been idle for a while.This option sets the
number of bytes that must be ACKed by the receiver before the connection exits
FASTSTART following loss. Set to zero to disable FASTSTART after loss.

EF_TCP_FIN_TIMEOUT

Name: Fin_timeout default: 60 per-stack

Time in seconds to wait for an orphaned connection to be closed properly by the
network partner (e.g. FIN in the TCP FIN_WAIT2 state; zero window opening to send our
FIN, etc).

EF_TCP_FORCE_REUSEPORT

Name: tcp_reuseports default: 0 per-process

This option specifies a comma-separated list of port numbers. TCP sockets that bind to
those port numbers will have SO_REUSEPORT automatically applied to them.

EF_TCP_INITIAL_CWND

Name: initial_cwnd default: 0 min: 0 max: SMAX per-stack

Sets the initial size of the congestion window (in bytes) for TCP connections. Some care
is needed as, for example, setting smaller than the segment size may result in Onload
being unable to send traffic. WARNING: Modifying this option may violate the TCP
protocol.

EF_TCP_LISTEN_HANDOVER

Name: tcp_listen_handover default:0 min:0 max:1 per-stack

When an accelerated TCP socket calls listen(), hand it over to the kernel stack. This
option disables acceleration of TCP listening sockets and passively opened TCP
connections.

Issue 20

© Solarflare Communications 2015 173

Onload User Guide

SOLARFLARE®
; Parameter Reference

EF_TCP_LOSS_MIN_CWND

Name: loss_min_cwnd default: 0 min:0 max: SMAX per-stack

Sets the minimum size of the congestion window for TCP connections following
loss.WARNING: Modifying this option may violate the TCP protocol.

EF_TCP_RCVBUF

Name: tcp_rcvbuf_user default: 0 per-stack

Override SO_RCVBUF for TCP sockets. (Note: the actual size of the buffer is double the
amount requested, mimicking the behavior of the Linux kernel.)

EF_TCP_RCVBUF_ESTABLISHED_DEFAULT

Name: tcp_rcvbuf_est_def default: 131072 per-stack

Overrides the OS default SO_RCVBUF value for TCP sockets in the ESTABLISHED state if
the OS default SO_RCVBUF value falls outside bounds set with this option. This value is
used when the TCP connection transitions to ESTABLISHED state, to avoid confusion of
some applications like netperf.The lower bound is set to this value and the upper bound
is set to 4 * this value. If the OS default SO_RCVBUF value is less than the lower bound,
then the lower bound is used. If the OS default SO_RCVBUF value is more than the
upper bound, then the upper bound is used.This variable overrides OS default
SO_RCVBUF value only, it does not change SO_RCVBUF if the application explicitly sets it
(see EF_TCP_RCVBUF variable which overrides application-supplied value).

EF_TCP_RCVBUF_STRICT

Name: tcp_rcvbuf _strict default:0 min:0 max:1 per-stack

This option prevents TCP small segment attack. With this option set, Onload limits the
number of packets inside TCP receive queue and TCP reorder buffer. In some cases, this
option causes performance penalty. You probably want this option if your application is
connecting to unrtusted partner or over untrusted network.Off by default.

EF_TCP_RECV_SPIN

Name: tcp_recv_spin default:0 min:0 max:1 per-process

Spin in blocking TCP receive calls until data arrives, the spin timeout expires or the
socket timeout expires (whichever is the sooner). If the spin timeout expires, enter the

Issue 20 © Solarflare Communications 2015 174

Onload User Guide

SOLARFLARE®
; Parameter Reference

kernel and block. The spin timeout is set by EF_SPIN_USEC or EF_POLL_USEC.

EF_TCP_RST_DELAYED_CONN

Name: rst_delayed conn default: 0 min:0 max:1 per-stack

This option tells Onload to reset TCP connections rather than allow data to be
transmitted late. Specifically, TCP connections are reset if the retransmit timeout fires.
(This usually happens when data is lost, and normally triggers a retransmit which results
in data being delivered hundreds of milliseconds late). WARNING: This option is likely to
cause connections to be reset spuriously if ACK packets are dropped in the network.

EF_TCP_RX_CHECKS

Name: tcp_rx_checks default:0 min:0 max:1 per-stack

Internal/debugging use only: perform extra debugging/consistency checks on received

packets.

EF_TCP_RX_LOG_FLAGS

Name: tcp_rx_log_flags default: 0 per-stack

Log received packets that have any of these flags set in the TCP header. Only active
when EF_TCP_RX_CHECKS is set.

EF_TCP_SEND_NONBLOCK_NO_PACKETS_MODE

Name: tcp_nonblock _no_pkts mode default:0 min:0 max:1 per-stack

This option controls how a non-blocking TCP send() call should behave if it is unable to
allocate sufficient packet buffers. By default Onload will mimic Linux kernel stack
behaviour and block for packet buffers to be available. If set to 1, this option will cause
Onload to return error ENOBUFS. Note this option can cause some applications (that
assume that a socket that is writeable is able to send without error) to malfunction.

EF_TCP_SEND_SPIN

Name: tcp_send_spin default: 0 min:0 max:1 per-process

Spin in blocking TCP send calls until window is updated by peer, the spin timeout expires
or the socket timeout expires (whichever is the sooner). If the spin timeout expires,

Issue 20 © Solarflare Communications 2015 175

SOLARFLAREFE®

Onload User Guide

Parameter Reference

enter the kernel and block. The spin timeout is set by EF_SPIN_USEC or EF_POLL_USEC.

EF_TCP_SERVER_LOOPBACK

Name: tcp_server_loopback default:0 min:0 max:
CITP_TCP_LOOPBACK_ALLOW_ALIEN_IN_ACCEPTQ per-stack

Enable acceleration of TCP loopback connections on the listening (server) side: 0 - not
accelerated (default); 1 - accelerate if the connecting socket is in the same stack (you
should also set EF_TCP_CLIENT_LOOPBACK!=0); 2 - accelerate and allow accepted
socket to be in another stack (this is necessary for clients with
EF_TCP_CLIENT_LOOPBACK=2,4).

EF_TCP_SNDBUF

Name: tcp_sndbuf _user default: 0 per-stack

Override SO_SNDBUF for TCP sockets (Note: the actual size of the buffer is double the
amount requested, mimicking the behavior of the Linux kernel.)

EF_TCP_SNDBUF_ESTABLISHED DEFAULT

Name: tcp_sndbuf_est_def default: 131072 per-stack

Overrides the OS default SO_SNDBUF value for TCP sockets in the ESTABLISHED state if
the OS default SO_SNDBUF value falls outside bounds set with this option. This value is
used when the TCP connection transitions to ESTABLISHED state, to avoid confusion of
some applications like netperf.The lower bound is set to this value and the upper bound
is set to 4 * this value. If the OS default SO_SNDBUF value is less than the lower bound,
then the lower bound is used. If the OS default SO_SNDBUF value is more than the
upper bound, then the upper bound is used.This variable overrides OS default
SO_SNDBUF value only, it does not change SO_SNDBUF if the application explicitly sets
it (see EF_TCP_SNDBUF variable which overrides application-supplied value).

EF_TCP_SNDBUF_MODE

Name: tcp_sndbuf_mode default:1 min:0 max:2 per-stack

This option controls how the SO_SNDBUF limit is applied to TCP sockets. In the default
mode the limit applies to the size of the send queue and retransmit queue combined.
When this option is set to 0 the limit applies to the the send queue only.When this
option is set to 2, the SNDBUF size is automatically adjusted for each TCP socket to

Issue 20

© Solarflare Communications 2015 176

SOLARFLAREFE®

Onload User Guide

Parameter Reference

match the window advertised by the peer (limited by
EF_TCP_SOCKBUF_MAX_FRACTION). If theapplication sets SO_SNDBUF explictly then
automatic adjustment isnot used for that socket. The limit is applied to the size of
thesend queue and retransmit queue combined. You may also want to
setEF_TCP_RCVBUF_MODE to give automatic adjustment of RCVBUF.

EF_TCP_SOCKBUF_MAX_FRACTION

Name: tcp_sockbuf max_ fraction default:1 min:1 max: 10 per-stack

This option controls the maximum fraction of the TX buffersthat may be allocated to a
single socket with EF_TCP_SNDBUF_MODE=2.It also controls the maximum fraction of
the RX buffers that maybe allocated to a single socket with
EF_TCP_RCVBUF_MODE=1.The maximum allocation for a socket is
EF_MAX_TX_PACKETS/(2”~N)for TX and EF_MAX_RX_PACKETS/(2~N) for RX, where N is

specifiedhere.

EF_TCP_SYNCOOKIES

Name: tcp_syncookies default: 0 min:0 max:1 per-stack

Use TCP syncookies to protect from SYN flood attack

EF_TCP_SYNRECV_MAX

Name: tcp_synrecv_max default: 1024 max:
CI_CFG_NETIF_MAX_ENDPOINTS_MAX per-stack

Places an upper limit on the number of embryonic (half-open) connections in an Onload
stack; see also EF_TCP_BACKLOG_MAX. By default, EF_TCP_SYNRECV_MAX =4 *
EF_TCP_BACKLOG_MAX.

EF_TCP_SYN_OPTS

Name: syn_opts default: 7 per-stack

A bitmask specifying the TCP options to advertise in SYN segments.bit 0 (Ox1) is set to 1
to enable PAWS and RTTM timestamps (RFC1323),bit 1 (0x2) is set to 1 to enable
window scaling (RFC1323),bit 2 (0x4) is set to 1 to enable SACK (RFC2018),bit 3 (0x8) is
set to 1 to enable ECN (RFC3128).

Issue 20

© Solarflare Communications 2015 177

Onload User Guide

SOLARFLARE®
; Parameter Reference

EF_TCP_TCONST_MSL

Name: msl_seconds default: 25 per-stack

The Maximum Segment Lifetime (as defined by the TCP RFC). A smaller value causes
connections to spend less time in the TIME_WAIT state.

EF_TIMESTAMPING_REPORTING

Name: timestamping_reporting default:0 min:0 max:1 per-stack

Controls timestamp reporting, possible values: 0: report translated timestamps only
when the NIC clock has been set; 1: report translated timestamps only when the system
clock and the NIC clock are in sync (e.g. using ptpd)If the above conditions are not met
Onload will only report raw (not translated) timestamps.

EF_TXQ_LIMIT

Name: txq_limit default: 268435455 min:16 * 1024 max: OXFFFFFFF

per-stack

Maximum number of bytes to enqueue on the transmit descriptor ring.

EF_TXQ_RESTART

Name: txq_restart default: 268435455 min:1 max: OXFFFFFFF per-

stack

Level (in bytes) to which the transmit descriptor ring must fall before it will be filled

again.

EF_TXQ_SIZE

Name: tXq_size default: 512 min: 512 max: 4096 per-stack

Set the size of the transmit descriptor ring. Valid values: 512, 1024, 2048 or 4096.

EF_TX_MIN_IPG_CNTL

Name: tx_min_ipg_cntl default:0 min: -1 max: 20 per-stack

Rate pacing value.

Issue 20 © Solarflare Communications 2015 178

Onload User Guide

SOLARFLARE®
; Parameter Reference

EF_TX_PUSH

Name: tx_push default: 1 min:0 max:1 per-stack

Enable low-latency transmit.

EF_TX_PUSH_THRESHOLD

Name: tx_push_thresh default: 100 min:1 per-stack

Sets a threshold for the number of outstanding sends before we stop using TX
descriptor push. This has no effect if EF_TX_PUSH=0. This threshold is ignored, and
assumed to be 1, on pre-SFN7000-series hardware. It makes sense to set this value
similar to EF_SEND_POLL_THRESH

EF_TX_QOS_CLASS

Name: tx_qgos_class default: 0 min:0 max:1 per-stack

Set the QOS class for transmitted packets on this Onload stack. Two QOS classes are
supported: 0 and 1. By default both Onload accelerated traffic and kernel traffic are in
class 0. You can minimise latency by placing latency sensitive traffic into a separate QOS
class from bulk traffic.

EF_TX_TIMESTAMPING

Name: tx_timestamping default: 0 min:0 max:3 per-stack

Control of hardware timestamping of transmitted packets, possible values: 0 - do not
do timestamping (default); 1 - request timestamping but continue if hardware is not
capable or it does not succeed; 2 - request timestamping and fail if hardware is capable
and it does not succeed; 3 - request timestamping and fail if hardware is not capable or

it does not succeed;

EF_UDP

Name: ul_udp default: 1 min:0 max:1 per-process

Clear to disable acceleration of new UDP sockets.

Issue 20 © Solarflare Communications 2015 179

: Onload User Guide
SOLARFLARE®
; Parameter Reference

EF_UDP_CONNECT_HANDOVER

Name: udp_connect_handover default:1 min:0 max:1 per-stack

When a UDP socket is connected to an IP address that cannot be accelerated by
OpenOnload, hand the socket over to the kernel stack.When this option is disabled the
socket remains under the control of OpenOnload. This may be worthwhile because the
socket may subsequently be re-connected to an IP address that can be accelerated.

EF_UDP_FORCE_REUSEPORT

Name: udp_reuseports default: 0 per-process

This option specifies a comma-separated list of port numbers. UDP sockets that bind to
those port numbers will have SO_REUSEPORT automatically applied to them.

EF_UDP_PORT_HANDOVER2_MAX

Name: udp_port_handover2_max default: 1 per-stack

When set (together with EF_UDP_PORT_HANDOVER2_MIN), this causes UDP sockets
explicitly bound to a port in the given range to be handed over to the kernel stack. The

range is inclusive.

EF_UDP_PORT_HANDOVER2_MIN

Name: udp_port_handover2_min default: 2 per-stack

When set (together with EF_UDP_PORT_HANDOVER2_MAX), this causes UDP sockets
explicitly bound to a port in the given range to be handed over to the kernel stack. The

range is inclusive.

EF_UDP_PORT_HANDOVER3_MAX

Name: udp_port_handover3 max default: 1 per-stack

When set (together with EF_UDP_PORT_HANDOVER3_MIN), this causes UDP sockets
explicitly bound to a port in the given range to be handed over to the kernel stack. The

range is inclusive.

Issue 20 © Solarflare Communications 2015 180

: Onload User Guide
SOLARFLARE®
; Parameter Reference

EF_UDP_PORT_HANDOVER3_MIN

Name: udp_port_handover3_min default: 2 per-stack

When set (together with EF_UDP_PORT_HANDOVER3_MAX), this causes UDP sockets
explicitly bound to a port in the given range to be handed over to the kernel stack. The

range is inclusive.

EF_UDP_PORT_HANDOVER_MAX

Name: udp_port_handover_max default: 1 per-stack

When set (together with EF_UDP_PORT_HANDOVER_MIN), this causes UDP sockets
explicitly bound to a port in the given range to be handed over to the kernel stack. The

range is inclusive.

EF_UDP_PORT_HANDOVER_MIN

Name: udp_port_handover_min default: 2 per-stack

When set (together with EF_UDP_PORT_HANDOVER_MAX), this causes UDP sockets
explicitly bound to a port in the given range to be handed over to the kernel stack. The

range is inclusive.

EF_UDP_RCVBUF

Name: udp_rcvbuf_user default: 0 per-stack

Override SO_RCVBUF for UDP sockets. (Note: the actual size of the buffer is double the
amount requested, mimicking the behavior of the Linux kernel.)

EF_UDP_RECV_SPIN

Name: udp_recv_spin default:0 min:0 max:1 per-process

Spin in blocking UDP receive calls until data arrives, the spin timeout expires or the
socket timeout expires (whichever is the sooner). If the spin timeout expires, enter the
kernel and block. The spin timeout is set by EF_SPIN_USEC or EF_POLL_USEC.

Issue 20 © Solarflare Communications 2015 181

Onload User Guide

SOLARFLARE®
; Parameter Reference

EF_UDP_SEND_NONBLOCK_NO_PACKETS_MODE

Name: udp_nonblock_no_pkts _mode default:0 min:0 max:1 per-stack

This option controls how a non-blocking UDP send() call should behave if it is unable to
allocate sufficient packet buffers. By default Onload will mimic Linux kernel stack
behaviour and block for packet buffers to be available. If set to 1, this option will cause
Onload to return error ENOBUFS. Note this option can cause some applications (that
assume that a socket that is writeable is able to send without error) to malfunction.

EF_UDP_SEND_SPIN

Name: udp_send_spin default: 0 min:0 max:1 per-process

Spin in blocking UDP send calls until space becomes available in the socket buffer, the
spin timeout expires or the socket timeout expires (whichever is the sooner). If the spin
timeout expires, enter the kernel and block. The spin timeout is set by EF_SPIN_USEC or
EF_POLL_USEC.Note: UDP sends usually complete very quickly, but can block if the
application does a large burst of sends at a high rate. This option reduces jitter when
such blocking is needed.

EF_UDP_SEND_UNLOCKED

Name: udp_send_unlocked default: 1 min:0 max:1 per-stack

Enables the 'unlocked' UDP send path. When enabled this option improves concurrency
when multiple threads are performing UDP sends.

EF_UDP_SEND_UNLOCK_THRESH

Name: udp_send_unlock thresh default: 1500 per-stack

UDP message size below which we attempt to take the stack lock early. Taking the lock
early reduces overhead and latency slightly, but may increase lock contention in multi-
threaded applications.

EF_UDP_SNDBUF

Name: udp_sndbuf_user default:0 per-stack

Override SO_SNDBUF for UDP sockets. (Note: the actual size of the buffer is double the
amount requested, mimicking the behavior of the Linux kernel.)

Issue 20 © Solarflare Communications 2015 182

SOLARFLAREFE®

Onload User Guide

Parameter Reference

EF_UL_EPOLL

Name: ul_epoll default:1 min:0 max:3 per-process

Choose epoll implementation. The choices are: 0 - kernel (unaccelerated) 1 - user-
level (accelerated, lowest latency) 2 - kernel-accelerated (best when there are lots of
sockets in the set and mode 3 is not suitable) 3 - user-level (accelerated, lowest
latency, scalable, supports socket caching)The default is the user-level
implementation (1). Mode 3 can offer benefits over mode 1, particularly with larger
sets. However, this mode has some restrictions. It does not support epoll sets that exist
across fork(). It does not support monitoring the readiness of the set's epoll fd via a
another epoll/poll/select.

