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We develop a dynamic model of a limit order market populated by strategic liquidity 
traders of varying impatience. In equilibrium, patient traders tend to submit limit 
orders, whereas impatient traders submit market orders. Two variables are the key 
determinants of the limit order book dynamics in equilibrium: the proportion of 

patient traders and the order arrival rate. We offer several testable implications for 
various market quality measures such as spread, trading frequency, market resiliency, 
and time to execution for limit orders. Finally, we show the effect of imposing a 
minimal price variation on these measures. 

The timing of trading needs is not synchronized across investors, yet trade 
execution requires that counterparties trade simultaneously. Markets 
address this problem in one of the three ways: call auctions, dealer 
markets, and limit order markets. Call auctions require participants to 
either wait or trade ahead of their desired time; no one gets immediacy, 
unless by chance. Dealer markets, on the contrary, provide immediacy to 
all at the same price, whether it is desired or not. Finally, a limit order 
market allows investors to demand immediacy, or supply it, according to 
their choice. The growing importance of limit order markets suggests that 
this feature is valuable, which in turn implies that traders value order 
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execution speed differently.1 In this article, we explore a dynamic model 
of limit order trading in which traders differ in their level of impatience. 

Limit and market orders constitute the core of any continuous limit 
order trading system. A market order guarantees immediate execution at 
the best price available upon the order arrival. It represents demand for 
the immediacy of execution. With a limit order, a trader can improve the 
execution price relative to the market order price, but the execution is 
neither immediate nor certain. A limit order represents supply of imme- 
diacy to other traders. The optimal order choice ultimately involves a 
trade-off between the cost of delayed execution and the cost of immedi- 
acy. This trade-off was first suggested by Demsetz (1968, p. 41), who 
states: "Waiting costs are relatively important for trading in organized 
markets, and would seem to dominate the determination of spreads." He 
argued that more aggressive limit orders would be submitted to shorten 
the expected time to execution, driving the book dynamics.2 

Building on this idea, we study how traders' impatience affects order 
placement strategies, bid-ask spread dynamics, and market resiliency. 
Black (1971) and Kyle (1985) define a liquid market as being (a) tight- 
small spreads, (b) deep-small price impact, and (c) resilient-prices 
recover quickly after liquidity demand shocks [see also Harris (2003), 
p. 400]. The determinants of spreads and market depth have been exten- 
sively analyzed. In contrast, market resiliency, an inherently dynamic 
phenomenon, has received little attention in theoretical research. Yet, 
mean reversion in the spread following liquidity shocks is an important 
feature of data on order driven markets.3 Our dynamic equilibrium 
framework allows us to fill this gap. 

The model features buyers and sellers arriving sequentially. All are 
liquidity traders who would like to buy/sell one unit regardless of the 
prevailing price. Traders differ in their costs of delaying execution: they 
arrive randomly as either patient (low waiting cost) or impatient (high 
waiting cost). Each trader chooses to place a market or a limit order, 
conditional on the state of the book, so as to minimize his total execution 
cost which includes the cost of waiting. Under several simplifying 
assumptions, we derive (i) the equilibrium order placement strategies, 

Jain (2002) shows that in the late 1990s, 48% of the 139 stock markets throughout the world are 
organized as a pure limit order book, while another 14% are hybrid with the limit order book as the 
core engine. Examples of limit order markets include Island and Euronext in equity markets, Reuters D- 
2002 in the FX market or MTS in the bond market. 

2 Demsetz (1968) focuses on the NYSE. This market is not a pure limit order market since liquidity is 
supplied both by limit order traders and dealers (the specialists). Demsetz sees waiting costs as particu- 
larly important for traders who choose between limit and market orders. 

3For instance, Biais, Hillion and Spatt (1995) find that liquidity demand shocks, manifested by a sequence 
of market orders, raise the spread. Then the spread reverts to the competitive level as liquidity suppliers 
place new orders within the prevailing quotes. DeGryse et al. (2003) and Coppejans, Domowitz, and 
Madhavan (2003) have also studied this phenomenon. 
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(ii) the expected time to execution for limit orders, (iii) the stationary 
probability distribution of the spread, and (iv) the expected duration 
between trades (conditional on the size of the inside spread). In equili- 
brium, patient traders tend to provide liquidity to less patient traders. 

A string of market orders, that is, a liquidity shock, increases the 
spread. We measure market resiliency by the probability that, after a 
liquidity shock, the spread reverts to its former level before the next 
transaction. Factors that induce traders to post-aggressive limit orders 
make the market resilient. For instance, other things being equal, an 
increase in the proportion of patient traders reduces liquidity demand 
and lengthens the expected time to execution of limit orders. As a result, 
liquidity suppliers submit more aggressive limit orders to reduce their 
waiting times, in line with Demsetz's (1968) intuition. Consequently, 
when the proportion of patient traders increases, the spread narrows 
more rapidly, making the market more resilient. Higher arrival rates 
translate into shorter waiting times for limit order traders. The latter 
respond with less aggressive limit orders, thus more orders are required 
before the spread reverts to its competitive level; consequently, market 
resiliency decreases in the order arrival rate. 

Interestingly, the distribution of spreads depends on the composition of 
the trading population. Large spreads are more frequent in markets 
dominated by impatient traders, because these markets are less resilient. 
A reduction of the tick size in these markets can result in higher spreads. 
Actually, this reduction impairs market resiliency by enabling traders to 
bid less aggressively. 

We derive several empirical predictions.4 The advent of high frequency 
databases has spurred an interest in the role of time in the trading process 
[e.g., Easley and O'Hara (1992), Engle and Russel (1998), Hasbrouck 
(1999), and Lo, McKinlay, and Zhang (2001)]. The time between trades 
in our model is endogenous since a transaction occurs when a trader opts 
for a market order. We show that the average time until a transaction, 
conditional on the quoted spread for the prior transaction, increases with 
the size of the spread. Furthermore, there is a positive relation between 
this conditional duration and market resiliency. This result stems from 
the fact that, other things being equal, both market resiliency and the 
expected duration between trades decrease with the proportion of impa- 
tient traders. We also propose to explain intraday liquidity patterns by 
time-series variations in the proportion of patient traders. Assuming 
traders become more impatient over the course of the trading day, our 
model predicts an increase in spreads and trading frequency toward the 

The number of empirical papers on limit order markets is growing fast. These include Handa and 
Schwartz (1996), Harris and Hasbrouck (1996), Kavajecz (1999), Sandas (2001), Hollifield, Miller, and 
Sandas (2004), Hollifield et al. (2003), Kavajecz and Odders-White (2003) and other references which are 
mentioned later in the article. 
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end of the day. This should be concomitant with a decline in limit order 
aggressiveness and market resiliency. Whereas the first two predictions 
are consistent with the empirical findings, as far as we know the latter has 
not yet been tested. 

Most of the models in the theoretical literature such as Glosten (1994), 
Chakravarty and Holden (1995), Rock (1996), Seppi (1997), Biais, 
Martimort, and Rochet (2000), or Parlour and Seppi (2003) focus on 
the optimal bidding strategies for limit order traders. These models are 
static, which precludes the analysis of the determinants of market resi- 
liency. Furthermore, the choice between market and limit orders is exo- 
genous in these models. In particular, this choice is not explicitly related 
to the level of waiting costs, as it is in our model.5 

Parlour (1998), Foucault (1999), and Goettler, Parlour, and Rajan 
(2003) study dynamic models.6 Parlour (1998) shows how the order 
placement decision is influenced by the depth available at the inside 
quotes. Foucault (1999) analyzes the impact of the risk of being picked 
off on traders' order placement strategies. Goettler, Parlour, and Rajan 
(2003) model limit order trading as a stochastic sequential game and 
develop a technique to solve for the equilibrium numerically. In these 
models, limit order traders do not bear waiting costs, and time to execu- 
tion does not influence traders' bidding strategies.7 In contrast, time to 
execution plays a central role here. 

There is no asymmetric information among traders in our model. This 
approach seems reasonable, as a first cut, since it is very difficult to solve 
dynamic models with traders who can strategically choose between mar- 
ket and limit orders. Frictions in our model (the bid-ask spread and the 
waiting time) are due to (i) the waiting costs and (ii) strategic rent-seeking 
by patient traders. Frictions that are not caused by informational asym- 
metries appear to be large in practice [see Huang and Stoll (1997) or 
Madhavan, Richardson, and Roomans (1997)]. For instance, Huang and 
Stoll (1997) estimate that 88.8% of the bid-ask spread on average is due to 
non-informational frictions (so-called order processing costs). Given this 
evidence, it is important to understand the theory of price formation 
when frictions are not due to informational asymmetries. 

The article is organized as follows. Section 1 describes the model. 
Section 2 derives the equilibrium of the limit order market and analyzes 
the determinants of market resiliency. Section 3 discusses in detail the 

5 In extant models, traders who submit limit orders may be seen as very patient, while those who submit 
market orders may be seen as extremely impatient. We consider a less polar case. 

6 
Angel (1994), Domowitz and Wang (1994), and Harris (1998) study models with an exogenous order 
flow. We use more restrictive assumptions on the primitives of the model that anable us to endogenize the 
order flow. Rosu (2004) uses a similar approach." 

7 In Parlour (1998) traders' utility does not depend on their execution timing during the market day, i.e., 
there is no cost of waiting. 
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empirical implications of the model. In Section 4, we explore the effect of 
a change in tick size on measures of market quality, and Section 5 
addresses robustness issues. Section 6 concludes and discusses the limita- 
tions of our approach. All proofs are in the Appendix. 

1. Model 

Consider a continuous market for a single security, organized as a limit 
order book without intermediaries. We assume that latent information 
about the security value determines the range, [B, A], of admissible prices. 
Specifically, a competitive fringe of traders stands ready to sell and buy an 
unlimited number of shares at prices A and B (A > B > 0), respectively. 
We assume that A and B are constant over time, thus all the prices in the 
limit order book stay in the range [B, A].8 The goal of this model is to 
investigate price dynamics within this interval; these are determined by 
the order submission strategies followed by the traders. 

All prices and spreads, but not waiting costs and traders' valuations, 
are placed on a discrete grid, and are expressed as a multiple of the tick 
size, denoted by A > 0. The inside spread is s = a - b, where a and b are 
the best ask and bid quotes in the market, expressed in number of ticks. 
By construction, a < A, b > B, and s < K - A - B. Occasionally, we 
express prices and spreads in monetary terms, rather than in number of 
ticks, using a superscript "m", for example s' = sA.9 We omit time sub- 
scripts on variables since we focus on stationary equilibria. 

1.1 Timing 
This is an infinite horizon model with a continuous time line. Traders 
arrive at the market according to a Poisson process with parameter A > 0: 
the number of traders arriving during a time interval of length T is 
distributed according to a Poisson distribution with parameter AT. As a 
result, the inter-arrival times are distributed exponentially, and the 
expected time between arrivals is I. We refer to the time elapsed between 
two consecutive trader arrivals as a period. 

1.2 Patient and impatient traders 
Traders are risk neutral. Each trader arrives as either a buyer or a seller for 
one share of security. Let Vbuyer and Vseller be buyers' and sellers' valua- 
tions. In order to justify our classification to buyers and sellers, we assume 
that Vbuyer > AA and Vseller < BA. Upon arrival, traders observe the limit 
order book and must submit an order. They can submit either (i) a market 

8 Seppi (1997) and Parlour and Seppi (2003) use a similar specification of the admissible price range. 
9 For instance, s = 4 means that the spread is equal to four ticks. If the tick is equal to $1, then the 

corresponding spread expressed in dollars is s"' = $0.25. 
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order, which gets immediate execution at the best quote or (ii) a limit order, 
which results in a better execution price, but delays execution. 

Traders bear waiting costs that are proportional to the amount of time 
elapsed between their arrival and the completion of their transaction. Hence, 
agents face a trade-off between the execution price and the time to execution. 
Traders are not required to execute their trade by a fixed deadline but they 
cannot choose not to trade [as in Admati and Pfleiderer (1988) for instance]. 

Both buyers and sellers can be of two types which differ by the magni- 
tude of their waiting costs. Type P traders are relatively patient and incur 
a waiting cost of 6p per unit of time. Type I traders are relatively impatient 
and incur a waiting cost of 6I, where 6I > 6p > 0. The proportion of 

patient traders in the population is Op (l>Op>0), and the proportion of 
impatient traders is 0 = 1 - Op. These proportions remain constant over 
time, and the arrival process is independent of the type distribution. 

A patient trader represents, for example, a portfolio manager rebalan- 

cing his portfolio due to considerations of long-term fundamental value (a 
"value trader"). In contrast, arbitrageurs, technical traders, or indexers, 
who seek to mimic the return on a specific stock or index, are impatient 
traders. Keim and Madhavan (1995) provide evidence supporting this 

interpretation. They find that indexers and technical traders are more likely 
to place market orders, while value traders in general place limit orders. 
Brokers executing agency trades are also impatient traders, since waiting 
may result in a worse price and therefore could lead to claims of negligence. 

