
Python

Pawel Lachowicz, PhD

QuantAtRisk eBooks

for Quants

Volume

Fundamentals of Python 3.5
Fundamentals of NumPy

Standard Library

 7

Table of Contents

Preface 11

About the Author 13

Acknowledgements 15

1. Python for Fearful Beginners………………….17
1.1. Your New Python Flight Manual 17
1.2. Python for Quantitative People 21
1.3. Installing Python 25

 1.3.1. Python, Officially 25
 1.3.2. Python via Anaconda (recommended) 29

1.4. Using Python 31
 1.4.1. Interactive Mode 31
 1.4.2. Writing .py Codes 31
 1.4.3. Integrated Developments Environments (IDEs) 32

 PyCharm 32
 PyDev in Eclipse 34
 Spyder 37
 Rodeo 38
 Other IDEs 39

2. Fundamentals of Python………………………41
2.1. Introduction to Mathematics 41

 2.1.1. Numbers, Arithmetic, and Logic 41

 Integers, Floats, Comments 41
 Computations Powered by Python 3.5 43
 N-base Number Conversion 44
 Strings 45
 Booleans 46
 If-Elif-If 46

 8

 Comparison and Assignment Operators 47
 Precedence in Python Arithmetics 48

 2.1.2. Import, i.e. "Beam me up, Scotty!" 49
 2.1.3. Built-In Exceptions 51
 2.1.4. math Module 55
 2.1.5. Rounding and Precision 56
 2.1.6. Precise Maths with decimal Module 58
 2.1.7. Near-Zero Maths 62
 2.1.8. fractions and Approximations of Numbers 64
 2.1.9. Formatting Numbers for Output 66

2.2. Complex Numbers with cmath Module 71
 2.2.1. Complex Algebra 71
 2.2.2. Polar Form of z and De Moivre’s Theorem 73
 2.2.3. Complex-valued Functions 75
 References and Further Studies 77

2.3. Lists and Chain Reactions 79
 2.3.1. Indexing 81
 2.3.2. Constructing the Range 82
 2.3.3. Reversed Order 83
 2.3.4. Have a Slice of List 85
 2.3.5. Nesting and Messing with List’s Elements 86
 2.3.6. Maths and statistics with Lists 88
 2.3.7. More Chain Reactions 94
 2.3.8. Lists and Symbolical Computations with
 sympy Module 98
 2.3.9. List Functions and Methods 102
 Further Reading 104

2.4. Randomness Built-In 105
 2.4.1. From Chaos to Randomness Amongst the Order 105
 2.4.2. True Randomness 106
 2.4.3. Uniform Distribution and K-S Test 110
 2.4.4. Basic Pseudo-Random Number Generator 114

 Detecting Pseudo-Randomness with re and
 collections Modules 115

 2.4.5. Mersenne Prime Numbers 123
 2.4.6. Randomness of random. Mersenne Twister. 126

 Seed and Functions for Random Selection 129

 Random Variables from Non-Random Distributions 131

 2.4.7. urandom 132
 References 133
 Further Reading 133

 9

2.5. Beyond the Lists 135
 2.5.1. Protected by Tuples 135

 Data Processing and Maths of Tuples 135

 Methods and Membership 137

 Tuple Unpacking 138

 Named Tuples 139
 2.5.2. Uniqueness of Sets 139
 2.5.3. Dictionaries, i.e. Call Your Broker 141

2.6. Functions 145
 2.6.1. Functions with a Single Argument 146

 2.6.2. Multivariable Functions 147
 References and Further Studies 149

3. Fundamentals of NumPy for Quants………….151
3.1. In the Matrix of NumPy 151

 Note on matplotlib for NumPy 153

3.2. 1D Arrays 155
 3.2.1. Types of NumPy Arrays 155

 Conversion of Types 156
 Verifying 1D Shape 156
 More on Type Assignment 157
 3.2.2. Indexing and Slicing 157

 Basic Use of Boolean Arrays 158
 3.2.3. Fundamentals of NaNs and Zeros 159
 3.2.4. Independent Copy of NumPy Array 160
 3.2.5. 1D Array Flattening and Clipping 161
 3.2.6. 1D Special Arrays 163

 Array—List—Array 164
 3.2.7. Handling Infs 164
 3.2.8. Linear and Logarithmic Slicing 165
 3.2.9. Quasi-Cloning of Arrays 166

3.3. 2D Arrays 167
 3.3.1. Making 2D Arrays Alive 167
 3.3.2. Dependent and Independent Sub-Arrays 169
 3.3.3. Conditional Scanning 170
 3.3.4. Basic Engineering of Array Manipulation 172

3.4. Arrays of Randomness 177
 3.4.1. Variables, Well Shook 177

 Normal and Uniform 177
 Randomness and Monte-Carlo Simulations 179
 3.4.2. Randomness from Non-Random Distributions 183