EF_UL_POLL

Name: ul_poll default:1 min:0 max:1 per-process

Clear to disable acceleration of poll() calls at user-level.

EF_UL_SELECT

Name: ul_select default:1 min:0 max:1 per-process

Clear to disable acceleration of select() calls at user-level.

EF_UNCONFINE_SYN

Name: unconfine_syn default:1 min:0 max:1 per-stack

Accept TCP connections that cross into or out-of a private network.

EF_UNIX_LOG

Name: log_level default: 3 per-process

A bitmask determining which kinds of diagnostics messages will be logged. 0x1

errors 0x2 unexpected 0x4 setup 0x8 verbose 0x10 select()
0x20 poll() 0x100 socket set-up 0x200 socket control 0x400 socket
caching 0x1000 signal interception 0x2000 library enter/exit 0x4000 log

call arguments 0x8000 context lookup 0x10000 pass-through 0x20000 very
verbose 0x40000 Verbose returned error 0x80000 V.Verbose errors: show 'ok'
too 0x20000000 verbose transport control 0x40000000 very verbose transport
control 0x80000000 verbose pass-through

Issue 20

© Solarflare Communications 2015 183

SOLARFLAREFE®

Onload User Guide

Parameter Reference

EF_URG_RFC

Name: urg_rfc default: 0 min:0 max:1 per-stack

Choose between compliance with RFC1122 (1) or BSD behaviour (0) regarding the
location of the urgent point in TCP packet headers.

EF_USE_DSACK

Name: use_dsack default:1 min:0 max:1 per-stack

Whether or not to use DSACK (duplicate SACK).

EF_USE_HUGE_PAGES

Name: huge pages default:1 min:0 max:2 per-stack

Control of whether huge pages are used for packet buffers: 0-no; 1 - use huge pages if
available (default); 2 - always use huge pages and fail if huge pages are not
available.Mode 1 prints syslog message if there is not enough huge pages in the
system.Mode 2 guarantees only initially-allocated packets to be in huge pages. Itis
recommended to use this mode together with EF_MIN_FREE_PACKETS, to control the
number of such guaranteed huge pages. All non-initial packets are allocated in huge
pages when possible; syslog message is printed if the system is out of huge pages.Non-
initial packets may be allocated in non-huge pages without any warning in syslog for
both mode 1 and 2 even if the system has free huge pages.

EF_VALIDATE_ENV

Name: validate_env default: 1 min:0 max:1 per-stack

When set this option validates Onload related environment variables (starting with EF_).

EF_VFORK_MODE

Name: vfork_mode default:1 min:0 max:2 per-process

This option dictates how vfork() intercept should work. After a vfork(), parent and child still
share address space but not file descriptors. We have to be careful about making changes
in the child that can be seen in the parent. We offer three options here. Different apps may
require different options depending on their use of vfork(). If using EF_VFORK_MODE=2, it
is not safe to create sockets or pipes in the child before calling exec(). 0 - Old behavior.
Replace vfork() with fork() 1 - Replace vfork() with fork() and block parent till child exits/
execs 2 - Replace vfork() with vfork()

Issue 20

© Solarflare Communications 2015 184

SOLARFLAREFE®

Onload User Guide

Meta Options

B.1 Environment variables

There are several environment variables which act as meta-options and set several
of the options detailed in Appendix A. These are:

EF_POLL_USEC

®

Setting EF_POLL_USEC causes the following options to be set:
e EF_SPIN_USEC=EF_POLL_USEC
e EF_SELECT_SPIN=1

e EF_EPOLL_SPIN=1

e EF_POLL_SPIN=1

e EF_PKT_WAIT_SPIN=1

e EF_TCP_SEND_SPIN=1

e EF_UDP_RECV_SPIN=1

e EF_UDP_SEND_SPIN=1

e EF_TCP_RECV_SPIN=1

e EF_BUZZ_ USEC=EF_POLL_USEC
e EF_SOCK_LOCK_BUZZ=1

e EF_STACK_LOCK_BUZZ=1

NOTE: If neither of the spinning options; EF_POLL_USEC and EF_SPIN_USEC are set,
Onload will resort to default interrupt driven behavior because the EF_INT_DRIVEN
environment variable is enabled by default.

EF_BUZZ_USEC

®

Setting EF_BUZZ_USEC sets the following options:
e EF_SOCK_LOCK_BUZZ=1
e EF_STACK_LOCK_BUZZ=1

NOTE: If EF_POLL_USEC is set to value N, then EF_BUZZ_USEC is also set to N only if
N <= 100, If N > 100 then EF_BUZZ_USEC will be set to 100. This is deliberate as
spinning for too long on internal locks may adversely affect performance. However
the user can explicitly set EF_BUZZ_ USEC value e.g.

Issue 20

© Solarflare Communications 2015 185

Onload User Guide

SOLARFLARE® .
; Meta Options

export EF_POLL_USEC=10000
export EF_BUZZ_USEC=1000

Issue 20 © Solarflare Communications 2015 186

SOLARFLAREFE®

C

Onload User Guide

Build Dependencies

C.1 General

Before Onload network and kernel drivers can be built and installed, the target
platform must support the following capabilities:

Support a general C build environment - i.e. has gcc, make, 1ibc and libc-
devel.

From version 201502 the following are required: perl, autoconf, automake
and libtool.

Can compile kernel modules - i.e. has the correct kernel-devel package for the
installed kernel version.

If 32 bit applications are to be accelerated on 64 bit architectures the machine
must be able to build 32 bit applications.

@ NOTE: Onload builds have been tested against libtool versions 1.5.26 to 2.4.2. Users
experiencing build issues with other libtool versions should contact
support@solarflare.com.

Building Kernel Modules

The kernel must be built with CONFIG_NETFILTER enabled. Standard distributions
will already have this enabled, but it must also be enabled when building a custom
kernel. This option does not affect performance.

The following commands can be used to install kernel development headers.

Debian based Distributions - including Ubuntu (any kernel):

apt-get install linux-headers-$(uname -r)

For RedHat/Fedora (not for 32bit Kernel):

- If the system supports a 32 bit Kernel and the kernel is PAE, then:
yum -y install kernel-PAE-devel

- otherwise:
yum -y install kernel-devel

For SuSE:

yast -i kernel-source

Issue 20

© Solarflare Communications 2015 187

SOLARFLAREFE®

onload

Onload User Guide

Build Dependencies

binutils
gettext

gawk

gcc

sed

make

bash
glibc-common
automake
libtool

autoconf.

onload_tcpdump

libpcap
libpcap-devel1

solar_clusterd

python-devel?

Building 32 bit applications on 64 bit architecture platforms

The following commands can be used to install 32 bit libc development headers.

Debian based Distributions - including Ubuntu:
apt-get install gcc-multilib libc6-dev-i386
For RedHat/Fedora:

yum -y install glibc-devel.i586

For SuSE:

yast -i glibc-devel-32bit
yast -i gcc-32bit

If additional packages are not installed the dependent component will not be built, but the
Onload build will succeed.

Issue 20

© Solarflare Communications 2015 188

‘ Onload User Guide
SOLARFLARE®

D Onload Extensions API

The Onload Extensions API allows the user to customize an application using
advanced features to improve performance.

The Extensions APl does not create any runtime dependency on Onload and an
application using the APl can run without Onload. The license for the APl and
associated libraries is a BSD 2-Clause License.

This section covers the follows topics:

e Common Components on page 189
e Stacks APl on page 193

e Zero-Copy APl on page 201

e Templated Sends on page 212

e Delegated Sends APl on page 213

D.1 Source Code

The onload source code is provided with the Onload distribution. Entry points for
the source code are:

e src/lib/transport/unix/onload_ext_intercept.c

e src/lib/transport/unix/zc_intercept.c

D.2 Common Components

For all applications employing the Extensions API the following components are
provided:

e #include <onload/extensions.h>

An application should include the header file containing function prototypes
and constant values required when using the API.

e libonload_ext.a, libonload_ext.so

This library provides stub implementations of the extended API. An application
that wishes to use the extensions API should link against this library.

When Onload is not present, the application will continue to function, but calls
to the extensions API will have no effect (unless documented otherwise).

To link to this library include the ‘-I’ linker option on the compiler command line
i.e.

Issue 20 © Solarflare Communications 2015 189

SOLARFLAREFE®

Onload User Guide
Onload Extensions API

-lonload_ext

onload_is_present

Description

If the application is linked with libonload_ext, but not running with Onload this will
return 0. If the application is running with Onload this will return 1.

Definition

int onload_is_present (void)

Formal Parameters

None

Return Value

1 from libonload.so library, or O from libonload_ext.a library

onload_fd_stat

struct onload_stat

{
int32_t stack_id;
char* stack_name;
int32_t endpoint_id;
int32_t endpoint_state;
}s

extern int onload_fd_stat(int fd, struct onload_stat* stat);

Description

Retrieves internal details about an accelerated socket.

Definition

See above

Formal Parameters

See above

Return Value
0 socket is not accelerated
1 socket is accelerated

-ENOMEM when memory cannot be allocated

Issue 20

© Solarflare Communications 2015 190

Onload User Guide

SOLARFLARE®
; Onload Extensions API

Notes

When calling free() on stack_name use the (char *) because memory is allocated
using malloc.

This function will call malloc() and so should never be called from any other
function requiring a malloc lock.

onload_fd_check_feature

int onload_fd_check_feature (int fd, enum onload_fd_feature feature);

enum onload_fd_feature {
/* Check whether this fd supports ONLOAD_MSG_WARM or not */
ONLOAD_FD_FEAT_MSG_WARM

}s
Description

Used to check whether the Onload file descriptor supports a feature or not.

Definition

See above

Formal Parameters

See above

Return Value

0 if the feature is supported but not on this fd

>0 if the feature is supported both by onload and this fd
<0 if the feature is supported:

-ENOSYS if onload_fd_check_feature() is not supported.
- ENOTSUPP if the feature is not supported by onload.

Notes

Onload-201509 and later versions support the

ONLOAD_FD_FEAT _UDP_TX_TS_HDR option. onload_fd_check_feature will return
1 to indicate that a recvmesg used to retreive TX timestamps for UDP packets will
return the entire Ethernet header. When run on older versions of onload this will
return -EOPNOTSUPP.

onload_thread_set_spin

Description

For each thread, specify which operations should spin.

Issue 20 © Solarflare Communications 2015 191

‘ Onload User Guide
SOLARFLARE®

Onload Extensions API
Definition
int onload_thread_set_spin(
enum onload_spin_type type,
unsigned spin)
Formal Parameters
type
Which operation to change the spin status of. The type must be one of the
following:

enum onload_spin_type{
ONLOAD_SPIN_ALL
ONLOAD_SPIN_UDP_RECV,
ONLOAD_SPIN_UDP_SEND,
ONLOAD_SPIN_TCP_RECV,
ONLOAD_SPIN_TCP_SEND,
ONLOAD_SPIN_TCP_ACCEPT,
ONLOAD_SPIN_PIPE_RECV,
ONLOAD_SPIN_PIPE_SEND,
ONLOAD_SPIN_SELECT,
ONLOAD_SPIN_POLL,
ONLOAD_SPIN_PKT WAIT,
ONLOAD_SPIN_EPOLL_WAIT

¥
spin

A boolean which indicates whether the operation should spin or not.
Return Value
0 on success

-EINVAL if unsupported type is specified.

Notes

Spin time (for all threads) is set using the EF_SPIN_USEC parameter.

Examples

The onload_thread_set_spin API can be used to control spinning on a per-thread
or per-APIl basis. The existing spin-related configuration options set the default
behavior for threads, and the onload_thread_set_spin APl overrides the default.

Disable all sorts of spinning:

onload_thread set_spin(ONLOAD_SPIN ALL, 9);

Enable all sorts of spinning:

onload_thread_set_spin(ONLOAD_SPIN_ALL, 1);

Issue 20 © Solarflare Communications 2015 192

Onload User Guide

SOLARFLARE®
; Onload Extensions API

Enable spinning only for certain threads:

1 Setthe spin timeout by setting EF_SPIN_USEC, and disable spinning by default
by setting EF_POLL_USEC=0.

2 Ineach thread that should spin, invoke onload_thread_set_spin().

Disable spinning only in certain threads:
1 Enable spinning by setting EF_POLL_USEC=<timeout>.
2 Ineach thread that should not spin, invoke onload_thread_set spin().

@ NOTE: If a thread is set to NOT spin and then blocks this may invoke an interrupt
for the whole stack. Interrupts occurring on moderately busy threads may
cause unintended and undesirable consequences.

Enable spinning for UDP traffic, but not TCP traffic:

1 Setthe spin timeout by setting EF_SPIN_USEC, and disable spinning by default
by setting EF_POLL_USEC=0.

2 In each thread that should spin (UDP only), do:

onload_thread_set_spin(ONLOAD_SPIN_UDP_RECV, 1)
onload_thread_set_spin(ONLOAD_SPIN_UDP_SEND, 1)

Enable spinning for TCP traffic, but not UDP traffic:

1 Setthe spin timeout by setting EF_SPIN_USEC, and disable spinning by default
by setting EF_POLL_USEC=0.

2 In each thread that should spin (TCP only), do:

onload_thread_set_spin(ONLOAD_SPIN_TCP_RECV, 1)
onload_thread_set_spin(ONLOAD_SPIN_TCP_SEND, 1)
onload_thread_set_spin(ONLOAD_SPIN_TCP_ACCEPT, 1)

D.3 Stacks API

Using the Onload Extensions APl an application can bind selected sockets to specific
Onload stacks and in this way ensure that time-critical sockets are not starved of
resources by other non-critical sockets. The API allows an application to select
sockets which are to be accelerated thus reserving Onload resources for
performance critical paths. This also prevents non-critical paths from creating jitter
for critical paths.

onload_set_stackname

Description

Select the Onload stack that new sockets are placed in.

Issue 20 © Solarflare Communications 2015 193

SOLARFLAREFE®

Onload User Guide
Onload Extensions API

Definition

int onload_set_stackname(
int who,
int scope,
const char *name)

Formal Parameters

who
Must be one of the following:

- ONLOAD_THIS_THREAD - to modify the stack name in which all
subsequent sockets are created by this thread.

- ONLOAD_ALL_THREADS - to modify the stack name in which all
subsequent sockets are created by all threads in the current process.
ONLOAD_THIS_THREAD takes precedence over ONLOAD ALL_THREADS.

scope
Must be one of the following:
- ONLOAD_SCOPE_THREAD - name is scoped with current thread
ONLOAD_SCOPE_PROCESS - name is scoped with current process
ONLOAD_SCOPE_USER - name is scoped with current user

ONLOAD_SCOPE_GLOBAL - name is global across all threads, users and
processes.

ONLOAD_SCOPE_NOCHANGE - undo effect of a previous call to
onload_set_stackname(ONLOAD_THIS_THREAD, ...), see Notes on
page 195.

name
One of the following:
- the stack name up to 8 characters.
- an empty string to set no stackname

- thespecial value ONLOAD DONT_ACCELERATE to prevent sockets created
in this thread, user, process from being accelerated.

Sockets identified by the options above will belong to the Onload stack until a
subsequent call using onload_set_stackname identifies a different stack or the
ONLOAD_SCOPE_NOCHANGE option is used.

Return Value
0 on success

-1 with errno set to ENAMETOOLONG if the name exceeds permitted length

-1 with errno set to EINVAL if other parameters are invalid.

Issue 20

© Solarflare Communications 2015 194

SOLARFLAREFE®

Onload User Guide
Onload Extensions API

Notes

Note 1

This applies for stacks selected for sockets created by socket () and for pipe(), it
has no effect on accept(). Passively opened sockets created via accept () will
always be in the same stack as the listening socket that they are linked to, this means
that the following are functionally identical i.e.

onload_set_stackname(foo)
socket
listen
onload_set_stackname(bar)
accept

and

onload_set_stackname(foo)
socket
listen
accept
onload_set_stackname(bar)

In both cases the listening socket and the accepted socket will be in stack foo.

Note 2

Scope defines the namespace in which a stack belongs. A stackname of foo in scope
user is not the same as a stackname of foo in scope thread. Scope restricts the
visibility of a stack to either the current thread, current process, current user or is
unrestricted (global). This has the property that with, for example, process based
scoping, two processes can have the same stackname without sharing a stack - as
the stack for each process has a different namespace.

Note 3

Scoping can be thought of as adding a suffix to the supplied name e.g.
ONLOAD_SCOPE_THREAD: <stackname>-t<thread_id>
ONLOAD_SCOPE_PROCESS: <stackname>-p<process_id>

ONLOAD_SCOPE_USER: <stackname>-u<user_id>

ONLOAD_SCOPE_GLOBAL: <stackname>

This is an example only and the implementation is free to do something different
such as maintaining different lists for different scopes.

Note 4

ONLOAD_SCOPE_NOCHANGE will undo the effect of a previous call to
onload_set_stackname(ONLOAD_THIS _THREAD, ...).

If you have previously used onload_set_stackname(ONLOAD_THIS_THREAD, ...) and
want to revert to the behavior of threads that are using the ONLOAD_ALL_THREADS
configuration, without changing that configuration, you can do the following:

Issue 20

© Solarflare Communications 2015 195

Onload User Guide

SOLARFLARE®
; Onload Extensions API

onload_set_stackname(ONLOAD_ALL_THREADS, ONLOAD_SCOPE_NOCHANGE, "");

Related environment variables

Related environment variables are:

EF_DONT_ACCELERATE

Default: @
Minimum: @
Maximum: 1
Scope: Per-process

If this environment variable is set then acceleration for ALL sockets is disabled and
handed off to the kernel stack until the application overrides this state with a call to
onload_set_stackname().