1.3 Trading mechanism 
Limit orders are stored in the limit order book and are executed in 

sequence according to price priority. We make the following simplifying 
assumptions about the market structure. 

Assumption A.I. Each trader arrives only once, submits a market or a limit 
order and exits. Submitted orders cannot be canceled or modified. 

Assumption A.2. Limit orders must be price improving, that is, narrow the 

spread by at least one tick. 

Assumption A.3. Buyers and sellers alternate with certainty, for example, 
first a buyer arrives, then a seller, then a buyer, and so on. The first trader is 
a buyer with probability 0.5. 

Assumptions A.1-A.3 facilitate the analysis of the trading game, pri- 
marily for two reasons. First, they enable us to solve for the equilibria by 
induction (see Section 2.1 for a detailed explanation). Second, they imply 
that the order placement strategies depend only on the inside spread (and 
not on all the orders in the book). In Section 5, we demonstrate using 
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examples that the main implications and the economic intuitions of the 
model persist when assumptions A.2 and A.3 are relaxed. We also explain 
why relaxation of these assumptions increases the complexity of the 

problem in a way that precludes a general analytical solution. Finally, 
we discuss in Section 5 the limitations imposed by Assumption A.1, 
namely that traders cannot cancel and resubmit their limit orders. 

1.4 Order placement strategies 
Let Pbuyer and Pseller be the execution prices of buyers and sellers, respec- 
tively. A buyer either (i) submits a market order and pays the lowest ask a 
or (ii) submits a limit buy order which narrows the spread. Similarly, a 
seller either receives the largest bid b or submits a limit sell order. The 
execution prices can be expressed as 

Pbuyer = a - ; Pseller = b + j just j C {0,..., S - 1}, 

withj = 0 for a market order and j > 0 for a limit order creating a spread 
of size j. Recall that s - a - b is the inside spread prior to the order 
arrival. It is convenient to use j, rather than Pbuyer or Pseller, as the trader's 
decision variable. We say that a trader uses a "j-limit order" when he posts 
a limit order that creates a spread of j ticks. The expected time to 
execution of aj-limit order is denoted by T(j). Thus, the expected waiting 
cost of a j-limit order is SiT(j), i E {P,I}. As a market order entails 
immediate execution, we have T(0) = 0. 

The expected profit of trader i (i c {P, I}) who submits aj-limit order is: 

i) | { Vbuyer -buyer\ - i T() = (Vbuyer 
- aA) +jA - 6i T() for a buyer 

PsellerA - Vseller - 6iT) = (bA - Vseller) +jA - 6iT(j) for a seller. 

Expressions in parenthesis represent profits associated with market order 
submission. These profits are determined by a trader's valuation and the 
best quotes in the market. It immediately follows that trader i (i c {P, I}) 
observing the spread s chooses optimally the order that solves: 

max 7ri(') jA - 6iT('), (1) 
jc{0,...s-l} 

for buyers and sellers alike. An order placement strategy for trader i is a 
mapping, oi(.), that assigns a j-limit order, j E {0,... ,s - 1}, to every 
possible spread s E { 1,..., K}. If a trader is indifferent between two limit 
orders with different prices, we assume that he submits the limit order 
creating the larger spread. 

Equilibrium definition. An equilibrium of the trading game is a pair of 
order placement strategies, op(.) and o (-), such that the orders prescribed 
by the strategies solve Program (1) when the expected waiting time, T* (), 
is computed assuming that traders follow strategies op(.) and o*(.). 
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Traders' optimal order placement strategies depend on the expected 
waiting time function. In turn, the waiting time function is endogenous 
and is determined by traders' order placement strategies. We will show 
that the equilibrium waiting time function, T* (), is non-decreasing in j; 
thus, traders face the following trade-off: a better execution price (larger 
value of j) can only be obtained at the cost of a larger expected waiting 
time. Finally, notice that we restrict our attention to stationary order 
placement strategies and waiting time functions (i.e., the strategies and 
waiting times do not depend on the time at which the order is submitted). 
Hence, we only focus on the stationary equilibria of the trading game 
analyzed in this article. This restriction is natural because all exogenous 
parameters are assumed to be stationary. 

2. Equilibrium Order Placement Strategies and Market Dynamics 

In this section, we first characterize the equilibrium order placement 
strategies. Then, we study how spreads evolve in between transactions 
and analyze the determinants of market resiliency. We identify three 
different patterns for the dynamics of the limit order book: (a) strongly 
resilient, (b) resilient, and (c) weakly resilient. The pattern is determined 
by the characteristics of the traders' population: (i) the proportion of 
patient traders and (ii) the difference in waiting costs between patient and 
impatient traders. These parameters also determine traders' bidding 
aggressiveness and the resulting stationary distribution of spreads. 

2.1 Expected waiting time 
Consider a trader who chooses aj-limit order. Let ak 0() be the probability 
that the next trader responds with a k-limit order, k e {0, 1,... ,j - 1} 
(k = 0 stands for a market order). Lemma 1 characterizes the expected 
waiting time for the order placed by the first trader as a function of the 
next trader's order placement strategy [described by the ak0()]: 

Lemma 1. The expected waiting time for the execution of aj-limit order is: 

1 
T(/) = if j 1, 

* T() = +o0 if ao0() = 0 and C {2,... ,K - 1}, 

* ) T()-'-o) a 3-k ak(' ) T(k) if ao(/)>0 and j E {2,... ,K- 1}. 

Assumption A.2 implies that a trader, who faces a one-tick spread, 
submits a market order, thus T(1) = , that is, the average time between 
two arrivals. The expected waiting time of a j-limit order that never 
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attracts a market order [i.e., such that ao(/) = 0] is obviously infinite. If 
aoC) > 0, the expected waiting time of aj-limit order is a function of the 
expected waiting times of the subsequent orders that create a smaller 
spread. This implies that the expected waiting time function is recursive. 

As the expected waiting time function is recursive, we can solve the 
game by induction. To see this, consider a trader who arrives when the 
spread is s = 2. The trader can submit either a market order or a one-tick 
limit order. The latter improves his execution price by one tick and results 
in an expected waiting time equal to T(1) = 1/A. Solving Program (1) for 
patient and impatient traders, we determine ak(2) for k = 0 and k = 1. If 
no trader submits a market order then ao(2) = 0, and the expected wait- 
ing time for a j-limit order is infinite for any j > 2 (Lemma 1). It follows 
that no spread larger than one tick can be observed in equilibrium. If 
instead we find that either patient or impatient traders submit market 
orders then aot(2) > 0 and we compute T(2) using the Lemma 1. Next we 
proceed to s = 3 and so forth. As we proceed by induction, each type of 
trader has a unique optimal order placement strategy, and therefore the 
stationary equilibrium is unique. 

The expected waiting time function has a recursive structure because 
our assumptions yield a simple ordering of the queue of unfilled limit 
orders in the book: a limit order is never executed before limit orders that 
create a smaller spread. Hence, the waiting time of a j-limit order is a 
function of the waiting times of limit orders that create smaller spreads. 
This ordering (and therefore Lemma 1) does not hold if buyers and sellers 
arrive randomly. Consider a buyer creating a spread of j ticks, followed 
by a seller creating a spread ofj'(/'<j) ticks. If the next trader is a second 
seller submitting a market order, the buyer is executed before the first 
seller. Assumption A.3 rules out this case. We consider the case in which 
this assumption does not hold in Section 5. 

2.2 Equilibrium strategies 
Recall that the payoff of a trader submitting a j-limit order is 

7ri() =jA - 6iT(), 

and that this payoff is zero for a market order. Hence, a trader submits a 
j-limit order only if price improvement, jA, exceeds waiting cost, 6iT(j). A 
trader submitting a limit order expects to wait at least one period before 
execution. As the average duration of a period is 1, the expected waiting cost 
for a trader with type i is at least i. It follows that the smallest spread trader 
i can establish is the smallest integer j*, such that 7ri (ii) =jl - 

- > 0. We 
call j the "reservation spread" of a trader with type i. Let CF(x) denote the 
ceilingfunction, the smallest integer larger than or equal to x [e.g., CF(2.4) = 3, 
and CF(2) = 2]. Then the reservation spread is: 
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ji ( CF(-) i E {PI} (2) 

To exclude cases in which no trader submits limit orders, we assume that 

jp < K. (3) 

We call patient traders' reservation spread: "the competitive spread", 
because no trader will post limit orders with smaller spreads. The reserva- 
tion spread of a patient trader never exceeds that of an impatient one, 
but the two can be equal. We say that traders are homogeneous if patient 
and impatient traders have the same reservation spread: jpI -j1 *. 
Otherwise we say that traders are heterogeneous. 

2.2.1 The homogeneous case. If traders are homogeneous, then all tra- 
ders prefer to submit a market order when the spread is less than or equal 
toj* (by definition of the reservation spread). This implies that the waiting 
time for aj*-limit order is one period with certainty. Hence, 

7i('*) > 0 for i e {P,I}. (4) 

Now, consider a trader who faces a book with an inside spread s > j*. As 
7i(j*) > 0, the trader (patient or impatient) prefers to submit a *-limit 
order to a market order. Hence, a limit order which creates a spread 
larger thanj* is never executed. It follows that it is never optimal to post a 
spread larger than j*. These observations lead us to Proposition 1. 

Proposition 1. When traders are homogeneous (i.e., jp- j' =j*) then, in 
equilibrium, all traders submit a market order if s < j*and submit a j*-limit 
order ifs > j*. 

The equilibrium with homogeneous traders has two distinctive proper- 
ties. First, all limit order traders post the competitive spread, j*. Second, 
the spread oscillates between K and the competitive spread, and transac- 
tions take place only when the spread is competitive. Trade prices are 
either A -j* if the first trader is a buyer or B + j*, if the first trader is a 
seller. We refer to this market as strongly resilient, since any deviation 
from the competitive spread is immediately corrected by the next trader. 

The dynamics of the bid-ask spread in the homogeneous case look quite 
unusual, but they are not unrealistic. Biais, Hillion, and Spatt (1995) 
identify several typical patterns for the dynamics of the bid-ask spread 
in the Paris Bourse. Interestingly, they identify precisely the pattern we 
obtain when traders are homogeneous (Figure 3B, p. 1681): the spread 
alternates between a large and a small size, and all transactions take place 
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when the spread is small. Given that this case requires that all traders 
have identical reservation spreads, we anticipate that this pattern is not 

frequent. It does, however, provide a useful benchmark for the results 
obtained in the heterogeneous trader case. 

2.2.2 The heterogeneous case. Now consider heterogeneous traders, that 
is, jp<ji. In this case, there are spreads above patient traders' reservation 
spread for which impatient traders choose to submit market orders. We 
denote by (jl,j2) the set: {i,jl + ,jl + 2,... ,j2}, that is, the set of all 
spreads between any two spreads ji < j2 (inclusive). 

Proposition 2. Suppose traders are heterogeneous (jp<j1). In equilibrium 
there exists a cutoff spread Sc c (ji, K) such that: 

1. Facing a spread s E (1 ,j), both patient and impatient traders submit 
a market order. 

2. Facing a spread s c (jp + 1, sc), a patient trader submits a limit 
order and an impatient trader submits a market order. 

3. Facing a spread s e (sc + 1, K), both patient and impatient traders 
submit limit orders creating a spread of s. 

The range of possible spreads is partitioned into three regions: 
(i) s < jp, (ii) jp <s < Sc, and (iii) s > sc. The reservation spread of the 
patient trader, j,, is the smallest spread observed in the market, while the 
cutoff spread s, is the largest spread at which market orders are sub- 
mitted. When the spread is larger than sc, all traders submit limit orders. 
Limit orders that create a spread larger than sc are never executed, hence 
are not submitted in equilibrium. Impatient traders demand liquidity by 
submitting market orders at spreads below sc. Patient traders supply 
liquidity at spreads above their reservation spread and demand liquidity 
at spreads smaller than their reservation spread. It follows that the rate at 
which market orders are submitted is decreasing with the size of the spread. 

In contrast to the homogeneous case, the inside spread may exceed an 
impatient trader's reservation spread, and yet this trader submits a mar- 
ket order (because in general sc > j]). The explanation for this result is as 
follows. Patient traders do not submit market orders when the inside 
spread is larger than jp. Consequently, the expected time to execution of 
a j-limit order (j > jp) is strictly larger than one period. In particular 
T* (j) > -. For this reason, the expected waiting cost for an impatient 
trader posting his reservation spread exceeds, in general, his improvement 
in execution price [i.e., 7r (j) =jA - 6 T* (j) < 0]. In this case, the 
cutoff spread (s) at which impatient traders can profitably enter limit 
orders is strictly larger than their reservation spread. In many cases, the 
waiting costs increase so quickly with the size of the spread that impatient 
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traders never find it optimal to enter limit orders at prices in the eligible 
range. In these cases, we set s, = K. This occurs, for instance, when the 
cost of waiting for an impatient trader is sufficiently large.10 

The cases in which sc < K and the case in which s, = K are qualitatively 
similar. The primary difference is that impatient traders never find it 
optimal to submit limit orders in the latter case while they do in the 
former case (when the spread is K). Henceforth, we focus our attention 
on the cases where Sc = K. This restriction has no significant impact on 
results, but shortens the presentation. 

