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Abstract

Using the intuition that financial markets transfer risks in business time,
we define “market microstructure invariance” as the hypothesis that the dis-
tribution of risk transfers (“bets”), transactions costs, resilience, and market
efficiency are constant across assets when measured in units of business time. In
calendar time, the invariance hypothesis results in specific empirically testable
invariance relationships among those variables. A meta-model implies that in-
variance relationships are ultimately related to granularity of information flow.
Based on a dataset of 400,000+ portfolio transition orders, we show that quanti-
tative predictions of microstructure invariance concerning bets sizes and trans-
actions costs as functions of observable volume and volatility closely match the
data. We calibrate invariant parameters and discuss implications for financial
markets.
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Introduction

This paper1 proposes a modeling principle for financial markets that we call “mar-
ket microstructure invariance.” When portfolio managers trade financial assets, they
can be modeled as playing trading games in which risks are transferred. Market mi-
crostructure invariance begins with the intuition that these risk transfers, which we
call “bets,” take place in business time. The rate at which business time passes—
market “velocity”—is the rate at which new bets arrive into the market. For actively
traded assets, business time passes quickly; for inactively traded assets, business time
passes slowly. Microstructure invariance hypothesizes that microstructure charac-
teristics, which vary when measured in units of calendar time, become constants—
“microstructure invariants”—when measured in units of business time.

In section 1, we formulate the three invariance principles as empirical hypotheses,
conjectured to apply for all securities and across time:

• The dollar distribution of the risk transferred by a bet is the same when the
risk transferred by a bet is measured in units of business time.

• The dollar transactions cost of executing a bet is the same function of the size
of the bet, when size of the bet is calculated as the amount of risk transferred
by the bet per unit of business time.

• Market efficiency (in volatility units) and market resilience are the same when
measured in units of business time.

When measured in calendar time, the size distribution of risk transfers, the number
of bets, illiquidity, bid-ask spreads, long-term market impact, efficiency, and resiliency
become proportional to powers of market velocity. The velocity itself is proportional
to the two-thirds power of calendar-time “trading activity,” which we define as the
product of empirically observable dollar volume and volatility. This gives specific
testable empirical content to the invariance hypotheses in terms of invariance rela-
tionships. For example, the size distribution of bets, as a fraction of trading volume, is
inversely proportional to the two-thirds power of trading activity. The calendar-time
transactions cost function is the product of an invariant cost function and asset-
specific measure of illiquidity, which is proportional to the cube root of the ratio of
returns variance to dollar volume. Other stock characteristics are also functions of
observable dollar volume and volatility.

Given values of a tiny number of proportionality constants, the invariance relation-
ships allow microscopic features of the market for a financial asset, like the average
size of bets, to be inferred from macroscopic market characteristics such as dollar

1This paper is based on two companion papers: the theoretical paper “Market Microstructure
Invariants: Theory and Implications of Calibration” and the empirical paper “Market Microstruc-
ture Invariants: Empirical Evidence from Portfolio Transitions” (December 2011). Originally, both
papers were parts of one long manuscript “Market Microstructure Invariants” (May 2011).
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volume and volatility. The units in which these proportionality factors are measured
are consistent with their intended economic content. Making empirical predictions
on the basis of invariance principles is well established in physics. Our analysis is
similar in spirit to inferring the size and number of molecules in a mole of gas from
measurable large-scale physical quantities.

In section 2, we develop a meta-model showing that all three microstructure in-
variance hypotheses are consistent with a dynamic infinite-horizon model of market
microstructure with informed trading, noise trading, intermediation (market making),
and endogenous production of information. This meta-model shows that invariance
relationships are ultimately related to granularity of information flow based on the
underlying economics. The invariance relationships are derived under the assump-
tion that the effort required to generate one discrete bet has distributions which do
not vary across stocks and time. The invariance of market efficiency and resiliency
requires an additional assumption that the signal-to-noise ratio per bet is constant
across stocks and time.

In section 3, we discuss why invariance does not undermine or contradict other
theoretical models of market microstructure. Instead, it builds a bridge from theo-
retical models to empirical tests of those models. Invariance provides guidance on
what constitute good empirical proxies for some difficult-to-observe microstructure
concepts such as “order imbalances.” It imposes a discipline on empirical tests by
showing how to specify regressions and scale explanatory variables so that estimated
regression coefficients can be assumed to be constant across observations.

In section 4, we describe the dataset of portfolio transitions data used to test in-
variance relationships concerning bet size and transactions costs. The dataset consists
of more than 400,000 portfolio transition orders executed over the period 2001-2005
by a leading vendor of portfolio transition services. Portfolio transitions are used
by institutional sponsors to transfer funds from legacy portfolio managers to new
managers to replace fund managers, change asset allocations, or accommodate cash
inflows and outflows. Portfolio transitions provide a good natural experiment for
identifying bets and measuring transactions costs.

In section 5, we examine empirical evidence concerning the predictions of invari-
ance for bet size, assuming that portfolio transition orders are proportional to bets.
We find that the size distribution of the product of the ratio of order size as a fraction
of average daily volume and the two-thirds power of trading activity indeed resembles
an invariant log-normal distribution, see figure 2. Results from the regression analysis
also confirm this finding.

The bets have a log-normal distribution with estimated log-variance of 2.53. The
log-normal empirical distribution of bet size (a bi-modal “signed” log-normal distri-
bution for signed bets) has much more kurtosis than the normal distribution often
assumed for analytical convenience in the theoretical literature. The fat tails of the es-
timated log-normal distribution suggest that very large bets dominate trading volume
and dominate volatility even more so. Execution of large bets may trigger noticeable
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market dislocations. We suspect the log-normal empirical distribution of bets may
be related to the distribution of the size of financial firms.

In section 6, we use implementation shortfall to examine whether transactions
costs are consistent with the invariance hypothesis. Even though statistical tests
usually reject the invariance hypotheses, their results are economically close to those
implied by invariance. We find that cost functions can be closely approximated by
the product of asset-specific illiduidity measure (proportional to ratio of volatility
and the one-third power of trading activity) and invariant function (see figure 4).
Invariance itself does not impose a particular functional form on that function, but
we find empirically that it is somewhat better explained by the square root model,
while a linear model better fits transactions costs for large orders in active markets
(both models include spread). According to the meta-model, half of the transactions
cost is, on average, due to permanent price changes and half of the transactions cost
is due to temporary price deviations. We also show that quoted spreads conform
reasonably closely to the predictions of invariance.

The potential benefits of invariance principles for empirical market microstructure
are enormous. In the area of transactions cost measurement, for example, controlled
experiments are costly and natural experiments are rare; even well-specified tests of
transactions cost models tend to have low statistical power. Market microstructure
invariance defines parsimonious structural relationships leading to precise predictions
about how various microstructure characteristics including transactions costs vary
across stocks with different dollar volume and volatility. These predictions can be
tested with structural estimates of a handful of parameters using limited data from
many different stocks.

In section 7, we use the estimates from our empirical tests based on the portfolio
transition data to calibrate microstructure invariants and discuss implied quantitative
relationships. Those implications depend on our assumptions about several additional
parameters, necessary for interpreting the empirical estimates: how much volume can
be attributed to trading of long-term investors rather than intermediaries, how much
volatility is induced by trades rather than public announcements, and how much larger
portfolio transitions are than typical bets. In the future, a better calibration and
triangulation of those parameters and invariants themselves will ultimately sharpen
implications of invariance hypotheses.