EF_STACK_PER_THREAD

Default: @
Minimum: @
Maximum: 1
Scope: Per-process

If this environment variable is set each socket created by the application will be
placed in a stack depending on the thread in which it is created. Stacks could, for
example, be named using the thread ID of the thread that creates the stack, but this
should not be relied upon.

A call to onload_set_stackname overrides this variable. EF_DONT_ACCELERATE
takes precedence over this variable.

EF_NAME

Default: none
Minimum: @ chars
Maximum: 8 chars
Scope: per-stack

The environment variable EF_NAME will be honored to control Onload stack sharing.
However, a call to onload_set_stackname overrides this variable and,
EF_DONT_ACCELERATE and EF_STACK_PER_THREAD both take precedence over
EF_NAME.

onload_move_fd

Description

Move the file descriptor to the current stack. The target stack can be specified with
onload_set_stackname().

Issue 20 © Solarflare Communications 2015 196

Onload User Guide

SOLARFLARE®
; Onload Extensions API

Definition

int onload_move_fd (int fd)

Formal Parameters

fd - the file descriptor to be moved to the current stack.

Return Value
0 on success

non-zero otherwise.

Notes

Useful to move fds obtained by accept() to move a new connection out of the
listening socket.

Currently limited to TCP closed sockets and TCP accepted sockets. A socket to be
moved must have an empty send queue and empty re-transmit queue. A socket
which has had a send() operation cannot be moved.

Should not be used simultaneously with other I/O multiplex actions i.e. poll(),
select(), recv() etc on the file descriptor.

This function is not async-safe and should never be called from any process function
handling signals.

onload_stackname_save

Description

Save the state of the current onload stack identified by the previous call to
onload_set stackname()
Definition

int onload_stackname_save (void)

Formal Parameters

none

Return Value
0 on success

-ENOMEM when memory cannot be allocated.

Issue 20 © Solarflare Communications 2015 197

Onload User Guide

SOLARFLARE®
; Onload Extensions API

onload_stackname_restore

Description

Restore stack state saved with a previous call to onload_stackname_save(). All
updates/changes to state of the current stack will be deleted and all state previously
saved will be restored. To avoid unexpected results, the stack should be restored in
the same thread as used to call onload_stackname_save().

Definition

int onload_stackname_restore (void)

Formal Parameters

none

Return Value
0 on success

non-zero if an error occurs.

Notes

The API stackname save and restore functions provide flexibility when binding
sockets to an Onload stack.

Using a combination of onload_set_stackname(), onload_stackname_save()
and onload_stackname_restore(), the useris able to create default stack settings
which apply to one or more sockets, save this state and then create changed stack
settings which are applied to other sockets. The original default settings can then be
restored to apply to subsequent sockets.

D.4 Stacks APl Usage

Using a combination of the EF_DONT_ACCELERATE environment variable and the
functiononload_set_stackname(), the useris able to control/select sockets which
are to be accelerated and isolate these performance critical sockets and threads
from the rest of the system.

onload_stack_opt_set_int

Description

Set/modify per stack options that all subsequently created stacks will use instead of
using the existing global stack options.

Issue 20 © Solarflare Communications 2015 198

SOLARFLAREFE®

Onload User Guide

Onload Extensions API

Definition

int onload_stack_opt_set_int(
const char* name,
int64_t value)

Formal Parameters

name
Stack option to modify
value

New value for the stack option.

Example
onload_stack_opt_set_int(EF_DONT_ACCELERATE , 1);

Return Value
0 on success

-1 with errno set to EINVAL if the requested option is not found.

Notes

Cannot be used to modify options on existing stacks - only for new stacks.

Cannot be used to modify process options - only stack options.

Modified options will be used for all newly created stacks until
onload_stack opt _reset() is called.

onload_stack_opt_reset

Description

Revert to using global stack options for newly created stacks.

Definition

int onload_stack_opt_reset(void)

Formal Parameters

None.

Return Value

0 always

Issue 20

© Solarflare Communications 2015

199

Onload User Guide

SOLARFLARE®
; Onload Extensions API

Notes

Should be called following a call to onload_stack_opt_set int() to revert to
using global stack options for all newly created stacks.

D.5 Stacks API - Examples

e This thread will use stack foo, other threads in the stack will continue as before.
onload_set_stackname(ONLOAD THIS THREAD, ONLOAD SCOPE_GLOBAL, "foo")

e All threads in this process will get their own stack called foo. This is equivalent
to the EF_STACK_PER_THREAD environment variable.
onload_set_stackname(ONLOAD ALL_THREADS, ONLOAD SCOPE_THREAD, "foo")

e All threads in this process will share a stack called foo. If another process did
the same function call it will get its own stack.
onload_set_stackname(ONLOAD_ALL_THREADS, ONLOAD_SCOPE_PROCESS, "foo")

e Allthreads in this process will share a stack called foo. If another process run by

the same user did the same, it would share the same stack as the first process.
If another process run by a different user did the same it would get is own stack.

onload_set_stackname(ONLOAD_ALL_THREADS, ONLOAD_SCOPE_USER, "foo")

e Equivalent to EF_NAME. All threads will use a stack called foo which is shared by
any other process which does the same.
onload_set_stackname(ONLOAD_ALL_THREADS, ONLOAD_SCOPE_GLOBAL, "foo")

e Equivalentto EF_DONT_ACCELERATE. New sockets/pipes will not be accelerated
until another call to onload_set_stackname().
onload_set_stackname (ONLOAD_ALL_THREADS, ONLOAD_SCOPE_GLOBAL, ONLOAD_DONT_ACCELERATE)

onload_ordered_epoll_wait

For details of the Wire Order Delivery feature refer to Wire Order Delivery on
page 61

Description

If the epoll set contains accelerated sockets in only one stack this function can be
used instead of epoll_wait() to return events in the order these were recovered from
the wire. There is no explicit check on sockets, so applications must ensure that the
rules are applied to avoid mis-ordering of packets.

Definition

int onload_ordered_epoll wait (

int epfd,

struct epoll_event *events,

struct onload_ordered_epoll_event *oo_events,
int maxevents,

int timeout);

Issue 20 © Solarflare Communications 2015 200

SOLARFLAREFE®

Onload User Guide
Onload Extensions API

Formal Parameters

See definition epoll_wait().

Return Value
0 on success

non-zero otherwise.

Notes

Any file descriptors returned as ready without a valid timestamp i.e. tv_sec =0,
should be considered un-ordered with respect to the rest of the set. This can occur
for data received via the kernel or data returned without a hardware timestamp i.e.
from an interface that does not support hardware timestamping.

The environment variable EF_UL_EPOLL=1 must be set Hardware timestamps are
required. This feature is only available on the SFN7000 series adapters.

struct onload_ordered_epoll_event{
/* The hardware timestamp of the first readable data */
struct timespec ts;
/* Number of bytes that may be read to maintain wire order */
int bytes

}s

D.6 Zero-Copy API

Zero-Copy can improve the performance of networking applications by eliminating
intermediate buffers when transferring data between application and network
adapter.

The Onload Extensions Zero-Copy APl supports zero-copy of UDP received packet
data and TCP transmit packet data.

The API provides the following components:

e #include <onload/extensions_zc.h>

In addition to the common components, an application should include this
header file which contains all function prototypes and constant values required
when using the API.

This file includes comprehensive documentation, required data structures and
function definitions.

Zero-Copy Data Buffers

To avoid the copy data is passed to and from the application in special buffers
described by a struct onload_zc_iovec. A message or datagram can consist of
multiple iovecs using a struct onload_zc_msg. A single call to send may involve
multiple messages using an array of struct onload zc_mmsg.

Issue 20

© Solarflare Communications 2015 201

SOLARFLAREFE®

Onload User Guide

Onload Extensions API

/* A zc_iovec describes a single buffer */
struct onload_zc_iovec {

void* iov_base; /* Address within buffer */

size_t iov_len; /* Length of data */

onload_zc_handle buf; /* (opaque) buffer handle */

unsigned iov_flags; /* Not currently used */
}s

/* A msg describes array of iovecs that make up datagram */
struct onload_zc_msg {

struct onload_zc_iovec* iov; /* Array of buffers */
struct msghdr msghdr; /* Message metadata */

}s

/* An mmsg describes a message, the socket, and its result */
struct onload_zc_mmsg {

struct onload_zc_msg msg; /* Message */
int rc; /* Result of send operation */
int fd; /* socket to send on */

}s

Figure 17: Zero-Copy Data Buffers

Zero-Copy UDP Receive Overview

Figure 18 illustrates the difference between the normal UDP receive mode and the
zero-copy method.

When using the standard POSIX socket calls, the adapter delivers packets to an
Onload packet buffer which is described by a descriptor previously placed in the RX
descriptor ring. When the application calls recv (), Onload copies the data from the
packet buffer to an application-supplied buffer.

Using the zero-copy UDP receive API the application calls the onload_zc_recv()
function including a callback function which will be called when data is ready. The
callback can directly access the data inside the Onload packet buffer avoiding a copy.

Issue 20

© Solarflare Communications 2015 202

Onload User Guide

SOLARFLARE®
Onload Extensions API
Application ZErD Copy Aaplication
Biutfer onload_zc_recy fooll) fool)
(== callback fool)

to process data

Cinl o= Y ||::|:|p':,-' data Cinl o=

[Socket receive buffer]

A \/

Data delivered Socket receive buffer
to socket buffer
MIC MIC
post descrhtar deliver data
Data received . Data received
ost descrptar

Figure 18: Traditional vs. Zero-Copy UDP Receive

A single call using onload_zc_recv() function can result in multiple datagrams
being delivered to the callback function. Each time the callback returns to Onload
the next datagram is delivered. Processing stops when the callback instructs Onload
to cease delivery or there are no further received datagrams.

If the receiving application does not require to look at all data received (i.e. is
filtering) this can result in a considerable performance advantage because this data
is not pulled into the processor's cache, thereby reducing the application cache
footprint.

As a general rule, the callback function should avoid calling other system calls which
attempt to modify or close the current socket.

Zero-copy UDP Receive is implemented within the Onload Extensions API.

Zero-Copy UDP Receive

The onload_zc_recv() function specifies a callback to invoke for each received
UDP datagram. The callback is invoked in the context of the call to
onload_zc_recv() (i.e. It blocks/spins waiting for data).

Issue 20 © Solarflare Communications 2015 203

Onload User Guide

SOLARFLARE®
Onload Extensions API

Before calling, the application must set the following in the struct
onload_zc_recv_args:

cb set to the callback function pointer
user_ptr set to point to application state, thisis not touched by
onload

msg.msghdr.msg_control the user application should set these to appropriate
msg_controllen buffers and lengths (if required) as you would for

msg_name recvmsg (or NULL and 0 if not used)
msg_namelen

flags set to indicate behavior (e.g.
ONLOAD_MSG_DONTWAIT)

typedef enum onload_zc_callback_rc
(*onload_zc_recv_callback)(struct onload_zc_recv_args *args, int flags);

struct onload_zc_recv_args

{

struct onload_zc_msg msg;
onload_zc_recv_callback cb;
void* user_ptr;
int flags;

}s

int onload_zc_recv(int fd, struct onload_zc_recv_args *args);

Figure 19: Zero-Copy recv_args

The callback gets to examine the data, and can control what happens next: (i)
whether or not the buffer(s) are kept by the callback or are immediately freed by
Onload; and (ii) whether or not onload_zc_recv() will internally loop and invoke
the callback with the next datagram, or immediately return to the application. The
next action is determined by setting flags in the return code as follows:

ONLOAD_ZC_KEEP the callback function can elect to retain
ownership of received buffer(s) by returning
ONLOAD_ZC_KEEP. Following this, the correct
way to release retained buffers is to call
onload_zc_release_buffers() to explicitly
release the first buffer from each received
datagram. Subsequent buffers pertaining to the
same datagram will then be automatically
released.

ONLOAD_ZC_CONTINUE to suggest that Onload should loop and process
more datagrams

ONLOAD_ZC_TERMINATE to insist that Onload immediately return from
the onload_zc_recv()

Issue 20 © Solarflare Communications 2015 204

SOLARFLAREFE®

Onload User Guide

Onload Extensions API
Flags can also be set by Onload:
ONLOAD_ZC_END_OF_BURST Onload sets this flag to indicate that this is the
last packet
ONLOAD_ZC_MSG_SHARED Packet buffers are read only

If there is unaccelerated data on the socket from the kernel’s receive path this
cannot be handled without copying. The application has two choices as follows:

ONLOAD_MSG_RECV_OS_INLINE set this flag when calling onload_zc_recv().
Onload will deal with the kernel data internally
and pass it to the callback

check return code check the return code from onload_zc_recv().
Ifit returns ENOTEMPTY then the application must
call onload_recvmsg _kernel() to retrieve the
kernel data.

Zero-Copy Receive Example #1

struct onload_zc_recv_args args;
struct zc_recv_state state;
int rc;

state.bytes = bytes to wait_for;

/* Easy way to set msg_control* and msg_name* to zero */
memset(&args.msg, 0, sizeof(args.msg));

args.cb = &zc_recv_callback;

args.user_ptr = &state;

args.flags = ONLOAD_ZC_RECV_OS_INLINE;

rc = onload_zc_recv(fd, &args);
j[]===

enum onload_zc_callback_rc
zc_recv_callback(struct onload_zc_recv_args *args, int flags)
{

int i;

struct zc_recv_state* state = args->user_ptr;

for(1 = @; i < args->msg.msghdr.msg_iovlen; ++i) {
printf(“zc callback iov %d: %p, %d", i,
args->msg.iov[i].iov_base,
args->msg.iov[i].iov_len);
state->bytes -= args->msg.iov[i].iov_len;

}

Issue 20

© Solarflare Communications 2015 205

Onload User Guide

SOLARFLAREFE®

Onload Extensions API

if(state->bytes <= ©) return ONLOAD_ZC_TERMINATE;
else return ONLOAD_ZC CONTINUE;

}

Figure 20: Zero-Copy Receive -example #1

Zero-Copy Receive Example #2

static enum onload_zc_callback_rc
zc_recv_callback(struct onload_zc_recv_args *args, int flag)
{
struct user_info *zc_info = args->user_ptr;
int i, zc_rc = 0;
for(1 = @; i < args->msg.msghdr.msg_iovlen; ++i) {
zc_rc += args->msg.iov[i].iov_len;
handle_msg(args->msg.iov[i].iov_base,
args->msg.iov[i].iov_len);
}
if(zc_rc == 0)
return ONLOAD_ZC_TERMINATE;
zc_info->zc_rc += zc_rc;
if((zc_info->flags & MSG_WAITALL) &&
(zc_info->zc_rc < zc_info->size))
return ONLOAD_ZC_CONTINUE;
else return ONLOAD_ZC TERMINATE;

}

ssize_t do_recv_zc(int fd, void* buf, size_t len, int flags)

{

struct user_info info; int rc;
init_user_info(&info);

memset(&zc_args, 0, sizeof(zc_args));

zc_args.user_ptr = &info;

zc_args.flags = 0;

zc_args.cb = &zc_recv_callback;

if(flags & MSG_DONTWAIT)
zc_args.flags |= ONLOAD_MSG_DONTWAIT;

rc = onload_zc_recv(fd, &zc_args);
if(rc == -ENOTEMPTY) {
if((rc = onload_recvmsg_kernel(fd, &msg, ©)) < 0)
printf("onload_recvmsg_kernel failed\n");
}
else if(rc == 0) {
/* zc_rc gets set by callback to bytes received, so we
* can return that to appear like standard recv call */
rc = info.zc_rc;
}

return rc;

Figure 21: Zero-Copy Receive - example #2

Issue 20 © Solarflare Communications 2015

206

SOLARFLAREFE®

Onload User Guide
Onload Extensions API

NOTE: onload_zc_recv() only supports accelerated (Onloaded) sockets. For
example, when bound to a broadcast address the socket fd is handed off to the
kernel and this function will return ESOCKNOTSUPPORT.

Zero-Copy TCP Send Overview

Figure 22 illustrates the difference between the normal TCP transmit method and
the zero- copy method.

When using standard POSIX socket calls, the application first creates the payload
data in an application allocated buffer before calling the send() function. Onload
will copy the data to a Onload packet buffer in memory and post a descriptor to this
buffer in the network adapter TX descriptor ring.

Using the zero-copy TCP transmit APl the application calls the
onload_zc_alloc_buffers() function to request buffers from Onload. A pointer
to a packet buffer is returned in response. The application places the data to send
directly into this buffer and then calls onload_zc_send() to indicate to Onload that
data is available to send.

Onload will post a descriptor for the packet buffer in the network adapter TX
descriptor ring and ring the TX doorbell. The network adapter fetches the data for
transmission.

Application ZEFD COpY Application
Datato s==nd Z_alloc_butfersr) ptr_to_buffer
send() Zc_=end))
return et
Onload Y Y Onlad
[Sock et s2nd buffer] Sock et send buffer
o descriptar poa descrptar
MIC MIC
Diatatransmit Datatransmit
Figure 22: Traditional vs. Zero-Copy TCP Transmit
Issue 20 © Solarflare Communications 2015 207

SOLARFLAREFE®

®
®

Onload User Guide
Onload Extensions API

NOTE: The socket used to allocate zero-copy buffers must be in the same stack as
the socket used to send the buffers. When using TCP loopback, Onload can move a
socket from one stack to another. Users must ensure that they ALWAYS USE
BUFFERS FROM THE CORRECT STACK.

NOTE: The onload_zc_send function does not currently support the
ONLOAD_MSG_MORE or TCP_CORK flags.

Zero-copy TCP transmit is implemented within the Onload Extensions API.

