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Equity market impact

The impact of large trades on prices is very important and widely discussed, but rarely
measured. Using a large data set from a major bank and a simple but realistic theoretical
model, Robert Aimgren, Chee Thum, Emmanuel Hauptmann and Hong Li propose that impact
is a 3/5 power law of block size, with specific dependence on trade duration, daily volume,
volatility and shares outstanding. The results can be directly incorporated into an optimal
trade scheduling algorithm and pre- and post-trade cost estimation

investment performance (see, for example, Freyre-Sanders, Guobuzaite

& Byrne, 2004). Not only do they affect the realised results of an active
investment strategy, but they also control how rapidly assets can be converted
into cash should the need arise. Such costs generally fall into two categories:
B Direct costs are commissions and fees that are explicitly stated and eas-
ily measured. These are important and should be minimised, but are not
the focus of this article.
M Indirect costs are not explicitly stated. For large trades, the most important
component of these is the impact of the trader’s own actions on the market.
These costs are notoriously difficult to measure, but they are the most
amenable to improvement by careful trade management and execution.

This article presents a quantitative analysis of market impact costs based
on a large sample of Citigroup US equity brokerage executions. We use a
simple theoretical model that lets us bring in the very important role of the
rate of execution.

The model and its calibration are constructed to satisfy two criteria:

B Predicted costs are quantitatively accurate, as determined by direct fit
and by out-of-sample back-testing, as well as extensive consultation with
traders and other market participants.

B The results may be used directly as input to an optimal portfolio trade
scheduling algorithm. (The scheduling algorithm itself is non-trivial and
will be published elsewhere.)

The results of this study are currently being implemented in Citigroup’s
Best Execution Consulting Services (BECS) software, for use internally by
all desks as well as clients of the equity division. The current work is fo-
cused on the US market but work is under way to extend it to global eq-
uities. BECS is the delivery platform for the next generation of Citigroup’s
trading analytic tools, both pre- and post-execution.

The pre-trade model presented here is an extension of the market stan-
dard existing model that has been delivered through the StockFacts Pro
software for the past 14 years (Sorensen et al, 1998). The new pre-trade
model is based on better developed empirical foundations: it is based on
real trading data taking time into consideration while verifying the results
through post trade analysis. Table A summarises the advantages and some
disadvantages of our approach.

Much work in both the academic and the industrial communities has
been devoted to understanding and quantifying market impact costs. Many
academic studies have worked only with publicly available data, such as
the trade and quote (TAQ) tick record from the New York Stock Exchange
(NYSE). Breen, Hodrick & Korajczyk (2002) regress net market movement
over five-minute and half-hour time periods against the net buy-sell im-
balance during the same period, using a linear impact model. A similar
model is developed in Kissell & Glantz (2003). Rydberg & Shephard (2003)
develop a rich econometric framework for describing price motions; Du-
four & Engle (2000) investigate the key role of waiting time between suc-
cessive trades. Using techniques from statistical physics, Lillo, Farmer &
Mantegna (2003) look for a power-law scaling in the impact cost function,
and find significant dependence on total market capitalisation as well as

T ransaction costs are widely recognised as an important determinant of

daily volume, and Bouchaud et al (2004) discover non-trivial serial corre-
lation in volume and price data.

The publicly available data sets lack reliable classification of individual
trades as buyer- or seller-initiated. Even more significantly, each transaction
exists in isolation; there is no information on sequences of trades that form
part of a large transaction. Some academic studies have used limited data sets
made available by asset managers that do have this information, where the
date but not the time duration of the trade is known (Chan & Lakonishok,
1995, Holthausen, Leftwich & Mayers, 1990, and Keim & Madhavan, 1996).

The transaction cost model embedded in our analysis is based on the
model presented by Almgren & Chriss (2000) with non-linear extensions
from Almgren (2003). The essential features of this model, as described in
below, are that it explicitly divides market impact costs into a permanent
component associated with information, and a temporary component aris-
ing from the liquidity demands made by execution in a short time.