Proposition 3. In equilibrium, there exist q spreads (K > q > 2), 
nl < n2 < ... < nq, with nl =-j, and nq = K, such that the optimal order 
submission strategy is. 

* An impatient trader submits a market order for any spread in (1, K). 
* A patient trader submits a market order when he faces a spread in 

(1,nl), and submits an nh-limit order when he faces a spread 
in (nh + 1,nh+l)for h- ,...,q - 1. 

Thus, when a patient trader faces a spread nh+l (h > 1), he responds by 
submitting a limit order which improves the spread by (nh+l - nh) ticks. 
This order establishes a new spread equal to nh. This process continues 
until a market order arrives. 

The next two propositions provide a closed-form solution for the 
expected waiting time function and for the equilibrium spreads. Let 
p = - be the ratio of the proportions of patient and impatient traders. 
Intuitively, when this ratio is smaller (larger) than 1, liquidity is consumed 
more (less) quickly than it is supplied since impatient traders submit 
market orders, and patient traders tend to submit limit orders. In equili- 
brium, the expected waiting time for a limit order is a function of p. 

Proposition 4. The expected waiting time function in equilibrium is. 

1 * 1 h-1 
T*(n) = ; T(nh)=- 1 +2Ep,k V h=2,..., q- 1; (5) 

k=l 

and 

T*(') = T*(nh) j (nh- + 1, nh) V h = 1,..., q - 1.11 

1' Obviously Sc = K ifj > K. It is worth stressing that this condition is sufficient, but not necessary. In all 
the numerical examples below, j, is much smaller than K, but sc = K. 

l We set no = 0 by convention. 
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Recall that a limit order is never executed before limit orders that create 
smaller spreads. For this reason, the choice of a spread is tantamount to 
the choice of a priority level in a waiting line: the smaller is the spread 
chosen by a trader, the higher is his priority in the queue of unfilled limit 
orders. Accordingly, the expected waiting time function increases with the 
spread. This property is consistent with evidence in Lo, McKinley, and 
Zhang (2001) who find that the time to execution of limit orders increases 
in the distance between the limit order price and the mid-quote. 

Consider a trader facing a spread nh+l (h < q - 1). In equilibrium, he 
submits an nh-limit order (Proposition 3). He could reduce his expected 
time to execution by submitting an nh_ -limit order, but chooses not to. 
Thus the following condition must hold: 

nhA - T*(h)P n - T*(nh) > _/- ( )6p, Vh C {2,... q-1}, 

or 

th -nh- h-l > [T*(nh) T*(nh_1)], Vh C {2,...,q-1}. (6) 

Now consider a trader facing a spread nh. In equilibrium, this trader 
submits an nh_ -limit order. Thus, he must prefer this limit order to a 
limit order which creates a spread of (nh - 1) ticks, which imposes 

nh-lA - T*(nh-1)6P > (nh - 1)A - T*(nh - 1)6p Vh E {2,..., q}. 

In equilibrium, either (i) T*(nh - 1) = T*(nh) or (ii) T*(nh - 1) = T* (nh-). 
In both cases T* (nh)> T* (nh-_), hence 

6p 
th < [T*(nh)- T*(nh_-)] + 1 vh CE 2,..., q}. (7) 

Combining Equations (6) and (7), we deduce that 

h = CF([T*(nh) - T*(nhl)]) - CF(2ph- )Vh c {2,.., q- 1}, 

(8) 

where the last equality follows from Proposition 4. Using Equation (8), 
we derive the set of equilibrium spreads nl, n,..., nq. 

Proposition 5. The set of equilibrium spreads is given by: 

ni =jp, nq = K, 

nh = nl + k= 2 k h=2,..., q- 1, 
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where 

"!k CF(2pk- 61 )' 

and q is the smallest integer such that. 

q 

JP + k >K. (9) 
k=2 

de)" We refer to Pfh = nh- nh-1 as the spread improvement, when the 
spread is nh. The spread improvement is the number of ticks by which a 
limit order trader improves upon (undercuts) the best quotes. Thus, it is a 
measure of the aggressiveness of the submitted limit order: the larger is 
'h, the more aggressive is the limit order. 

Proposition 5 presents the determinants of spread improvements. 
Spread improvements are larger when (i) the proportion of patient tra- 
ders, Op, is large, (ii) the waiting cost, Sp, is large, and (iii) the order arrival 

rate, A, is small. In particular, when 25p (0 >AA, a patient trader 

improves the spread by more than one tick, that is, 'h>l. Biais, Hillion, 
and Spatt (1995), among others, find that many limit orders in the Paris 
Bourse improve upon the prevailing bid-ask quotes by more than one 
tick. 

A common mechanism is driving these results: a rise in expected wait- 
ing costs induces liquidity suppliers to bid more aggressively in order to 
shorten their execution time. Consider an increase in the proportion of 
patient traders. This increase immediately reduces the execution rate for 
limit orders as market orders become less frequent. Accordingly, the 
expected waiting time, T(.) and, thereby, the expected waiting cost for 
liquidity suppliers increase. Patient traders react by submitting more 
aggressive orders, thus tPh increases for all h > 1. A similar reasoning 
applies when A falls or 6p rises. 

2.2.3 Efficiency. What is the efficient outcome in our model? The price 
concession paid by liquidity demanders is earned by liquidity suppliers, 
net of their waiting costs. Hence, the bid-ask spread is just a transfer 
payment, and the waiting costs constitute a dead-weight loss. It follows 
that the total welfare-the sum of liquidity suppliers' and liquidity 
demanders' expected payoffs-is equal to the expected waiting costs 
borne by liquidity suppliers. We denote this expected cost by EC. An 
efficient outcome is such that traders use order placement strategies which 
result in the smallest possible value for EC. 

Liquidity suppliers must wait at least one period before execution and 
their waiting cost, per unit of time, is at least 6p; hence EC > 6. We A. 
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deduce that a situation in which order placement strategies are such that 
EC = 6 is efficient. This can be attained under the following two condi- 
tions: (i) only the patient traders submit limit orders and (ii) all limit 
orders generate the competitive spread. In this case, all limit order traders 
(i) have the smallest possible waiting cost per unit of time (6p) and (ii) 
always wait exactly one period before execution. Thus EC -= . 

In general, the efficient outcome is not obtained in equilibrium. First, 
consider the homogeneous case. All the liquidity suppliers post the com- 
petitive spread, but some of them are impatient. As impatient traders bear 
relatively large waiting costs per unit of time (6,>6p), the equilibrium 
outcome is inefficient (i.e., EC> 6). In the heterogeneous case, only 
patient traders provide liquidity; however, they strategically post spreads 
larger than the competitive spread. As a consequence, liquidity suppliers' 
average time to execution is strictly larger than one period and, for this 
reason, EC> 6. In summary, our model uncovers two possible sources of 
inefficiency in a limit order market: (i) impatient traders sometimes sub- 
mit limit orders and (ii) patient traders post spreads larger than the 
competitive spread. Both features induce excessive waiting costs com- 
pared to the efficient outcome. 

2.3 The determinants of market resiliency 
Suppose that a liquidity shock (a succession of market orders in our 
model) causes the spread to increase. In a resilient market, it takes a 
small number of quote updates for the spread to revert to its former level. 
Hence, market resiliency can be measured by the average number of 
orders observed before the spread reverts to its competitive level. The 
smaller is this number, the larger is market resiliency. Degryse et al. 
(2003), for instance, use this method. It is difficult to derive analytically 
a general expression for this order-based measure of market resiliency in 
our model. Instead, we use another closely related measure. We measure 
market resiliency as the probability that the spread reverts to its compe- 
titive level before the next transaction occurs. The larger is this probabil- 
ity, the larger is market resiliency. We have checked numerically that all 
our implications regarding our measure of market resiliency (for instance 
Corollary 1) hold for the order-based measure of resiliency as well.12 

Suppose that initially the spread is at its competitive level, jp, and that a 
succession of market orders enlarges the spread to its maximal level of K. 
Let R be the probability that the spread reverts to the competitive level, 
jp, before the next transaction. We will take R as being our measure of 
market resiliency. When traders are homogeneous, a deviation from the 

12 Our measure of market resiliency is based on the inside spread. In reality, the speed at which depth at 
given quotes recovers after a liquidity shock is another dimension of market resiliency [see Coppejans, 
Domowitz, and Madhavan (2003) and Degryse et al. (2003)]. We cannot study this dimension, since all 
orders are of the same size in our model, and we do not allow orders to queue at the same price. 
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competitive spread is immediately corrected and R = 1. When traders are 
heterogeneous, a streak of q - 1 consecutive patient traders is required to 
narrow the spread to the competitive level conditional on a current spread 
of K ticks (see Proposition 3). Thus R = Oq-l<l. Notice that q is endo- 
genous and is a function of all the exogenous parameters [see Equation (9)]. 
Consequently, market resiliency is determined jointly by the proportion of 

patient traders, the order arrival rate, trader's waiting costs, and the tick size. 

Corollary 1. When traders are heterogeneous, the resiliency of the limit 
order book, R, increases in the proportion of patient traders, Op, and the 
waiting cost, Sp, but decreases in the order arrival rate, A. 

The factors which enlarge (lower) spread improvements have a positive 
(negative) effect on the resiliency of the limit order book. As the proportion 
of patient traders rises, or as waiting costs increase, limit order traders 
improve upon the inside spread by larger amounts, thereby increasing the 
market resiliency. With an increase in the order arrival rate, limit order 
traders become less aggressive in their price improvements. More orders 
are required to bring the spread to the competitive level, and thus resiliency 
declines.13 We postpone the analysis of the effect of the tick size on market 
resiliency to Section 4. 

2.4 Numerical examples 
We study three examples representing three cases of interest: (a) traders 
are homogeneous, (b) traders are heterogeneous and patient traders 
dominate the trading population (p = > 1), and (c) traders are hetero- 

geneous and impatient traders dominate the trading population (p < 1). 
Our goal here is to show that the dynamics of the limit order book are 

strikingly different in these three cases. 
In each example, the tick size is A - $1 and the arrival rate is A = 1. The 

lower and upper price bounds of the limit order book are BA = $20 
and AA = $21.25. The maximal spread is K = 20 (KA = $1.25). The 
remaining parameters are presented in Table 1. 

In Example 1, the waiting costs are such that traders are homogeneous 
(jp =-j = 2). In Examples 2 and 3, the waiting costs are such that traders 
are heterogeneous (j/ = land j] = 3). The composition of the trading 
population is different in Examples 2 and 3: patient traders dominate in 
Example 2 (p = 1.22), whereas impatient traders dominate in Example 3 

(p = 0.81). In Example 1, the competitive spread is two ticks. In Exam- 
ples 2 and 3, the competitive spread is one tick. 

13 The average time elapsed until the spread reverts to its competitive level could also be used to measure 
resiliency. However, the effect of increasing the order arrival rate on this time-based measure of market 
resiliency is ambiguous. While it increases the number of quote updates before the spread reverts to its 
former level, at the same time it reduces the average time between orders. 
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Table 1 
Parameter values for the three examples 

Example 1 Example 2 Example 3 

6p 0.075 0.050 0.050 
6I 0.100 0.125 0.125 
Op Any value 0.55 0.45 

Table 2 
Equilibrium order placement strategies 

Example 1 Example 2 Example 3 

Current spread Type P Type I Type P Type I Type P Type I 

1 0 0 0 0 0 0 
2 0 0 1 0 1 0 
3 2 2 1 0 1 0 
4 2 2 3 0 3 0 
5 2 2 3 0 3 0 
6 2 2 3 0 5 0 
7 2 2 6 0 6 0 
8 2 2 6 0 7 0 
9 2 2 6 0 8 0 
10 2 2 9 0 9 0 
11 2 2 9 0 10 0 
12 2 2 9 0 11 0 
13 2 2 9 0 12 0 
14 2 2 13 0 13 0 
15 2 2 13 0 14 0 
16 2 2 13 0 15 0 
17 2 2 13 0 16 0 
18 2 2 13 0 17 0 
19 2 2 18 0 18 0 
20 2 2 18 0 19 0 

2.4.1 Order placement strategies. Table 2 reports the equilibrium strate- 
gies for patient and impatient traders (Types P and I). These strategies 
derive from Proposition 5. Each row corresponds to a spread when a trader 
arrives. Each entry gives the trader's optimal order for spreads on and off 
the equilibrium path. The limit orders are expressed in ticks, and 0 indicates 
the placement of a market order. For instance, in Example 2, when the inside 
spread is eight ticks, a patient trader submits a limit order which creates a 
spread of six ticks, and an impatient trader submits a market order. 