 10

3.5. Sample Statistics with scipy.stats Module 185
 3.5.1. Downloading Stock Data from Yahoo! Finance 186
 3.5.2. Distribution Fitting. PDF. CDF. 187
 3.5.1. Finding Quantiles. Value-at-Risk. 189

3.6. 3D, 4D Arrays, and N-dimensional Space 193
 3.6.1. Life in 3D 194
 3.6.2. Embedding 2D Arrays in 4D, 5D, 6D 196

3.7. Essential Matrix and Linear Algebra 203
 3.7.1. NumPy’s ufuncs: Acceleration Built-In 203
 3.7.2. Mathematics of ufuncs 205
 3.7.3. Algebraic Operations 208

 Matrix Transpositions, Addition, Subtraction 208
 Matrix Multiplications 209
 @ Operator, Matrix Inverse, Multiple Linear Regression 210
 Linear Equations 213
 Eigenvectors and Principal Component Analysis (PCA)
 for N-Asset Portfolio 215

3.8. Element-wise Analysis 223
 3.8.1. Searching 223
 3.8.2. Searching, Replacing, Filtering 225
 3.8.3. Masking 227
 3.8.4. Any, if Any, How Many, or All? 227
 3.8.5. Measures of Central Tendency 229

Appendixes……………………………………….231
A. Recommended Style of Python Coding 231
B. Date and Time 232
C. Replace VBA with Python in Excel 232
D. Your Plan to Master Python in Six Months 233

 11

Preface
This is the first part out of the Python for Quants trilogy, the book-
series that provides you with an opportunity to commence your
programming experience with Python—a very modern and
dynamically evolving computer language. Everywhere.

This book is completely different than anything ever written on
Python, programming, quantitative finance, research, or science. It
became one of the greatest challenges in my career as a writer—
being able to deliver a book that anyone can learn programming
from in the most gentle but sophisticated manner—starting from
absolute beginner. I made a lot of effort not to follow any rules in
book writing, solely preserving the expected skeleton: chapters,
sections, margins.

It is written from a standpoint of over 21 years of experience as a
programmer, with a scientific approach to the problems, seeking
pinpoint solutions but foremost blended with a heart and soul—
two magical ingredients making this book so unique and alive.

It is all about Python strongly inclined towards quantitative and
numerical problems. It is thought of quantitative analysts (also
known as quants) occupying all rooms from bedrooms to Wall
Street trading rooms. Therefore, it is written for traders,
algorithmic traders, and financial analysts. All students and PhDs.
In fact, for anyone who wishes to learn Python and apply its
mathematical abilities.

In this book you will find numerous examples taken from finance,
however the content is not strictly limited to that one single field.
Again, it is all about Python. From the beginning to the end. From
the tarmac to the stratosphere of dedicated programming.

Within Volume I, we will try to cover the quantitative aspects of
Fundamentals of Python supplemented with most useful language’s
structures taken from the Python’s Standard Library. We will be
studying the numerical and algebraical concepts of NumPy to
equip you with the best of Python 3.5. Yes, the newest version of
the interpreter. This book is up to date.

 12

If you hold a copy of this ebook it means you are very serious
about learning Python quickly and efficiently. For me it is a dream
to guide you from cover to cover, leaving you wondering "what’s
next?", and making your own coding in Python a truly remarkable
experience. Volume I is thought of as a story on the quantitatively
dominated side of Python for beginners which, I do hope, you will
love from the very first page.

If I missed something or simply left anything with a room for
improvement—please email me at pawel@quantatrisk.com. The
1st edition of Volume II will come out along with the 2nd edition
of Volume I. Thank you for your feedback in advance.

Ready for Python for Quants fly-thru experience? If so, fasten
your seat belt and adjust a seat to an upright position. We are now
clear for take-off!

Enjoy your flight!

Paweł Lachowicz, PhD
November 26th, 2015

 13

About the Author

Paweł Lachowicz was born in Wrocław, Poland in 1979. At the age of twelve
he became captivated by programming capability of the Commodore Amiga
500. Over the years his mind was sharply hooked on maths, physics, and
computer science, concurrently exploring the frontiers of positive thinking and
achieving "the impossible" in life. In 2003 he graduated from Warsaw University
defending his MSc degree in astronomy; four years later—a PhD degree in
signal processing applied directly to black-hole astrophysics at Polish Academy
of Sciences in Warsaw, Poland. His novel discoveries secured his post-doctoral
research position at the National University of Singapore in 2007. In 2010 Pawel
shifted his interest towards financial markets, trading, and risk management. In
2012 he founded QuantAtRisk.com portal where he continuously writes on
quantitative finance, risk, and applied Python programming.