Data
The data set on which we base our analysis contains, before filtering, al-
most 700,000 US stock trade orders executed by Citigroup equity trading
desks for the 19-month period from December 2001 to June 2003. (The
model actually used within the BECS software is estimated on an ongoing
basis, to reflect changes in the trading environment.) We now briefly de-
scribe and characterise the raw data, and then the particular quantities of
interest that we extract from it.

[] Description and filters. Each order is broken into one or more trans-
actions, each of which may generate one or more executions. For each
order, we have the following information:

B The stock symbol, requested order size (number of shares) and sign
(buy or sell) of the entire order. Client identification is removed.

M The times and methods by which transactions were submitted by the
Citigroup trader to the market. We take the time #, of the first transaction
to be the start of the order. Some of these transactions are sent as market
orders, some are sent as limit orders, and some are submitted to Citigroup’s
automated VWAP server. Except for the starting time #,, and except to ex-
clude VWAP orders, we make no use of this transaction information.

B The times, sizes and prices of execution corresponding to each trans-
action. Some transactions are cancelled or only partially executed; we use
only the completed price and size. We denote execution times by 7, ...,
t,, sizes by x,, ..., x,, and prices by §|, ..., S

> n’

A. Distinguishing features of our model

Advantages

M Calibrated from real data

M Includes time component

M Incorporates intra-day profiles

W Uses non-linear impact functions
M Confidence levels for coefficients

Disadvantages

M Based only on Citigroup data
M Little data for small-cap stocks
M Little data for very large trades
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1. A typical trading trajectory
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The vertical axis is shares remaining and each step downwards is one
execution. The trajectory starts at the first transaction recorded in the

system; the program ends when the last execution has been completed.
The dashed line is our continuous-time approximation

B. Summary statistics of orders in our sample

Mean  Min Q1 Median Q3 Max
Total cost (%) 0.04 -3.74 -0.11 0.03 0.19 355
Permanent cost (I, %) 0.01 -395 -0.17 0.01 0.19 2.66
Temporary cost (J, %) 0.03 -3.57 -0.11 0.02 0.47 233

Shares/ADV (| X|, %) 151 025 038 0.62 136 88.62
Time (days) 039 000 010 032 065 1.01
Daily volatility (%) 268 0.70 1.70 220 3.00 12.50
Mean spread (%) 0.14 0.03 0.08 0.41 0416 237

Note: mean and quartile levels for each of several descriptive variables.
The three cost variables are very nearly symmetrically distributed about
zero (I and J are defined in the ‘Trajectory cost model’ section)

All orders are completed within one day (though not necessarily com-
pletely filled).

Figure 1 shows a typical example. A sell order for 2,500 shares of DRI
was entered into the system at £, = 10:59am. The transactions submitted
by the trader generated n = 5 executions, of which the last one completed
att, = 15:15. The dashed line in the figure shows the continuous-time ap-
proximation that we use in the data fitting: execution follows the average
day’s volume profile over the duration of the trade execution.

In addition, we have various additional pieces of information, such as
the instructions given by the client to the trader for the order, such as ‘over
the day’, ‘market on close’, ‘market on open’, ‘VWAP’ or blank.

The total sample contains 682,562 orders, but for our data analysis we
use only a subset.

M To exclude small and thinly traded stocks, we consider only orders on
stocks in the Standard & Poor’s 500 index, which represent about half of
the total number of orders but a large majority of the total dollar value.
Even within this universe, we have enough diversity to explore depen-
dence on market capitalisation, and we have both New York Stock Ex-
change and over-the-counter stocks.

B We exclude approximately 400 orders for which the stock exhibits more
than 12.5% daily volatility (200% annual).

Furthermore, we want only orders that are reasonably representative of

the active scheduling strategies that are our ultimate goal.
B We exclude orders for which the client requested ‘market on close’ or
‘market on open’. These orders are likely to be executed with strongly non-
linear profiles, which do not satisfy our modelling assumption. (There are
only a few hundred of these orders.)
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B We exclude orders for which the client requested VWAP execution. These
orders have consistently long execution times and represent very small
rates of trading relative to market volume. (These are about 16% of the
total number of orders.)