Zero-Copy TCP Send

The zero-copy send API supports the sending of multiple messages to different
sockets in a single call. Data buffers must be allocated in advance and for best
efficiency these should be allocated in blocks and off the critical path. The user
should avoid simply moving the copy from Onload into the application, but where
this is unavoidable, it should also be done off the critical path.

int onload_zc_send(struct onload_zc_mmsg* msgs, int mlen, int flags);

Figure 23: Zero-Copy send

int onload_zc_alloc_buffers(int fd,
struct onload_zc_iovec* iovecs,
int iovecs_len,
onload_zc_buffer_type flags flags);

int onload_zc_release buffers(int fd,
onload_zc_handle* bufs,
int bufs_len);

Figure 24: Zero-Copy allocate buffers
The onload_zc_send() function return value identifies how many of the

onload_zc_mmsg array’s rc fields are set. Each onload_zc_mmsg.rc returns how
many bytes (or error) were sent in for that message. Refer to the table below.

rc = onload_zc_send()

rc <o application error calling onload_zc_send(). rcis set to
the error code

rc == 0 should not happen

@ < rc <= n_msgs rcis set to the number of messages whose status has been
sent in mmsgsli].rc.

rc == n_msgs is the normal case

Issue 20

© Solarflare Communications 2015 208

SOLARFLAREFE®

Onload User Guide

Onload Extensions API
rc = mmsg[i].rc
rc <o error sending this message. rc is set to the error code
rc >= 0 rcis set to the number of bytes that have been sent in this

message. Compare to the message length to establish
which buffers sent

Sent buffers are owned by Onload. Unsent buffers are owned by the application and
must be freed or reused to avoid leaking.

Zero-Copy Send - Single Message, Single Buffer

struct onload_zc_iovec iovec;
struct onload_zc_mmsg mmsg;

rc = onload_zc_alloc_buffers(fd, &iovec, 1,
ONLOAD_ZC_BUFFER_HDR_TCP);

assert(rc == 0);

assert(my_data_len <= iovec.iov_len);

memcpy (iovec.iov_base, my _data, my_data_len);

iovec.iov_len = my_data_len;

mmsg.fd = fd;
mmsg.iov = &iovec;
mmsg.msg.msghdr.msg_iovlen = 1;

rc = onload_zc_send(&mmsg, 1, 9);
if(rc <= 0) {
/* Probably application bug */

return rc;
} else {
/* Only one message, so rc should be 1 */
assert(rc == 1);
/* rc == 1 so we can look at the first (only) mmsg.rc */

if(mmsg.rc < 0)
/* Error sending message */
onload_zc_release_buffers(fd, &iovec.buf, 1);
else
/* Message sent, single msg, single iovec so
* shouldn't worry about partial sends */
assert(mmsg.rc == my_data_len);

Figure 25: Zero-Copy - Single Message, Single Buffer Example

The example above demonstrates error code handling. Note it contains an examples
of bad practice where buffers are allocated and populated on the critical path.

Zero-Copy Send - Multiple Message, Multiple Buffers

#tdefine N_BUFFERS 2
#define N_MSGS 2

Issue 20

© Solarflare Communications 2015 209

Onload User Guide

SOLARFLARE®
Onload Extensions API

struct onload_zc_iovec iovec[N_MSGS][N_BUFFERS];
struct onload_zc_mmsg mmsg[N_MSGS];

for(i = @; i < N_MSGS; ++i) {
rc = onload_zc_alloc_buffers(fd, iovec[i], N_BUFFERS,
ONLOAD_ZC_BUFFER_HDR_TCP);
assert(rc == 0);
/* TODO store data in iovec[i][j].iov_base,
* set iovec[i][j]iov_len */

mmsg[i]fd = fd; /* Could be different for each message */
mmsg[i].iov = iovec[i];
mmsg[i].msg.msghdr.msg_iovlen = N_BUFFERS;

}

rc = onload_zc_send(mmsg, N_MSGS, 9);
if(rc <=0) {
/* Probably application bug */
return rc;
} else {
for(1 = 0; i < N_MSGS; ++i) {
if(i<rc) {
/* mmsg[i] is set and we can use it */
if(mmsg[i] < @) {
/* error sending this message - release buffers */
for(j = @; j < N_BUFFERS; ++j)
onload_zc_release_buffers(fd, &iovec[i][j].buf, 1);
} else if(mmsg(i] < sum_over_j(iovec[i][j].iov_len)) {
/* partial success */
/* TODO use mmsg[i] to determine which buffers in
* jovec[i] array are sent and which are still
* owned by application */
} else {
/* Whole message sent, buffers now owned by Onload */
}
} else {
/* mmsg[i] is not set, this message was not sent */
for(j = ©; j < N_BUFFERS; ++j)
onload_zc_release buffers(fd, &iovec[i][j].buf, 1);

Figure 26: Zero-Copy - Multiple Messages, Multiple Buffers Example

The example above demonstrates error code handling and contains some examples
of bad practice where buffers are allocated and populated on the critical path.

Zero-Copy Send - Full Example

static struct onload_zc_iovec iovec[NUM_ZC_BUFFERS];

static ssize_t do_send_zc(int fd, const void* buf, size_t len, int flags)

{
int bytes_done, rc, i, bufs_needed;
struct onload_zc_mmsg mmsg;

Issue 20 © Solarflare Communications 2015 210

Onload User Guide

SOLARFLARE®
Onload Extensions API

mmsg.fd = fd;

mmsg.msg.iov = iovec;
bytes_done = 0;
mmsg.msg.msghdr.msg_iovlen = 0;

while(bytes_done < len) {
if(iovec[mmsg.msg.msghdr.msg_iovlen].iov_len > (len - bytes_done))
iovec[mmsg.msg.msghdr.msg_iovlen].iov_len = (len - bytes_done);
memcpy(iovec[i].iov_base, buf+bytes_done, iov_len);
bytes_done += iovec[mmsg.msg.msghdr.msg iovlen].iov_len;
++mmsg.msg.msghdr.msg_iovlen;

}

rc = onload_zc_send(&mmsg, 1, 0);

if(rc != 1 /* Number of messages we sent */) {
printf(“"onload_zc_send failed to process msg, %d\n", rc);
return -1;

} else {

if(mmsg.rc < 0)
printf("onload_zc_send message error %d\n", mmsg.rc);
else {
/* Iterate over the iovecs; any that were sent we must replenish. */
i = @; bufs_needed= 0;
while(i < mmsg.msg.msghdr.msg_iovlen) {
if(bytes_done == mmsg.rc) {
printf(onload_zc_send did not send iovec %d\n", i);
/* In other buffer allocation schemes we would have to release
* these buffers, but seems pointless as we guarantee at the
* end of this function to have iovec array full, so do nothing.
*/
} else {
/* Buffer sent, now owned by Onload, so replenish iovec array */
++bufs needed;
bytes_done += iovec[i].iov_len;
}
++1i;

}

if(bufs_needed) /* replenish the iovec array */
rc = onload_zc_alloc_buffers(fd, iovec, bufs_needed,
ONLOAD_ZC_BUFFER_HDR_TCP);
}
)

/* Set a return code that looks similar enough to send(). NB. we're
* not setting (and neither does onload_zc_send()) errno */

if(mmsg.rc < @) return -1;

else return bytes_done;

Figure 27: Zero-Copy Send

Issue 20 © Solarflare Communications 2015 211

Onload User Guide

SOLARFLARE®
; Onload Extensions API

D.7 Templated Sends

For a description of the templates sends feature, refer to Templated Sends on
page 108. For a description of the packet template to be used by the templated
sends feature refer to the use notes and referencestoonload_msg_templateinthe
[onload]/src/include/onload/extensions_zc.hfileincluded from the Onload
distribution.

MSG Template

struct oo_msg_template {
/* To verify subsequent templated calls are used with the same socket */
00_sp oomt_sock_id;

|5

MSG Update

/* An update_iovec describes a single template update */
struct onload_template_msg_update_iovec {

void* otmu_base; /* Pointer to new data */
size t otmu_len; /* Length of new data */
off_t otmu_offset; /* Offset within template to update */
unsigned otmu_flags; /* For future use. Must be set to 0. */
};
MSG Allocation

/* Valid options for flags are: ONLOAD_TEMPLATE_FLAGS_PIO RETRY */

extern int onload_msg_template_alloc(int fd, struct iovec* initial msg,
int mlen, onload_template_handle* handle,
unsigned flags);

MSG Template Update

/* Valid options for flags are: ONLOAD_TEMPLATE_FLAGS_SEND_NOW,
* ONLOAD_TEMPLATE_FLAGS_DONTWAIT
*/
extern int
onload_msg_template_update(int fd, onload_template_handle handle,
struct onload_template_msg_update_iovec* updates,
int ulen, unsigned flags);

MSG Template Abort

extern int onload_msg_template_abort(int fd, onload_template_handle handle);

Issue 20 © Solarflare Communications 2015 212

Onload User Guide

SOLARFLARE®
; Onload Extensions API

D.8 Delegated Sends API

The delegated send API, supported by Solarflare SFN7000 series adapters, can lower
the latency overhead incurred when calling send () on TCP sockets by controlling
TCP socket creation and management through Onload, but allowing TCP sends
directly through the Onload layer 2 ef_vi API or other similar API.

Description

An application using the delegated sends API will prepare a packet buffer with IP/
TCP header data, before adding payload data to the packet. The packet buffer can
be prepared in advance and payload added just before the send is required.

After each delegated send, the actual data sent (and length of that data) is returned
to Onload. This allows Onload to update the TCP internal state and have the data to
hand if retransmissions are required on the socket.

This feature is intended for applications that make sporadic TCP sends as opposed
to large amounts of bi-directional TCP traffic. The API should be used with caution
to send small amounts of TCP data. Although the packet buffer can be prepared in
advance of the send, the idea is to complete the delegated send operation
(onload_delegated_send_complete()) soon after the initial send to maintain the
integrity of the TCP internal state.

The user is responsible for serialization when using the delegated send API. The first
call should always be onload_delegated send _prepare(). If a normal send is
required following the prepare, the user should use
onload_delegated_send_cancel().

For a given file descriptor, while a delegated send is in progress, and until complete
has been called, the user should NOT attempt any standard send(), write() or
sendfile() close() etc operations.

Performance

For best latency the application should call onload_delegated send_complete()
as soon as a delegated send is complete. This allows Onload to continue if
retransmissions are required - Onload cannot perform any retransmission until
complete has been called.

When a link partner has already acknowledged data before complete has been
called, Onload will not have to copy the sent data to the TCP retransmit queue. So
delaying the complete call may avoid a data copy but latency may suffer in the event
of packet loss.

Issue 20 © Solarflare Communications 2015 213

SOLARFLAREFE®

Onload User Guide
Onload Extensions API

Example Code

The Onload-201502 distribution includes the efdelegated_server.c and

efdelegated client.c example applications to demonstrate the delegated sends
API. Variables and constants definitions, including socket flags and function return
codes required when using the API can be found in the extensions.h header file.

onload_delegated_send_prepare

Description

Prepare to send up to size bytes. Allocate TCP headers and prepare them with
Ethernet IP/TCP header data.

Definition

enum onload_delegated_send_prepare (
int fd,

int size,

uint flags,

struct onload_delegated_send*)

Formal Parameters
fd

File descriptor to send on
size

Size of payload data
flags

See below

struct onload_delegated_send*

See below

Return Value
0 on success

nonzero otherwise

Notes

This function can be called speculatively so that the packet buffer is prepared in
advance, headers are added so that the packet payload data can be added
immediately before the send is required.

This function assumes the packet length is equal to MSS in which case there is no
need to call onload_delegated_send_tcp_update().

Issue 20

© Solarflare Communications 2015 214

SOLARFLAREFE®

Flags are used for ARP resolution:

e defaultflags=0

e ONLOAD_DELEGATED_SEND_FLAG_IGNORE_ARP - do not do ARP lookup, the

caller will provide destination MAC address.

e ONLOAD _DELEGATED_SEND_FLAG_RESOLVE_ARP - if ARP information is not

Onload User Guide
Onload Extensions API

available, send a speculative TCP_ACK to provoke kernel into ARP resolution -

wait up to 1ms for ARP information to appear.

TCP send window/congestion windows must be respected during delegated

sends.

See extensions.h for flags and return code values.

struct onload_delegated_send {
void* headers;

int headers_len; /* buffer len on input, headers len on output */

int mss; /* one packet payload may not exceed this */
int send_wnd; /* send window */

int cong_wnd; /* congestion window */

int user_size; /* the "size" value from send_prepare() call */

int tcp_seq_offset;
int ip_len_offset;
int ip_tcp_hdr_len;
int reserved[5];

s
onload_delegated_send_tcp_update

Description

Update packet headers with payload length and flags.

Definition

void onload_delegated_send_tcp_update (
struct onload_delegated_send*,

int size,

int flags)

Formal Parameters

struct onload_delegated_send*
See below

size
Size of payload data

flags
See below

Issue 20 © Solarflare Communications 2015

215

Onload User Guide

SOLARFLARE®
; Onload Extensions API

Return Value

None

Notes

This function is called when, during a send, the payload length is not equal to the
MSS value. See onload_delegated _send_prepare on page 214.

Flag TCP_FLAG_PSH is expected to be set on the last packet when sending a large
data chunk.

onload_delegated_send_tcp_advance

Description

Advance TCP headers after sending one TCP packet.

Definition

void onload_delegated_send_tcp_advance (
struct onload_delegated_send*,
int bytes)

Formal Parameters

struct onload_delegated_send*
See below

bytes
Number of bytes sent

Return Value

None

Notes

When sending a packet using multiple sends, the function is called to update the
header data with the number of bytes after each send.

The actual data sent is not returned to onload until
onload_delegated send_complete() is called.

onload_delegated_send_complete

Description

Following a delegated send, this function is used to return the actual data sent (and
length of that data) to Onload which will update the internal TCP state.

Issue 20 © Solarflare Communications 2015 216

Onload User Guide

SOLARFLARE®
; Onload Extensions API

Definition

int onload_delegated_send_complete (
int fd,

const struct iovec *,

int iovlen,

int flags)

Formal Parameters

fd
The file descriptor.
struct iovec

Pointer to the data sent

iovlen
Size (bytes) of the data sent

flags
(MSG_DONTWAIT | MSG_NOSIGNAL]

Return Value
0 on success

non-zero if an error occurs.

Notes
Onload is unable to do any retransmit until this function has been called.

This function should be called even if some (but not all) bytes specified in the
prepare function have been sent. The user must also call
onload_delegated_send_cancel() if some of the bytes are not going to be sent
i.e. reserved-but-not-sent - see onload_delegated_send cancel() notes below.

This function can block because of SO_SNDBUF limitation and will ignore the
SO_SNDTIMEO value.

onload_delegated_send_cancel

Description
No more delegated send is planned.

Normal send(), shutdown() or close() etc can be called after this call.

Definition

int onload_delegated_send_cancel (int fd)

Formal Parameters
fd

Issue 20 © Solarflare Communications 2015 217

SOLARFLAREFE®

Onload User Guide
Onload Extensions API

The file descriptor to be closed.

Return Value
0 on success

non-zero if an error occurs.

Notes

When tcp headers have been allocated with onload_delegated _send_prepare(), but
it is subsequently required to do a normal send, this function can be used to cancel
the delegated send operation and do a normal send.

There is no need to call this function before calling
onload_delegated_send_prepare().

There is no need to call this function if all the bytes specified in the
onload_delegated_send_prepare() function have been sent.

If some, but not all bytes have been sent, you must call
onload_delegated send complete() for the sent bytes THEN call
onload_delegated send_cancel() for the remaining bytes (reserved-but-not-
sent) bytes. This applies even if the reason for not sending is that the window limits
returned from the prepare function have been reached.

Normal send(), shutdown() or close() etc can be called after this call.

Issue 20

© Solarflare Communications 2015 218

‘ Onload User Guide
SOLARFLARE®

E onload_stackdump

E.1 Introduction

The Solarflare onload_stackdump diagnostic utility is a component of the Onload
distribution which can be used to monitor Onload performance, set tuning options
and examine aspects of the system performance.

@ NOTE: To view data for all stacks, created by all users, the user must be root when
running onload_stackdump. Non-root users can only view data for stacks created
by themselves and accessible to them via the EF_SHARE_WITH environment
variable.

The following examples of onload_stackdump are demonstrated elsewhere in this
user guide:

e Monitoring Using onload_stackdump on page 42
e Processing at User-Level on page 43

e AsFew Interrupts as Possible on page 45

e Eliminating Drops on page 45

e Minimizing Lock Contention on page 46

E.2 General Use

The onload_stackdump tool can produce an extensive range of data and it can be
more useful to limit output to specific stacks or to specific aspects of the system
performance for analysis purposes.

e For help, and to list all onload_stackdump commands and options:

onload_stackdump -?

e Tolist and read environment variables descriptions:

onload_stackdump doc

e For descriptions of statistics variables:
onload_stackdump describe_stats
Describes all statistics listed by the onload_stackdump lots command.
e Toidentify all stacks, by identifier and name, and all processes accelerated by
Onload:
onload_stackdump

#stack-id stack-name pids
6 teststack 28570

Issue 20 © Solarflare Communications 2015 219

SOLARFLAREFE®

Onload User Guide

onload_stackdump

e To limit the command/option to a specific stack e.g (stack 4).
onload_stackdump 4 lots

List Onloaded Processes

The ‘onload_stackdump processes’ command will show the PID and name of
processes being accelerated by Onload and the Onload stack being used by each
process e.g.

onload_stackdump processes
#pid stack-id cmdline
25587 3 ./sfnt-pingpong

Onloaded processes which have not created a socket are not displayed, but can be
identified using the 1sof command.

Identify Onloaded Processes Affinities

The ‘onload_stackdump affinities’ command will identify the task affinity for an
accelerated process e.g.

onload_stackdump affinities
pid=25587
cmdline=./sfnt-pingpong
task25587: 80

The task affinity is identified from an 8 bit maski.e. 01 is CPU core 0, 02 is CPU core
1, 80 is CPU core 7 etc.

List Onload Environment variables

The ‘onload_stackdump env’ command will identify onloaded processes running
in the current environment and list all Onload variables set in the current
environment e.g.