In both physics and market microstructure, application of invariance principles
requires that certain assumptions be met. For example, the laws of physics hold in
simplest form for objects traveling in a vacuum, but have to be modified when resis-
tance from air generates friction. Similarly, in market microstructure, we believe that
the invariance relationships may hold only under idealized conditions. For example,
invariance relationships may assume an idealized environment with features like very
small tick size, competitive market makers, and minimal transactions fees and taxes.
Invariance principles provide a benchmark from which the importance of frictions
such as a large tick size, non-competitive market access, or high fees and taxes can
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be measured.
The idea of using invariance principles in finance and economics, at least implicitly,

is not new. The theory of Modigliani and Miller (1958) is an example of an invariance
principle. The idea of measuring trading in financial markets in business time or
transaction time is not new either. The “time-change” literature has a long history,
beginning with Mandelbrot and Taylor (1967), who link business time to transactions,
and Clark (1973), who links business time to volume. More recent papers include
Hasbrouck (1999), Ané and Geman (2000), Dufour and Engle (2000), Plerou et al.
(2000), and Derman (2002). By applying invariance principles based on business
time to market microstructure, we shift the intuition of the time-change literature
from understanding the relationship between trading volume and business time to
understanding the relationship between risk transfer and business time.

1 Market Microstructure Invariance as an Empir-

ical Hypothesis

Microstructure characteristics such as order size, order arrival rate, price impact,
bid-ask spread, price resilience, and market efficiency vary across assets and across
time. We define “market microstructure invariance” as the empirical hypothesis that
this variation almost disappears when these characteristics are examined at an asset-
specific “business time” scale which measures the rate at which risk transfer takes
place. Although the discussion below is based on cross-sectional implications of in-
variance for equity markets for individual stocks, we think that invariance principles
generalize to markets for commodities, bonds, currencies, and aggregate indices such
as S&P 500 futures contracts. For simplicity, we assume that a bet transfers only
idiosyncratic risk about a single security, not the market risk; modeling both idiosyn-
cratic and market risks is a subject for future research that would require developing
a more complicated factor model.

In the market for an individual stock, institutional asset managers buy and sell
shares to implement “bets.” We think of a bet as a decision to acquire a long-
term position of a specific size in a stock, distributed approximately independently
from other such decisions. Intermediaries with short-term trading strategies—market
makers, high frequency traders, and other arbitragers—clear markets by taking the
other side of bets placed by long-term traders.

Notation. Over short periods of time, we assume that the bet arrival rate can be
approximated by a compound Poisson process, with γ denoting the bet arrival rate
of independently distributed bets, measured in units of bets per calendar day, and
Q̃ denoting a random variable with probability distribution representing the signed
size of bets, measured in shares (positive for buys, negative for sells), where E{Q̃} is
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approximately zero. The bet arrival rate γ measures measures market velocity, the
rate at which business time passes for a particular stock.

Over long periods of time, we assume that the inventories of intermediaries do
not grow in an unbounded manner; this requires bets to have small negative auto-
correlation. Furthermore, both the bet arrival rate and the distribution of bet size
change over longer periods of time as the level of trading activity in a stock increases
or decreases.

Bets can be difficult for researchers to observe. Consider an asset manager who
places one bet by purchasing 100,000 shares of IBM stock. The bet might be imple-
mented by placing orders over several days, and each of the orders might be “shred-
ded” into many small trades showing up on the ticker at various prices. Since bets
represent independent increments in the intended order flow, the various trades which
implement the bet should all be added together to recover the size of the original bet.
Bets may be difficult to identify from TAQ data.

Similarly, if an analyst issues a buy recommendation to ten different customers
and each of the customers quickly places executable orders to buy 10,000 shares, it
might be appropriate to think of the ten orders as one bet for 100,000 shares. The
ten individual orders lack statistical independence. The bet results from a new idea,
which can be shared.

We assume that, on average, each unit of bet volume results in ζ units of total
volume, i.e., one unit of bet volume leads to ζ−1 units of intermediation volume. On
a given calendar day, expected trading volume (in shares) is given by V:=ζ/2 ·γ ·E|Q̃|
(counting a buy matched to a sell only once). We define “expected bet volume” by

V̄ := γ · E|Q̃| = 2

ζ
· V. (1)

We can estimate expected bet volume V̄ by combining an estimate of expected market
volume V with a value for the “intermediation multiplier” ζ. If all trades are bets and
there are no intermediaries, then ζ = 1, since each unit of trading volume would match
a buy-bet with a sell-bet. If a monopolistic specialist intermediates all bets without
involvement of other intermediaries, then ζ = 2. If each bet is intermediated by
different market makers, each of whom lays off inventory by trading with other market
makers, then ζ = 3. If positions are passed around among multiple intermediaries,
then ζ ≥ 4.

Let σ denote the percentage standard deviation of a stock’s daily returns. Some
price fluctuations result from release of information directly without trading, such as
overnight news announcements. Let ψ2 denote the fraction of returns variance σ2

which results from order flow imbalances, which we assume ultimately result from
bets. We define “trading volatility” as the standard deviation of returns resulting
from bet-related order flow imbalances:

σ̄ := ψ · σ. (2)

Let P denote the price of the stock; then dollar trading volatility is P · σ̄ = ψ · P · σ.
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Invariance of Bets. In one unit of business time 1/γ, a bet of dollar size PQ̃
generates a standard deviation of dollar mark-to-market gains or losses equal to P |Q̃|·
σ̄γ−1/2. The signed standard deviation, PQ̃ · σ̄γ−1/2, which is positive for buys and
negative for sells, measures both the direction and the size of the risk transfer resulting
from the bet. It is measured in dollars per unit of business time 1/γ.

Market microstructure invariance hypothesizes that the dollar distribution of risks
transferred by bets is the same for all stocks when the risk transferred by a bet is
measured in units of business time. Since PQ̃·σ̄γ−1/2 measures the risk transferred by
a bet per unit of business time, invariance implies that the distribution of PQ̃ · σ̄γ−1/2

does not vary across stocks. Letting “∼” mean “is equal in distribution to,” there is
some random variable Ĩ with an “invariant distribution” such that for all stocks,

PQ̃ · σ̄γ−1/2 ∼ Ĩ . (3)

The distribution of risk transfer Ĩ is a market microstructure invariant.
By analogy with bets, we define “trading activity” W as the product of expected

dollar trading volume PV and calendar returns volatility σ, i.e., W := σ · PV . Sim-
ilarly, define “bet activity” W̄ as the product of dollar bet volume PV̄ and trading
volatility σ̄, i.e., W̄ := σ̄ · PV̄ . Given values of the volume multiplier ζ and the
trading volatility factor ψ, we can convert more-easily-observed trading activity W
into less-easily-observed bet activity W̄ using the relationship W̄ = W · 2ψ/ζ.

Since equation (3) implies Q̃ ∼ γ1/2P−1σ̄−1 · Ĩ and expected bet volume V̄ =
γ · E|Q̃|, bet activity W̄ can be expressed as a function of the unobservable speed of
business time γ:

W̄ = σ̄ · P · V̄ = σ̄ · P · γ · E|Q̃| = γ3/2 · E|Ĩ|. (4)

In equation (4), the exponent 3/2 has simple intuition. Suppose business time γ
speeds up by a factor of 4, but calendar trading volatility σ̄ does not change. Then
trading volatility in units of business time σ̄γ−1/2 falls by 1/2. The invariance principle
(3) therefore requires bet size Q̃ to increase by a factor of 2 to keep the distribution
of Ĩ invariant. The resulting increase in bet volume by a factor of 8 = 43/2 can be
decomposed into an increase in the number of bets by a factor of 82/3 = 4 and the
size of bets by a factor of 81/3 = 2. As trading activity increases, the number of bets
increases twice as fast as their size.