H Also, we exclude orders for which any executions are recorded after
4:10pm, approximately 10% of the total. In many cases, these orders use
Citigroup’s block desk for some or all of the transactions, and the fills are
reported some time after the order is completed. Therefore, we do not
have reliable time information.

This exclusion, together with our use of filled size in place of original-
ly requested size, could be a source of significant bias. For example, if
clients and traders consistently used limit orders, orders might be filled
only if the price moved in a favourable direction. Analysis of our data set
suggests that this effect is not significant — for example, we obtain almost
exactly the same coefficients with or without partially filled orders — and
informal discussions with traders confirm the belief that partial fills are not
the result of limit order strategy.

Most significantly, we exclude small orders since our goal is to estimate
transaction costs in the range where they are significant. Specifically, we
include only orders that:

M have at least two completed transactions;

B are at least 1,000 shares; and

W are at least 0.25% of average daily volume in that stock.

The results of our model are reasonably stable under changes in these cri-
teria. After this filtering, we have 29,509 orders in our data set. The largest
number of executions for any order is n = 548; the median is around five.
The median time is around 30 minutes.

Table B shows some descriptive statistics of our sample. Most of our or-

ders constitute only a few per cent of typical market volume, and our model
is designed to work within this range of values. Orders larger than a few per
cent of daily volume have substantial sources of uncertainty that are not mod-
elled here, and we cannot claim that our model accurately represents them.
[] variables. The goal of our study is to describe market impact in terms
of a small number of input variables. Here we define precisely what mar-
ket impacts we are measuring, and what primary and auxiliary variables
we will use to model them.
B Observables. Let S(f) be the price of the asset being traded. For each
order, we define the following price points of interest: S, is the market
price before this order begins executing; S post 15 the market price after this
order is completed; and S is the average realised price on the order

The realised price S =3x8 /%x. is calculated from the transaction data
set. The market prices S, and S ost AT€ bid-ask mid-points from TAQ.

The pre-trade price S, is the price before the impact of the trade be-
gins to be felt (this is an approximation, since some information may leak
before any record enters the system). We compute S, from the latest quote
just preceding the first transaction.

The post-trade price S[mt should capture the ‘permanent’ effects of the
trade program. That is, it should be taken long enough after the last exe-
cution that any effects of temporary liquidity have dissipated. In repeat-
edly performing the fits described below (‘Cross-sectional description’), we
have found that 30 minutes after the last execution is adequate to achieve
this. For shorter time intervals, the regressed values depend on the time
lag, and at about this level the variation stops. That is, we define:

! post = b, +30 minutes

The price S post 1 taken from the first quote following Lost If Lyost 18 after
market close, then we carry over to the next morning. This risks distort-
ing the results by including excessive overnight volatility, but we have
found this to give more consistent results than the alternative of truncat-
ing at the close.

Based on these prices, we define the following impact variables:

S st =S S —
=222 "0 Realised impact: J = 5=5

Permanent impact :
So So



The ‘effective’ impact J is the quantity of most interest, since it determines
the actual cash received or spent on the trade. In the model below, we
will define temporary impact to be J minus a suitable fraction of I, and
this temporary impact will be the quantity described by our theory. We
cannot sensibly define temporary impact until we write this model.

On any individual order, the impacts I, J may be either positive or neg-

ative. In fact, since volatility is a very large contributor to their values, they
are almost equally likely to have either sign. They are defined so that pos-
itive cost is experienced if 7, J have the same sign as the total order X: for
a buy order with X > 0, positive cost means that the price S(f) moves up-
ward. We expect the average values of I, J, taken across many orders, to
have the same sign as X.
B Volume time. The level of market activity is known to vary substantial-
ly and consistently between different periods of the trading day; this intra-
day variation affects both the volume profile and the variance of prices.
To capture this effect, we perform all our computations in volume time T,
which represents the fraction of an average day’s volume that has execut-
ed up to clock time ¢. Thus a constant-rate trajectory in the T variable cor-
responds to a VWAP execution in real time, as shown in figure 1. The
relationship between r and 7 is independent of the total daily volume; we
scale it so that T =0 at market open and T =1 at market close.