EF_POLL_USEC=100000 EF_TXQ_SIZE=4096 EF_INT_DRIVE=1 onload <application>

onload_stackdump env
pid: 25587

cmdline: ./sfnt-pingpong
env: EF_POLL_USEC=100000
env: EF_TXQ_SIZE=4096
env: EF_INT_DRIVEN=1

TX PIO Counters

The Onload stackdump utility exposes counters to indicate how often TX PIO is being
used - see Debug and Logging on page 67. To view PIO counters run the following
command:

$ onload_stackdump stats | grep pio
pio_pkts: 2485971
no_pio_err: 0

Issue 20

© Solarflare Communications 2015 220

SOLARFLAREFE®

Onload User Guide

onload_stackdump

The values returned will identify the number of packets sent via PIO and number of
times when P10 was not used due to an error condition.

Send RST on a TCP Socket

To send a reset on an Onload accelerated TCP socket, specify the stack and socket
using the rst command:

onload_stackdump <stack:socket> rst

Removing Zombie and Orphan Stacks

Onload stacks and sockets can remain active even after all processes using them
have been terminated or have exited, for example to ensure sent data is successfully
received by the TCP peer or to honor TCP TIME_WAIT semantics. Such stacks should
always eventually self-destruct and disappear with no user intervention. However,
these stacks, in some instances, cause problems for re-starting applications, for
example the application may be unable to use the same port numbers when these
are still being used by the persistent stack socket. Persistent stacks also retain
resources such as packet buffers which are then denied to other stacks.

Such stacks are termed ‘zombie’ or ‘orphan’ stacks and it may be undesirable or
desirable that they exist.

e To list all persistent stacks:
onload_stackdump -z all
No output to the console or syslog means that no such stacks exist.
e Tolist a specific persistent stack:
onload_stackdump -z <stack ID>
e To display the state of persistent stacks:
onload_stackdump -z dump
¢ To terminate persistent stacks

onload_stackdump -z kill

e To display all options available for zombie/orphan stacks:
onload_stackdump --help

Snapshot vs. Dynamic Views

The onload_stackdump tool presents a snapshot view of the system when invoked.
To monitor state and variable changes whilst an application is running use
onload_stackdump with the Linux watch command e.g.

e snapshot: onload_stackdump netif
e dynamic: watch -d -nl1 onload_stackdump netif

Some onload_stackdump commands also update periodically whilst monitoring a
process. These commands usually have the watch_ prefix e.g.

Issue 20

© Solarflare Communications 2015 221

SOLARFLAREFE®

Onload User Guide

onload_stackdump

watch_stats, watch_more_stats, watch_tcp_stats, watch_ip_stats etc.

Use the onload_stackdump -h option to list all commands.

Monitoring Receive and Transmit Packet Buffers

onload_stackdump packets

onload_stackdump packets

ci_netif_pkt_dump_all: id=1
pkt_sets: pkt_size=2048 set_size=1024 max=32 alloc=2
pkt_set[0@]: free=544
pkt_set[1]: free=437 current
pkt_bufs: max=32768 alloc=2048 free=981 async=0
pkt_bufs: rx=1067 rx_ring=1001 rx_queued=2 pressure_pool=64
pkt_bufs: tx=0 tx_ring=0 tx_oflow=0
pkt_bufs: in_loopback=0 in_sock=0

1003: 0x200 Rx

n_zero_refs=1045 n_freepkts=981 estimated_free_nonb=64
free_nonb=0 nonb_pkt_ pool=ffffffffffffffff

The onload_stackdump packets command can be useful to review packet buffer
allocation, use and reuse within a monitored process.

The example above identifies that the process has a maximum of 32768 buffers
(each of 2048 bytes) available. From this pool 576 buffers have been allocated and
50 from that allocation are currently free for reuse - that means they can be pushed
onto the receive or transmit ring buffers ready to accept new incoming/outgoing
data.

On the receive side of the stack, 525 packet buffers have been allocated, 522 have
been pushed to the receive ring - and are available for incoming packets, and 3 are
currently in the receive queue for the application to process.

On the transmit side of the stack, only 1 packet buffer is currently allocated and
because it is not currently in the transmit ring and is not in an overflow buffer it is
counted as tx_other. The remaining values are calculations based on the packet
buffer values.

Using the EF_PREFAULT_PACKETS environment variable, packets can be pre-
allocated to the user-process when an Onload stack is created. This can reduce
latency jitter and improve Onload performance - for further details see Prefault
Packet Buffers on page 42.

Packet Sets

A packet set is a 2MB chunk of packet buffers being used by an Onload application.
An application might use buffers from a single set or from several sets depending on
its complexity and packet buffer requirements.

With an aim to further reduce TLB thrashing and eliminate packets drops, Onload
will try to reuse buffers from the same set.

Issue 20

© Solarflare Communications 2015 222

SOLARFLAREFE®

Onload User Guide

onload_stackdump

The onload_stackdump lots command in Onload 201509 will report on the current

use of packets sets e.g

$ onload_stackdump lots | grep pkt_set

pkt_sets: pkt_size=2048 set_size=1024 max=32 alloc=2

pkt_set[@]: free=544

pkt_set[1]: free=442 current

Inthe above output there are 2 packet sets, the counters identify the number of free
packet buffers in each set and identify the set currently being used.

The packet sets feature is not available to user applications using the ef _vi layer

directly.

TCP Application STATS

The following onload_stackdump commands can be used to monitor accelerated

TCP connections:

onload_stackdump tcp_stats

Field

Description

tcp_active_opens

Number of socket connections initiated by the
local end

tcp_passive_opens

Number of sockets connections accepted by the
local end

tcp_attempt_fails

Number of failed connection attempts

tcp_estab_resets

Number of established connections which were
subsequently reset

tcp_curr_estab

Number of socket connections in the established
or close_wait states

tcp_in_segs

Total number of received segments - includes
errored segments

tcp_out_segs

Total number of transmitted segments - excluding
segments containing only retransmitted octets

tcp_retran_segs

Total number of retransmitted segments

tcp_in_errs

Total number of segments received with errors

tcp_out_rsts

Number of reset segments sent

Issue 20

© Solarflare Communications 2015 223

SOLARFLAREFE®

Onload User Guide

onload_stackdump

onload_stackdump more_stats | grep tcp

Field

Description

tcp_has_recvq

Non zero if receive queue has data ready

tcp_recvqg_bytes

Total bytes in receive queue

tcp_recvqg_pkts

Total packets in receive queue

tcp_has_recv_reorder

Non zero if socket has out of sequence bytes

tcp_recv_reorder_pkts:

Number of out of sequence packets received

tcp_has_sendq

Non zero if send queues have data ready

tcp_sendq_bytes

Number of bytes currently in all send queues for
this connection

tcp_sendq_pkts

Number of packets currently in all send queues for
this connection

tcp_has_inflight

Non zero if some data remains unacknowledged

tcp_inflight_bytes

Total number of unacknowledged bytes

tcp_inflight_pkts

Total number of unacknowledged packets

tcp_n_in_listenq

Number of sockets (summed across all listening
sockets) where the local end has responded to
SYN, with a SYN_ACK, but this has not yet been
acknowledged by the remote end

tcp_n_in_acceptq

Number of sockets (summed across all listening
sockets) that are currently queued waiting for the
local application to call accept()

Use the onload_stackdump -h command to list all TCP connection, stack and

socket commands.

The onload_stackdump LOTS Command.

The onload_stackdump lots command will produce extensive data for all

accelerated stacks and sockets. The command can also be restricted to a specific
stack and its associated connections when the stack number is entered on the

command line e.g.
onload_stackdump lots

onload_stackdump 2 lots

For descriptions of the statistics refer to the output from the following command:

onload_stackdump describe_stats

Issue 20

© Solarflare Communications 2015 224

SOLARFLAREFE®

Onload User Guide

onload_stackdump

The following tables describe the output from the onload_stackdump lots

command for:

e TCPstack

e TCP established connection socket

e TCP listening socket

e UDP socket

Within the tables the following abbreviations are used:

e rx =receive (or receiver), tx = transmit (or send)

e pkts = packets, skts = sockets

e Max = maximum, num = number, seq = sequence number

Table 5: Stackdump Output: TCP Stack

Sample output

Description

onload_stackdump lots

Command entered

ci_netif _dump: stack=7 name=

Stack id and stack name as set by EF_NAME.

ver=201310 uid=0 pid=21098

Onload version, user id and process id of creator
process

lock=20000000 LOCKED nics=3 primed=1

Internal stack lock status

nics = bitfield identifies adapters used by this stack
e.g. 3 =0x11 - so stack is using NICs 1 and 2.

primed = 1 means the event queue will generate
an interrupt when the next event arrives

sock_bufs: max=1024 n_allocated=4

Max number of sockets buffers which can be
allocated, and number currently in use. Socket
buffers are also used by pipes.

pkt_bufs: size=2048 max=32768 alloc=576
free=57 async=0

Packet buffers:

A total of 32768 (each of 2048 bytes) pkt buffers
are available to this stack. 576 have been allocated
of which 57 are free and can be reused by either
receive or transmit rings.

async = buffers that are not free, not being used,
not being reaped - i.e in a state waiting to be
returned for reuse

Issue 20 © Solarflare Communications 2015 225

SOLARFLAREFE®

Onload User Guide

onload_stackdump

Table 5: Stackdump Output: TCP Stack

Sample output

Description

pkt_bufs: rx=517 rx_ring=514 rx_queued=3

Receive packet buffers:

A total of 517 pkt buffers are currently in use, 514
have been pushed to the receive ring, 3 are in the
application’s receive queue

If the CRITICAL flag is displayed it indicates a
memory pressure condition in which the number
of packets in the receive socket buffers (rx=517) is
approaching the EF_MAX_RX_PACKETS value.

If the LOW flag is displayed it indicates a memory
pressure condition when there are not enough
packet buffers available to refill the RX descriptor
ring.

pkt_bufs: tx=2 tx_ring=1 tx_oflow=0
tx_other=1

Transmit packet buffers:

A total of 2 pkt buffers are currently in use, 1
remains in the transmit ring, 0 buffers have
overflowed. tx_other = pkt buffers not in use by
transmit and not in tx_ring or tx_oflow queue

time: netif=5eb5c61 poll=5eb5c61 now=5eb5c61
(diff=0.000sec)

Internal timer values

ci_netif _dump_vi: stack=7 intf=0
vi_instance=87 hw=0C0

Data describes the stack’s virtual interface to the
NIC

evq: cap=2048 current=16de30 is_32_evs=0
is_ev=0

Event queue data:
cap - max num of events queue can hold
current - current event queue location

is_32_evs-is 1 if there are 32 or more events
pending

is_ev - is 1 if there are any events pending

Issue 20

© Solarflare Communications 2015 226

SOLARFLAREFE®

Onload User Guide

onload_stackdump

Table 5: Stackdump Output: TCP Stack

Sample output

Description

rxq: cap=511 1im=511 spc=1 level=510
total_desc=93666

Receive queue data:
cap - total capacity

lim - max fill level for receive descriptor ring,
specified by EF_RXQ_LIMIT

spc - amount of free space in receive queue - how
many descriptors could be added before the
receive queue becomes full

level - how full the receive queue currently is

total_desc - total number of descriptors that have
been pushed to the receive queue

txq: cap=511 1im=511 spc=511 level=0 pkts=0
oflow_pkts=0

Transmit queue data:
cap - total capacity

lim - max fill level for transmit descriptor ring,
specified by EF_TXQ LIMIT

spc - amount of free space in the transmit queue -
how many descriptors could be added before the
transmit queue becomes full

level - how full the transmit queue currently is

pkts - how many packets are represented by the
descriptors in the transmit queue

oflow - how many packets are in the overflow
transmit queue (i.e. waiting for space in the NIC's
transmit queue)

txq: tot_pkts=93669 bytes=0

Total number of packets sent and number of
packet bytes currently in the queue

ci_netif_dump_extra: stack=7

Additional data follows

in_poll=0 post_poll list empty=1
poll did_wake=0

Stack Polling Status:
in_poll = process is currently polling

post_poll_list_empty=1, (1=true, O=false) tasks to
be done once polling is complete

poll_did_wake = while polling, the process
identified a socket which needs to be woken
following the poll

rx_defrag_head=-1 rx_defrag_tail=-1

Reassembly sequence numbers. -1 means no re-
assembly has occurred

Issue 20

© Solarflare Communications 2015 227

SOLARFLAREFE®

Onload User Guide

onload_stackdump

Table 5: Stackdump Output: TCP Stack

Sample output

Description

tx_tcp_may_alloc=1 nonb_pool=1
send_may_poll=0 is_spinner=0

TCP buffer data:
tx_tcp_may_alloc=num pkt buffers tcp could use

nonb_pool=number of pkt buffers available to tcp
process without holding lock

send_may_poll=0

is_spinner= TRUE if a thread is spinning

send_may_poll=0

0

hwport_to_intf_i=o0,-1,-1,-1,-1,-1
intf_i_to_hwport=0,0,0,0,0,0

Internal mapping of internal interfaces to
hardware ports

uk_intf_ver=03e89a2a26d20b98+de8793e771f2cdd9

md5 user/kernel interface checksum computed by
both kernel and user application to verify internal
data structures

ci_netif_dump_reap_list: stack=7

N N

12
:1

Identifies sockets that have buffers which can be
freed e.g. 7:2 = stack 7 socket 2

Table 6: Stackdump Output: TCP Established Connection Socket

Sample output

Description

TCP 7:1 1c1=192.168.1.2:50773
rmt=192.168.1.1:34875 ESTABLISHED

Socket Configuration.

Stack:socket id, local and remote ip:port address,
TCP connection is ESTABLISHED

lock: 10000000 UNLOCKED

Internal stack lock status

rx_wake=0000b6F4(RQ) tx_wake=00000002
flags:

Internal sequence values that are incremented
each time a queue is ‘woken’

addr_spc_id=fffffffffffffffe s_flags: REUSE
BOUND

Address space identifier in which this socket exists
and flags set on the socket

Allow bind to reuse local addresses

rcvbuf=129940 sndbuf=131072 rx_errno=0
tx_errno=0 so_error=0

Socket receive buffer size, send buffer size,
rx_errno = ZERO whilst data can still arrive,
otherwise contains error code. tx_errno = ZERO if
transmit can still happen, otherwise contains error
code. so_error = current socket error (0 = no error)

tcpflags: TSO WSCL SACK ESTAB

TCP flags currently set for this sockets

TCP state: ESTABLISHED

State of the TCP connection

Issue 20

© Solarflare Communications 2015 228

SOLARFLAREFE®

Onload User Guide

onload_stackdump

Table 6: Stackdump Output: TCP Established Connection Socket

Sample output

Description

snd: up=b554bb86 una-nxt-max=b554bb86-
b554bb87-b556b6a6 enq=b554bb87

TCP sequence numbers.

up = (urgent pointer) sequence of byte following
the 00B byte

una-nxt-max = sequence number of first
unacknowledged byte, sequence number of next
byte we expect to be acknowledged and max =
sequence of last byte in the current send window

eng = sequence number of last byte currently
gueued for transmit

send=0(0) pre=0 inflight=1(1) wnd=129824
unused=129823

Send Data.
send = number of pkts (bytes) sent

pre = number of pkts in pre-send queue. A process
can add data to the prequeue when it is prevented
from sending the data immediately. The data will
be sent when the current sending operation is
complete

inflight = number of pkts (bytes) sent but not yet
acknowledged

wnd = receiver’s advertised window size (bytes)
and number of free (unused) space (bytes) in that
window

snd: cwnd=49733+0 used=0 ssthresh=65535
bytes_acked=0 Open

Congestion window (cwnd).
cwnd = congestion window size (bytes)
used = portion of the cwnd currently in use

slowstart thresh - number of bytes that have to be
sent before process can exit slow start

bytes_acked = number of bytes acknowledged -
this value is used to calculate the rate at which the
congestion window is opened

current cwnd status = OPEN

Issue 20 © Solarflare Communications 2015 229

SOLARFLAREFE®

Onload User Guide

onload_stackdump

Table 6: Stackdump Output: TCP Established Connection Socket

Sample output

Description

snd:Onloaded(Valid) if=6 mtu=1500 intf_i=0
vlan=0 encap=4

Onloaded = can reach the destination via an
accelerated interface.

(Valid) = cached control plane information is up-to-
date, can send immediately using this information.

(Old) = cached control plane information may be
out-of-date. On next send Onload will do a control
plane lookup - this will add some latency.

rcv: nxt-max=0e9251fe-0e944d1d
current=0e944d92 FASTSTART FAST

Receiver Data.

nxt-max = next byte we expect to receive and last
byte we expect to receive (because of window
size)

current = byte currently being processed

rob_n=0 recvl n=2 recv2_n=0 wnd adv=129823
cur=129940 usr=0

Reorder buffer.

Bytes received out of sequence are put into a
reorder buffer awaiting further bytes before
reordering can occur.

rob_n = num of bytes in reorder buffer
recvl_n = num of bytes in general reorder buffer

recv2_n = num of bytes in urgent data reorder
buffer

wnd adv = receiver advertised window size
cur = current receive window size

usr = current tcp stack user

async: rx_put=-1 rx_get=-1 tx_head=-1

Asynchronous queue data.

eff_mss=1448 smss=1460 amss=1460
used_bufs=2 uid=0 wscl s=1 r=1

Max Segment Size.

eff_mss = effective_mss

smss = sender mss

amss = advertised mss

used_bufs = number of transmit buffers used
user id that created this socket(0 = root)

wscl s/r = parameters to window scaling algorithm

Issue 20 © Solarflare Communications 2015 230

SOLARFLAREFE®

Onload User Guide

onload_stackdump

Table 6: Stackdump Output: TCP Established Connection Socket

Sample output

Description

srtt=01 rttvar=000 rto=189 zwins=0,0

Round trip time (RTT) - all values are milliseconds.
srtt = smoothed RTT value

rttvar = RTT variation

rto = current RTO timeout value

zwins = zero windows, times when advertised
window has gone to zero size.

retrans=0 dupacks=0 rtos=0 frecs=0 seqgerr=0
000_pkts=0 000=0

Re-transmissions.

retrans = internal state, nearly always zero.
dupacks = number of duplicate acks received
rtos = number of retrans timeouts

frecs = number of fast recoveries

segerr = number of sequence errors

number of out of sequence pkts

number of out of order events

timers:

Currently active timers

tx_nomac

Number of TCP packets sent via the OS using raw
sockets when up to date ARP data is not available.