Invariance makes it possible to infer the bet arrival rate γ and the average size of
bets E|Q̃| from the level of bet activity W̄ , up to some proportionality constant which
does not vary across stocks. Define the constant ι := (E|Ĩ|)−1/3. Solving equation
(4) for γ in terms of W̄ yields

γ = W̄ 2/3 · ι2, E|Q̃| = W̄ 1/3 · 1

Pσ̄
· ι−2. (5)

The shape of the entire distribution of bet size Q̃ can be obtained by plugging γ from
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(5) into (3). Expressing bet size Q̃ as a fraction of expected bet volume V̄ , we obtain

Q̃

V̄
∼ W̄−2/3 · Ĩ · ι. (6)

Equations (5)) and (6) summarize the implications of invariance for bet size and
arrival rate. We test these implications in section 5 below.

Invariance of Transactions Costs. Market microstructure invariance also makes
empirical predictions about transactions costs. Market microstructure invariance hy-
pothesizes that the dollar expected transactions cost of executing a bet is the same
function of the size of the bet for all stocks, when the size of the bet is calculated
as the dollar amount of risk transferred by the bet per unit of business time. Since
the risk transferred per unit of business time by a bet of Q̃ shares is measured by
Ĩ = PQ̃ · σ̄γ−1/2, invariance of trading costs implies that there is an “invariant trans-
actions cost function” CB(Ĩ) which measures the execution cost of transferring the
risk represented by Q̃ = Ĩ/(σ̄Pγ−1/2) shares. The transactions cost function CB(.) is
a market microstructure invariant.

Suppose, for example, that a 99th percentile bet in stock A is for $10million (e.g.,
100, 000 shares at $100 per share) while a 99th percentile bet in stock B is for $1
million (e.g., 100, 000 shares at $10 per share). The invariance of the distribution of
bet size implies that value of Ĩ is the same for both bets because they occupy the
same percentile in the bet size distribution for their respective stocks. Even though
the bet in stock A has 10 times the dollar value of the bet in stock B, invariance of
transactions costs implies that the expected dollar cost of executing each bet is the
same because both bets transfer the same amount of risk per stock-specific unit of
business time. The function CB(.) is the same function for all stocks. Measured in
basis points, however, invariance implies that the transactions cost for Stock B is 10
times greater than for stock A.

Let C(Q̃) denote the stock-specific cost of executing a bet of Q̃ shares, expressed
as a fraction of the notional value of the bet |PQ̃| (i.e., in units of 10−4 basis points).
Define C̄B := E{CB(Ĩ)}. Using equation (3) yields

C(Q̃) =
CB(Ĩ)

|PQ̃|
=

C̄B

E|PQ̃|
· CB(Ĩ)/C̄B

|Ĩ|/E|Ĩ|
. (7)

Let f(Ĩ) := [CB(Ĩ)/C̄B]/[|Ĩ|/E|Ĩ|] denote the invariant “average cost function”
for executing a bet Ĩ. This function is defined in terms of deviations of functions
CB(Ĩ) and |Ĩ| from their means. For example, if I denotes a bet 5 times greater than
than mean bet size E|Ĩ| and such a bet has a transactions cost 10 times greater than
the mean cost C̄B, then f(I) = 2.

Let 1/L := C̄B/E|PQ̃|) be an asset-specific measure of illiquidity equal to the
dollar-volume-weighted expected cost of executing a bet. For an asset manager who
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places many bets in the same stock, this expresses expected transactions cost as a
fraction of the dollar value traded (basis points × 10−4). Equation (5) yields (recall
ι := (E|Ĩ|)−1/3)

1/L := σ̄W̄−1/3 · ι2C̄B = [PV̄ /σ̄2]−1/3 · ι2C̄B. (8)

The cost of executing a bet of Q̃ shares can be written

C(Q̃) = σ̄W̄−1/3 · ι2C̄B · f

(
W̄ 2/3

ι
· Q̃
V̄

)
=

1

L
· f(Ĩ). (9)

The cost function is the product of the asset-specific illiquidity measure 1/L and an
invariant transactions cost function f(Ĩ). We test this relationship empirically in
section 6.

The liquidity measure L = [ι2C̄B]
−1 · [PV̄ /σ̄2]1/3 is an intuitive and practical

alternative to other measures of liquidity, such as Amihud (2002) and Stambough
and Pastor (2003). To implement L empirically, it is simpler to define L in terms of
expected dollar trading volume PV and expected returns volatility σ rather than in
terms of dollar bet volume PV̄ and trading volatility σ̄. We have

L =

[
2(ι2C̄B)

−3

ζψ2

]1/3
·
[
PV

σ2

]1/3
. (10)

The idea that liquidity is related to dollar volume per unit of returns variance
PV/σ2 is intuitive. Traders believe that transactions costs are low in markets with
high dollar volume and high in markets with high volatility. If the intermediation
multiplier ζ and trading volatility factor ψ do not vary across stocks, then L ∝
[PV/σ2]

1/3
becomes a simple index of liquidity.

The liquidity measure L = (ι2C̄B)
−1 · [PV̄ ]1/3 · [σ̄]−2/3 is similar to the definition of

“market temperature” χ = σ̄ ·γ1/2 in Derman (2002); substituting for γ from equation
(5), we obtain χ = ι · [PV̄ ]1/3 · [σ̄]4/3 ∝ L · σ2.

Invariance does not imply a specific functional form for f(.). In our analysis,
we focus on two specific functional forms: linear price impact costs and square root
price impact costs. For both functional forms, we also allow a constant bid-ask
spread cost component. Linear price impact is consistent with price impact models
based on adverse selection, such as Kyle (1985). Square root price impact functions
are consistent with empirical findings in the econophysics literature, such as Gabaix
et al. (2006); some papers in this literature find an exponent closer to 0.60 than the
square root exponent 0.5, such as Almgren et al. (2005).

For the linear model, we write f(Ĩ) as the sum of a bid-ask spread component
and a linear price impact cost component, f(Ĩ) := (ι2C̄B)

−1 · κ̄0 + (ιC̄B)
−1 · κ̄I · |Ĩ|,

where invariance implies that the bid-ask spread cost parameter κ̄0 and the market
impact cost parameter κ̄I , as well as constants ι and C̄B, do not vary across stocks.

8



The linearity of f(.) as a function of |Ĩ| implies that CB(Ĩ) is a quadratic function of
|Ĩ|. The proportional cost function C(Q̃) from (9) is therefore given by

C(Q̃) = σ̄

[
κ̄0 · W̄−1/3 + κ̄I · W̄ 1/3 · |Q̃|

V̄

]
. (11)

When bets are measured as a fraction of expected trading volume and transactions
costs are measured in basis points, bid ask spread costs are decreasing in bet activity
W̄ and market impact costs are increasing in bets activity W̄ . When transactions
costs in basis points are further scaled in units of trading volatility σ̄, equation (11)
says that bid-ask spread costs are proportional W̄−1/3 and market impact costs are
proportional to W̄ 1/3 for a given fraction of volume.

For the square root model, we write f(Ĩ) as the sum of a bid-ask spread component
and a square root function of |Ĩ|, obtaining f(Ĩ) := (ι2C̄B)

−1κ̄0+(ι3/2C̄B)
−1κ̄I · |Ĩ|1/2,

where invariance implies that κ̄0, κ̄I , ι, and C̄B do not vary across stocks. The
proportional cost function C(Q̃) from (9) is given by

C(Q̃) = σ̄

κ̄0 · W̄−1/3 + κ̄I ·

∣∣∣∣∣Q̃V̄
∣∣∣∣∣
1/2
 . (12)

When transactions costs are measured in units of trading volatility σ̄, bid-ask spread
costs remain proportional to W̄−1/3, but the square root model implies that the bet
activity coefficient W̄ 1/3 cancels out of the price impact term. Indeed, the square root
is the only function for which invariance leads to the empirical prediction that impact
costs (measured in units of returns volatility) depend only on bet size as a fraction of
bet activity Q̃/V̄ and are not a function of any other stock characteristics, including
the level of bet activity W̄ . In the context of invariance, the square root model
places the strongest possible empirically testable restrictions on which characteristics
of the market for a stock can affect transactions costs. If there are no bid-ask spread
costs (κ̄0 = 0), then the square root model implies the parsimonious transactions cost
function C(Q̃) = σ̄ · κ̄I · [|Q̃|/V ]1/2. We calibrate cost functions in section 5 below.