We map each of the clock times IS S ] the data set to a corre-
sponding volume time Ty, ..., T,. Since the stocks in our sample are heav-
ily traded, in this article we use a non-parametric estimator that directly
measures differences in 7T: the shares traded during the period corre-
sponding to the execution of each order. Figure 2 illustrates the empirical
profiles. The fluctuations in these graphs are the approximate size of sta-
tistical error in the volume calculation for a 15-minute trade; these errors
are typically 5% or less, and are smaller for longer trades.

W Explanatory variables. We want to describe the impacts I and J in terms
of the input quantities:

n
X= 2 X; = Total executed size in shares
j=1

T=1,-1, = Volume duration of active trading
Tyt = Tpost —To = Volume duration of impact

As noted above, X is positive for a buy order, negative for sell. We have
explored defining T using a size-weighted average of execution times but
the results are not substantially different. We make no use of the interme-
diate execution times T, ..., T, ,, and make no use of the execution sizes
except in calculating the order size and the mean realised price.

In eventual application for trajectory optimisation, the size X will be as-
sumed given, and the execution schedule, here represented by 7, will be
optimised. In general, the solution will be a complicated time-dependent
trajectory that will be parameterised by a time scale T. For the purposes
of data modelling, we ignore the trajectory optimisation and take the sched-
ules to be determined only by the single number 7.

B Auxiliary variables. Although our goal is to explain the dependence of
the impact costs I, J on order size X and trade time 7, other market vari-
ables will influence the solution. The most important of these are: V, which
is the average daily volume in shares, and o, which is the daily volatility.

V is a 10-day moving average. For volatility, we use an intra-day esti-
mator that makes use of every transaction in the day. We find that it is im-
portant to track changes in these variables not only between different stocks
but also across time for the same stock.

These values serve primarily to ‘normalise’ the active variable across
stocks with widely varying properties. It seems natural that order size X
should be measured as a fraction of average daily volume V: X/V is a more
natural variable than X itself.

In our model presented below, order size as a fraction of average vol-
ume traded during the time of execution will also be seen to be impor-
tant. We estimate VT directly by taking the average volume that executed
between clock times ¢, and ¢, over the previous 10 days. In fact, since in

2. Ten-day average intra-day volume and

volatility profiles, on 15-minute intervals
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Our approach defines to a new time scale determined empirically by
the cumulative volume profile; implicitly this takes the volatility
profile to be the same, which is approximately valid. Our estimation
introduces statistical error, which is roughly the same size as the
fluctuations in these graphs

our model trade duration T appears only in the combination VT, this avoids
the need to measure T directly.

We use volatility to scale the impacts: a certain level of participation in
the daily volume should cause a certain level of participation in the ‘nor-
mal’ motion of the stock. Our empirical results show that volatility is the
most important scale factor for cost impact.

Trajectory cost model
The model we use is based on the framework developed by Almgren &
Chriss (2000) and Almgren (2003), with simplifications made to facilitate
the data fitting. The main simplification is the assumption that the rate of
trading is constant (in volume time). In addition, we neglect cross-impact,
since our data set has no information about the effect of trading one stock
on the price of another.

We decompose the price impact into two components:
W A permanent component that reflects the information transmitted to the
market by the buy/sell imbalance. This component is believed to be rough-
ly independent of trade scheduling; ‘stealth’ trading is not admitted by this
construction. In our data fit, this component will be independent of the
execution time 7.
W A temporary component reflects the price concession needed to attract
counterparties within a specified short time interval. This component is
highly sensitive to trade scheduling; here, it will depend strongly on T.

More detailed conceptual frameworks have been developed (Bouchaud
et al, 2004), but this easily understood model has become traditional in the
industry and in academic literature (Madhavan, 2000).

The realised price impact is a combination of these two effects. In terms
of the realised and permanent impact defined above and observed from
the data, our model may be summarised as:

Realised = Permanent + Temporary + Noise

with suitable coefficients and scaling depending on T. Thus the temporary
impact is obtained as a difference between the realised impact and the per-
manent impact; it is not directly observable although we have a theoreti-
cal model for it.