In Example 1 (homogeneous case), patient and impatient traders sub- 
mit a limit order creating a spread of two ticks when the spread is larger 
than their reservation spread. Otherwise they submit a market order. 
Thus, the inside spread oscillates between the maximal spread of 20 
ticks and the competitive spread (jp = two ticks). In Examples 2 and 3 
(heterogeneous case), patient traders supply liquidity, and impatient 
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traders demand liquidity. In contrast to Example 1, limit order traders do 
not necessarily post the competitive spread (ji = 1). In fact, in Example 
2, the spreads on the equilibrium path are: {1, 3, 6, 9, 13, 18, 20}; while in 
Example 3 these are: {1, 3, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 
20}. Traders place more aggressive limit orders when patient traders 
dominate the trading population (Example 2). Actually, spread improve- 
ments are larger than one tick for all spreads on the equilibrium path in 
Example 2. In contrast, in Example 3, spread improvements are equal to 
one tick in most cases. 

2.4.2 Expected waiting time. Figure 1 presents the expected waiting 
times of limit orders in Examples 2 and 3 as functions of the spread. In 
each example, the expected waiting time increases with the spreads on the 
equilibrium path and remains constant over spreads that are not reached 
in equilibrium. The expected waiting times are uniformly smaller in 
Example 3 than in Example 2. This explains the differences in the optimal 
strategies. When the proportion of patient traders is small, as in Example 3, 
patient traders are not aggressive, because they expect a fast execution. 

30- 

o example 2 

25- example 3 

0 20 0 0 0 

E 
I- 

10- 0 . 
_0 ~ ~ ~ ~ ~ ~ ~ ~ , * 

0 

X 

0 I 

1 2 3 4 5 6 7 8 910111213141 1 
0 I i I t i I i t I I I I ! ! I i t ! 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 

Submitted Spread (j ) 
Figure 1 
Expected waiting time 
The figure reports the expected waiting times of limit orders as a function of the spread they create in 
Examples 2 and 3. Expected waiting times for Example 2 are depicted by White Diamonds and for 
Example 3 by Black Squares. 
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2.4.3 Book dynamics and resiliency. Figure 2 reports the evolution of 
the limit order book for a sequence of 40 trader arrivals in Examples 2 
and 3. In each period, it gives the state of the limit order book after the 
order submission of the trader arriving in this period. Figure 3 depicts the 
corresponding dynamics of the inside spread and its mid-point (black 
dots). Initially the spread is equal to K = 20 ticks. This is the state of the 
book after the arrival of several market orders. How fast does the spread 
revert to the competitive level (one tick)? 

Example 2 - A Resilient Book (p = 1.222) 

Period 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 

Trader EB SPBP SI Bl Si BPSP Bi SP BI SP BPSP Bl SPBPSPBP SI BPSPBPSP BI SI BP Si BPSPBP SI B! SP BI SI B8 SP BP SI 

21 1/4 o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o 
21 3116 
21 1/8 o o o 
21 1/16 
21 
20 15/16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
20 7/8 
20 13/16 
20 3/4 0 0o 0 0o 0o 0o 0o 0o 0o 0 0o 0 0 0 0 0 0o0 0 
20 11/16 
20 5/8 o o o o 
20 9/16 b bb b b bbb b b b b b 
20 1/2 
20 7/16 
20 3/8 bbbbbbbbbbbbbbbbbbbbbbb b 
20 5/16 b 
20 1/4 
20 3/16 
20 1/8 b bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb 
20 1/16 
20 bbbbbbbbbbbbbbbbbbbb bb b b bbbb b b b bb b b b 

Example 3 - A Weakly Resilient Book (p = 0.818) 

Period 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 

Trader 81 SPBP SI BI SI BPSP BI SP Bi SP BSP SP BP SPP SI PSP BP SP BP S BP SI BP SP BP SI 1B SP B SI BI SP BP SI 

21 114 o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o o 
21 1/16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
213/16 00 0O0O0OO0000000 0 00 0 00000o oo 

21 1/16 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2015116 0o o o0 0 
20 7/8 
20 13/16 
20 3/4 
20 11/16 
20 5/8 
20 9/16 
20 1/2 
20 7/16 
20 3/8 b 
20 5/16 b b b b b b b b b b b b 
20 1/4 b b b b b b b b b b b b b b b b b b b b b 
20 3/16 bbbbbbbbbbbbbbbbbbbbbbbb 
20 1/8 b bb b b b b b b b b b b b b b b b b b b b b b b b bb 
201/16 bb bbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbbb 
20 bbbbbbbbbb bbbbbbbbbbbbbbbbbbbbbbbbbbbb b 

Figure 2 
Book simulation 
The figure presents the evolution of the limit order book in Examples 2 and 3 for a given sequence of 40 
trader arrivals. For each period, the figure indicates the type of the trader arriving in this period. "BP" and 
"BI" indicate the arrival of a "Patient Buyer" and an "Impatient Buyer" respectively. "SP" and "SI" indicate 
the arrival of a "Patient Seller" and an "Impatient Seller" respectively. For each period, the figure gives the 
state of the book after the order submission by the trader arriving in this period. Letter "b" (respectively 'o') 
at a given price indicates the presence of a buy (respectively sell) limit order at this price. 
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Exanrpe 2 - A Reslient Book 

21.500 
21.375 
21.250 
21.125 
21.000 
20.875 
20.750 
20.a25 
20.500 
20.375 
20.250 
20.125 
20.000 
19.875 
19.750 I t I I I I I I t I t I I I I I I I I I I I I t I 

1 2 3 4 5 6 7 8 9 10111213141510171819202122232425252728293031323334353637383940 

Example 3 - A WeeMy Resilient Book 

21.500 
21.375 
21 250 
21.125 
21.000 
20.875 
20.750 
20.625 
20.500 
20.375 
20.250 
20.125 
20.000 
19.875 
19.750 I I I I I l t I I I I I l I I l t I I I I I l I I I I I I I It i t I I 1 i 

2 3 4 5 6 7 89 011 12 13 14 15 1016 7 18 19 20 21 2223 24 25 20 27 28 29 30 31 32 33 34 35 38 37 38 39 40 

Figure 3 
Spread evolution 
The figure presents the evolution of the size of the inside spread (vertical line) and the mid-quote (dots) in 

Examples 2 and 3 for the sequence of trader arrivals depicted in Figure 2. 

It is apparent from Figure 3 that the competitive spread is reached much 
more quickly in Example 2 than in Example 3. In fact, in Example 3, the 

quoted spread remains much larger than the competitive spread during all 
40 periods depicted in Figures 2 and 3. In contrast, in Example 2, the inside 

spread reaches the competitive level for the first time after 18 periods and 
then it remains close to this level. As traders' types in each period are 
identical in each example, this is due to the fact that in Example 2, patient 
traders use more aggressive limit orders in order to speed up execution.14 
This bidding behavior explains why the market appears much more resi- 
lient in Example 2 than in Example 3. Accordingly, our measure indicates 
that the resiliency of the market is much larger in Example 2, 
R = 0.556 - 0.02, than in Example 3, where R = 0.4517 _ 1.27 x 10-6. 

14 If realizations for traders' types were not held constant, an additional force would make small spreads 
more frequent when p > 1. In this case, the liquidity offered by the book is consumed less rapidly, since the 
likelihood of a market order is smaller than when p<l. Thus, the inside spread has more time to narrow 
between market order arrivals. 
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Summary. When traders are homogeneous, any deviation from the com- 

petitive spread is immediately corrected. This is not the case in general 
when traders are heterogeneous. In the latter case, the market is more 
resilient when p > 1 than when p < 1. Thus, although the equilibrium of 
the limit order market is unique, three patterns for the dynamics of the 
spread emerge: (a) strongly resilient, when traders are homogeneous, (b) 
resilient, when traders are heterogeneous and patient traders dominate 
(p > 1), and (c) weakly resilient, when traders are heterogeneous and 
impatient traders dominate (p < 1). Market resiliency clearly depends 
on the composition of the traders' population. 

2.5 Distribution of spreads 
In this section, we derive the equilibrium probability distribution of the 
bid-ask spread when traders are heterogeneous (when they are homoge- 
neous, all transactions take place at the competitive spread). We show 
how the distribution of spreads depends on the composition of the trading 
population. 

Proposition 3 shows that the equilibrium spread takes q different 
values, n <n2<... <nq. A patient trader submits a nh_l-limit order when 
the spread is nh (h = 2, ..., q) and a market order when the spread is n1. An 
impatient trader always submits a market order. These strategies yield the 
following dynamics for the bid-ask spread. If the spread is 
nh (h = 2,...., q - 1), there is a probability Op that it becomes nh1_ and 
a probability 01 that it becomes nh+l when a new trader arrives in the 
market. If the spread is nl, the inside spread becomes n2 when a new 
trader arrives in the market. If the spread is K, it remains unchanged with 
probability 0z or it becomes nq_l with probability Op, when a new trader 
arrives in the market. Hence, the random sequence of observed spreads is 
a finite Markov chain with q > 2 states. The transition matrix of this 
Markov chain is: 

/0 1 0 0 O\ 
Op 0 0I ... 0 0 
O Op 0 ... 0 0 

W= : : 

0 0 0 ... 0 01 

\ 0 0 * p OI/ 

The jh entry in the hth row of this matrix is the probability that the size 
of the spread changes to nj conditional on the spread nh (/, h = 1,..., q). 
We denote the stationary probabilities of this Markov chain by ul,..., Uq, 
where Uh is the stationary probability of a spread of size nh. 
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Figure 4 Spreads 
Spread distribution 
The figure presents the stationary probability distribution of the inside spread in Examples 2 (grey bars) 
and 3 (white bars). For each inside spread on the equilibrium path, the figure gives the probability of 
occurrence of this inside spread. 

Lemma 2. The spread has a unique stationary probability distribution given by. 

oq-1 oq-hoh-2 
u? '0 ,and Uh 1 P I ul : T i i-20q1 + ~q o_oi, n-io i-2 Se + Ei=2P P + I p i=2 _ I 

h 2,..., q. (10) 

Observe that for h, h' E {2, 3,..., q} with h > h', Lemma 2 implies that 

uh h uh 1 
- - ph'h and - (11) 
Uhl ( 11I I61 

This remark yields the following proposition. 

Proposition 6. For a given tick size and waiting costs: 

1. If p<l, uh>uh, for 1 < h'<h < q. Thus, the distribution of spreads is 
skewed toward higher spreads in weakly resilient markets (i.e., p < 1). 

2. If p>1, uh < uh, for 2 < h'<h < q.15 Thus, the distribution of spreads 
is skewed toward lower spreads in resilient markets (i.e., p > 1). 

Hence, small spreads are more frequent when p > 1 than when p < 1. 
This reflects the fact that markets dominated by patient traders are more 
resilient than markets dominated by impatient traders. Figure 4 depicts 

15 The inequality, Uh<Uh', does not necessarily hold for h'= 1, when p>l. Actually, the smallest inside 
spread can only be reached from higher spreads, while other spreads can be reached from both directions 

(nq = K can be reached either from nq_1 or from nq itself). This implies that the probability of observing 
the smallest possible spread is relatively small for all values of p. 
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the stationary distribution in Examples 2 and 3. Clearly, the distribution 
of spreads is skewed toward high spreads in Example 3 where p < 1 and 
toward low spreads in Example 2 where p > 1. 

The expected dollar spread is given by:16 
q 

ESm =>l Uhnh. (12) 
h=l 

Using this expression, the expected spread is $0.525 in Example 2 and $1 
in Example 3. The average spread is smaller in the more resilient market, 
because small spreads are more frequent in this case. 

3. Implications for Empirical Analysis 

In this section, we discuss the implications of our model for empirical 
studies of limit order markets. We restrict attention to the heterogeneous 
case. We study the relationships between measures of trading activity (the 
order arrival rate and the time between trades) and market resiliency. 
Then we analyze the impact of the state of the book on order aggressive- 
ness. Finally, we examine the implications of changes in the proportion of 
patient traders on intraday patterns and discuss the liquidity effects of 
changes in ownership. 

3.1 Trading activity, spreads and market resiliency 
3.1.1 Fast versus slow markets. We compare market resiliency and the 
expected spread across two markets "Fast" (F) and "Slow" (S), which 
differ only in the order-arrival rates, with AF > XS.17 Thus, the average 
waiting time between orders in market F is less than in market S. We 
denote by nh(Ak) the hth smallest spread in the set of spreads on the 
equilibrium path in market k c {F, S} and by qk the number of spreads 
in this set. Using Proposition 5 and Corollary 1, we obtain the following 
result. 

Corollary 2. In two markets F and S with order-arrival rates, AF > AS, 

1. The equilibrium spreads satisfy. 

(a) nh (AF) < nh (Xs), for h < qs and 
(b) nh (AF) < nqs (XA), for qs < h < qF. 

2. The Slow market is more resilient than the Fast market. 

16 Recall that a superscript "m" indicates variables expressed in monetary terms, rather than in number of 
ticks (i.e., n' = nhA). 