The model in section 2 will show that permanent and temporary components of
transactions costs each accounts for exactly half of total costs. These components do
not necessary correspond directly to a linear (or square root) terms and fixed bid-ask
spread terms in C(Q̃). Some price impact costs may be temporary.

Invariance of Market Efficiency and Resilience. Black (1986) defines an ef-
ficient market as “one in which price is within a factor 2 of value.” We think of
“fundamental value” F as the value to which a stock price would converge if traders
continuoursly expended huge resources acquiring information about its value. Let
Σ denote the variance of the log-difference between price and fundamental value:
Σ := var{ln(P/F )}. We measure “market efficiency” by 1/Σ1/2. If the “factor of 2”
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in Black’s definition represents a ξ standard deviation event, then the spirit of Black’s
definition implies that a market is efficient if 1/Σ1/2 ≤ ξ−1 · ln(2).

Our measure of market resilience is the mean-reversion parameter ρ (per calendar
day) measuring the speed with which a random shock to prices, resulting from exe-
cution of an uninformative bet, dies out over time. The half-life of an uninformative
shock to prices is ρ−1 · ln(2).

Market microstructure invariance hypothesizes that (1) market efficiency is the
same for all stocks if measured in units of volatility per unit of business time and
(2) market resilience is the same for all stocks if measured in units of business time.
Invariance of market efficiency implies that the ratio Σ1/2/[σ̄γ−1/2] is invariant across
stocks. Since L ∝ σ̄γ−1/2, invariance implies proportionality between liquidity L and
efficiency 1/Σ1/2. Invariance implies that the ratio ρ/γ is invariant stocks stocks.
Thus, invariance implies that resilience is proportional to market velocity, the rate
at which business time passes. Using equation (5), invariance implies (recall ι :=
(E|Ĩ|)−1/3)

Σ1/2 ∼ σ̄ · W̄−1/3 · ι−1. (13)

ρ ∼ W̄ 2/3 · ι2. (14)

When trading activity increases by a factor of 8, invariance implies that resilience
increases by a factor of 4 and market efficiency increases by a factor of 2. Invariance
suggests that the factor of 2 in the definition of market efficiency in Black (1986)
should be modified to vary across stocks according to equation (13).

Intuitively, the unstated invariant proportionality factors implied by equations
(13) and (14) should be related to the information content of bets. More informative
bets should make markets more efficient and resilient. This intuition is made precise
in the meta-model in section 2.

We do not examine empirically the predictions of equations (13) and (14); they
are interesting topics for future research.

Discussion. Invariance implies that trading liquidity and funding liquidity may be
two sides of the same coin. Trading liquidity is measured by L ∝ σ̄ · W̄ ∝ σ̄ · γ−1/2.
A good measure of funding liquidity is the repo haircut that sufficiently protects a
creditor from losses if the creditor sells the collateral due to default by the borrower.
Such a haircut should be proportional to the volatility of the asset’s return over
the horizon during which the collateral would be liquidated. Invariance of resiliency
ρ suggests that this horizon should be proportional to business time 1/γ, making
volatility over the liquidation horizon proportional to σ̄ · γ−1/2, which is proportional
to L. Thus, both trading liquidity and funding liquidity are measured by L.

The velocity of the market suggests a speed with which collateral should be liqui-
dated without disrupting the normal price-formation process. In a fire sale, collateral
is liquidated very quickly relative to the natural velocity of the market, leading to
short-term over-reaction and high liquidation costs.

10



Invariance is consistent with the Modigliani-Miller irrelevance of leverage and
splits. Invariance relationships do not change if a company levers up its equity by
paying a debt-financed cash dividend or implements a stock split.

Invariance is also consistent with irrelevance of the units in which time is measured.
This is unlike some other models, such as ARCH and GARCH. The values of Ĩ, CB(Ĩ),
f(Ĩ), and 1/L—and therefore the economic content of the predictions of invariance—
remain the same regardless of whether researchers measure γ, V̄ , σ̄, and W̄ 2/3 using
daily weekly, monthly, or annual units of time.

The values of Ĩ and CB(Ĩ) are measured in dollars. If invariance relationships
are applied to an international context in which markets have different currencies or
different real exchange rates or applied across periods of time where the price level is
changing significantly, invariance is consistent with the idea that these nominal values
should be deflated by the real productivity-adjusted wages of finance professionals in
the local currency of the given market. Like fundamental constants in physics, such
deflation would make the invariants Ĩ and CB(Ĩ) dimensionless.

We do not expect invariance to hold perfectly across different markets and differ-
ent times periods. We expect transactions costs, particularly bid-ask spread costs,
to be influenced by numerous institutional features, such as government regulation
(e.g., short sale restrictions or customer order handling rules), transactions taxes,
competitiveness of market making institutions and trading platforms, tick size, mar-
ket fragmentation, and technological change. To the extent that, say, minimum tick
size rules affect bid-ask spread costs, we believe that market microstructure invariance
can be used as a benchmark against which the effect of tick size on bid-ask spread
costs can be evaluated.

2 Market Microstructure Invariance as an Impli-

cation of a Structural Meta-Model

In this section, we derive invariance relationships as endogenous implications of a
steady-state structural “meta-model” of informed trading, noise trading, and inter-
mediation (market making).

Our set-up has the following structure. The unobserved “fundamental value” of
the stock follows geometric Brownian motion with log-standard-deviation σ. Informed
traders face given costs cI of acquiring information of given precision τ ; they place
informed bets Q̃ which incorporate a given fraction θ of the information into prices.
Noise traders place bets which turn over a constant fraction η of the stock’s float of N
shares, mimicking the trading of informed traders even though their private “signal”
has no information value, as in Black (1986). Intermediaries set prices by filtering
the order flow for information about the fundamental value. They lose money from
being “run over” by informed bets, but they break even from bid-ask spread costs,
temporary impact costs, or other trading costs imposed on all traders. The model
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endogenously determines the rate of informed trading γI , the rate of uninformed
trading γU , the distribution of bet sizes Q̃, market efficiency 1/Σ1/2, market resilience
ρ, the illiquidity measure 1/L, and a long-term permanent price impact parameter λ
which in the long run reveals the information content of the order flow.

Invariance relationships come about through the following intuition: Suppose the
number of noise traders increases for some exogenous reason. In the meta-model, this
happens when market capitalization increases, keeping the share turnover of noise
traders constant. As a result, market depth increases and, consequently, the number
of informed traders increases, since their bets now are more profitable. If the number
of informed traders increases by a factor of 4, then each of their bets accounts for a
4 times smaller fraction of returns variance. The volatility per unit of business time
decreases by a factor of 2. The meta-model shows that market efficiency and liquidity
both increase by a factor of 2, as a result of which informed traders exactly cover the
cost of private signals by submitting bets 2 times as large as before. The overall
dollar volume in the market increases by a factor of 8. As a result, the “one-third,
two-thirds” intuition comes about: One-third of the increase in dollar volume comes
from changes in bet size (81/3 = 2) and two-thirds comes from changes in the number
of bets (82/3 = 4).

We call our framework a “meta-model” because, unlike Kyle (1985), we do not
model explicitly the process by which informed traders dynamically execute bets and
intermediaries dynamically set prices in continuous time. Our meta-model becomes
a closed “model” with the same invariance properties when we make the explicit
simplifying assumption that informed and noise traders sequentially enter the market
and trade only once, at one price, as in Glosten and Milgrom (1985).

Although the model is motivated by the time series properties of a single stock as
its market capitalization changes, the model applies cross-sectionally across different
stocks under the assumption that the exogenously assumed cost of a private signal
cI is constant across all stocks. We show that this one “deep” structural assumption
imposes a granularity on information which drives invariance relationships based on
the granularity of bet size.