We start with an initial desired order of X shares. We assume this order
is completed by uniform rate of trading over a volume time interval 7. That
is, the trade rate in volume units is v = X/T, and is held constant until the
program is completed. Constant rate in these units is equivalent to VWAP
execution during the time of execution. Note that v has the same sign as
X; thus v> 0 for an buy order and v <0 for a sell order. Market impact will
move the price in the same direction as v.
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[] Permanent impact. Our model postulates that the asset price S(t) fol-
lows an arithmetic Brownian motion, with a drift term that depends on our
trade rate v. That is:

ds =S,g(v)dt+ S,0dB

where B(7) is a standard Brownian motion (or Bachelier process), and g(v)
is the permanent impact function; the only assumption we make so far is
that g(v) is increasing and has g(0) = 0. As noted above, T is volume time,
representing the fraction average of an average day’s volume that has ex-
ecuted so far. We integrate this expression in time, taking v to equal X/T
for 0 <T<T, and get the permanent impact:

I1=Tg (?J +0 /T,m,r; (1)

where & ~ M0, 1) is a standard Gaussian variate.

Note that if g(v) is a linear function, then the accumulated drift at time
T is proportional to Xt/T, the number of shares we have executed to time
7, and the total permanent impact [ is proportional to the total order size
X, independently of the time scale T.
[] Temporary impact. The price actually received from our trades is:

§(x)=S(x)+ soh(g)

where h(v) is the temporary impact function. For convenience, we have
scaled it by the market price at the start of trading, since the time intervals
involved are all less than one day.

This expression is a continuous-time approximation to a discrete process.
A more accurate description would be to imagine that time is broken into
intervals such as, say, one hour or 30 minutes. Within each interval, the av-
erage price we realise on our trades during that interval will be slightly less
favourable than the average price that an unbiased observer would measure
during that time interval. The unbiased price is affected on previous trades
that we have executed before this interval (as well as volatility), but not on
their timing. The additional concession during this time interval is strongly
dependent on the number of shares that we execute in this interval.

At a constant liquidation rate, calculating the time average of the exe-
cution price gives the temporary impact expression:

T,.—-T

post

— = 2
X2T g 2)

post

where y ~ N(0, 1) is independent of &. The term I/2 reflects the effect on
the later execution prices of permanent impact caused by the earlier parts
of the program.

The rather complicated error expression reflects the fluctuation of the mid-
dle part of the Brownian motion on [0, 77 relative to its end point at T, 1t
is used only for heteroscedasticity corrections in the regression fits below.

Equations (1) and (2) give us explicit expressions for the permanent

and temporary cost components I, J in terms of the values of the functions
g, h at known trade rates, together with estimates of the magnitude of the
error coming from volatility. The data-fitting procedure is in principle
straightforward: we compute the costs 7, J from the transaction data, and
regress those values against the order size and time as indicated, to extract
directly the functions g(v), h(v).
[] Choice of functional form. We now address the question of what
should be the structure of the permanent impact function g(v) and the tem-
porary impact function h(v). Even with our large sample, it is not possible
to extract these functions purely from the data; we must make a hypoth-
esis about their structure.

We postulate that these functions are power laws, that is, that:
g(v)=2yM* and  A(v)=#n|v

where the numerical values of the (dimensionless) coefficients vy, n and the
exponents o, B are to be determined by linear and non-linear regression on
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the data. The sign is to be chosen so g(v) and h(v) have the same sign as v.

The class of power law functions is extremely broad. It includes concave
functions (exponent < 1), convex functions (exponent > 1) and linear func-
tions (exponent = 1). It is the functional form that is implicitly assumed by
fitting straight lines on a log-log plot, as is very common in physics and has
been done in this context, for example, by Lillo, Farmer & Mantegna (2003).

We take the same coefficients for buy orders (v > 0) and sell orders (v
< 0). It would be a trivial modification to introduce different coefficients
v, and n_ for the two sides, but our exploratory data analysis has not in-
dicated a strong need for this. Similarly, it would be possible to use dif-
ferent coefficients for stocks traded on different exchanges but this does
not appear to be necessary.