Table 7: Stackdump Output: TCP Stack Listen Socket

Sample output

Description

TCP 7:3 1c1=0.0.0.0:50773 rmt=0.0.0.0:0
LISTEN

Socket configuration.
stack:socket id, LISTENING socket on port 50773

local and remote addresses not set - not bound to
any IP addr

lock: 10000000 UNLOCKED

Internal stack lock status

rx_wake=00000000 tx_wake=00000000

flags:

Internal sequence values that are incremented
each time a queue is ‘woken’

addr_spc_id=fffffffffffffffe s_flags: REUSE
BOUND PBOUND

Address space identifier in which this socket exists
and flags set on the socket

Allow bind to reuse local port

Issue 20

© Solarflare Communications 2015 231

SOLARFLAREFE®

Onload User Guide

onload_stackdump

Table 7: Stackdump Output: TCP Stack Listen Socket

Sample output

Description

rcvbuf=129940 sndbuf=131072 rx_errno=6b
tx_errno=20 so_error=0

Receive Buffer.

socket receive buffer size, send buffer size,
rx_errno = ZERO whilst data can still arrive,
otherwise contains error code. tx_errno = ZERO if
transmit can still happen, otherwise contains error
code. so_error = current socket error (0 = no error)

tcpflags: WSCL SACK

Flags advertised during handshake

listenqg: max=1024 n=0

Listen Queue.

queue of half open connects (SYN received and
SYNACK sent - waiting for final ACK)

n - number of connections in the queue

acceptq: max=5 n=0 get=-1 put=-1 total=0

Accept Queue.

gueue of open connections, waiting for
application to call accept().

max = max connections that can exist in the queue
n = current number of connections
get/put = indexes for queue access

total = num of connections that have traversed
this queue

epcache: n=0 cache=EMPTY pending=EMPTY

Endpoint cache.

n = number of endpoints currently known to this
socket

cache = EMPTY or yes if endpoints are still cached

pending = EMTPY or yes if endpoints still have to
be cached

Issue 20 © Solarflare Communications 2015 232

SOLARFLAREFE®

Onload User Guide

onload_stackdump

Table 7: Stackdump Output: TCP Stack Listen Socket

Sample output

Description

defer_accept=0

Number of times TCP_DEFER_ACCEPT kicked in -
see TCP socket options

1 overflow=0 1 _no_synrecv=0 a_overflow=0
a_no_sock=0 ack_rsts=0 os=2

|_overflow = number of times listen queue was full
and had to reject a SYN request

|_no_synrecv =number of times unable to allocate
internal resource for SYN request

a_overflow = number of times unable to promote
connection to the accept queue which is full

a_no_sock = number of times unable to create
socket

ack_rsts = number of times received an ACK before
SYN so the connection was reset

0s=2 there are 2 sockets being processed in the
kernel

Table 8: Stackdump Output: UDP Socket:

Sample output

Description

UDP 4:1 1c1=192.168.1.2:38142
rmt=192.168.1.1:42638 UDP

Socket Configuration.
stack:socket id, UDP socket on port 38142

Local and remote addresses and ports

lock: 20000000 LOCKED

Stack internal lock status

rx_wake=000e69b0 tx_wake=000e69bl flags:

Internal sequence values that are incremented
each time a queue is ‘woken’

addr_spc_id=fffffffffffffffe s_flags: REUSE

Address space identifier in which this socket exists
and flags set on the socket

Allow bind to reuse local addresses

rcvbuf=129024 sndbuf=129024 rx_errno=0
tx_errno=0 so_error=0

Buffers.

socket receive buffer size, send buffer size,
rx_errno = ZERO whilst data can still arrive,
otherwise contains error code. tx_errno = ZERO if
transmit can still happen, otherwise contains error
code. so_error = current socket error (0 = no error)

udpflags: FILT MCAST_LOOP RXOS

Flags set on the UDP socket

Issue 20

© Solarflare Communications 2015 233

Onload User Guide

SOLARFLARFE®
; onload_stackdump
Table 8: Stackdump Output: UDP Socket:
Sample output Description
mcast_snd: intf=-1 ifindex=0 saddr=0.0.0.0 Multicast.

ttl=1 mtu=1500
intf = multicast hardware port id (-1 means port

was not set)

ifindex = interface (port) identifier

saddr = IP address

ttl = time to live (default for multicast =1)

mtu = max transmission unit size

rcv: q_bytes=0 q_pkts=0 reap=2 Receive Queue.

tot_bytes=30225920 tot_pkts=944560)
g_bytes = num bytes currently in rx queue
g_pkts = num pkts currently in rx queue
tot_bytes = total bytes received

tot_pkts = total pkts received

rcv: oflow_drop=0(0%) mem_drop=0 eagain=0 Overflow Buffer.
pktinfo=0 g_max_pkts=0)
oflow = number of datagrams in the overflow

qgueue when the socket buffer is full.

drop = number of datagrams dropped due to
running out of packet buffer memory.

eagain = number of times the application tried to
read from a socket when there is no data ready -
this value can be ignored on the rcv side

pktinfo = number of times IP_PKTINFO control
message was received

g_max = max depth reached by the receive queue
(packets)

rcv: 0s=0(0%) os_slow=8 os_error=0 Number of datagrams received via:
0s = operating system
os_slow = operating system slow socket

os_error = recv() function call via OS returned an
error

Issue 20 © Solarflare Communications 2015 234

Onload User Guide

SOLARFLARFE®
; onload_stackdump

Table 8: Stackdump Output: UDP Socket:

Sample output Description

snd: =0+0 ul=944561 0s=0(0%) os_slow=0(0%) Send values.

g = number of bytes sent to the interface but not
yet transmitted

ul = number of datagrams sent via onload
os = number of datagrams sent via OS

os_slow number of datagrams sent via OS slow
path

snd: cp_match=0(0%) Unconnected UDP send.

cp_match = number dgrams sent via accelerated
path and percent this is of all unconnected send
dgrams

snd: 1k_poll=0(0%) lk_pkt=944561(100%) Stack internal lock.
1k_snd=0(0%)))
Ik_poll = number of times the lock was held while

we poll the stack

Ik_pkt = number of pkts sent while holding the
lock

Ik_snd = number of times the lock was held while
sending data

snd: 1lk_defer=0(0%) cached_daddr=0.0.0.0 Sending deferred to the process/thread currently
holding the lock

snd: eagain=0 spin=0 block=0 eagain = count of the number of times the
application tried to send data, but the transmit
qgueue is already full. A high value on the send side
may indicate transmit issues.

spin = number of times process had to spin when
the send queue was full

block = number of times process had to block
when the send queue was full

Issue 20 © Solarflare Communications 2015 235

SOLARFLAREFE®

Onload User Guide

onload_stackdump

Table 8: Stackdump Output: UDP Socket:

Sample output Description

snd: poll_avoids_full=e fragments=0 poll_avoids_full = number of times polling created

confirm=0 space in the send queue
fragments = number of (non first) fragments sent
confirm = number of datagrams sent with
MSG_CONFIRM flag

snd: os_late=@ unconnect_late=0 os_late = number of pkts sent via OS after copying

unconnect_late = number of pkts silently dropped
when process/thread becomes disconnected
during a send procedure

Following the stack and socket data onload_stackdump lots will display a list of
statistical data. For descriptions of the fields refer to the output from the following
command:

onload_stackdump describe_stats

The final list produced by onload_stackdump lots shows the current values of all
environment variables in the monitored process environment. For descriptions of
the environment variables refer to Parameter Reference on page 146 or use the
onload_stackdump doc command.

Remote Monitoring

Introduced in Onload-201502, the remote monitoring feature uses a simple client/
server model to export the Onload stack and socket data to a remote server(s). The
remote monitor (server) process is installed along with the Onload distribution. A
simple example client process is also provided:

The server process (on the machine to be monitored) can be started from the
following directory:

openonload-201502/src/tools/onload_remote_monitor

Start the monitor server process identifying a port through which server/client
processes will connect:

./onload_remote_monitor <port>
The example client process can be found in the following directory:
openonload-201502/src/tests/onload/onload_remote_monitor

From the remote machine, start the client process identifying the server host
machine and port number

./orm_example_client <serverhost>:<port>

Issue 20

© Solarflare Communications 2015 236

Onload User Guide

SOLARFLARFE®
; onload_stackdump

In the initial release the remote_monitor server will export an extensive list of
counters from the Onload stacks and sockets. Data is exported in JSON format for
processing by a remote application.

Remote monitoring is an exploratory feature and it is planned that future
continuous development will include data requested by direct customer input and
feedback.

Customers interested in remote monitoring are asked to provide feedback and
monitoring requirements by sending an email to support@solarflare.com.

Issue 20 © Solarflare Communications 2015 237

‘ Onload User Guide
SOLARFLARE®

F Solarflare sfnettest

F.1 Introduction

Solarflare sfnettest is a set of benchmark tools and test utilities supplied by
Solarflare for benchmark and performance testing of network servers and network
adapters. The sfnettest is available in binary and source forms from:

http://www.openonload.org/

Download the sfnettest-<version>.tgz source file and unpack using the tar
command.

tar -zxvf sfnettest-<version>.tgz

Run the make utility from the /sfnettest-<version>/src subdirectory to build
the benchmark applications.

Refer to the README . sfnt-pingpong or README . sfnt-stream files in the
distribution directory once sfnettest is installed.

sfnt-pingpong

Description

The sfnt-pingpong application measures TCP and UDP latency by creating a single
socket between two servers and running a simple message pattern between them.
The output identifies latency and statistics for increasing TCP/UDP packet sizes.

Usage

sfnt-pingpong [options] [<tcp]|udp|pipe|unix_stream|unix_datagram>
[<host[:port]>]]

Options

sfnt-pingpong options:

Option Description

--port server port

--sizes single message size (bytes)
--connect connect() UDP socket
--spin spin on non-blocking recv()

Issue 20 © Solarflare Communications 2015 238

http://www.openonload.org/

SOLARFLAREFE®

Onload User Guide

Solarflare sfnettest

Option

Description

--muxer

select, poll or epoll

--serv-muxer

none, select, poll or epoll (same as client by default)

--rtt report round-trip-time

--raw dump raw results to files

--percentile percentile

--minmsg minimum message size

--maxmsg maximum message size

--minms min time per msg size (ms)

- -maxms max time per msg size (ms)

--miniter minimum iterations for result

--maxiter maximum iterations for result

--mcast use multicast addressing

--mcastintf set the multicast interface. The client sends this parameter
to the server.
--mcastintf=eth2 both client and server use eth2
--mcastintf="eth2;eth3’ client uses eth2 and server uses
eth3 (quotes are required for this format)

--mcastloop IP_MULTICAST_LOOP

--bindtodev SO_BINDTODEVICE

--forkboth fork client and server

--n-pipe include pipes in file descriptor set

--n-unix-d include unix datagrams in the file descriptor set

--n-unix-s include unix streams in the file descriptor set

--n-udp include UDP sockets in file descriptor set

--n-tcpc include TCP sockets in file descriptor set

--n-tcpl include TCP listening sockets in file descriptor set

--tcp-serv host:port for TCP connections

--timeout socket SND/RECV timeout

Issue 20

© Solarflare Communications 2015 239

SOLARFLAREFE®

Onload User Guide

Solarflare sfnettest

Option Description

--affinity ’<client-core>;<server-core>" Enclose values in quotes.
This option should be set on the client side only. The client
sends the <server_core> value to the server. The user must
ensure that the identified server core is available on the
server machine.

This option will override any value set by taskset on the
same command line.

--n-pings number of ping messages
--n-pongs number of pong messages
--nodelay enable TCP_NODELAY

Standard options:

Option Description

-? --help this message

-q --quiet quiet

-v --verbose display more information
Examples

Example TCP latency command lines
[root@server]# onload --profile=latency taskset -c 1 ./sfnt-pingpong

[root@client]# onload --profile=latency taskset -c 1 ./sfnt-pingpong \
--maxms=10000 --affinity "1;1" tcp <server-ip>

Example UDP latency command lines
[root@server]# onload --profile=latency taskset -c 9 ./sfnt-pingpong

[root@client]# onload --profile=latency taskset -c 9 ./sfnt-pingpong \
--maxms=10000 --affinity "9;9" udp <server_ip>

Example output

version: 1.4.0-modified

src: 13b27e6b86132dallb727fbe552e2293

date: Sat Apr 21 11:56:22 BST 2012

uname: Linux server4.uk.levelSnetworks.com 2.6.32-220.e16.x86_64 #1 SMP
Wed Nov 9 08:03:13 EST 2011 x86_64 x86_64 x86_64 GNU/Linux

cpu: model name : Intel(R) Xeon(R) CPU E5-2687W © @ 3.10GHz

1lspci: ©5:00.0 Ethernet controller: Intel Corporation I350 Gigabit
Network Connection (rev 01)

lspci: 05:00.1 Ethernet controller: Intel Corporation I350 Gigabit
Network Connection (rev 01)

Issue 20

© Solarflare Communications 2015 240

SOLARFLAREFE®

Onload User Guide

Solarflare sfnettest

lspci: 83:00.0 Ethernet controller: Solarflare Communications SFC9020
[Solarstorm]

lspci: 83:00.1 Ethernet controller: Solarflare Communications SFC9020
[Solarstorm]

lspci: 85:00.0 Ethernet controller: Intel Corporation 82574L Gigabit
Network Connection

etho: driver: igb

eth@: version: 3.0.6-k

eth@: bus-info: ©000:05:00.0
ethl: driver: igb

ethl: version: 3.0.6-k

ethl: bus-info: 0000:05:00.1
eth2: driver: sfc

eth2: version: 3.2.1.6083

eth2: bus-info: ©000:83:00.0
eth3: driver: sfc

eth3: version: 3.2.1.6083

eth3: bus-info: 0000:83:00.1
eth4: driver: eloooe

eth4: version: 1.4.4-k

eth4: bus-info: ©000:85:00.0
virbr@: driver: bridge

virbre: version: 2.3

virbre: bus-info: N/A
virbr@-nic: driver: tun
virbre-nic: version: 1.6
virbr@-nic: bus-info: tap

ram: MemTotal: 32959748 kB
tsc_hz: 3099966880
LD_PRELOAD=1ibonload.so

server LD _PRELOAD=1libonload.so
onload_version=201205
EF_TCP_FASTSTART_INIT=0
EF_POLL_USEC=100000
EF_TCP_FASTSTART_IDLE=0

HHEHHIFHBFHHFHAHBFEFHFHFHAFHRAFEFHEHHFEHEHF SR

size mean min median max %ile stddev iter

1 2453 2380 2434 18288 2669 77 1000000
2 2453 2379 2435 45109 2616 90 1000000
4 2467 2380 2436 10502 2730 82 1000000
8 2465 2383 2446 8798 2642 70 1000000
16 2460 2380 2441 7494 2632 68 1000000
32 2474 2399 2454 8758 2677 71 1000000
64 2495 2419 2474 12174 2716 77 1000000

The output identifies mean, minimum, median and maximum (nanosecond) RTT/2
latency for increasing packet sizes including the 99% percentile and standard
deviation for these results. A message size of 32 bytes has a mean latency of 2.4
microseconds with a 99%ile latency less than 2.7 microseconds.

Issue 20

© Solarflare Communications 2015 241

SOLARFLAREFE®

sfnt-stream

Onload User Guide

Solarflare sfnettest

The sfnt-stream application measures RTT latency (not 1/2 RTT) for a fixed size

message at increasing message rates. Latency is calculated from a sample of all

messages sent. Message rates can be set with the rates option and the number of

messages to sample using the sample option.

Solarflare sfnt-stream only functions on UDP sockets. This limitation will be
removed to support other protocols in the future.

Refer to the README . sfnt-stream file which is part of the Onload distribution for

further information.

Usage

sfnt-stream [options] [tcp|udp|pipe|unix_stream|unix_datagram [host[:port]]]

Options

sfnt-stream options:

Option Description

--msgsize message size (bytes)

--rates msg rates <min>-<max>[+<step>]

--millisec time per test (milliseconds)

--samples number of samples per test

--stop stop when TX rate achieved is below give percentage of

target rate

--maxburst maximum burst length
--port server port number
--connect connect() UDP socket
--spin spin on non-blocking recv()
--muxer select, poll, epoll or none
--rtt report round-trip-time
--raw dump raw results to file
--percentile percentile

--mcast set the multicast address

Issue 20 © Solarflare Communications 2015

242

SOLARFLAREFE®

Onload User Guide

Solarflare sfnettest

Option

Description

--mcastintf

set multicast interface. The client sends this parameter to
the server.

--mcastintf=eth2 both client and server use eth2

--mcastintf="eth2;eth3’ client uses eth2 and server uses
eth3 (quotes are required for this format)

--mcastloop

IP_MULTICAST_LOOP

--ttl

IP_TTL and IP_MULTICAST_TTL

--bindtodevice

SO_BINDTODEVICE

--n-pipe

include pipes in file descriptor set

--n-unix-d

include unix datagram in file descriptor set

--n-unix-s

include unix stream in file descriptor set

--n-udp

include UDP sockets in file descriptor set

--n-tcpc

include TCP sockets in file descriptor set

--n-tcpl

include TCP listening sockets in file descriptor set

--tcpc-serv

host:port for TCP connections

--nodelay

enable TCP_NODELAY

--affinity

"<client-tx>,<client-rx>;<server-core>" enclose the values
in double quotes e.g. "4,5;3". This option should be set on
the client side only. The client sends the <server_core>
value to the server. The user must ensure that the
identified server core is available on the server machine.

