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Preface 
This is the first part out of  the Python for Quants trilogy, the book-
series that provides you with an opportunity to commence your 
programming experience with Python—a very modern and 
dynamically evolving computer language. Everywhere. 

This book is completely different than anything ever written on 
Python, programming, quantitative finance, research, or science. It 
became one of  the greatest challenges in my career as a writer—
being able to deliver a book that anyone can learn programming 
from in the most gentle but sophisticated manner—starting from 
absolute beginner. I made a lot of  effort not to follow any rules in 
book writing, solely preserving the expected skeleton: chapters, 
sections, margins. 

It is written from a standpoint of  over 21 years of  experience as a 
programmer, with a scientific approach to the problems, seeking 
pinpoint solutions but foremost blended with a heart and soul—
two magical ingredients making this book so unique and alive. 

It is all about Python strongly inclined towards quantitative and 
numerical problems. It is thought of  quantitative analysts (also 
known as quants) occupying all rooms from bedrooms to Wall 
Street trading rooms. Therefore, it is written for traders, 
algorithmic traders, and financial analysts. All students and PhDs. 
In fact, for anyone who wishes to learn Python and apply its 
mathematical abilities.  

In this book you will find numerous examples taken from finance, 
however the content is not strictly limited to that one single field. 
Again, it is all about Python. From the beginning to the end. From 
the tarmac to the stratosphere of  dedicated programming. 

Within Volume I, we will try to cover the quantitative aspects of  
Fundamentals of  Python supplemented with most useful language’s 
structures taken from the Python’s Standard Library. We will be 
studying the numerical and algebraical concepts of  NumPy to 
equip you with the best of  Python 3.5. Yes, the newest version of  
the interpreter. This book is up to date. 



 12

If  you hold a copy of  this ebook it means you are very serious 
about learning Python quickly and efficiently. For me it is a dream 
to guide you from cover to cover, leaving you wondering "what’s 
next?", and making your own coding in Python a truly remarkable 
experience. Volume I is thought of  as a story on the quantitatively 
dominated side of  Python for beginners which, I do hope, you will 
love from the very first page. 

If  I missed something or simply left anything with a room for 
improvement—please email me at pawel@quantatrisk.com. The 
1st edition of  Volume II will come out along with the 2nd edition 
of  Volume I. Thank you for your feedback in advance.  

Ready for Python for Quants fly-thru experience? If  so, fasten 
your seat belt and adjust a seat to an upright position. We are now 
clear for take-off! 

Enjoy your flight! 

Paweł Lachowicz, PhD 
November 26th, 2015 
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A superbly handy function in math arsenal is trunc which provides a 
stiff  separation of  the real number from its fractional part: 
 
 >>> e 
 2.718281828459045 
 >>> y = trunc(e) 
 2 
 >>> type(y) 
 <class 'int'> 
 >>> y == floor(e) 
 True 

where the last logical test is positive despite the type of  y is an 
integer and floor(e) is a float. It is always better to use trunc than 
floor function if  you want to get the real value of  your number. In 
certain cases (big numbers) rounding to the floor may fail. That is 
why the trunc function is a perfect choice. 

 2.1.6.  Precise Maths with decimal Module 

Python’s Standard Library goes one step forward. It grants us 
access to its another little pearl known as decimal module. Now the 
game is all about precision of  calculations. When we use 
floating-point mathematical operations usually we do not think 
how computer represents the floats in its memory. The truth is a 
bit surprising when you discover that: 

 >>> r = 0.001 
 >>> print("r= %1.30f" % r)  # display 30 decimal places 
 r= 0.001000000000000000020816681712 
  
instead of  

 r= 0.001000000000000000000000000000 
  
It is just the way it is: the floats are represented in a binary format 
that involves a finite number of  bits of  their representation. When 
used in calculations, the floats provide us with a formal assurance 
up to 17 decimal places. However, the rest is not ignored and in 
case of  heavy computations those false decimal digits may 
propagate. In order to “see” it—run the following code: 

 r = 0.001 
 t = 0.002 
 print("r   = %1.30f" % r) 
 print("t   = %1.30f" % t) 
 print("r+t = %1.30f" % (r+t)) 
  
You should get: 

 r   = 0.001000000000000000020816681712 
 t   = 0.002000000000000000041633363423 
 r+t = 0.003000000000000000062450045135 
  
It is now clear how those “happy endings” accumulate an error. 
The question you may ask is: “Should I be worried about that?” 

trunc()

Code 2.6

In many cases the function of  
trunc can be replaced with the 
operation of  the floor division: 

from math import trunc 
from random import random as r 
x = r()*100  # float 
print(x//1 == trunc(x)) 

True 

thought the former returns a float 
and trunc an integer if  x is float. 

You may obtain a pure fractional 
part of  the float as follows, e.g: 

>>> from math import pi 
>>> pi 
3.141592653589793 
>>> pi - pi//1 
0.14159265358979312
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 2.1.8.  fractions and Approximations of Numbers 

If  you are 11 years young and you are studying this book because 
you have some problems with solving fractions at school, I’ve got 
something for you too! Python is able to perform computations 
and display results in a form of  nominator over denominator. 
Hurrah!  