Both the invariance of bets and the invariance of trading costs hold precisely
when the cost of a signal cI is constant in the form hypothesized in section 1 when
volatility σ, float N , noise turnover rate η, the fraction of informed bets (which we
show equals θ), the precision of informed signals τ , and share price P vary across
stocks. The model reveals that the invariance of market efficiency and resilience
requires stronger assumptions: The informativeness of a bet, measured as the product
of signal precision τ and the squared fraction of informed traders θ2, must be constant
across stocks.

In the remainder of this section, we sketch out the details of the meta-model,
using notation consistent with the previous section. The meta-model operates with
concepts of bet volume V̄ and bet volatility σ̄; for notational convenience we assume
V = V̄ and σ = σ̄. It is straightforward to adjust the meta-model by applying
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equations (1) and (2).

Fundamental Value and Private Information. Let the unobserved “fundamen-
tal value” of the asset follow a geometric brownian motion given by V (t) := exp[σ ·
B(t) − σ2t/2], where B(t) follows standardized Brownian motion (with var{B(t +
∆t)− B(t)} = ∆t) and the constant σ measures the volatility of fundamental value.
Based on the history of past order flow, we assume that the market’s conditional
estimate of σ · B(t) is distributed approximately N [σ · B̄(t),Σ(t)]. This is consistent
with the price being given approximately by P (t) = exp[σB̄(t) + Σ(t)/2 − σ2t/2].
Here Σ1/2 measures the standard deviation of the log-difference between price and
fundamental value; 1/Σ1/2 measures market efficiency.

When the nth bet is informed, the informed trader observes at some date tn a
signal ĩn given by ĩn = τ 1/2 · Σ−1/2(tn) · σ · [B(tn) − B̄(tn)] + Z̃In, where τ is an
exogenous constant parameter measuring the precision of the signal and the noise
Z̃In ∼ NID(0, 1) is distributed independently from the process B(t). Note that τ also
measures the signal-to-noise ratio. We assume τ is small enough that var{̃iIn} ≈ 1.
For notational convenience, we suppress the subscripts n from here on. When an
informed trader observes a signal ĩ, he updates his estimate of B(t) from B̄(t) to
B̄(t)+∆BI(t). Using a continuous time linear approximation in which τ is small, we
have

∆BI(t) ≈ τ 1/2 · Σ1/2/σ · ĩ(t). (15)

The dollar price change implied by ∆BI(t) is approximately

E{V (t)−P (t) |P (t),∆BI(t)} ≈ P (t)·
(
exp[σ · (∆BI(t) + ∆BI(t)

2/2)]− 1
)
≈ P (t)·σ·∆BI(t).

(16)
To simplify matters, we assume that filtering is linear, implying a linear long-term

price impact. Even though a proper filtering—involving a mixture of normals—is not
exactly linear, we conjecture a linear approximation can be used in a large-market
limit in which there are many bets, each of which has small information content.
We use continuous-time approximations related to steady state behavior to keep the
model simple and intuitive, even though linearity holds precisely only in the limit,
when dollar trading volume becomes infinite.

Informed Trading. Informed traders arrive in the market at endogenously deter-
mined rate γI , each informed trader acquires one private signal ĩ, then places one and
only one bet, which is executed by trading in some un-modeled manner over time. If
we modeled the informed trader’s trading strategy explicitly, we would be describing
a “model,” not a “meta-model.” Without solving an optimization problem explicitly,
we assume that an informed trader executes a bet of Q̃ shares as linear multiple of
∆BI(t) in such a way that the expected long-term permanent price impact is an ex-
ogenous constant fraction θ of the impact P (t)·σ ·∆BI(t) that would fully incorporate
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the signal value into prices, i.e.,

Q̃ = θ/λ · P (t) · σ ·∆BI(t). (17)

If the informed trader were to incur no trading costs, his expected “paper trading”
trading profits, denoted π̄I , would be

π̄I =
θ · P 2 · σ2 · E{∆B2

I}
λ

. (18)

Expected “permanent” price impact costs from moving continuously along a linear
demand schedule of slope λ, denoted CP , are

C̄P =
1

2
λ · E{Q̃2} =

θ2 · P 2 · σ2 · E{∆B2
I}

2 · λ
. (19)

Constant Rate of Noise Trading. Noise traders arrive randomly in the market
at endogenous rate γU . Each noise trader places one bet which mimics the size
distribution and unmodeled execution strategy of an informed bet even though it
contains no information. Noise traders are assumed to trade randomly, turning over
on average a constant percentage η of the market capitalization of the firm per day.
Let informed trades be distributed as the random variable Q̃ as in equation (17). If
the price of the stock is P and shares outstanding is N , then market cap is P · N
dollars, share volume from noise traders is expected to be η · P · N dollars per day,
and the arrival rate of noise trades γU solves the equation

γU · E{|Q̃|} = η ·N. (20)

The combined rate at which bets are placed by informed traders and noise traders
is γ = γI + γU . Bets of informed and noise traders add up into daily trading volume,

γ · E{|Q̃|} = V. (21)

Permanent Market Depth. Risk neutral intermediaries (market makers) are as-
sumed to set prices such that the permanent price impact of anonymous trades by in-
formed and noise traders reveals on average the information in the order flow. Markets
makers update prices by λ·Q̃, taking into account that a bet can be either an informed
bet Q̃ = θ/λ·P (t)·σ ·∆BI(t) with information content P (t)·σ ·∆BI(t) and probability
γI/(γI + γU) or a noise bet with the same probability distribution but with no infor-
mation content. The resulting linear regression coefficient is λ = γI/(γI + γU) · λ/θ.
Canceling λ from both sides, the regression coefficient implies that arrival rates of
informed and noise bets γI and γU adjust endogenously so that the probability that
the bet is informed equals the exogenously assumed fraction of the informed trader’s
signal incorporated into prices θ:

θ = γI/(γI + γU). (22)

Equations (20), (21), and (22) imply that, in terms of exogenous variables, V is given
by V = η ·N/(1− θ).
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Temporary and Permanent Price Impact Costs. The long-term impact of a
bet of size Q̃ moves the price from P to P + λ · Q̃. If the bet is executed by moving
continuously along a linear demand schedule with slope λ, then the average execution
prices is P+λQ̃/2. On average, the permanent price impact cost is C̄P := λE{Q̃2}/2.
Each bet also incurs an additional “transitory” execution cost with expected value
C̄T . These costs, which might represent bid-ask spread costs or temporary price
impact costs, are profits for market makers. The total expected costs of executing a
bet are denoted C̄B := C̄P + C̄T .

The equilibrium level of costs allows market makers to break even. Thus, C̄T is
determined by equating the expected permanent market impact costs C̄P and other
costs C̄T of both informed and uninformed traders to the expected pre-impact profits
of informed traders:

(γI + γU) · (C̄P + C̄T ) = γI · π̄I . (23)

Using (18) and (19), this implies

C̄P = C̄T =
C̄B
2

=
λ · E{Q̃2}

2
=
θ2 · P 2 · σ2 · E{∆BI(t)

2}
2 · λ

. (24)

Alternatively, if traders announce entire quantities they want to trade and market
makers set one price at which all quantities are traded, the execution price is the
permanent impact price P + λQ̃, not P + λQ̃/2; this implies C̄P = C̄T = C̄B/2 and
leads to the same results.

Figure 1: Intuition of Meta-Model.
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There is price continuation after an informed trade and mean reversion
after a noise trade.