Today, Pawel lives in Sydney, Australia (dreaming of moving to Singapore or to
the USA) and serves as a freelance financial consultant, risk analyst, and
algorithmic trader. Worldwide. Relaxing, he fulfils his passions as a writer,
motivational speaker, yacht designer, photographer, traveler, and (sprint) runner.

He never gives up.

 15

Acknowledgments
To all my Readers and Followers.

To Dr. Ireneusz Baran for his patience in the process of waiting
for this book. For weekly encouragement to go for what valuable I
could do for people around the world. For his uplifting words
injected into my subconscious mind. It all helped me. A lot.

To Aneta Glińska-Broś for placing a bar significantly higher than I
initially anticipated. Expect the unexpected but never back down.
You kept reminding me that all the time. I did listen to You. I
rebuilt myself and re-emerged stronger. Thank You!

To Dr. Yves Hilpisch, Dr. Sebastian Raschka, and Stuart Reid, CFA
for the boost of motivation I experienced from your side by
providing the examples to follow.

To John Hedge for the effort of reading my book and truly great
time we shared in Sydney. For courage you gave me.

To Lies Leysen, Dr. Katarzyna Tajs-Zielińska, Professor Iwona and
Ireneusz Tomczak, and Armando Favrin for an amazing support,
positive energy, long hours spent on memorable conversations,
and for reminding me a true importance of accomplishing what I
have started.

To Iain Bell and Dr. Chris Dandre for giving me a chance.

To Les Brown for motivation.

To all who believed in me.

And to all who did not. You made my jet engines full of thrust.

 58

A superbly handy function in math arsenal is trunc which provides a
stiff separation of the real number from its fractional part:

 >>> e
 2.718281828459045
 >>> y = trunc(e)
 2
 >>> type(y)
 <class 'int'>
 >>> y == floor(e)
 True

where the last logical test is positive despite the type of y is an
integer and floor(e) is a float. It is always better to use trunc than
floor function if you want to get the real value of your number. In
certain cases (big numbers) rounding to the floor may fail. That is
why the trunc function is a perfect choice.

 2.1.6. Precise Maths with decimal Module

Python’s Standard Library goes one step forward. It grants us
access to its another little pearl known as decimal module. Now the
game is all about precision of calculations. When we use
floating-point mathematical operations usually we do not think
how computer represents the floats in its memory. The truth is a
bit surprising when you discover that:

 >>> r = 0.001
 >>> print("r= %1.30f" % r) # display 30 decimal places
 r= 0.001000000000000000020816681712

instead of

 r= 0.001000000000000000000000000000

It is just the way it is: the floats are represented in a binary format
that involves a finite number of bits of their representation. When
used in calculations, the floats provide us with a formal assurance
up to 17 decimal places. However, the rest is not ignored and in
case of heavy computations those false decimal digits may
propagate. In order to “see” it—run the following code:

 r = 0.001
 t = 0.002
 print("r = %1.30f" % r)
 print("t = %1.30f" % t)
 print("r+t = %1.30f" % (r+t))

You should get:

 r = 0.001000000000000000020816681712
 t = 0.002000000000000000041633363423
 r+t = 0.003000000000000000062450045135

It is now clear how those “happy endings” accumulate an error.
The question you may ask is: “Should I be worried about that?”

trunc()

Code 2.6

In many cases the function of
trunc can be replaced with the
operation of the floor division:

from math import trunc
from random import random as r
x = r()*100 # float
print(x//1 == trunc(x))

True

thought the former returns a float
and trunc an integer if x is float.

You may obtain a pure fractional
part of the float as follows, e.g:

>>> from math import pi
>>> pi
3.141592653589793
>>> pi - pi//1
0.14159265358979312

 64

 2.1.8. fractions and Approximations of Numbers

If you are 11 years young and you are studying this book because
you have some problems with solving fractions at school, I’ve got
something for you too! Python is able to perform computations
and display results in a form of nominator over denominator.
Hurrah!

Let’s say, for x = 0.25 = 1/4 we want to calculate the value of a
simple expression:

and display result exactly as a fraction of 11/24. It is possible with
the use of fractions module from the Standard Library:

 from fractions import Fraction as fr

 x = 1./4 # float
 xf = fr(str(x)) # fractional form

 yf = xf + 5*xf/6

 print("x = %1.5f" % x)
 print("xf = %s" % xf) # use string
 print("yf = %s" % yf) # for output

 returning

 x = 0.25000
 xf = 1/4
 yf = 11/24

The input value of x for Fraction function needs to be firstly
converted to a string-type variable. In the 4th line of 2.12 we can
see how easily then our calculations can be coded. Both xf and yf
variables are recognised by Python as <class 'fractions.Fraction'>
objects and we obtain the conversion of yf to float-type
representation simply by writing:

 y = float(yf)
 print(y)