This option will override any value set by taskset on the
same command line.

--rtt-iter

iterations for RTT measurement

Standard options:

Description

this message

Option
-? --help
-q --quiet

quiet

-v --verbose

display more information

--version

display version information

Issue 20 © Solarflare Communications 2015 243

Onload User Guide

SOLARFLARFE®
; Solarflare sfnettest

Examples

Example command lines client/server
./sfnt-stream (server)
./sfnt-stream --affinity 1,1 udp <server-ip> (client)

./taskset -c 1 ./sfnt-stream --affinity="3,5;3" --mcastintf=eth4 udp \
<remote-ip> (client)

Bonded Interfaces: sfnt-stream

The following example configures a single bond, having two slaves interfaces, on
each machine. Both client and server machines use eth4 and eth5.

Client Configuration:

[root@client src]# ifconfig eth4 0.0.0.0 down

[root@client src]# ifconfig eth5 0.0.0.8 down

[root@client src]# modprobe bonding miimon=10@ mode=1 xmit_hash_policy=layer2 primary=eth5
[root@client srcl# ifconfig bond@ up

[root@client src]# echo +eth4 > /sys/class/net/bond@/bonding/slaves

[root@client srcl# echo +eth5 > /sys/class/net/bond@/bonding/slaves

[root@client src]# ifconfig bond® 172.16.136.27/21

[root@client src]# onload --profile=latency taskset -c 3 ./sfnt-stream
sfnt-stream: server: waiting for client to connect...

sfnt-stream: server: client connected

sfnt-stream: server: client @ at 172.16.136.28:45037

Server Configuration:

[root@server srcl# ifconfig eth4 0.0.0.0 down

[root@server src]# ifconfig eth5 0.0.0.8 down

[root@server srcl# modprobe bonding miimon=100 mode=1 xmit_hash_policy=layer2 primary=eth5
[root@server srcl# ifconfig bond@ up

[root@server srcl# echo +eth4 > /sys/class/net/bond@/bonding/slaves

[root@server srcl# echo +eth5 > /sys/class/net/bond@/bonding/slaves

[root@server srcl# ifconfig bond@ 172.16.136.28/21

NOTE: server sends to IP address of client bond

[root@server srcl# onload --profile=latency taskset -c 1 ./sfnt-stream --mcastintf=bond@ -
-affinity "1,1;3" udp 172.16.136.27

Output Fields

All time measurements are nanoseconds unless otherwise stated.

Field Description

mps target Msg per sec target rate
mps send Msg per sec actual rate
mps recv Msg receive rate
latency mean RTT mean latency

Issue 20 © Solarflare Communications 2015 244

SOLARFLAREFE®

Onload User Guide

Solarflare sfnettest

Field

Description

latency min

RTT minimum latency

latency median

RTT median latency

latency max

RTT maximum latency

latency %ile

RTT 99%ile

latency stddev

Standard deviation of sample

latency samples

Number of messages used to calculate latency
measurement

sendjit mean

Mean variance when sending messages

sendjit min

Minimum variance when sending messages

sendjit max

Maximum variance when sending messages

sendjit behind

Number of times the sender falls behind and is unable to
keep up with the transmit rate

gaps n_gaps

Count the number of gaps appearing in the stream

gaps n_drops

Count the number of drops from stream

gaps n_ooo

Count the number of sequence numbers received out of
order

Latency Profile - Spinning

Both sfnt-pingpong and sfnt-stream use scripts found in the onload_apps
subdirectory which invoke the onload latency profile thereby causing the

application to ‘spin’.

To run these test programs in an interrupt driven mode, replace the --
profile=latency option on the command line, with the --no-app-handler option.

Issue 20

© Solarflare Communications 2015 245

‘ Onload User Guide
SOLARFLARE®

G onload_tcpdump

G.1 Introduction

By definition, Onload is a kernel bypass technology and this prevents packets from
being captured by packet sniffing applications such as tcpdump, netstat and
wireshark.

Onload supports the onload_tcpdump application that supports packet capture
from onload stacks to a file or to be displayed on standard out (stdout). Packet
capture files produced by onload_tcpdump can then be imported to the regular
tcpdump, wireshark or other third party application where users can take advantage
of dedicated search and analysis features.

Onload_tcpdump allows for the capture of all TCP and UDP unicast and multicast
data sent or received via Onload stacks - including shared stacks.

G.2 Building onload_tcpdump

The onload_tcpdump script is supplied with the Onload distribution and is located
in the Onload-<version>/scripts sub-directory.

@ NOTE: 1libpcap and 1libpcap-devel must be built and installed before Onload is
installed.

G.3 Using onload_tcpdump

For help use the . /onload_tcpdump -h command:

Usage:

onload_tcpdump [-o stack-(id|name) [-o stack ...]]
tcpdump_options_and_parameters

"man tcpdump"” for details on tcpdump parameters.

You may use stack id number or shell-like pattern for the stack name
to specify the Onload stacks to listen on.

If you do not specify stacks, onload_tcpdump will monitor all onload
stacks.

If you do not specify interface via -i option, onload_tcpdump
listens on ALL interfaces instead of the first one.

For further information refer to the Linux man tcpdump pages.

Examples

e Capture all accelerated traffic from eth2 to a file called mycaps.pcap:

Issue 20 © Solarflare Communications 2015 246

Onload User Guide

SOLARFLARFE®
; onload_tcpdump
onload_tcpdump -ieth2 -wmycaps.pcap
e If nofileis specified onload_tcpdump will direct output to stdout:
onload_tcpdump -ieth2
e To capture accelerated traffic for a specific Onload stack (by name):
onload_tcpdump -ieth4 -o stackname
e To capture accelerated traffic for a specific Onload stack (by ID):
onload_tcpdump -o 7
e To capture accelerated traffic for Onload stacks where name begins with “abc”
onload_tcpdump -o 'abc*'
e To capture accelerated traffic for onload stack 1, stack named “stack2” and all
onload stacks with name beginning with “ab”:
onload_tcpdump -o 1 -o 'stack2' -o 'ab*'
Dependencies
The onload_tcpdump application requires 1ibpcap and 1ibpcap-devel to be
installed on the server. If 1ibpcap is not installed the following message is reported
when onload_tcpdump is invoked:
./onload_tcpdump
ci Onload was compiled without libpcap development package installed. You
need to install libpcap-devel or libpcap-dev package to run
onload_tcpdump.
tcpdump: truncated dump file; tried to read 24 file header bytes, only got
0
Hangup
If 1ibpcap is missing it can be downloaded from http://www.tcpdump.org/
Untar the compressed file on the target server and follow build instructions in the
INSTALL.txt file. The libpcap package must be installed before Onload is built and
installed.
Limitations

e Currently onload_tcpdump captures only packets from onload stacks and not
from kernel stacks.

e The onload_tcpdump application monitors stack creation events and will
attach to newly created stacks however, there is a short period (normally only
a few milliseconds) between stack creation and the attachment during which
packets sent/received will not be captured.

Known Issues

Users may notice that the packets sent when the destination address is not in the
host ARP table causes the packets to appear in both onload_tcpdump and (Linux)
tcpdump.

Issue 20 © Solarflare Communications 2015 247

http://www.tcpdump.org/

Onload User Guide

SOLARFLARFE®
; onload_tcpdump

SolarCapture

Solarflare’s SolarCapture is a packet capture application for Solarflare network
adapters. It is able to capture received packets from the wire at line rate, assigning
accurate timestamps to each packet. Packets are captured to PCAP file or forwarded
to user-supplied logic for processing. For details see the SolarCapture User Guide
(SF-108469-CD) available from https://support.solarflare.com/.

Issue 20 © Solarflare Communications 2015 248

SOLARFLAREFE®

Onload User Guide

H ef vi

The Solarflare ef_vi APl is a layer 2 APl that grants an application direct access to the
Solarflare network adapter datapath to deliver lower latency and reduced per
message processing overheads. ef vi is the internal APl used by Onload for sending
and receiving packets. It can be used directly by applications that want the very
lowest latency send and receive APl and that do not require a POSIX socket
interface.

ef_viis packaged with the Onload distribution.
ef viis an OSl level 2 interface which sends and receives raw Ethernet frames.

ef_visupports a zero-copy interface because the user process has direct access
to memory buffers used by the hardware to receive and transmit data.

An application can use both ef_vi and Onload at the same time. For example,
use ef_vi to receive UDP market data and Onload sockets for TCP connections
for trading.

The ef_vi APl can deliver lower latency than Onload and incurs reduced per
message overheads.

ef viis free software distributed under a LGPL license.

The user application wishing to use the layer 2 ef _vi API must implement the
higher layer protocols.

H.1 Components

All components required to build and link a user application with the Solarflare ef _vi
API are distributed with Onload. When Onload is installed all required directories/
files are located under the Onload distribution directory.

H.2 Compiling and Linking

Refer to the README . ef_vi file in the Onload directory for compile and link
instructions.

Issue 20

© Solarflare Communications 2015 249

Onload User Guide

SOLARFLARFE® ,
; ef vi

H.3 Documentation

The ef_vi documentation is distributed in doxygen format with the Onload
distribution. Documents in HTML and RTF format are generated by running doxygen
in the following directory:

cd openonload-<version>/src/include/etherfabric/doxygen
doxygen doxyfile_ef vi
Documents are generated in the HTML and RTF sub-directories.

The ef_vi user guide is also available in PDF format (SF-114063-CD) from the
Solarflare download site.

Issue 20 © Solarflare Communications 2015 250

SOLARFLAREFE®

Onload User Guide

onload_iptables

.1 Description

The Linux netfilter iptables feature provides filtering based on user-configurable
rules with the aim of managing access to network devices and preventing
unauthorized or malicious passage of network traffic. Packets delivered to an
application via the Onload accelerated path are not visible to the OS kernel and, as
a result, these packets are not visible to the kernel firewall (iptables).

The onload_iptables feature allows the user to configure rules which determine
which hardware filters Onload is permitted to insert on the adapter and therefore
which connections and sockets can bypass the kernel and, as a consequence, bypass
iptables.

The onload_iptables command can convert a snapshot1 copy of the kernel iptables
rules into Onload firewall rules used to determine if sockets, created by an Onloaded
process, are retained by Onload or handed off to the kernel network stack.
Additionally, user-defined filter rules can be added to the Onload firewall on a per
interface basis. The Onload firewall applies to the receive filter path only.

1.2 How it works

Before Onload accelerates a socket it first checks the Onload firewall module. If the
firewall module indicates the acceleration of the socket would violate a firewall rule,
the acceleration request is denied and the socket is handed off to the kernel.
Network traffic sent or received on the socket is not accelerated.

Onload firewall rules are parsed in ascending numerical order. The first rule to match
the newly created socket - which may indicate to accelerate or decelerate the socket
- is selected and no further rules are parsed.

If the Onload firewall rules are an exact copy of the kernel iptables i.e. with no
additional rules added by the Onload user, then a socket handed off to the kernel,
because of an iptables rule violation, will be unable to receive data through either
path.

Changing rules using onload_iptables will not interrupt existing network
connections.

@ NOTE: Onload firewall rules will not persist over network driver restarts.

1. Subsequent changes to kernel iptables will not be reflected in the Onload firewall.

Issue 20

© Solarflare Communications 2015 251

SOLARFLAREFE®

1.3 Features

®

Files

Onload User Guide

onload_iptables

NOTE: The onload_iptables “IP rules” will only block hardware IP filters from being
inserted and onload_iptables “MAC rules” will only block hardware MAC filters
from being inserted. Therefore it is possible that if a rule is inserted to block a MAC
address, the user is still able to accept traffic from the specified host by Onload
inserting an appropriate IP hardware filter.

When the Onload drivers are loaded, firewall rules exist in the Linux proc pseudo
file system at:

/proc/driver/sfc_resource

Within this directory the firewall _add, firewall_del and resources files will be
present. These files are writable only by a root user. No attempt should be made to
remove these files.

Once rules have been created for a particular interface — and only while these rules
exist — a separate directory exists which contains the current firewall rules for the
interface:

/proc/driver/sfc_resource/ethN/firewall rules

To get help

1.4 Rules

®

®

onload_iptables -h

The general format of the rule is:

[rule=n] if=ethN protocol=(ip|tcp|udp) [local_ip=a.b.c.d[/mask]]
[remote_ip=a.b.c.d[/mask]] [local port=a[-b]] [remote_port=a[-b]] [vlan=n]
action=(ACCELERATE |DECELERATE)

NOTE: Using the IP address rule form, the vlan identifier is effective only when using
a Solarflare SFN7000 series adapter which is configured to use the full-featured
firmware variant. On other Solarflare adapters the vlan identifier is ignored. The
vlan identifier can only be specified with the vlan=n syntax and not on the interface.

[rule=n] if=ethN protocol=eth mac=xx:xx:xx:xx:xx:xx[/FF:FF:FF:FF:FF:FF]
[vlan=n] action=(ACCELERATE |DECELERATE)

NOTE: Using the MAC address rule form, the vlan identifier is effective when
specified for any Solarflare adapter.

Issue 20

© Solarflare Communications 2015 252

SOLARFLAREFE®

Onload User Guide

onload_iptables

1.5 Preview firewall rules

Before creating the Onload firewall, runthe onload_iptables -v option toidentify
which rules will be adopted by the firewall and which will be rejected (a reason is
given for rejection):

onload_iptables -v

DROP tcp -- ©0.0.0.0/0 0.0.0.0/0 tcp dpt:5201
=> if=None protocol=tcp local ip=0.0.0.0/0 local port=5201-5201
remote_ip=0.0.0.0/0 remote_port=0-65535 action=DECELERATE

DROP tcp -- 0.0.0.0/0 0.0.0.0/0 tcp dpt:5201
=> if=None protocol=tcp local _ip=0.0.0.0/0 local_port=5201-5201
remote_ip=0.0.0.0/0 remote_port=0-65535 action=DECELERATE

DROP tcp -- 0.0.0.0/0 0.0.0.0/0 tecp
dpts:80:88

=> if=None protocol=tcp local_ip=0.0.0.0/0 local_port=80-88
remote_ip=0.0.0.0/0 remote_port=0-65535 action=

tcp -- ©0.0.0.0/0 0.0.0.0/0 tcp spt:800

=> Error parsing: Insuffcient arguments in rule.

The last rule is rejected because the action is missing.

NOTE: The -v option does not create firewall rules for any Solarflare interface, but
allows the user to preview which Linux iptables rules will be accepted and which
will be rejected by Onload

To convert Linux iptables to Onload firewall rules

The Linux iptables can be applied to all or individual Solarflare interfaces.

Onload iptables are only applied to the receive filter path. The user can select the

INPUT CHAIN or a user defined CHAIN to parse from the iptables. The default CHAIN
is INPUT. To adopt the rules from iptables even though some rules will be rejected
enter the following command identifying the Solarflare interface the rules should be
applied to:

onload_iptables -i ethN -c
onload_iptables -a -c

Running the onload_iptables command will overwrite existing rules in the Onload
firewall when used with the -i (interface) or -a (all interfaces) options.

NOTE: Applying the Linux iptables to a Solarflare interface is optional. The
alternatives are to create user-defined firewall rules per interface or not to apply
any firewall rules per interface (default behavior).

NOTE: onload_iptables will import all rules to the identified interface - even rules
specified on another interface. To avoid importing rules specified on ‘other’
interfaces using the --use-extended option.

Issue 20

© Solarflare Communications 2015 253

Onload User Guide

SOLARFLARFE® .
; onload_iptables

To view rules for a specific interface:

When firewall rules exist for a Solarflare interface, and only while they exist, a
directory for the interface will be created in:

/proc/driver/sfc_resource

Rules for a specific interface will be found in the firewall_rules file e.g.

cat /proc/driver/sfc_resource/eth3/firewall rules

if=eth3 rule=0 protocol=tcp local ip=0.0.0.0/0.0.0.0 remote_ip=0.0.0.0/
0.0.0.0 local _port=5201-5201 remote_port=0-65535 action=DECELERATE
if=eth3 rule=1 protocol=tcp local_ip=0.0.0.0/0.0.0.0 remote_ip=0.0.0.0/
0.0.0.0 local_port=5201-5201 remote_port=0-65535 action=DECELERATE
if=eth3 rule=2 protocol=tcp local_ip=0.0.0.0/0.0.0.0 remote_ip=0.0.0.0/
0.0.0.0 local port=5201-5201 remote_port=72-72 action=DECELERATE
if=eth3 rule=3 protocol=tcp local ip=0.0.0.0/0.0.0.0 remote_ip=0.0.0.0/
0.0.0.0 local_port=80-88 remote_port=0-65535 action=DECELERATE

To add a rule for a selected interface

echo "rule=4 if=eth3 action=ACCEPT protocol=udp local_port=7330-7340" \
> /proc/driver/sfc_resource/firewall_add

Rules can be inserted into any position in the table and existing rule numbers will be
adjusted to accommodate new rules. If a rule number is not specified the rule will
be appended to the existing rule list.

@ NOTE: Errors resulting from the add/delete commands will be displayed in dmesg.

To delete a rule from a selected interface:

To delete a single rule:

echo "if=eth3 rule=2" > /proc/driver/sfc_resource/firewall del
To delete all rules:

echo "eth2 all" > /proc/driver/sfc_resource/firewall_del

When the last rule for an interface has been deleted the interface firewall_rules file
is removed from /proc/driver/sfc_resource. The interface directory will be
removed only when completely empty.

Error Checking
The onload_iptables command does not log errors to stdout. Errors arising from add
or delete commands will logged in dmesg.

Interface & Port

Onload firewall rules are bound to an interface and not to a physical adapter port. It
is possible to create rules for an interface in a configured/down state.

Issue 20 © Solarflare Communications 2015 254

SOLARFLAREFE®

Virtual/Bonded Interface

Onload User Guide

onload_iptables

On virtual or bonded interfaces firewall rules are only applied and enforced on the
‘real’ interface.

1.6 Error Messages

Error messages relating to onload_iptables operations will appear in dmesg.