Figure 1 illustrates informally and non-rigorously the intuition of what happens
“on average.” Informed traders incorporate only fraction θ of their information into

15



prices, pay transactions costs C̄P+C̄T and expect to make π̄I−C̄P−C̄T in net trading
profits after prices fully incorporates their information. Noise traders execute orders
which would earn nothing if there were no transactions costs but incur transactions
costs C̄P + C̄T . As in Treynor (1995), losses of market makers on trading with
informed traders γI · (π̄I − C̄P − C̄T ) are equal to their gains on trading with noise
traders γU · (C̄P + C̄T ).

The rate at which informed traders place bets γI is obtained by equating the
expected profits from trading on a signal to the sum of (1) permanent market impact
costs CP , (2) other trading costs CT , and (3) the cost of acquiring private information
denoted cI :

π̄I = C̄P + C̄T + cI . (25)

It is necessary to have temporary impact costs in the meta-model to sustain an
equilibrium. Without temporary impact costs, it would be impossible for market
makers to break even trading at the average price of P + λQ̃/2 instead of the break-
even “permanent impact” price of P + λQ̃. Because of temporary impact, the “last”
trades in a bet will usually be executed at prices higher than the long-term permanent
impact value of P + λQ̃. Market makers will usually be making profits on the “last”
trades in a bet during the subsequent mean-reversion of prices to the long-term level,
even through they will usually be losing money from the very “first” trades in a
bet during the subsequent continuation of prices to the long-term level. On average,
market makers break even. Somewhat similar intuition underlies a “fair-pricing” rule
saying that the average execution price has to be equal to the post-trade reversion
price, as suggested in Farmer et al. (2012). Our use of the terms “permanent” and
“transitory” are somewhat non-standard.

The existence of temporary impact is important not only in the meta-model but
also in most models, in which large bets are executed as sequences of many small
trades. In the continuous-time version of Kyle (1985), an informed trader executes
many “small” positively correlated trades X of order dt at price increments λ · X
of order dt; the informed trader’s “transitory” bid-ask spread costs of order dt2 are
economically inconsequential. Noise traders dominate volume with “large” trades X
of order dB̃ at price increments λ · X of order dB̃, continuously paying to market
makers transitory bid-ask spread costs of order dt. This allows market makers to
break even, even though they make losses trading with informed traders.

As in section 1, let 1/L := C̄B/E|PQ̃| denote the expected cost of executing a
bet, denoted in basis points.

Kalman Filter. In a steady state (which is reached only as an approximation), the
volatility of prices reflects the arrival of new information, implying

γ · θ2 · P 2 · σ2 · var{∆BI(t)} = P 2 · σ2, (26)

Note that θ2 · σ2 · var{∆BI(t)} measures returns variance per unit of business time
while σ2 measures returns variance per unit of calendar time. After canceling P · σ,

16



it follows that

var{∆BI(t)} =
1

γ · θ2
. (27)

Since ∆BI(t) ≈ τ 1/2 · Σ1/2/σ · ĩ(t) and var(̃i) ≈ 1, we have

Σ/σ2 =
1

γ · τθ2
. (28)

Since Σ = σ2 · var{B(t)− B̄(t)}, the value of 1/Σ1/2 measures “market efficiency”
consistently with section 1, as the accuracy with which market prices reveal the
unobserved fundamental value of the asset. More accurate prices reduce the value of
private signals, in this sense making it harder for informed traders to profit from their
private information. According to equation (28), more accurate signals (increasing
τ) and more frequent bets (increasing γ) make market price more efficient in a steady
state (reducing Σ1/2).

Market efficiency is closely related to resiliency. As a result of each bet, market
makers update their estimate of B(t) − B̄(t). A trade is informed with probability
θ and, if informed, incorporates a fraction θ of its information content into prices,
leading to a price update θτ 1/2Σ1/2/σ · {τ 1/2Σ−1/2 · σ · [B(t)− B̄(t)] + Z̃I} from (15).
A trade is uninformed with probability 1 − θ, adding noise θ · τ 1/2Σ1/2 · σ · Z̃U into
prices. As a result, the error B(t) − B̄(t) mean-reverts to zero by fraction θ2τ as a
result of each bet. Since bets occur at rate γ per day, the γ from (28) shows that the
error B(t)− B̄(t) mean-reverts to zero at rate

ρ := σ2 · Σ−1 (29)

per day. Holding volatility constant, resiliency ρ is larger in more efficient markets
with smaller Σ1/2.

Invariance Theorem. In the meta-model, the number of bets per day γ, their
size Q̃, liquidity L, efficiency (1/Σ)1/2, and resilience ρ are related to price P , share
volume V , volatility σ, and trading activity W = P · V · σ by the following invariance
relationships, which are consistent with the conjectured invariance relationships in
equations (5), (6), (8), (28), and (29):

γ =

(
λ · V

σ · P ·m

)2

=

(
E{|Q̃|}
V

)−1

=
(σ · L)2

m2
=

σ2

θ2τ · Σ
=

ρ

θ2τ
=

(
W

m · C̄B

)2/3

.

(30)
The risk transferred by a bet Q̃ in business time Ĩ satisfies the following equation:

Ĩ :=
P · Q̃ · σ
γ1/2

=
Q̃

V
·W 2/3 · (m · C̄B)1/3 = C̄B · ĩ. (31)

Here, τ is precision of a signal, θ is fraction of information ĩ incorporated by informed
traders, C̄B is expected cost of a bet, and m := E{|Q̃|}/{E{Q̃2}}1/2 = E{|̃i|}.
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Proof of Invariance Relationships. Using equation (17), we write equation (21)
for daily volume, equation (24) for expected costs, and Kalman-filtering equation (26)
as a system of three equations:

γ · E{|Q̃|} = V, (32)

C̄B = λ · E{Q̃2}, (33)

γ · λ2 · E{Q̃2} = P 2 · σ2. (34)

In the three equations (32), (34), and (34), think of γ, λ, E{Q̃2}, and E{|Q̃|} as
endogenous variables and V , C̄B, P , and σ as exogenous. Since there are three
equations and four unknowns, we need a fourth equation. Using a normal distribution
for Q̃, the fourth equation is the moment ratio m = E{|Q̃|}/{E{Q̃2}}1/2. Since Q̃ is
approximately normally distributed in our meta-model, we have m ≈ (π/2)1/2. For
different distributions in different models, m will take different values. If we think of
m as an exogenous parameter, we now have four equations in four unknowns.

Using the definition of m and the definition of trading activity W = P · V · σ, we
can solve equations (32), (33), and (34) for γ, E{|Q̃|}, and λ, as follows. Multiply
the product of (32) and (33) by the square root of (34) and solve for γ to obtain

γ =

(
1

m · C̄B

)2/3

·W 2/3. (35)

Divide the product of (34) and the square of (33) by (32) and solve for E{|Q̃|} to
obtain

E{|Q̃|} =
(
m · C̄B

)2/3 · V ·W−2/3. (36)

Divide the product of (34) and the square root of (33) by (32) and solve for λ to
obtain

λ =

(
m2

C̄B

)1/3

· 1

V 2
·W 4/3. (37)

Equation (36) implies that the measure of illiquidity 1/L is

1

L · σ
=

(
W

m · C̄B

)−1/3

·m−1. (38)

Equation (28) and equation (29) imply that market efficiency 1/Σ1/2 and resilience ρ
are

ρ =
(Σ1/2

σ

)−2

=

(
W

m · C̄B

)2/3

· 1

θ2τ
. (39)

Define a bet’s risk transfer in business time as Ĩ := PQ̃ ·σγ−1/2. Equations (15), (17),
(28), (35), and (37) imply (31).
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The equation (35) for γ, equation (36) for Q̃, and equation (38) for 1/L, (39) for
1/Σ1/2 and ρ are summarized in (30). They are respectively equivalent to equations
(5), (6), (8), (13), and (14) implied by market microstructure invariance hypothesis
in section 1, given that E{|̃i|} = m implies E{|Ĩ|} = m · C̄B from (31).