Let’s say, for x = 0.25 = 1/4 we want to calculate the value of  a 
simple expression: 

and display result exactly as a fraction of  11/24. It is possible with 
the use of  fractions module from the Standard Library: 

 from fractions import Fraction as fr 
  
 x = 1./4         # float 
 xf = fr(str(x))  # fractional form 

 yf = xf + 5*xf/6 

 print("x  = %1.5f" % x) 
 print("xf = %s" % xf)     # use string 
 print("yf = %s" % yf)     #    for output 
  
 returning 

 x  = 0.25000 
 xf = 1/4 
 yf = 11/24 
  
The input value of  x for Fraction function needs to be firstly 
converted to a string-type variable. In the 4th line of  2.12 we can 
see how easily then our calculations can be coded. Both xf  and yf 
variables are recognised by Python as <class 'fractions.Fraction'> 
objects and we obtain the conversion of  yf to float-type 
representation simply by writing: 

 y = float(yf) 
 print(y) 
  
 0.458333333333 
  
 Now, how accurate this outcome is? 

 from math import fabs 
 y0 = 11./24 
 print("|y-y0| = %1.30f" % fabs(y-y0)) 
  
 |y-y0| = 0.000000000000000000000000000000 
  
Well, as for rational numbers—so far, so good. How about 
irrational numbers? Can they be approximated by fractions and 
how would such approximations look?  

y = x+ 5 · x
6
=

1

4
+

5

6
· 1
4
=

1

4
+

5

24
=

6 + 5

24
=

11

24

Code 2.12

Fraction()

You can also represent any float 
number without fractions module: 

>>> x = 1.334 
>>> y = x.as_integer_ratio(); y 
(3003900951456121, 2251799813685248) 

>>> x = 0.75 
>>> y = x.as_integer_ratio(); y 
(3, 4) 
>>> type(y) 
<class 'tuple'> 
>>> (nom, den) = y 
>>> nom 
3 
>>> den 
4 
>>> type(nom) 
<class 'int'> 

More on tuples in Section 2.5.1.
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3.7.  Essential Matrix and Linear Algebra 

 3.7.1.  NumPy’s ufuncs: Acceleration Built-In 

When you buy a nice car with 300 horsepower under the hood, you 
expect it to perform really well in most road conditions. The amount 
of  torque combined with a high-performance engine gives you a lot 
of  thrust and confidence while overtaking. The same level of  
expectations arises when you decide, from now on, to use Python for 
your numerical computations. 

Everyone heard about highly efficient engines of  C, C++, or Fortran 
when it comes to the speed of  the code execution. A magic takes 
place while the code is compiled to its machine-digestible version in 
order to gain the noticeable speed-ups. The trick is that within these 
languages every variable is declared, i.e. its type is known in advance 
before any mathematical operation begins. This is not the case of  
Python where variables are checked on-the-way as the interpreter 
reads the code. For example, if  we declare: 

 r = 7 

Python checks the value on the right-hand side first and if  it does not 
have a floating-point representation, it will assume and remember that 
r is an integer. So, what does it have to do with the speed? Analyse the 
following case study. 

Let’s say we would like to compute the values of  the function: 

for a grid of  x defined between 0.00001 and 100 with the resolution 
of  0.00001. Based on our knowledge till now, we can find all 
corresponding solutions using at least two methods: list and loop or 
list comprehension. The third method employs so-called NumPy’s 
universal functions (or ufuncs for short). As we will see below, the 
former two methods are significantly slower than the application of  
ufuncs. The latter performs vectorised operations on arrays, i.e. a 
specific ufunc applies to each element. Since the backbone of  ufuncs 
is CPython, the performance of  our engine is optimised for speed. 

Compute f(x) as given above using three different methods: (1) list 
and loop, (2) list comprehension, and (3) NumPy’s ufuncs. Measure 
and compare the time required to reach the end result. 

 from math import sin, cos, exp, pi, sqrt, pow 
 from time import time 
 import numpy as np 
 from matplotlib import pyplot as plt 

 def fun(x): 
        return sqrt(abs(sin(x-pi)*pow(cos(x+pi), 2)) * (1+exp(-x/ 
    sqrt(2*pi)))) 

Code 3.12

f(x) =

r
|sin(x� ⇡) cos

2
(x+ ⇡)|

⇣
1 + e

�xp
2⇡

⌘
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Even with a capability of  the plot rotation in matplotlib’s default 
viewer, you may discover that it is tricky to "see" the crossing point at 

 [4.95, 8.56, -4.73] 

what does not mean it’s not there! ☺ 

Eigenvectors and Principal Component Analysis (PCA) for N-Asset Portfolio 
Probably the most famous application of  the algebra’s concept of  
eigenvectors in quantitative finance is the Principal Component 
Analysis (PCA) for N-Asset Portfolio. The PCA delivers a simple, 
non-parametric method of  extraction of  the relevant information 
from often confusing data sets.  

The real-world data usually hold some relationships among their 
variables and, as a good approximation, in the first instance we may 
suspect them to be of  the linear (or close to linear) form. And the 
linearity is one of  stringent, however, powerful assumptions standing 
behind PCA. 

Let’s consider a practical example everyone can use and reapply. 
Imagine we observe the daily change of  prices of  N stocks (being a 
part of  your portfolio or a specific market index) over last L days. We 
collect the data in X, the matrix (NxL). Each of  L-long vector lives in 
an N-dimensional vector space spanned by an orthonormal basis, 
therefore they all are a linear combination of  the set of  unit length 
basic vectors: BX = X where a basis B is the identity matrix I. Within 
PCA approach we ask a simple question: is there another basis which 
is a linear combination of  the original basis that represents our data 
set? In other words, we look for a transformation matrix P acting on 
X in order to deliver its re-representation PX = X. The rows of  P 
become a set of  new basis vectors for expressing the columns of  X. 
This change of  basis makes the row vectors of  P in this 
transformation the principal components (PCs) of  X. 