17 In our model, equilibrium spreads are determined by the ratio M (see Proposition 5). For this reason, the 
results for an increase in the arrival rate translate immediately to results for a decline in the waiting costs 
6p. 
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Table 3 
Expected dollar spreads and order arrival rates 

Op 

A 0.45 0.475 0.5 0.525 0.55 

1 1 0.9 0.71 0.57 0.525 
4/5 1.01 0.91 0.73 0.67 0.6 
2/3 1.01 0.86 0.73 0.65 0.59 
1/2 1.02 0.85 0.78 0.68 0.67 
1/3 0.97 0.84 0.84 0.78 0.78 
1/5 0.99 0.91 0.91 0.89 0.90 

The first part of the corollary means that the support of possible 
spreads in the Fast market is shifted to the left compared to the support 
of possible spreads in the Slow market. To understand this result, com- 
pare two limit order traders, one in the Fast market and the other in the 
Slow market, with equal priority in the queues of limit orders. The 
expected waiting time of the trader in the Fast market is smaller. Thus, 
limit order traders in the Fast market require less compensation for 

taking a given position in the queue of limit orders. The result is that 
spreads tend to be narrower in the Fast market (first part of the proposi- 
tion). On the other hand, spread improvements are larger, and the spread 
narrows more quickly after liquidity shocks in the Slow market (see the 
discussion following Proposition 5). Hence, the Slow market is more 
resilient. 

These two effects have an opposite impact on the average spread. We 
cannot determine analytically which market, Fast or Slow, has the smal- 
lest spread. Computations show that increasing the order arrival rate 
reduces the expected spread for a wide range of parameters' values, 
which suggests that the first effect dominates in many cases. As an 
illustration of this claim, Table 3 reports the equilibrium expected dollar 

spread for various pairs (Op, A). The values of the other parameters are as 
in Example 3 (i.e., A = 6, Km" = 1.25, 6p = 0.05, 8I = 0.125).18 The 
correlation between the average spread and the order arrival rate is 
negative and equal to -0.37 in the sample defined by the table. This 
suggests that the average spread declines as the order arrival rate 
increases. 

In summary, the model generates two predictions. First, the average 
spread tends to be inversely related to the order arrival rate. More 
surprising, maybe, the model implies a negative relationship between 
market resiliency and the order arrival rate. 

18 The condition Sc = K holds for all parameter values considered in this table. Hence, we use Proposition 5, 
Lemma 2, and Equation (12) to compute the equilibrium expected spreads. 
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We interpret A as the long-run arrival rate of orders, including both 
market and limit orders. It is a measure of trading activity in a given 
stock. Demsetz (1968) suggests that the primary determinant of the long- 
run order arrival rate is the number of shareholders. We conjecture that 
another related factor is the public float of the stock. As these variables 
are not affected by variations in the state of the book, it is natural to 
consider A as independent from the state of the limit order book as well, 
just as it is exogenous in our model.19 

We recognize that, in reality, the intraday arrival rate deviates from the 
long-run arrival rate, and that these deviations may in part be explained 
by transient changes in the state of the book. We are not aware of 
empirical evidence from limit order markets pointing out in this direction. 
At any rate, if such a relation exists, it is not captured by our model. 

3.1.2 Durations between trades and market resiliency. The order arrival 
rate is one measure of market activity. Market activity can also be 
measured by the average time between trades. There has been a consider- 
able interest recently in modeling the time between trades. For instance, 
the Autoregressive Conditional Duration approach, pioneered by Engle 
and Russell (1998), postulates the expected duration between trades as a 
function of pre-determined variables including past realizations of the 
duration between trades. There is very little theory that endogenizes the 
time between trades in limit order markets.20 This scarcity makes it 
difficult to specify and interpret conditional duration models. 

In our model, the time between trades is endogenous, and it depends on 
the size of the spread. Let Dh denote the expected time elapsing between 
two consecutive transactions, conditional on the first transaction taking 
place when the spread is nh. We call this variable a conditional duration. 

Corollary 3. In equilibrium, the conditional duration is. 

1 - 1h+I I -_ 4 
Dh = 

L 

P for 1 < h < q; and D = " P. (13) 

Hence, the conditional duration (i) increases with the size of the inside 

spread, (ii) decreases with the order arrival rate, and (iii) increases in the 

proportion of patient traders. 
The conditional duration decreases as the order arrival rate rises, other 

things being equal, and is positively related to the spread: the larger is the 

19 The rates at which market and limit orders arrive are endogenous since traders optimally choose between 
these two types of orders. As expected, they depend on the spread (see Propositions 1 and 2). This is the 
overall order arrival rate which is exogenous in our model. 

20 
Easley and O'Hara (1992) endogenize the time between transactions in a dealer market. In their model, 
the timing of trades is driven by the existence of new information. 
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spread at which a trade occurs, the larger is the average time until the next 
transaction. Notice that there is an interesting contrast with the findings 
obtained in Easley and O'Hara (1992). In their model, the spread depends 
on the time elapsed since the last transaction while in our model, the 
expected time until the next transaction depends on the size of the inside 
spread. This suggests that the spread should be used as an explanatory 
variable in empirical models of conditional duration. Finally, the condi- 
tional duration increases with the proportion of patient traders, Op. As Op 
rises, the probability that a trader submits a market order declines which 
delays the next transaction. 

In our model, conditional duration and market resiliency are governed 
by the same factors. These factors include the order arrival rate or the 
proportion of patient traders. Consider an increase in the proportion of 
patient traders. Other things being equal, it leads to (i) a larger condi- 
tional duration (Corollary 3) and simultaneously to (ii) greater market 
resiliency (Corollary 1). Similarly an increase in the order arrival rate 
results in (i) a smaller conditional duration (Corollary 3) and in (ii) lower 
market resiliency (Corollary 1). Consequently, our model predicts a posi- 
tive association between the average time between trades, conditional on 
the size of the spread, and market resiliency. 

3.2 State of the book and order aggressiveness 
The amount by which limit order traders improves upon prevailing 
quotes ("the spread improvement") is a measure of order aggressiveness.21 
Proposition 5 has the following implication. 

Corollary 4. Spread improvements depend on the size of the inside spread. 
Spread improvements increase with the size of the spread when p > 1 and 
decrease with the size of the spread when p < 1. 

As an illustration, compare the bidding strategies in Examples 2 and 3 in 
Table 2. When they face a spread of six ticks, limit order traders undercut 
the posted spread by three ticks in Example 2 (p > 1) and only one tick in 
Example 3 (p < 1). When they face a spread of three ticks, limit order 
traders undercut by two ticks in Examples 2 and 3. Hence, their aggres- 
siveness when they face a spread of three ticks is (a) smaller (than when 
they face a spread of six ticks) in Example 2 but (b) larger in Example 3. 

The explanation for this result is as follows. Consider a patient trader 
who faces a spread nh. The spread improvement chosen by the trader 
results from the following trade-off. The cost of a large spread improve- 
ment is that it results in a worse execution price for the trader. The benefit 

21 Several empirical papers have analyzed the relationship between the state of the book and the aggres- 
siveness of incoming orders. See, for instance, Griffith et al. (2000), and Biais, Hillion, and Spatt (1995). 
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is that it results in a smaller waiting cost. Hence, the trader's decision 

hinges upon a comparison between the size of the spread improvement 
and the resulting reduction in waiting cost. In equilibrium, the optimal 
spread improvement is equal to the expected reduction in the waiting cost, 
rounded up to the nearest integer. This follows from Equation (8): 

"h = 
CF([T*(nh)- T*(nh^l)] ). 

When p > 1, the difference T*(nh) - T*(nh_l) increases in nh (see Propo- 
sition 4). It follows that liquidity suppliers are willing to offer larger 
spread improvements when the spread is large. In contrast, when p < 1, 
the difference T*(nh) - T*(nh-1) decreases in nh; thus, liquidity suppliers 
are willing to make larger spread improvements at small spreads. 

For stocks listed on the NYSE, Engle and Patton (2003) find that the 
change in the log of the best ask (bid) price is negatively (positively) related 
to the size of the spread. This means that the amount by which traders 
improve upon prevailing quotes is related to the size of the spread, as 
predicted by Corollary 4.22 This corollary also implies that the direction 
of this relationship is affected by the proportion of patient traders. This is 
an additional prediction, which could be tested in future empirical work. 

3.3 Changes in the mix of patient versus impatient traders 
In our model, market resiliency, spread improvements and the distribu- 
tion of spreads are functions of the proportion of patient traders. Unfor- 

tunately, the proportion of patient traders cannot be directly observed. 
Hence, it is hard to directly test the model predictions on the effects of a 
change in the proportion of patient traders. 

One approach is to use a proxy for the proportion of patient traders. The 
model suggests that the proportion of limit orders in the flow of market and 
limit orders as a proxy. In equilibrium, patient traders tend to submit limit 
orders whereas impatient traders tend to submit market orders. In fact, 
conditional on a spread above the competitive spread, the probability of 
observing a limit order is Op, the proportion of patient traders. Another 
approach is to exploit predictable changes in the proportion of patient 
traders. We describe this approach in the following subsections. 

3.3.1 Intraday variations in the proportion of patient traders and intraday 
patterns. Traders' impatience is likely to increase toward the end of the 
trading day. The inability to trade overnight is a binding constraint for 
many investors which makes them eager to trade as the end of the day 

22 A caveat is in order here since the NYSE is a hybrid market. There is a possibility that Engle and Patton's 
findings are driven by the actions of NYSE specialists rather than those of limit order traders. We are not 
aware of evidence on this issue from pure order-driven markets. 
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approaches.23 Furthermore, many institutions mark their positions to 
market at the end of the day; thus, they prefer to trade closer to that 
deadline. Also, some traders act as implicit market markers in limit order 
markets and may be keen to unload their inventory before the end of the 
day to avoid an exposure to the overnight risk. 

For these reasons, we conjecture that the proportion of impatient traders 
is larger at the end of the trading day than in earlier periods. Under this 
conjecture, comparing measures of market liquidity in the last period of 
the day (say the last half-hour) with these measures in an earlier period is 
like analyzing the impact of an increase in the proportion of impatient 
traders in our model (holding other parameters fixed). Several testable 
implications follow from this remark: 

* Limit order traders submit less aggressive orders at the end of the 
day than in an earlier period. This prediction derives from Proposi- 
tion 5 which establishes that spread improvements are small when 
the proportion of impatient traders is large. 

* As a result, market resiliency is smaller at the end of the day than in 
an earlier period (see Corollary 1 and the discussion following the 
corollary). 

* The spread is larger at the end of the day than in an earlier period 
(see Proposition 6 and the discussion in Section 2.4). 

* The conditional durations between trades are smaller at the end of 
the day than during the day (see Corollary 3). 

Testing these predictions empirically is not entirely straightforward. 
The information asymmetry is high at the beginning of the trading day 
and thus is likely to influence measures of market liquidity at this time. 
For instance, Madhavan, Richardson, and Roomans (1997) show empiri- 
cally that the adverse selection component of the spread is large at the 
beginning of the day and declines thereafter. Hence, in order to avoid 
confounding effects due to asymmetric information, our predictions 
should be tested by comparing measures of market liquidity (limit order 
aggressiveness, resiliency, spreads, and conditional durations) in the last 
period of the trading day and in an earlier period, which is not too close to 
the opening of the trading session. 

Some of our implications are consistent with stylized facts. It is well 
known that spreads and trading frequency decline from the opening of 
the trading day on but peak again at the end of trading sessions. For 
instance, Biais, Hillion, and Spatt (1995) and Chung et al. (1999) observe 
this pattern for the Paris Bourse and the NYSE, respectively. Although 
the quotes in the NYSE are in part determined by the specialist, Chung 

23 Recent experimental findings by Bloomfield, O'Hara, and Saar (2002) show that when liquidity traders 
are assigned a trading target, they switch from limit to market orders at the end of trading sessions. 
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et al. (1999) find that the increase in the spread is driven by the order 
placement decisions of limit order traders. The joint peak in spreads, and 
trade rates at the end of the trading day has proved difficult to explain in 
asymmetric information models. Actually, as pointed out by Foster and 
Viswanathan (1993), these models predict an inverse relationship between 
spreads and trading activity. Our model offers a complementary explana- 
tion. At the end of the day, the proportion of impatient traders increases. 
This translates into a decline in the conditional duration and thereby 
more frequent trades. Patient traders exploit this impatience by bidding 
less aggressively which results in larger spreads. 

Pagano and Schwartz (2003) analyze the impact of the introduction of 
a closing call auction in the Paris Bourse. This closing auction offers 
another trading opportunity and should decrease traders' impatience 
toward the end of the day. Our model predicts that this should lead to a 
decline in the spread in the last half-hour of the trading day. This is 
precisely what is observed by Pagano and Schwartz (2003).24 Notice 
that traditional theory would rather predict the opposite, as the closing 
auction is likely to draw liquidity away from the continuous market. 
Finally, Tkach and Kandel (2004) show that the time to execution of 
limit orders in Tel Aviv Stock Exchange declines toward the end of the 
trading day, in line with our predictions. 