Table 9: Error messages for onload_iptables

Error Message

Description

Internal error

Internal condition - should not happen.

Unsupported rule

Internal condition - should not happen.

Out of memory allocating new rule

Memory allocation error.

Seen multiple rule numbers

Only a single rule number can be
specified when adding/deleting rules.

Seen multiple interfaces

Only a single interface can be specified
when adding/deleting rules.

Unable to

understand action

The action specified when adding a
rule is not supported. Note that there
should be no spaces i.e.
action=ACCELERATE.

Unable to

understand protocol

Non-supported protocol.

Unable to
the rule

understand remainder of

Non-supported parameters/syntax.

Failed to

understand interface

The interface does not exist. Rules can
be added to an interface that does not
yet exist, but cannot be deleted from
an non-existent interface.

Failed to

remove rule

The rule does not exist.

Error removing table

Internal condition - should not happen.

Invalid local_ip rule

Invalid address/mask format.
Supported formats:

a.b.cd
a.b.c.d/n
a.b.c.d/e.f.g.h

where a.b.c.d.e.f.g.h are decimal range
0-255, n = decimal range 0-32.

Issue 20

© Solarflare Communications 2015 255

Onload User Guide

SOLARFLARFE® .
; onload_iptables

Table 9: Error messages for onload_iptables

Error Message Description
Invalid remote_ip rule Invalid address/mask format.
Invalid rule A rule must identify at least an

interface, a protocol, an action and at
least one match criteria.

Invalid mac Invalid mac address/mask format.
Supported formats:
XXIXXEXXIXXEXX XX
XX XXX XXX XX/ XX EXKEXK XXX XX

where x is a hex digit.

NOTE: A Linux limitation applicable to the /proc/ filesystem restricts a write

@ operation to 1024 bytes. When writing to /proc/driver/sfc_resource/
firewall_[add|del] files the user is advised to flush the write between lines which
exceed the 1024 byte limit.

Issue 20 © Solarflare Communications 2015 256

SOLARFLAREFE®

J.1 efpio

Onload User Guide

Solarflare efpio Test Application

The openonload distribution includes the command line efpio test application to
measure latency of the Solarflare ef_vi layer 2 APl with PIO. The efpio application is
a single thread ping/pong. When all iterations are complete the client side will
display the round-trip time.

By default efpio downloads a packet to the adapter at start of day and transmits this
same packet on every iteration of the test. The -c option can be used to test the
latency of ef_vi using PIO to transfer a new transmit packet to the adapter on every
iteration.

With the onload distribution installed efpio will be present in the following
directory:

~/openonload-201310/build/gnu_x86_64/tests/ef_vi

./efpio -help
usage:
efpio [options] <ping|pong> <interface>
<local-ip-intf> <local-port>
<remote-mac> <remote-ip-intf> <remote-port>

Table 10: efpio Options

Parameter Description
interface the local interface to use e.g. eth2
local-ip-intf local interface IP address/host name
local-port local interface IP port number to use
remote-mac MAC address of the remote interface
remote-ip-intf remote server IP address/host name
remote-port remote server port number
options:

-n <iterations> - set number of iterations

-s <message-size> - set udp payload size

-w - sleep instead of busy wait

-V - use a VF

-p - physical address mode

-t - disable TX push

-C - copy on critical path

Issue 20 © Solarflare Communications 2015 257

SOLARFLAREFE®

Onload User Guide
Solarflare efpio Test Application

To run efpio

The efpio must be started on the server (pong side) before the client (ping side) is
run. Command line examples are shown below.

1

On the server side (serverl)

taskset -c <M> ./efpio pong eth<N> <local-ip> 8001 <server2-mac>
<server2-ip> 8001

ef_vi_version_str: 201306-7122preview2

udp payload len: 28

iterations: 100000

frame len: 70

On the client side (server2)

taskset -c <M> ./efpio ping eth<N> <local-ip> 8001 <serverl-mac>
<serverl-ip> 8001

ef_vi_version_str: 201306-7122preview2

udp payload len: 28

iterations: 100000

frame len: 70

round-trip time: 2.848 pus

M = cpu core, N = Solarflare adapter interface.

Issue 20

© Solarflare Communications 2015 258

	Table of Contents
	1 What’s New
	Netdriver and Firmware Updates
	New Features OpenOnload 201509
	Scalable Filters
	Active Socket Caching
	IP_TRANSPARENT Socket Option
	Teaming
	ef_vi
	UDP recvmsg
	Packet Buffers
	Environment Variables

	Change History

	2 Low Latency Quickstart Guide
	Introduction
	Software Installation
	Firmware Variant
	Netperf
	Solarflare sfnettest
	Solarflare Onload

	Test Setup
	Pre-Test Configuration
	Reference System Specification
	UDP Latency: Netperf
	UDP Latency: sfnt-pingpong
	TCP Latency: Netperf
	TCP Latency: sfnt-pingpong
	Layer 2 ef_vi Latency

	Comparative Data
	Adapter Comparison

	Testing Without Onload
	Further Information

	3 Background
	3.1 Introduction.
	Contrasting with Conventional Networking
	How Onload Increases Performance
	Overhead
	Latency
	Bandwidth
	Scalability

	Further Information

	4 Installation
	4.1 Introduction
	4.2 Onload Distributions
	4.3 Hardware and Software Supported Platforms
	4.4 Onload and the Network Adapter Driver
	4.5 Removing Previously Installed Drivers
	4.6 Pre-install Notes
	4.7 EnterpriseOnload - Build and Install from SRPM
	Build the RPM
	Install the EnterpriseOnload RPM
	Installing the EnterpriseOnload Kernel Module

	4.8 EnterpriseOnload - Debian Source Packages
	4.9 OpenOnload DKMS Installation
	4.10 Build OpenOnload Source RPM
	4.11 OpenOnload - Installation
	Download and untar OpenOnload
	Building and Installing OpenOnload
	Load Onload Drivers
	Confirm Onload Installation

	4.12 Onload Kernel Modules
	4.13 Configuring the Network Interfaces
	4.14 Installing Netperf
	4.15 How to run Onload
	4.16 Testing the Onload Installation
	4.17 Apply an Onload Patch

	5 Tuning Onload
	5.1 Introduction
	5.2 System Tuning
	Sysjitter
	Timer (TSC) Stability
	CPU Power Saving Mode

	5.3 Standard Tuning
	Spinning (busy-wait)
	Enabling spinning
	When to Use Spinning
	Polling vs. Interrupts

	5.4 Onload Deployment on NUMA Systems
	Useful commands
	Driver Loading
	Memory Policy
	Application Processing
	Workqueues
	Interrupts
	Verification

	5.5 Interrupt Handling - Kernel Driver
	Default Behavior
	Affinitizing RSS Channels to CPUs
	sfcaffinity_config

	Restrict RSS to local NUMA node
	Restrict RSS Receive Queues
	Interrupt Handling - Using Onload

	5.6 Performance Jitter
	Using Onload Tuning Profiles
	Benchmark Testing

	5.7 Advanced Tuning
	Monitoring Using onload_stackdump
	Worked Examples
	Prefault Packet Buffers
	Processing at User-Level
	Solution

	As Few Interrupts as Possible
	Solution

	Eliminating Drops
	Minimizing Lock Contention
	Solution

	6 Onload Functionality
	6.1 Onload Transparency
	6.2 Onload Stacks
	6.3 Virtual Network Interface (VNIC)
	6.4 Functional Overview
	6.5 Onload with Mixed Network Adapters
	6.6 Maximum Number of Network Interfaces
	6.7 Whitelist and Blacklist Interfaces
	6.8 Onloaded PIDs
	6.9 Onload and File Descriptors, Stacks and Sockets
	6.10 System calls intercepted by Onload
	6.11 Linux Sysctls
	6.12 Changing Onload Control Plane Table Sizes
	6.13 SO_TIMESTAMP and SO_TIMESTAMPNS (software timestamps)
	6.14 SO_TIMESTAMPING (Hardware Receive Timestamps)
	6.15 SO_TIMESTAMPING (Hardware Transmit Timestamps)
	6.16 SO_BINDTODEVICE
	6.17 Multiplexed I/O
	Poll, ppoll
	Select, pselect
	Epoll

	6.18 Wire Order Delivery
	Wire Order Delivery - Example API:

	6.19 Stack Sharing
	6.20 Application Clustering
	6.21 Bonding, Link aggregation and Failover
	6.22 VLANS
	6.23 Accelerated pipe()
	6.24 Zero-Copy API
	6.25 Debug and Logging

	7 Onload - TCP
	7.1 TCP Operation
	7.2 TCP Handshake - SYN, SYNACK
	7.3 TCP SYN Cookies
	7.4 TCP Socket Options
	7.5 TCP Level Options
	7.6 TCP File Descriptor Control
	7.7 TCP Congestion Control
	7.8 TCP SACK
	7.9 TCP QUICKACK
	7.10 TCP Delayed ACK
	7.11 TCP Dynamic ACK
	7.12 TCP Loopback Acceleration
	7.13 TCP Striping
	7.14 TCP Connection Reset on RTO
	7.15 ONLOAD_MSG_WARM
	7.16 Listen/Accept Sockets
	7.17 Socket Caching
	TCP Passive Socket Caching
	TCP Active Socket Caching
	Caching Stackdump
	Caching - Requirements

	7.18 Scalable Filters
	Scalable Filters - Restrictions
	Scalable Filters - Configuration
	Partition the NIC
	Scalable Filters and Bonding

	7.19 Transparent Reverse Proxy Modes
	Restrictions
	Config (example) Settings

	7.20 Transparent Reverse Proxy on Multiple CPUs

	8 Onload - UDP
	8.1 UDP Operation
	8.2 Socket Options
	8.3 Source Specific Socket Options
	8.4 UDP Send and Receive Paths
	8.5 Fragmented UDP
	8.6 User Level recvmmsg for UDP
	8.7 User-Level sendmmsg for UDP
	8.8 Multicast Replication
	8.9 Multicast Operation and Stack Sharing
	Multicast Receive Using Different Onload Stacks
	Multicast Transmit Using Different Onload Stacks
	Multicast Receive Sharing an Onload Stack
	Multicast Transmit Sharing an Onload Stack
	Multicast Receive - Onload Stack and Kernel Stack
	Multicast Receive and Multiple Sockets

	8.10 Multicast Loopback
	8.11 Hardware Multicast Loopback
	8.12 IP_MULTICAST_ALL

	9 Packet Buffers
	9.1 Introduction
	9.2 Network Adapter Buffer Table Mode
	9.3 Large Buffer Table Support
	9.4 Scalable Packet Buffer Mode
	9.5 Allocating Huge Pages
	9.6 How Packet Buffers Are Used by Onload
	Identifying Packet Buffer Requirements
	Running Out of Packet Buffers
	Identifying Memory Pressure

	Controlling Onload Packet Buffer Use

	9.7 Configuring Scalable Packet Buffers
	Procedure:
	Step 1. Platform Support
	Step 2. BIOS and Linux Kernel Configuration
	Step 3. Update adapter firmware and enable SR-IOV
	Step 4. Enable VFs for Onload
	Step 5. Check PCIe VF Configuration
	Step 6. Check VFs in onload_stackdump

	9.8 Physical Addressing Mode
	9.9 Programmed I/O
	9.10 Templated Sends

	10 Onload and Virtualization
	10.1 Introduction
	10.2 Overview
	10.3 Onload and Linux KVM
	10.4 Onload and NIC Partitioning
	10.5 Onload in a Docker Container
	10.6 Pre-Installation
	10.7 Installation
	10.8 Create Onload Docker Image
	10.9 Migration
	Onload Docker Images

	10.10 Copying Files Between Host and Container

	11 Limitations
	11.1 Introduction
	11.2 Changes to Behavior
	Multithreaded Applications Termination
	Thread Cancellation
	Packet Capture
	Firewalls
	System Tools
	Signals
	Onload and IP_MULTICAST_TTL
	Source/Policy Based Routing and Routing Metrics

	11.3 Limits to Acceleration
	IP Fragmentation
	Broadcast Traffic
	IPv6 Traffic
	Raw Sockets
	Socketpair and UNIX Domain Sockets
	Statically Linked Applications
	Local Port Address
	Bonding, Link aggregation
	VLANs
	TCP RTO During Overload Conditions
	TCP with Jumbo Frames
	Transmission Path - Packet Loss
	Application Clustering

	11.4 epoll - Known Issues
	11.5 Configuration Issues
	Mixed Adapters Sharing a Broadcast Domain
	Problem 1
	Problem 2

	Virtual Memory on 32 Bit Systems
	Hardware Resources
	IGMP Operation and Multicast Process Priority
	Dynamic Loading
	Scalable Packet Buffer Mode
	SLES11 SR-IOV
	Huge Pages with IPC namespace
	Huge Pages with Shared Stacks
	Huge Pages - Size
	Huge Pages - AMD IOMMU
	Huge Pages and shmmni
	Red Hat MRG 2 and SR-IOV
	PowerPC Architecture
	Java 7 Applications - use of vfork()

	12 Change History
	12.1 Features
	12.2 Environment Variables
	12.3 Module Options

	A Parameter Reference
	A.1 Parameter List

	B Meta Options
	B.1 Environment variables
	EF_POLL_USEC
	EF_BUZZ_USEC

	C Build Dependencies
	C.1 General
	Building Kernel Modules
	onload
	onload_tcpdump
	solar_clusterd
	Building 32 bit applications on 64 bit architecture platforms

	D Onload Extensions API
	D.1 Source Code
	D.2 Common Components
	onload_is_present
	Description
	Definition
	Formal Parameters
	Return Value

	onload_fd_stat
	Description
	Definition
	Formal Parameters
	Return Value
	Notes

	onload_fd_check_feature
	Description
	Definition
	Formal Parameters
	Return Value
	Notes

	onload_thread_set_spin
	Description
	Definition
	Formal Parameters
	Return Value
	Notes
	Examples
	Disable all sorts of spinning:
	Enable all sorts of spinning:
	Enable spinning only for certain threads:
	Disable spinning only in certain threads:
	Enable spinning for UDP traffic, but not TCP traffic:
	Enable spinning for TCP traffic, but not UDP traffic:

	D.3 Stacks API
	onload_set_stackname
	Description
	Definition
	Formal Parameters
	Return Value
	Notes
	Note 1
	Note 2
	Note 3
	Note 4

	Related environment variables
	EF_DONT_ACCELERATE
	EF_STACK_PER_THREAD
	EF_NAME

	onload_move_fd
	Description
	Definition
	Formal Parameters
	Return Value
	Notes

	onload_stackname_save
	Description
	Definition
	Formal Parameters
	Return Value

	onload_stackname_restore
	Description
	Definition
	Formal Parameters
	Return Value
	Notes

	D.4 Stacks API Usage
	onload_stack_opt_set_int
	Description
	Definition
	Formal Parameters
	Example
	Return Value
	Notes

	onload_stack_opt_reset
	Description
	Definition
	Formal Parameters
	Return Value
	Notes

	D.5 Stacks API - Examples
	onload_ordered_epoll_wait
	Description
	Definition
	Formal Parameters
	Return Value
	Notes

	D.6 Zero-Copy API
	Zero-Copy Data Buffers
	Zero-Copy UDP Receive Overview
	Zero-Copy UDP Receive
	Zero-Copy Receive Example #1
	Zero-Copy Receive Example #2
	Zero-Copy TCP Send Overview
	Zero-Copy TCP Send
	Zero-Copy Send - Single Message, Single Buffer
	Zero-Copy Send - Multiple Message, Multiple Buffers
	Zero-Copy Send - Full Example

	D.7 Templated Sends
	MSG Template
	MSG Update
	MSG Allocation
	MSG Template Update
	MSG Template Abort

	D.8 Delegated Sends API
	Description
	Performance
	Example Code
	onload_delegated_send_prepare
	Description
	Definition
	Formal Parameters
	Return Value
	Notes

	onload_delegated_send_tcp_update
	Description
	Definition
	Formal Parameters
	Return Value
	Notes

	onload_delegated_send_tcp_advance
	Description
	Definition
	Formal Parameters
	Return Value
	Notes

	onload_delegated_send_complete
	Description
	Definition
	Formal Parameters
	Return Value
	Notes

	onload_delegated_send_cancel
	Description
	Definition
	Formal Parameters
	Return Value
	Notes

	E onload_stackdump
	E.1 Introduction
	E.2 General Use
	List Onloaded Processes
	Identify Onloaded Processes Affinities
	List Onload Environment variables
	TX PIO Counters
	Send RST on a TCP Socket
	Removing Zombie and Orphan Stacks
	Snapshot vs. Dynamic Views
	Monitoring Receive and Transmit Packet Buffers
	Packet Sets
	TCP Application STATS
	The onload_stackdump LOTS Command.
	Remote Monitoring

	F Solarflare sfnettest
	F.1 Introduction
	sfnt-pingpong
	Description
	Usage
	Options
	Examples
	Example TCP latency command lines
	Example UDP latency command lines
	Example output

	sfnt-stream
	Usage
	Options
	Examples
	Example command lines client/server
	Bonded Interfaces: sfnt-stream

	Output Fields

	Latency Profile - Spinning

	G onload_tcpdump
	G.1 Introduction
	G.2 Building onload_tcpdump
	G.3 Using onload_tcpdump
	Examples
	Dependencies
	Limitations
	Known Issues
	SolarCapture

	H ef_vi
	H.1 Components
	H.2 Compiling and Linking
	H.3 Documentation

	I onload_iptables
	I.1 Description
	I.2 How it works
	Files

	I.3 Features
	To get help

	I.4 Rules
	I.5 Preview firewall rules
	To convert Linux iptables to Onload firewall rules
	To view rules for a specific interface:
	To add a rule for a selected interface
	To delete a rule from a selected interface:
	Error Checking
	Interface & Port
	Virtual/Bonded Interface

	I.6 Error Messages

	J Solarflare efpio Test Application
	J.1 efpio
	To run efpio