Empirically, since trading activity W and its components are observable, we can
immediately infer values of γ, E{|Q̃|}, 1/L, λ, 1/Σ1/2 and ρ from equation (30), if
the value of constants m · C̄B and θ2τ are known.

Notes on Existence and Uniqueness of Equilibrium. We define an “equilib-
rium” of the meta-model as a “steady state” solution to the endogenous variables in
terms of the exogenous variables, given an initial price B̄(t).

The roadmap to a more formal proof of existence and uniqueness of an equilibrium
to the meta-model is as follows. The meta-model has eight exogenous variables: the
share float N , the turnover rate by noise traders η, fundamental volatility σ, Brownian
motion B(t) driving fundamental value, the cost of a signal cI , signal precision τ ,
the fraction of information incorporated into prices θ, and a moment ratio equal
to m := (π/2)1/2 for a normal distribution of signal ĩ. The meta-model has eight
endogenous variables: volume V , trading activityW , the arrival rate of bets γ, average
bet size E|Q̃|, market depth λ, market liquidity L, market efficiency 1/Σ1/2, and
market resilience ρ. Also, determined endogenously are the bet size distribution of
Q̃ and the distribution of the invariant Ĩ. Given an initial value of B̄(t), one can
calcculate an initial price P , V = ηN/(1− θ), W = σ · P · V , and C̄B = θcI/(1− θ).
The equations describing the meta-model then uniquely determine, as described in
equations (30), all other endogenous stock-specific variables in terms of W and its
components, specifically V , P , and σ, given C̄B, m, and θ2τ .

Note that as P changes, market capitalization changes, and all of the other en-
dogenous variables change. Thus, our “steady state” is really an approximation to
something more complicated. At any given time, the market will be moving towards a
steady state implied by P since Σ will only change gradually. The market will never
reach this steady state because P is constantly changing due to the dynamics im-
plied by the model. In particular, market velocity γ is changing randomly, leading to
something analogous to time deformation. If velocity increases, returns volatility may
temporarily increase, as increased pricing accuracy makes the market more efficient.
In the long run, however, returns volatility is pinned down by fundamental volatility,
and changes in velocity show up in a persistent way as changes in market liquidity.
In the limit as market capitalization becomes large, we conjecture (but leave a formal
proof for future research) that the market becomes so efficient that it is “very close”
to a steady state.

Invariance of Bets. In the definition of Ĩ in equation (31), P is measured in dollars
per share, Q̃ is measured in shares, σ is measured per square root of time, and γ is
measured per time. This implies Ĩ is measured in dollars, the same units as C̄B. In
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equation (31) therefore ĩ stands for a unitless distribution of information.
The basic microstructure invariance hypothesis states that the distribution of Ĩ

does not vary across stocks or across time. The meta-model reveals that microstruc-
ture invariance is ultimately connected to granularity of information structure and
invariance of expected costs and profits per signal across markets. Signals ĩ are drawn
from distribution with zero mean and variance of one. If the shape of information
distribution is the same across markets (not precision of signals!), then the basic in-
variance hypothesis (31) is equivalent to the hypothesis that C̄B does not vary across
stocks or time.

Although invariance relationships depend on the assumption that the cost of a
executing a bet C̄B is constant across stocks, C̄B is not the “deepest” parameter in
this model. Since equation (18) and equation (24) imply that π̄I = θC̄B, we plug π̄I
into equation (25) and find C̄B = θcI/(1 − θ). The value of C̄B is constant across
stocks if cI and θ are constant across stocks. It is useful to think of the cost of private
information cI as proportional to the average wages of finance professionals, adjusted
for their productivity. The productivity-adjusted wage of a finance professional is
therefore a “deeper” parameter than the endogenous cost of executing a bet C̄B.
Ultimately, invariance is based on the idea that the effort cI required to generate one
discrete bet has a distribution which does not vary across stocks (even if the precision
θ2 · τ of the resulting information revealed in prices does vary across stocks). The
invariance of information costs cI leads to granularity of information flow, which is
embedded in invariance relationships. Why this might be so takes us beyond the
scope of this paper.

Invariance of Transactions Costs. The meta-model does not require any as-
sumptions about the functional form of trading costs CB(Q̃) as a function of bet size
Q̃. The meta-model only requires restrictions on the expected transactions cost of
a typical bet C̄B = E{CB(Q̃)} in equation (24). The meta-model is consistent with
many functional forms of CB(.) implied by invariance.

Suppose, for example, that CB(Q̃) = a·|Q̃|r+1+b·|Q̃|; then the average transactions
cost function C(Q̃) = CB(Q̃)/(P |Q̃|) is

C(Q̃) =
a · |Q̃|r+1 + b · |Q̃|

P |Q̃|
. (40)

Suppose also there is a constant α such that a ·E{|Q̃|r+1} = α · C̄B and b ·E{|Q̃|} =
(1− α) · C̄B. Using invariance relation (31), we have

C(Q̃) = σW−1/3 · κ̄0 + σW (2r−1)/3 ·

∣∣∣∣∣Q̃V
∣∣∣∣∣
r

· κ̄I , (41)

where κ̄0 := (mC̄B)
1/3/m and κ̄I := (mC̄B)

(r+1)/3C̄B/E{|Ĩ|r+1}. If r = 1, then
equation (41) is equivalent to the linear price impact function (11) implied by the
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market microstructure invariance hypothesis in section 1. If r = 1/2, then equation
(41) is equivalent to the square root impact function (12) in section 1.

Neither the invariance hypothesis nor the meta-model provide intuition on the
functional form of the transactions cost function. In section 6, we approach this
question empirically and calibrate its form using portfolio transition data. We find
that a square root function (r = 1/2) with a constant bid-ask spread term better
describes the data than linear function (r = 1) with a constant bid-ask spread term.

Note that the cost functions CB(Q̃) does not specify functional forms of its per-
manent and temporary components. The meta-model implies that linear long-term
permanent impact λ is such that, on average, exactly a half of E{CB(Q̃)} is attributed
to permanent impact costs λEQ̃2/2. If we wish to write CB(Q) = CP (Q) + CT (Q),
then the meta-model implies CP (Q) = λQ̃2/2 and CT (Q) = CB(Q) − λQ̃2/2, with
E{CB(Q̃)}/2 = λEQ̃2/2.

Invariance of Market Efficiency and Resilience. Inferring our measures of
market efficiency (1/Σ)1/2 and resilience ρ from equation (30) requires not only ob-
servingW and knowingm·C̄B but also knowing θ2 ·τ , which measures the information
content of a bet when it is not know whether the bet is informed or noise. If θ2 · τ is
invariant across stocks and time, then σ/Σ1/2 is proportional to γ1/2 and ρ is propor-
tional to γ. The bigger is γ, the more efficient and resilient is the market. Whether
or not θ2 · τ is invariant across stocks is an interesting area for future research.

Recall that Black (1986) expressed the idea that “an efficient market is one in
which price is within a factor 2 of value.” If deviation from the factor of 2 is interpreted
as a ξ = 1.0 standard deviation event, then his statement is consistent with the
interpretation 1.0 · Σ1/2 = loge 2 ≈ 0.70. If a stock’s annual volatility is about
35%, then Fischer Black’s measure of market efficiency further implies that prices
are about (0.70/0.35)2 = 4 years “behind” fundamental value. We conjecture that
future empirical research may indicate that financial markets are much more efficient
than conjectured by Black.

Since efficiency and resilience are closely related, it might be easier empirically to
calibrate Black’s measure of market efficiency by examining how fast “permanent”
price effects from noise trades die out over time rather than measuring directly how
accurately prices approximate fundamental value. The error B(t)−B̄(t) mean-reverts
to zero at rate ρ = σ2 · Σ−1 equal to (0.35/0.70)2 = 0.25 per year. This implies the
half-life of the “permanent” price impact of a noise trade is loge 2/ρ, i.e., half of the
price impact of a noise trade dies out in about loge 2/0.25 ≈ 2.8 years.