3.3.2 Liquidity effects of changes in ownership structures. We expect 
cross-sectional variations in the mix of patient and impatient traders to 
be related to variations in institutional ownership. Stocks that are pre- 
dominantly owned by index funds should feature a larger proportion of 
impatient traders, since their managers must trade rapidly to minimize 
their fund's tracking error. This line of reasoning suggests to test the 
model by analyzing long-run liquidity effects on stocks that are added 
to (removed from) a widely followed index. Beneish and Whaley (1996), 
among others, document a substantial increase in the proportion of index 
funds owning a stock when it becomes listed in such an index. Our model 
predicts that the resulting increase in the proportion of impatient traders 
should manifest itself in a decline in market resiliency (Corollary 1) and 
smaller spread improvements (Proposition 5). Naturally, an inclusion in 
the index may have other effects on the stocks as well. 

4. Tick Size and Market Resiliency 

The tick size, that is, the minimal price variation, has been reduced in 
many markets in recent years. The rationale for this move was to reduce 
the trading costs of investors. In this section, we examine the effect of a 

24 "Kaniel and Liu (2000) can also explain this result." 
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change in the tick size, and show that a reduction in the tick size impairs 
market resiliency, and may have adverse effects on the spread.25 

We assume that a change in the tick size does not affect the monetary 
values of the boundaries: Am = A/ and Bm - BA, which implies that Km 
is fixed as well. 

To better convey the intuition, it is useful to consider the polar case in 
which there is no minimum price variation, that is, A = 0. In this case, 
prices and spreads can be expressed solely in monetary terms; in what 
follows, we index all spreads by a superscript "m" to indicate that they are 
expressed in dollars. When the tick size is zero, a trader's reservation 
spread is exactly equal to his expected waiting cost until the arrival of the 
next trader, i.e., j?m = (i c {P,I}). We denote by T'"') the expected 
waiting time for a limit order trader who creates a spread of jm dollars. 
Let 

cfe Km X - 6p 
p KmA- 6p (14) 

Notice that 0 < pC < 1, since jl' < Km by assumption [Equation (3)]. The 
next proposition extends Propositions 4 and 5 to the case in which there is 
no mandatory minimum price variation, but p > p.26 

Proposition 7. Suppose that A = 0. If p > pc and 6p > 0, the equilibrium 
is as follows: 

1. The impatient traders never submit a limit order. 
2. There exist qo spreads n' < n' < ... n, with n -= ̂  and nm = Km 2 qo qo 

such that a patient trader submits an nm -limit order when he faces a 
spread in (nh, n1 ] and a market order when hefaces a spread smaller 
than or equal to nl. 27 

3. The spreads are: nh = nm l + 4t(O), where t (0O) = 2ph-1) ^, for 
h = 2,... qo - 1 and the stationary probability of the ht spread is uh, 
as given in Section 2.5. 

4. The expected waiting time function is as follows: 

T* (/m) _ T* (nm) Vjm e (n n1,n]. 

25 See Seppi (1997), Harris (1998), Cordella and Foucault (1999), Goldstein and Kavajecz (2000), and 
Kadan (2005) for arguments in favor and against the reduction in the tick size in various market 
structures. 

26 If p < p', then the spread improvements are so small that the competitive spread is never reached. We 
discuss this case later. 

27 A closed-form expression for qo is given in the proof of this proposition. 
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Proposition 7 shows that when p>pc, the equilibria with and without a 
minimum price variation are qualitatively similar. When A = 0, the 
smallest possible spread is patient traders' per period waiting cost, i.e., 
6. In contrast, when A > 0, it is equal to this cost rounded up to the nearest 
tick. Thus, not surprisingly, the competitive spread is larger when a 
minimum price variation is enforced. This rounding effect propagates to 
all equilibrium spreads. To make this statement formal, let n (A) denote 
the hth smallest spread in the set of spreads on the equilibrium path when 
the tick size is A > 0, and let qA be the number of spreads in this set. The 
following holds. 

Corollary 5. "Rounding effect": Suppose p > pc. In equilibrium: (I) qA < qo, 
(2)n'(O) < nh(A), for h < qa, and (3)nm(0) < n (A) for qA < h < qo. 
This means that the support of possible spreads when the tick size is zero is 
shifted to the left compared to the support ofpossible spreads when the tick size 
is strictly positive. 

Given this result, it is tempting to conclude that the average spread is 
always minimized when there is no minimum price variation. We show 
below that this reasoning does not constitute the whole picture because it 
ignores the impact of the tick size on the dynamics of the spread between 
transactions. 

When p > pC and 6p > 0, in zero-tick equilibrium, traders improve the 
spread by more than an infinitesimal amount, 4 (0) > 0.28 Intuitively, 
patient traders improve the quote by a non-infinitesimal amount to speed 
up execution. However, as p decreases, spread improvements become 
smaller and smaller: traders bid less aggressively since market orders 
arrive more frequently (see the discussion following Proposition 5). 
When A > 0, spread improvements can never be smaller than the tick 
size; thus, for small values of p traders improve prices by more than they 
would in the absence of a minimum price variation. We refer to this effect as 
being the "spread improvement effect." The spread improvement 
effect works to increase the speed at which spread narrows in between 
transactions. For this reason, imposing a minimum price variation helps to 
make the market more resilient. This intuition can be made more rigorous 
by using the measure of market resiliency, R, defined in Section 2.2.2. 

Corollary 6. Other things being equal, the resiliency of the limit order 
market, R, is always larger when there is a minimum price variation than 
in the absence of a minimum price variation. Furthermore, the resiliency of 

28 Traders must improve upon prevailing quotes (Assumption A.2). However when the tick size is zero, they 
can improve by an arbitrarily small amount. Proposition 7 shows that they do not take advantage of this 
possibility when p > p'. 
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the market approaches zero as p approaches pC from above in the absence of 
a minimum price variation, whereas it is always strictly greater than zero 
when a minimum price variation is imposed. 

Intuitively, as p approaches pc from above, spread improvements 
become infinitesimal when the spread is large (e.g., equal to K). Thus, 
the limit orders are submitted arbitrarily close to the largest possible ask 
price, A, or the smallest possible bid price, B. This explains why, in the 
absence of a minimum price variation, the resiliency of the market 
vanishes when p goes to pc. Imposing a minimum price variation is a 

way to avoid this pathological situation, because it forces traders to 

improve by non-infinitesimal amounts to get price priority. 
Thus, intuitively, imposing a minimum price variation can reduce the 

expected spread, despite the rounding effect, because it makes the market 
more resilient. We demonstrate this claim by providing a numerical 
example. The parameter values are as in Example 3 except that Km= 
0.4375 (K = 7) so that the condition p > pc is satisfied (pc = 0.79). Table 4 

gives all the monetary spreads on the equilibrium path for two different 
values of the tick size: (1) A = 0 and (2) A = 1. The two last lines of the 
table give the expected spread and the resiliency obtained for each regime. 
First, observe the "rounding effect"-the five smallest spreads are lower 
when A = 0, than in the case of A = 1i. Second, observe the "spread 
improvement effect"-the spread reduction is quicker for every spread 
level if a minimum price variation is enforced. This explains why market 
resiliency is smaller when there is no minimum price variation. For this 
reason, the expected spread turns out to be larger in this case ($0.3675 
instead of $0.3265). 

So far we have compared a situation with and without a mandatory 
minimum price variation. More generally, the "spread improvement" 

Table 4 
Rounding and spread improvement effects 

h n,"(A = 0) n` (A= ) 

1 $0.05 $0.0625 
2 $0.1318 $0.1875 
3 $0.1988 $0.3125 
4 $0.2535 $0.3750 
5 $0.2983 $0.4375 
6 $0.3350 NA 
7 $0.3650 NA 
8 $0.3896 NA 
9 $0.4096 NA 
10 $0.4260 NA 
11 $0.4375 NA 
Expected spread $0.3676 $0.3265 
resiliency 3.4 x 104 0.041 
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Table 5 
The tick size minimizing the expected spread 

p 0.85 0.95 1 1.05 1.15 1.25 

A* I 1 I 1i 16 16 20 100 100 100 

effect implies that the expected spread does not necessarily decrease when 
the tick size is reduced. In order to see this point, consider Table 5. It 
demonstrates which of the following tick sizes, { o 6 mnimizes the 
expected spread for different values of p. The values of the other para- 
meters are chosen as in Example 3. Consistent with the above argument, 
the smallest possible tick size (A -= -) does not minimize the expected 
spread for low values of p. However as p increases, inducing traders to 
make large improvements by imposing a large minimum price variation 
becomes less effective, since a high proportion of patient traders induces 
aggressive limit orders. The "spread improvement effect" becomes of sec- 
ond order compared to the "rounding effect." For this reason, the tick size 
which minimizes the expected spread becomes smaller. 

Finally, we briefly discuss the case p < pc. In this case, traders improve 
upon large spreads by an infinitesimal amount, posting limit orders 
arbitrarily close to the largest possible ask price, A, or the smallest 
possible bid price, B.29 Thus market resiliency is zero. Imposing a mini- 
mum price variation is a way to restore market resiliency since spread 
improvements are non-infinitesimal as soon as A > 0 (Proposition 5). 

Notice that the effects associated with a change in the tick size are 
very similar to those associated with a change in the order arrival rate, A 
(Section 3.1). Two forces contribute to a small average spread: (i) small 
frictional costs on the one hand (a small tick and small waiting time 
between arrivals) and (ii) large spread improvements. Our analysis points 
out that factors which lessen frictional costs may reduce spread 
improvements, resulting in less resilient markets and eventually higher 
spreads. 

To sum up, reducing or even eliminating the tick size may or may not 
reduce the average spread. The impact depends on the proportion of 
patient traders in the market. Many empirical papers have found a decline 
in the average quoted spreads following a reduction in tick size. These 
papers, however, do not control for the ratio of patient to impatient 
traders. In Section 3, we have argued that the proportion of patient 
traders is likely to decrease over the trading day. In this case, the impact 

29 This would also be the case if patient traders' waiting cost were equal to zero (6p = 0). When p < pc or 
6p = 0, the equilibrium (when there is no minimum price variation) is difficult to describe formally since 
traders improve upon prevailing quotes by an infinitesimal, but strictly positive, amount. 
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of a decrease in the tick size on the quoted spread may not be uniform 
throughout the trading day. Specifically, a decrease in the tick size may 
increase the average spread at the end of the trading day. To the best of 
our knowledge, there are no papers testing this hypothesis. 

5. Robustness 

Recall our assumptions regarding the trading process: A.1-no order 
cancelations and resubmissions; A.2-limit orders cannot queue at or 
behind the best quotes; and A.3-buyers and sellers alternate. In this 
section, we present conditions under which our non-queueing restriction, 
A.2, is not binding. We also show, using examples, that the main proper- 
ties of the model persist when we relax the assumption that buyers and 
sellers alternate. Overall, these robustness tests show that our main results 
are not driven by the technical assumptions, and that the economic 
intuitions are still valid when these assumptions are relaxed. For brevity, 
we omit the proofs of the results given in this section. They can be 
obtained from the authors upon request. 

5.1 Cancelations and resubmissions 
Although in practice traders frequently cancel and resubmit their limit 
orders, our model does not allow them to do so. Hence, it cannot explain 
why traders actively manage their orders. Clearly, modeling cancelations 
and resubmissions is important. But it is also very difficult. One possible 
approach, followed by Hollifield et al. (2003) or Goettler, Parlour, and 

Rajan (2003) assumes that cancelations occur exogenously at random 

points in time. In our model, all orders must eventually be executed. 
Thus, in order to follow this approach, we would need to arbitrarily 
specify the payoff to a trader when his order is canceled. For this reason, 
we do not engage in this exercise.30 

Most cancelations appear as the result of a particular behavior that we 
do not seek to capture in this study. Hasbrouck and Saar (2002) find that 
the majority of cancelations on Island ECN occurs very quickly after 
order submission (about 60% are canceled within 30 seconds). They argue 
that these "fleeting" orders seek liquidity rather than provide it. Tkach 
(2002) studies the limit order submission in the 100 most liquid stocks on 
the Tel Aviv Stock Exchange. She shows that the median time to cancela- 
tion is 11 minutes, and over 12% of all cancelations occur within a minute 
of submission. This is a short period of time, especially given the low 
volume in many of these stocks. We do not expect that these cancelation 

30 Rosu (2004) considers a dynamic model of price formation in limit order markets. As in our model, 
traders value speed of execution. Assuming that limit orders resubmission is costless and instantaneous, 
he allows traders to cancel and resubmit their orders. Some of his results are qualitatively similar to ours. 
In particular, he finds that resiliency increases with the proportion of patient traders. 
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strategies affect our conclusions. They are phenomena outside the scope 
of this model. 

5.2 Queuing at the inside quotes 
We assume that traders cannot place limit orders at or behind the inside 
quotes. In fact, such orders are allowed and used.31 Queuing, however, 
should not invalidate the findings that (i) an increase in the proportion of 
patient traders or (ii) a decrease in the order arrival rate yield more 
resilient and more competitive limit order markets. Actually, limit order 
traders' incentive to jump ahead of the queue is greater when time to 
execution increases, that is, when the proportion of patient traders rises or 
the order arrival rate declines. This means that spreads narrow more 
rapidly in these two cases, even when queuing is an option. 