 0.458333333333

 Now, how accurate this outcome is?

 from math import fabs
 y0 = 11./24
 print("|y-y0| = %1.30f" % fabs(y-y0))

 |y-y0| = 0.000000000000000000000000000000

Well, as for rational numbers—so far, so good. How about
irrational numbers? Can they be approximated by fractions and
how would such approximations look?

y = x+ 5 · x
6
=

1

4
+

5

6
· 1
4
=

1

4
+

5

24
=

6 + 5

24
=

11

24

Code 2.12

Fraction()

You can also represent any float
number without fractions module:

>>> x = 1.334
>>> y = x.as_integer_ratio(); y
(3003900951456121, 2251799813685248)

>>> x = 0.75
>>> y = x.as_integer_ratio(); y
(3, 4)
>>> type(y)
<class 'tuple'>
>>> (nom, den) = y
>>> nom
3
>>> den
4
>>> type(nom)
<class 'int'>

More on tuples in Section 2.5.1.

 203

3.7. Essential Matrix and Linear Algebra

 3.7.1. NumPy’s ufuncs: Acceleration Built-In

When you buy a nice car with 300 horsepower under the hood, you
expect it to perform really well in most road conditions. The amount
of torque combined with a high-performance engine gives you a lot
of thrust and confidence while overtaking. The same level of
expectations arises when you decide, from now on, to use Python for
your numerical computations.

Everyone heard about highly efficient engines of C, C++, or Fortran
when it comes to the speed of the code execution. A magic takes
place while the code is compiled to its machine-digestible version in
order to gain the noticeable speed-ups. The trick is that within these
languages every variable is declared, i.e. its type is known in advance
before any mathematical operation begins. This is not the case of
Python where variables are checked on-the-way as the interpreter
reads the code. For example, if we declare:

 r = 7

Python checks the value on the right-hand side first and if it does not
have a floating-point representation, it will assume and remember that
r is an integer. So, what does it have to do with the speed? Analyse the
following case study.

Let’s say we would like to compute the values of the function:

for a grid of x defined between 0.00001 and 100 with the resolution
of 0.00001. Based on our knowledge till now, we can find all
corresponding solutions using at least two methods: list and loop or
list comprehension. The third method employs so-called NumPy’s
universal functions (or ufuncs for short). As we will see below, the
former two methods are significantly slower than the application of
ufuncs. The latter performs vectorised operations on arrays, i.e. a
specific ufunc applies to each element. Since the backbone of ufuncs
is CPython, the performance of our engine is optimised for speed.

Compute f(x) as given above using three different methods: (1) list
and loop, (2) list comprehension, and (3) NumPy’s ufuncs. Measure
and compare the time required to reach the end result.

 from math import sin, cos, exp, pi, sqrt, pow
 from time import time
 import numpy as np
 from matplotlib import pyplot as plt

 def fun(x):
 return sqrt(abs(sin(x-pi)*pow(cos(x+pi), 2)) * (1+exp(-x/
 sqrt(2*pi))))

Code 3.12

f(x) =

r
|sin(x� ⇡) cos

2
(x+ ⇡)|

⇣
1 + e

�xp
2⇡

⌘

 215

Even with a capability of the plot rotation in matplotlib’s default
viewer, you may discover that it is tricky to "see" the crossing point at

 [4.95, 8.56, -4.73]

what does not mean it’s not there! ☺

Eigenvectors and Principal Component Analysis (PCA) for N-Asset Portfolio
Probably the most famous application of the algebra’s concept of
eigenvectors in quantitative finance is the Principal Component
Analysis (PCA) for N-Asset Portfolio. The PCA delivers a simple,
non-parametric method of extraction of the relevant information
from often confusing data sets.

The real-world data usually hold some relationships among their
variables and, as a good approximation, in the first instance we may
suspect them to be of the linear (or close to linear) form. And the
linearity is one of stringent, however, powerful assumptions standing
behind PCA.

Let’s consider a practical example everyone can use and reapply.
Imagine we observe the daily change of prices of N stocks (being a
part of your portfolio or a specific market index) over last L days. We
collect the data in X, the matrix (NxL). Each of L-long vector lives in
an N-dimensional vector space spanned by an orthonormal basis,
therefore they all are a linear combination of the set of unit length
basic vectors: BX = X where a basis B is the identity matrix I. Within
PCA approach we ask a simple question: is there another basis which
is a linear combination of the original basis that represents our data
set? In other words, we look for a transformation matrix P acting on
X in order to deliver its re-representation PX = X. The rows of P
become a set of new basis vectors for expressing the columns of X.
This change of basis makes the row vectors of P in this
transformation the principal components (PCs) of X.