We are far from neutral in the choice of the exponents. For the per-
manent impact function, there is strong reason to prefer the linear model
with o= 1. This is the only value for which the model is free from ‘quasi-
arbitrage’ (Huberman & Stanzl, 2004). Furthermore, the linear function is
the only one for which the permanent price impact is independent of trad-
ing time; this is a substantial conceptual simplification, though, of course,
it must be supported by the data.

For temporary impact, there is ample empirical evidence indicating that
the function should be concave, that is, 0 < 3 < 1. This evidence dates back
to Loeb (1983) and is strongly demonstrated by the fits in Lillo, Farmer &
Mantegna (2003). In particular, theoretical arguments (Barra, 1997) suggest
that the particular value B = 1/2 is especially plausible, giving a square-
root impact function.

Our approach is as follows. We shall make unprejudiced fits of the power
law functions to the entire data set, and determine our best estimates for
the exponents o, B. We will then test the validity of the values oo = 1 and
B = 1/2, to validate the linear and square-root candidate functional forms.

Once the exponents have been selected, simple linear regression is ad-
equate to determine the coefficients. In this regression, we use het-
eroscedastic weighting with the error magnitudes from (1) and (2). The
result of this regression is not only values for the coefficients, but also a
collection of error residuals & and %, which must be evaluated for nor-
mality as the theory supposes.

Cross-sectional description

Above we have assumed an ‘ideal” asset, all of whose properties are con-
stant in time. For any real asset, the parameters that determine market im-
pact will vary with time. For example, one would expect that execution of
a given number of shares would incur higher impact costs on a day with
unusually low volume or with unusually high volatility.

We therefore assume that the natural variable for characterising the size
of an overall order or of a rate of trading is not shares per se but the num-
ber of shares relative to a best estimate of the background flow for that
stock in the time period when trading will occur. That is, the impact cost
functions should be expressed in terms of the dimensionless quantity X/VT
rather than X itself, where V is the average number of shares per day de-
fined above (see ‘Variables’).

Furthermore, we suppose the motion of the price should not be given
as a raw percentage figure, but should be expressed as a fraction of the
‘normal’ daily motion of the price, as expressed by the volatility ©.

With these assumptions, we modify the expressions (1) and (2) to:

I=0Tg (%) + (noise) 3)

J- I ch (ij + (noise) (4)
2 vT

where the ‘noise’ is the error expressions depending on volatility. Now g(-)
and h(-) are dimensionless functions of a dimensionless variable. They are
assumed to be constant in time for a single stock across days when ¢ and
V vary. We now investigate the dependence of these functions on cross-
stock variables.



[ Model determination. To bring the full size of our data set into play, we
must address the more complicated and less precise question of how the im-
pact functions vary across stocks, that is, how they might depend on variables
such as total market capitalisation, shares outstanding, bid-ask spread or other
quantities. We consider permanent and temporary impact separately.

B Permanent. We insert a ‘liquidity factor’ £ into the permanent cost func-
tion g(v), where £ depends on the market parameters characterising each
individual stock (in addition to daily volume and volatility). There are sev-
eral candidates for the inputs to £:

[ Shares outstanding. We constrain the form of £ to be

(2

where © is the total number of shares outstanding, and the exponent 8 is
to be determined. The dimensionless ratio ©/V is the inverse of ‘turnover’,
the fraction of the company’s value traded each day. This is a natural ex-
planatory variable, and has been used in empirical studies such as Breen,
Hodrick & Korajczyk (2002).

[ Bid-ask spread. We have found no consistent dependence on the bid-
ask spread across our sample, so we do not include it in L.

[J Market capitalisation. This differs from shares outstanding by the price
per share, so including this factor is equivalent to including a ‘price effect’.
Our empirical studies suggest there is a persistent price effect, as also found
by Lillo, Farmer & Mantegna (2003), but that the dependence is weak enough
that we neglect it in favour of the conceptually simpler quantity ©/V.