This reasoning suggests that if the proportion of patient traders 
is sufficiently large or the order arrival rate is sufficiently small 
then traders will choose not to queue. In this case, the equilibrium is 
exactly as described in Section 2. This result is established in the next 
proposition. 

Proposition 8. Suppose traders are heterogeneous and are allowed to queue 
at the inside quotes subject to time priority (i.e., limit orders enteredfirst at 
a given price are executedfirst). If 

< 2[1 + 0p(2 - Op)], (15) 
Op 

then the equilibrium when traders are not allowed to queue is an equilibrium 
in this setting. 

Suppose that traders use the order placement strategies described in 
Section 2 and give them the freedom to queue at the best quotes. Under 
condition (15), traders prefer to submit limit orders improving upon the 
inside quotes rather than queuing. Hence, traders' strategies form an 
equilibrium even though traders have the possibility to queue. Condition 
(15) is satisfied in all the numerical examples in the article. It follows that 
the possibility of queuing does not per se invalidate our comparative 
statics. 

Inequality (15) is satisfied when the order arrival rate is sufficiently 
small. Furthermore, a rise in the proportion of patient traders increases 
the right-hand side of Inequality (15) and thereby helps to satisfy this 

31 For instance, Biais, Hillion, and Spatt (1995) report that about 50% of new buy limit orders are placed at 
the best bid price. They find a similar frequency for sell limit orders. 
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inequality. This means that traders are less likely to queue when the order 
arrival rate is small and the proportion of patient traders is large, as 
conjectured. Finally, Inequality (15) is satisfied when the tick size, A, is 
sufficiently small. In this case, queuing is never optimal because liquidity 
providers can jump ahead of the queue at a low cost. This reasoning 
suggests that the number of limit orders placed at the same price should 
have decreased following tick size reductions. 

5.3 Buyers and sellers arrive randomly 
We have assumed that buyers and sellers alternate. Clearly, it would be 
more realistic to assume that the sequence of arrivals for buyers and 
sellers is random. Unfortunately, in this case, the model becomes intract- 
able for two reasons. First, it is not possible to solve for the equilibrium 
by induction because the waiting time function is not recursive. Second, 
the waiting time for a limit order depends on the state of the limit order 
book when the order is placed and not simply on the inside spread. 

Under these conditions, it is very difficult to compute the equilibrium 
analytically. Such a computation involves the following steps. First, con- 
jecture equilibrium order placement strategies for patient and impatient 
traders. Second, use the conjectured equilibrium strategies to calculate the 
expected waiting time for each possible limit order in each possible state 
of the book. This task requires solving a number of simultaneous linear 
equations which grows quickly with K because the waiting time function 
depends on the entire state of the book. Third, check that the "conjec- 
tured" strategies are optimal given the expected waiting times computed 
in the second step. If these strategies are not optimal, the steps are 
repeated until an equilibrium is found. 

This procedure is tedious even for small values of K. It can be imple- 
mented for specific values of the parameters, however. Thus, we use 
examples to demonstrate that the economic intuitions of our model persist 
when buyers and sellers arrive randomly. We assume that each trader is a 
buyer or a seller with equal probabilities. We focus on the case K = 4. This 
choice allows for different levels of spread improvements. For example, 
when the spread has four ticks, a limit order trader can improve upon 
prevailing quotes by one tick (small improvement), two or three ticks (large 
improvements). We consider 3 different sets of values for the parameters. 
In Example 4, the parameters are such that traders are homogeneous while 
in Examples 5 and 6, the parameters are such that traders are heteroge- 
neous. The proportion of patient traders is larger in Example 5 than in 
Example 6. We describe below the equilibrium obtained in each example.32 

32 A detailed derivation of the claims in these examples can be obtained from the authors upon request. 
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5.3.1 Example 4-A Strongly Resilient Book (homogenous traders). Set 
K = 4, A = 1, 8p = 61 = 0.025 (traders are homogeneous). The follow- 

ing order placement strategy constitutes an equilibrium: (i) when the 

spread is larger than one tick, buyers and sellers of both types submit a 
1-limit order and (ii) when the spread is equal to one tick, both submit a 
market order. Following a transaction, the spread increases to four ticks, 
but then reverts to the traders' reservation spread of one tick before the 
next transaction. This market is therefore strongly resilient: R = 1. As 
traders are homogeneous, the equilibrium is not affected by Op, the 
proportion of patient traders. 

5.3.2 Example 5-A Resilient Book (heterogenous traders, large 0p). Set: 
A = 16, K = 4, Op = 0.7, A = 1, 6p = 0.01, and 56 - 0.07. In this case 
traders are heterogeneous. The following order placement strategies consti- 
tute an equilibrium. An impatient trader always submits a market order. A 
patient trader submits (i) a 2-limit order when the spread is equal to three or 
four ticks, (ii) a 1-limit order when the spread is equal to two ticks, and (iii) a 
market order when the spread is equal to one tick. The resiliency of the 
market is R = 0.49. 

5.3.3 Example 6-A Weakly Resilient Book (heterogenous traders, small 
Op). Set: A-=1, K=4, Op=0.3, A= , 6p=0.01, and 6 = 0.07. 
The following order placement strategies constitute an equilibrium. An 
impatient trader always submits a market order. When the spread is larger 
than one tick, a patient trader places a limit order improving the spread by 
one tick. When the spread is equal to one tick, a patient trader places a 
market order. The resiliency of the market is R = 0.027. 

Clearly, the equilibrium obtained in each example has the same proper- 
ties as the equilibrium obtained when buyers and sellers alternate. In 
Example 4, the spread oscillates between a large level and a small level. 
This is expected since this pattern epitomizes the homogeneous case (see 
Proposition 1). Furthermore, as in the baseline model, limit order traders 
use a more aggressive bidding strategy when the proportion of patient 
traders is large (i.e., in Example 5). To see this, consider the case in which 
the spread is equal to four ticks and a patient trader arrives in the market. 
In Example 5, the trader improves upon prevailing quotes by two ticks 
whereas in Example 6 he improves by only one tick. The economic 
intuition is exactly the same as when buyers and sellers alternate. Limit 
order traders bid more aggressively when Op is large because their waiting 
times are larger, other things being equal. It follows that the resiliency of 
the market increases in the proportion of patient traders. Accordingly, we 
find that the stationary distribution of spreads is skewed toward small 
spreads in Example 5 and large spreads in Example 6. For instance, the 
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probability that the inside spread is equal to four ticks is 4% in Example 5 
and 38% in Example 6. Again, this is expected since the proportion of 
patient traders is larger in Example 5. 

These findings suggest that relaxing the alternating arrival assumption 
does not change the conclusions obtained when buyers and sellers alter- 
nate. The driving force of our model is that limit order traders react to 
exogenous increases in their total waiting costs by submitting more 
aggressive orders. This basic economic intuition does not hinge on the 
assumption that buyers and sellers alternate. However, relaxing this 
assumption prevents us from solving the model in general. We view our 
model as a way to bypass this problem without losing much of the 
economic intuitions. 

6. Conclusion 

We construct a model of price formation in a limit order market. Agents 
in our model are strategic, trade for liquidity reasons, and differ in their 
impatience. Upon arrival, they must decide on whether to submit a 
market order or a limit order. Their choice is driven by a trade-off 
between the cost of immediacy (the spread) and the cost of delayed 
execution, as first suggested by Demsetz (1968). 

We derive the equilibrium order placement strategies. We find that the 
proportion of patient traders in the population and the order arrival rate 
are the key determinants of the limit order book dynamics. Traders 
submit aggressive limit orders (improve upon quoted spreads by large 
amounts) when the proportion of patient traders is large or when the 
order arrival rate is low. For this reason, markets with a high proportion 
of patient traders or a small order arrival rate are more resilient. Also, a 
reduction in the tick size reduces market resiliency, and in some cases 
increases the average spread. 

The analysis yields several testable predictions: (i) a positive relation- 
ship between inter-trade durations (conditional on the spread) and mar- 
ket resiliency; (ii) a negative relationship between the order arrival rate 
and market resiliency; (iii) a joint decline of limit order aggressiveness and 
market resiliency at the end of trading sessions; and (iv) limit order 
traders submit more (respectively less) aggressive orders when the spread 
is large if patient (respectively impatient) traders dominate the trading 
population. 

Future research will focus on relaxing some assumptions that limit the 
scope of our results. We assume that the proportion of patient traders in a 
given market is exogenous. It would be interesting to endogenize the 
composition of the trading population to gain insights on the sources of 
cross-sectional variations in this composition. The order arrival rate is 
independent of the state of the limit order book in our model. In practice, 
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traders time their arrivals during the day according to market conditions, 
and variations in the size of the inside spread may then trigger changes in 
the intraday order arrival rate. This relationship is not captured by our 
model. Finally, we have observed that the equilibrium outcome is in 
general inefficient in our model. This result raises the possibility that 
introducing designated intermediaries in order driven markets could be 
efficiency enhancing, pointing to another interesting direction for future 
work. 

Appendix 

Proof of Lemma 1. 

Step 1. Suppose a trader (say a buyer) submits a j-limit order when the spread is s. By A.3 
the following trader is a seller. We claim that at the time the j-limit order is cleared, the 

spread will revert to s. We prove this claim by induction onj. If j = 1 then by A.2 the next 
order is a sell market order, and the spread immediately reverts to s. Suppose now that j > 1, 
and assume that our assertion is true for all k = 1,..., j - 1. By A.2, the seller must either 
submit a market order or submit a k-limit order with k = 1,..., j - 1. If the seller submits a 
market order, then the spread reverts s. If, on the other hand, the seller submits a k-limit 
order with k c { 1,..., j- 1, then by the induction hypothesis, when that seller's k-limit 
order is cleared the spread reverts to j. It follows that when the j-limit order is cleared, the 
spread reverts to s as required. 
Step 2. Consider a trader, say a buyer, who submits a j-limit order. The expected waiting 
time of this order from this moment on is T(j). By A.2, this buyer acquires price priority (he 
posts the best bid price). Suppose that the next trader (a seller by A.3) submits a k-limit order 
with k { 1,..., j - 1}. When this k-limit order will be executed, the spread will revert to j 
(Step 1). As traders do not cancel their orders or do not submit orders behind the best 

quotes, the state of the book will then be exactly as when the buyer initially posted the j-limit 
order. In particular, the buyer will have price priority. Thus, when the spread reverts to j, the 

buyer's expected waiting time from that moment on is T(j) as well. 

Step 3. We have explained in the text why T(1) = r. Now, consider a trader (say a buyer) 
who submits a j-limit order with j > 1. The next trader (a seller) must choose among j 
options. With probability ao0(), he submits a market order that clears the buyer's limit order. 
In this case, the expected waiting time of the buyer is 1. With probability ak(/), the seller 
submits a k-limit order (k = 1,..., j- 1). In the latter case, the original buyer's expected 
waiting time is + T(k) + TU). Indeed, he has to wait (1) 1/A-for the seller to arrive, (2) 
T(k)-until the seller's order is cleared and the spread reverts toj (by Step 1), and (3) another 
T(j) as we are back to the original position (by Step 2). Overall the original buyer's expected 
waiting time, T(j), is given by: 

T(') = c- + E k(') [+ T(k) + T(l) (16) A 
k=l 

If ao(') > 0, we obtain the second part of the lemma by solving for T(j) and using the fact 
that Yk=o cak() = 1. As for the third part of the lemma: If ao0() = 0, then the seller never 
submits a market order when the spread is j. Thus, the waiting time of the buyer who creates 
the j-limit order is infinite: T(O) = +oo. U 

Proof of Proposition 1. It follows immediately from the arguments preceding the proposition. U 
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Proof of Proposition 2. We first prove the following lemma. 

Lemma 3. Suppose that facing a spread of size s (s E {1,... ,K - 1}), trader i (i E {P,I}) 
submits aj-limit order with 0 < j < s. Then, facing a spread of size s + 1, he either submits an 
s-limit order or submits a j-limit order. 

Proof. By assumption, trader i submits aj-limit order when he faces a spread of size s. Thus: 

ri() > 7ri(k) k0, . ..j- 1,j+l . . ., s - 1. 

Now, suppose that trader i faces a spread of size s + 1. If 7sr(s) < 7ri(/), then trader i will 
submit a j-limit order since 7ri,() > 7ri(k) for all k = ,..., s. If 7ri(s) > 7ri(/), then trader i 
submits a s-limit order since Iri(s) > 7ri () > Tri(k) for all k = ,..., s - 1. 

By definition of the reservation spread, and since 6p < 6b, it follows that: 

7rl(/) < p(j) < O, Vj <j. 

Thus, all traders submit a market order when they face a spread which is smaller than or 

equal to patient traders' reservation spread. This implies that T* () = T* (2) = ... T* ('P) = '. 

Now suppose a patient trader faces a spread of sizejp + 1. Lemma 3 implies that he will either 
submit a jp-limit order or submit a market order. He obtains a larger payoff with a jp-limit 
order since 

7rp(p) =ijpA - T (i)6 =j;A - > o, 

where the last inequality follows from the definition ofjp. Then, we deduce from Lemma 3 
that the patient type submits limit orders for all spreads s E (jp + 1, K). As for the impatient 
type there are two cases: 

Case 1: The impatient type submits a market order for each s E (jp + 1, K) in which case we 
set sc = K. 