B Temporary. In extensive preliminary exploration, we have found that
the temporary cost function h(v) does not require any stock-specific mod-
ification: liquidity cost as a fraction of volatility depends only on shares
traded as a fraction of average daily volume.

H Determination of exponent. After assuming the functional form explained
above, we confirm the model and determine the exponent & by perform-
ing a non-linear regression of the form:

o 3
(%] + (noise) (5)

1 X
5 yngn(X)‘W

B

1(1 —i)znsgn(X) X
o 2 vr
where ‘noise’ is again the heteroscedastic error term from (1), and sgn is
the sign function. We use a modified Gauss-Newton optimisation algorithm
to determine the values of alpha, delta and beta that minimise the nor-
malised residuals. The results are:

0=0.891+£0.10 3§=0.267+£0.22

+ <n0ise> (6)

B =0.600%0.038

Here, as throughout this article, the error bars expressed with + are one
standard deviation, assuming a Gaussian error model. Thus the ‘true’ value
can be expected to be within this range with 67% probability, and within
a range twice as large with 95% probability.

From these values, we draw the following conclusions:
[J The value o = 1, for linear permanent impact, cannot reliably be re-
jected. In view of the enormous practical simplification of linear perma-
nent impact, we choose to use o = 1.
[J The liquidity factor is very approximately & = 1/4.
[ For temporary impact, our analysis confirms the concavity of the func-
tion with B strictly inferior to one. This confirms the fact that the bigger the
trades made by fund managers on the market, the less additional cost they
experience per share traded. At the 95% confidence level, the square-root
model B = 1/2 is rejected. We will therefore fix on the temporary cost ex-
ponent B =3/5. In comparison with the square-root model, this gives slight-
ly smaller costs for small trades, and slightly larger costs for large trades.

Note that because 6 > 0, for fixed values of the number X of shares in
the order and the average daily volume V, the cost increases with ©, the
total number of shares outstanding. In effect, a larger number of outstanding
shares means that a smaller fraction of the company is traded each day,

3. Permanent and temporary price impact
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The left graph shows permanent price impact, giving normalised price
motion in terms of normalised order size for three values of daily
turnover V/@ = 0.001, 0.01, 0.1. The right graph is temporary impact
cost function, in terms of normalised order rate. The examples from
table C are also shown. For permanent cost, the location on the graph
depends on asset properties but not on time of trade execution; for
temporary cost, the location depends on time but not on asset

C. Example of impact costs

0 0.05 0.10 0.15 0.20
Normalised order size X/V

IBM DRI
Average daily volume " 6.561m 1.929m
Shares outstanding (€] 1,728m 168m
Inverse turnover o/v 263 87
Daily volatility (%) c 1.57 2.26
Normalised trade size X/V 0.1 0.1
Normalised permanent I/G 0.126 0.096
Perm. price impact (bp) |/ 20 22
Trade duration (days) T 0.1 0.2 0.5 0.1 0.2 0.5
Normalised temporary K/c | 0.142 0.094 0.054|0.142 0.094 0.054
Temp. impact cost (bp) K 22 15 8 32 21 12
Realised cost (bp) J 32 25 18 43 32 23

Note: examples of permanent and temporary impact costs are shown, for a
purchase of 10% of the day’s average volume, in two different large-cap
stocks. The permanent cost is independent of time of execution. The tem-
porary cost depends on the time, but across different assets it is the same
fraction of daily volatility. We write K =J - [/2.

so a given fraction of that flow has greater impact.

Therefore, these results confirm empirically the theoretical arguments
of Huberman & Stanzl (2004) for permanent impact that is linear in block
size, and the concavity of temporary impact as has been widely described
in the literature for both theoretical and empirical reasons.

[] Determination of coefficients. After fixing the exponent values, we
determine the values of yand m by linear regression of the models (5) and
(6), using the heteroscedastic error estimates given in (1) and (2). We find:

y=0314£0.041 (r=77) n=0.142£0.0062 (r=23)

The ¢ statistic is calculated assuming that the Gaussian model expressed in
(1) and (2) is valid; the error estimates are the value divided by the # sta-
tistic. Although the actual residuals are fat-tailed as we discuss below, these
estimates indicate that the coefficient values are highly significant.

The R? values are typically less than 1%, indicating that only a small
part of the value of the dependent variables I and J is explained by the
model in terms of the independent variables. This is precisely what is ex-
pected, given the small size of the permanent impact term relative to the
random motion of the price due to volatility during the trade execution.

This persistent cost, though small, is of major importance since it is on
average the cost incurred while trading by fund managers. Furthermore,
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4. Permanent and temporary error residuals
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Permanent error residuals & and temporary residual y (29,509 points). In the
left column, the vertical axis is the number of sample values in the bin, on a
log scale; the dashed line shows the value that would be expected in a
standard Gaussian distribution of zero mean and unit variance (not adjusted
to sample mean and variance). In the right column, the horizontal axis is the
residual, and the vertical axis is values of the cumulative normal; if the
distribution were normal, all points would lie on the dashed line. The
distribution is clearly fat-tailed, but the standard Gaussian is a reasonable fit
to the central part

since most orders are part of large portfolio trades, the volatility cost ac-
tually experienced on the portfolio level is considerably lower than ex-
hibited in the stock-level analysis, increasing the significance of the fraction
of impact cost estimated. As previously mentioned, the non-linear optimi-
sation of the volatility versus impact cost trade-off at the portfolio level is
a subject of current work.

The dimensionless numbers y and n are the ‘universal coefficients of
market impact’. According to our model, they apply to every order and
every asset in the entire data set. To summarise, they are to be inserted
into the equations:

3/5
+ <noise>

1/4
I= ’YG%(%) +<noise> J =é+sgn(X)n(5 ;(T

giving the expectation of impact costs; in any particular order the realised
values will vary greatly due to volatility. Recall that I is not a cost, but is
simply the net price motion from pre-trade to post-trade. The actual cost
experienced on the order is J.

We have chosen these simple forms in order to have a single model
that applies reasonably well across the entire data set, which consists en-
tirely of large-cap stocks in the US markets. More detailed models could
be constructed to capture more limited sets of dates or assets, or to ac-
count for variations across global markets. In practice, we expect that the
coefficients, perhaps the exponents, and maybe even the functional forms,
will be continually updated to reflect the most recent data.

M Examples. In figure 3, we show the impact cost functions, and in table
C we show specific numerical examples for two large-cap stocks, when
the customer buys 10% of the average daily volume. Because DRI turns
over 1/87 of its total float each day, whereas IBM turns over only 1/263,
trading one-tenth of one day’s volume causes a permanent price move of
only 0.1 times volatility for DRI, but 0.13 times for IBM; half of this is ex-
perienced as cost. Because the permanent impact function is linear, the
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permanent cost numbers are independent of the time scale of execution.
[] Residual analysis. The result of our analysis is not simply the values
of the coefticients presented above. In addition, our error formulation pro-
vides specific predictions for the nature of the residuals & and y for the
permanent and temporary impact as in equations (1) and (2). Under the
assumption that the asset price process is a Brownian motion with drift
caused by our impact, these two variables should be independent stan-
dard Gaussians. We have already used this assumption in the het-
eroscedastic regression, and now we want to verify it.

Figure 4 shows histograms and Q-Q plots of § and . The means are quite
close to zero. The variances are reasonably close to one, and the correlation
is reasonably small. But the distribution is extremely fat-tailed, as is normal
for returns distributions on short time intervals (Rydberg, 2000, has a nice il-
lustration), and hence does not indicate that the model is poorly specified.
Nonetheless, the structure of these residuals confirms that our model is close
to the best that can be done within the Brownian motion framework.

Summary

We have used a large data sample of US institutional orders, and a simple but
realistic theoretical model, to estimate price impact functions for equity trades
on large-cap stocks. Within the range of order sizes considered (up to about
10% of daily volume), this model can be used to give quantitatively accurate
pre-trade cost estimates, and is in a form that can be directly incorporated
into optimal scheduling algorithms. Work is under way to refine the calibra-
tion to handle global markets, and the model is currently being incorporat-
ed into Citigroup’s Best Execution Consulting Services software. ll
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