Case 2: There are spreads in (1, K) for which the impatient type submits limit orders. In this 
case, let Sc be the smallest spread that an impatient trader creates with a limit order. By 
definition of sc, the impatient trader submits a market order when he faces a spread s E (1, s) 
and a sc-limit order when he faces a spread of size Sc + 1. Then, we deduce from Lemma 3 that 

impatient traders submit a limit order when they face a spread in (sc + 1, K) and a market 
order otherwise. Finally, it cannot be optimal for an impatient trader to submit a limit order 
which creates a spread smaller than his reservation spread. This implies Sc > j*. 

Proof of Proposition 3. Since we assume that Sc = K, the impatient type always submits 
market orders. From Proposition 2, a patient trader submits a market order when he faces a 

spread in (l,jp) and a j;-limit order when he faces a spread of size jp + 1. Repeated 
application of Lemma 3 (see the proof of Proposition 2) shows the existence of spreads 
nl < n2 < ... < nq such that facing a spread in (nh + 1, nh + 1) the patient trader submits 
an nh-limit order for h = 1,... ,q - 1. Clearly, nl =jjp and nq = K. U 

Proof of Proposition 4. When they observe a spread of size n , all the traders submit a market 
order. Therefore T*(n) =-. Let h E {2,...,q}. Suppose that the posted spread is 
s E (nh- + 1,nh). When he observes this spread, a patient trader submits an nh_l-limit 
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order, and an impatient trader submits a market order (Proposition 3). Therefore when the 

posted spread is s E (nh-1 + 1, nh), we have ao(s) = 1- Op, a,,, (s) = 0p, and 

ck(s) = 0,V k ? {O, nh-_}. Thus, Lemma 1 (second part) yields 

Tr(s) = - + OpT*(nh-) , Vs E (n/h- + l, n). (17) 1 - Op A 

Hence, T*(.) is constant for all s E (nh-1 + 1, nh). Using Equation (17), we obtain 

T*(n+l) - T*(nh) -p(T*(nh) - T*(nh-)) for h > 2, (18) 

where p = . Furthermore, using Equation (17) and the fact that T*(nl) = , we obtain 

T*(n2)- r*(nl) = > . 

The claim follows now by repetitive application of Equation (18) and from the fact that 

T*(nl) = . U 

Proof of Proposition 5. Since nh = nh- + 'h, we immediately get that nh= nl + - =2 2k. 
Furthermore, since nq = K, it must be the case that q is the smallest integer such that 
1n + Et=2 ;k > K. The expression for 'Jh is given by Equation (8). U 

Proof of Corollary 1. Recall that q is the smallest integer such that nl + k=2 'k > K. It 
follows that q (a) decreases with Op and bp and (b) increases with A, since 'k increases with 
Op and 6p and decreases with A, for all k { 1,...,q - }. The result is then immediate. U 

Proof of Lemma 2. We first show that the Markov chain given by Wis (a) irreducible and (b) 
a-periodic. 

The Markov chain is irreducible. Observe that given any two statesjl ,j2 with 1 jl < j2 < q 
there is a positive probability that the chain will move from jl to j2 after a sufficiently large 
(though finite) number of transitions. This implies that any two states in the chain commu- 
nicate; hence, the chain is irreducible. 

The Markov chain is a-periodic. Notice that Wq,q = O > 0. This means that when the chain is 
in state q, there is a probability equal to Oj that it will stay in this state for the next n 
transitions, Vn > 1. Since state q communicates with all the other states of the chain, it 
follows that no state has a period greater than 1. Thus the chain is a-periodic. 

These properties imply that the Markov chain is ergodic. Hence, the induced Markov 
chain has a unique stationary probability distribution of spreads (see Feller 1968). Let u = 

(ul,..., uq) denote the row vector of stationary probabilities. The stationary probability 
distribution is obtained by solving q + 1 linear equations given by: 

uW= uand u = 1, (19) 

where e stands for the unit column vector. It is straightforward to verify that the probabil- 
ities given by Equation (10) are a solution of this system of equations. i 

Proof of Proposition 6. The proof follows immediately from Equation (11). i 
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Proof of Corollary 2. In the proof of Corollary 1, we have established that q increases with A. 
Thus qxs < q\x. Using Proposition 5, we obtain 

nk+l(A) = nk(A) + CF(2P ),for A C {As,AF} and k < qxs - 2. 
\C AA / 

Thus, if nk(AF) < nk(Xs), then nk+l (AF) < nk+l (As) for k < qAs - 2. Now, observe that for 
k = 1, we have (using Proposition 5): 

n (A)= CF( . 

We deduce that nl (AF) < nl (As) and conclude that nk((AF) < nk(AS) for k < qx - 1. Further- 
more, nqAs (As) = 

nqAr (AF) = K. Consequently, nk(AF) < 
nqAs (AS) for qAs < k < qAF. This 

proves the first part of the corollary. The second part follows from Corollary 1. U 

Proof of Corollary 3. Let Nh denote the random variable describing the number of trader 
arrivals between two consecutive transactions, conditional on the event that the first trans- 
action took place when the spread was nh. The conditional duration is: 

E(N11) 
Dh= h 1 l,..., q, (20) 

since the expected waiting time between two order arrivals is '. Now we compute E(N^). 

Suppose that the last transaction took place at the smallest possible spread, nl. Following 
this transaction, the new spread in equilibrium is n2. If the next trader is an impatient trader, 
then a new transaction takes place and N1 = 1. If the next trader is a patient trader, he 
submits a limit order which creates a spread equal to nl. Then, the next order is a market 
order since all traders submit market orders when the spread is nl. In this case N1 = 2. We 
deduce that the probability distribution for N1 is: 

Pr(Ni = 1) = 0i and Pr(N = 2) = Op. 

More generally, the same type of reasoning yields the probability distribution for Nh when 
1 < h < q. The largest possible value for Nh is h + 1 and 

Pr(Nh =j)= 01pl for j =,...h, 

and 

Pr(Nh = h + 1) = h. 

We deduce that 

h 

E(Nh) = 0, Zj161' + (h + l)Oe, 
j=l 
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which simplifies as 

E(Nh) = 9 , for 1 < h < q. (21) 

The expression for Dh follows from this equation and Equation (20). Finally, observe that 
when the last transaction takes place at the largest possible spread, nq then the spread 
following this transaction remains nq. Hence, the situation is as if the last transaction took 
place at spread, nq_1. It follows that the probability distributions of Nq and Nq-1 are 
identical. Therefore E(Nq) = E(Nq_ ). The expression for Dq follows. The last part of the 

proposition follows directly from the expression for Dh, h < q. I 

Proof of Corollary 4. The size of spread improvement (in number of ticks) when the current 
spread is nh is given by h = CF(2 .-A Thus when p < 1, 9h decreases with h and when 
p > 1, Th increases with h. This means that when p < 1, spread improvements are inversely 
related to the inside spreads on the equilibrium path. In contrast, when p > 1, spread 
improvements are positively related to the inside spreads on the equilibrium path. U 

Proof of Proposition 7. 

Step 1. We first derive the expected waiting time function associated with the order place- 
ment strategies described in Parts 1, 2, and 3 of the proposition. All traders submit a market 
order when they face a spread equal to n'. It follows that T* (n-) = I. Now suppose that the 
posted spread is sm E (n^l, np ] with h > 2. When he observes this spread, a patient trader 
submits an n _-limit order and an impatient trader submits a market order. Therefore 
ao(s") = 0O and ac_, (s) = Op. It follows that 

T*(s) = +Op + T (n ) + T (sm) Vsm E (n I, nm] for h > 2, (22) A \A 
h- h- h 

which yields 

Tr(sm) = [ Op T (^ V], E (nm , n p ] for h > 2. 

Hence T*(.) is constant for all sm c (n^ 1,n ] with h > 2. Then, following the last part of 
the proof of Proposition 4, it is straightforward to show that the expected waiting time 
function is: 

1 h- 

T*(nm) = 1+2 pk V h = 2,...,qo-1. 
- kl A 

k=l 

This proves the last part of the proposition. Observe that the last equation implies: 

(T*(nm) - Tr(nhm )) P = 2ph- = m - nm (23) 

where the second equality follows from Part 3 of the proposition. 
Step 2. Now we show that the order placement strategies described in Parts 1, 2, and 3 of the 
proposition are optimal given the expression of the waiting time function given in Part 4. 
Equation (23) implies that: 

n - T*(n)6p = n_ - T* (n_) 6p =.. n= T* (n) p for h = 2,..., qo - 1. (24) nh h - h 
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As nl =P and T* (n) = , we have 

n'n - T* (n')p = 0. (25) 

Now Equations (24) and (25) imply that: 

nh - T*(n)6p = 0 for h = l,....o - 1. (26) 

Furthermore, we know (see Step 1) that T*(.) is constant for all sm E (n-'_I, n'] with h > 2: 

T*(s-") =T* (n7) for sm E (n'_ , n<] and h = 2,..., qo, 

which implies that for h E {2, ..., o}: 

s - T*(s"') <i < nh T*(nh )6i for s" E (n,_, nh ) and i E {P,I}. (27) 

Consider an impatient trader who faces a spread with size j" E (n i-, n?]. Note that the 

spread can be on the equilibrium path (" = n') or not (i' < n'). As 6p < 61, Equation (26) 

implies 

n' - T*(n')6 < O for k=l,...h - 1. 

Using Equation (27), we deduce that 

s" - T*(sm")6 < O, Vs'" E (0, j"). 

Thus any limit order yields a negative payoff to the impatient trader. It follows that he 
submits a market order (which has a zero payoff). 

Now consider a patient trader who faces a spread with size j' E (ni_, n"'], with h > 2. 
From Equations (26) and (27), we know that: 

m - T*(s")6p < 0, Vsm ? {0, nm, n ,... nh }. (28) 

Furthermore we know from Equation (26) that: 

n -T*(n)Sp =O, for kE{1,2,...,h-l}. (29) 

We deduce from Equations (28) and (29) (i) that the patient trader's best response belongs to 
the set {n", n7 ..., nI_l } and (ii) that he is indifferent between any spread in this set. Thus, it 
is a best response to choose nh_ for the patient trader when he faces a spread with size 

i' E (nml , n ]. Now consider a patient trader who faces a spread with size j" < n'1. It 
follows from Equation (28) that the patient trader cannot profitably improve upon this 

spread. Therefore he chooses a market order. 

Step 3. Finally, we compute the expression for qo. Since n' = n'_l + 'T (0), we immediately 
get that nh = n + Eh=2 i' (0). Furthermore since nq, = K", it must be the case that qo is 
the smallest integer such that n"T + k- 2 k (O) > Km". As k(O) = (2 we deduce that 
qo is the smallest integer such that: 

6p , (2Pk- )6P > K 
Now> K"'. (30) 

k=2 

Now the smallest integer qo which satisfies Condition (30) is given by: 
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CF('" n( ) ifp 1 and p> p, (31) qo = n(p) (31) 
CF(KmP)+ p) if = 1. 

There is no finite solution if p < pc. Using the definition of pc and the fact that Km> P, it is 

straightforward to check that qo > 2. This achieves the proof of Proposition 7. 0 

Proof of Corollary 5. Using Propositions 5 and 7, we obtain 

2ph-16e 
nk l(0) = nm'(0) + A 

and 

nkl(A) = nm (A) + CF (2A )A, 

for 1 < k < min{qo - 2, q - 2}. Thus if nm(0) < n5m(A), then nk+l(O) < nm+l (A) for 
1 < k < Min{qo - 2, qa - 2}. Now observe that for k = 1, we have (using Propositions 5 
and 7): 

n(0)= A and n (A)= CF E^ A. 

Hence n'(O) < nm(A) since P6 < CF(P). We deduce that n'(0) < n'(A) for 
k < Min{qo - 1, q - 1}. Recall that qo and qa are the smallest integers such that: 

nm_ (0)+2pq0-1 > AKm and nqm (A) + CF 2pq-1 
p A >Km qo- \ AA 

Since nm (0) < nnl -(A), we deduce that qA < qo. Thus we have proved Parts 1 and 2 of 
the corollary. The last part is straightforward since n (A) = KA= Km = nm (0). U 

Proof of Corollary 6. Recall that we measure resiliency by R = -1. As p = , we can also 

write this measure in function of p: R = (Ip- . Let R(A, p) be the value of resiliency for a 

given tick size, A and a given value of the ratio p. In Corollary 5, we have shown that 
qA < q0. We deduce that R(A, p) > R(0, p). Using the expression for qo given in Equation 
(31) (see proof of Proposition 7), it is readily shown that limp, qo = oo. It follows that 

limpp R(0, p) = 0. When A>0, the number of spreads on the equilibrium path cannot be 

larger than K, that is qA < K. We deduce that R(A, p) > () 
P >0 for A>0. 
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