The meta-model adds additional structure that imposes restrictions on the three
invariance hypotheses in section 1. The meta-model implies that E|Ĩ|/m = C̄B,
see equation (31), or, equivalently, that the standard deviation of Ĩ is equal to C̄B.
Intuitively, this assumption is consistent with the intuition that market makers must
break even trading against informed bets which have permanent price impact. This
additional assumption imposes a particular structure on the proportionality constants
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in invariance relationships (5), (6), (9), (13), and (14) and allows us to write those
disconnected relationships in a consolidated form of the invariance theorem.

3 Microstructure Invariance in the Context of Mar-

ket Microstructure Literature

Microstructure invariance does not undermine or contradict other theoretical models
of market microstructure. Instead, it builds a bridge from theoretical models to
empirical tests of those models. Theoretical microstructure models, including the
meta-model in this paper, use the idea that order flow imbalances move prices to
construct measures of market depth or liquidity. Microstructure invariance imposes
cross-sectional restrictions which make it easier to implement liquidity measures based
on order flow imbalances.

Many theoretical models use game theory to model trading. These models typ-
ically make specific assumptions about the consistency of beliefs across traders, the
flow of public and private information which informed traders use to trade, the flow of
orders from liquidity traders, and auction mechanisms in the context of which market
makers compete to take the other side of trades. Some models emphasize adverse se-
lection, such as Treynor (1995), Kyle (1985), Glosten and Milgrom (1985), and Back
and Baruch (2004); some models emphasize inventory dynamics, such Grossman and
Miller (1988) and Campbell and Kyle (1993); some models emphasize both, such as
Grossman and Stiglitz (1980) and Wang (1993).

Theoretical models suggest that order flow imbalances move prices. Parameters
describing how order flow moves prices depend on the specifics of each model. Under-
standing the cross-sectional empirical implications concerning how order flow moves
price has been difficult. Theoretical microstructure models provide neither a unified
framework for mapping the theoretical concept of an order flow imbalance into its
empirical measurements nor precise predictions concerning how price impact varies
across different stocks.

Instead, researchers take a purely empirical approach. They regress price changes
on imperfect empirical proxies for order flow imbalances—e.g., the difference between
uptick and downtick volume, popularized by Lee and Ready (1991)—to obtain market
impact coefficients, which they relate to stock characteristics such as market capital-
ization, trading volume, and volatility. Breen, Hodrick and Korajczyk (2002) is an
example of this approach. There is a voluminous empirical literature describing how
the rate at which orders arrive in calendar time, the dollar size of orders, the mar-
ket impact costs, and bid-ask spread costs vary across different assets. For example,
Brennan and Subrahmanyam (1998) estimate order size as a function of various stock
characteristics. Hasbrouck (2007) is a good survey of empirical literature.

By contrast, microstructure invariance generates precise and empirically testable
predictions about how the size of bets, arrival rate of bets, market impact costs, and
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bid-ask spread costs vary across assets with different levels of trading activity. These
predictions are based on a common intuition shared by many models. The usually
unidentifiable parameters of theoretical models show up as invariant constants (e.g.,
E{|Ĩ|} and C̄B), which can be calibrated from data. Microstructure invariance is a
modeling principle applicable to different models, not a model itself. It compliments
theoretical models by making it easier to test them empirically.

Example: Model of Kyle (1985). Consider, for example, the continuous time
theoretical model of Kyle (1985). The market depth formula λ = σV /σU in that
model measures market depth (in units of dollars per share per share) as the ratio
of the standard deviation of stock price changes σV (measured in dollars per share
per unit of time) to the standard deviation in order flow imbalances σU (measured in
shares per unit of time). This formula asserts that price fluctuations result from the
linear impact of order flow imbalances. It does not depend on specific assumptions
about interactions among market makers, informed traders and noise traders. An
empirical implementation of the market impact formula λ = σV /σU should not be
considered a test of the specific assumptions of the model of Kyle (1985), such as
the existence of a monopolistic informed trader who trades smoothly and patiently
in a context where less patient liquidity traders trade more aggressively and market
makers set stock prices efficiently. Instead, empirical implementation of the formula
λ = σV /σU attempts the more general task of measuring a market impact coefficient
λ based on the assumption that price fluctuation result from the linear impact of
order flow innovations, a property shared by many models.

Measuring the numerator σV is much more straightforward than measuring the
denominator σU . The value of σV is easily inferred from a stock price and returns
volatility, under the maintained hypothesis that risk-neutral market makers make
markets semi-strong form efficient. In the context of our meta-model, σV = σ̄ · P .

Measuring the denominator σU is difficult because the connection between ob-
served trading volume and order flow imbalances is not straightforward. Intuitively,
σU should be related to trading volume in some way. The continuous-time model
provides no help concerning what this relationship is. In the Brownian motion model
of Kyle (1985), trading volume is infinite. Without some approach for measuring σU ,
the model is untestable. In the context of our meta-model, order flow imbalances
result from random discrete decisions by traders to change stock holdings and a stan-
dard deviation of order imbalances is equal to σU = γ1/2 · (EQ̃2)1/2. This calculation
is also consistent with the spirit of other models, such as Glosten and Milgrom (1985).

The formulas for the numerator and denominator imply that the price impact of
a bet of Q̃ shares, expressed as a fraction of the value of a share, is given by

λ ·X
P

=
σV
σU

· X
P

= σ̄γ−1/2 · X

(EQ̃2)1/2
. (42)

Thus, a one-standard deviation bet event has a price impact σ̄γ−1/2 equal to one stan-
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dard deviation of returns volatility measured over a time interval 1/γ corresponding
to the expected time between bet arrivals.

This formula can be tested empirically using restrictions imposed by microstruc-
ture invariance. Using equations (5) and (6) to determine how γ and moments of Q̃
vary with observable volume and volatility, we find

λ :=
σ̄

γ−1/2 · (EQ̃2)1/2
=
σ̄

V̄
· W̄ 1/3 · [E{|Ĩ|2}]−1/2 · ι2. (43)

The final step is to calibrate a constant [E{|Ĩ|2}]−1/2 · ι2, which does not depend on
units of time, because Ĩ is measured in dollars.

As an alternative to invariance, the formula λ = σV /σU can be implemented
empirically by imposing different assumptions concerning the connection between σU
and trading volume. For example, we can think of the illiquidity ratio in Amihud
(2002) as an empirical implementation of that formula. Amihud’s illiquidity ratio
is the time-series average of the daily ratios of absolute value of returns to dollar
volume. To the extent that dollar volume is relatively stable across time and returns
are drawn from the same distribution, this measure is effectively proportional to
σ/(PV ). This would imply that Amihud’s implementation is effectively based on the
assumption that σU is proportional to volume V , as if the expected arrival rate of
orders in Kyle (1985) were some unknown constant, the same for all stocks. The ratio
σ/(PV ) has time units—unlike our illiqudity measure 1/L = ι2C̄B · [PV̄ /σ̄2]−1/3. The
proportionality constant in Amihud’s illiquidity ratio depends therefore on the units in
which time is measured. Invariance implies that Kyle (1985) should be implemented
as a model about much longer periods of time for less active stocks, implying that
the proportionality constants might have to be different across stocks.

4 Data

Portfolio Transitions Data. We test the empirical implications of market mi-
crostructure invariance using a proprietary dataset of portfolio transitions from a
leading vendor of portfolio transition services. During the evaluation period, this
portfolio transition vendor supervised more than 30 percent of outsourced U.S. port-
folio transitions. The sample includes 2,552 portfolio transitions executed over the
period 2001-2005 for U.S. clients. A portfolio transition may involve orders for hun-
dreds of individual stocks. Each order is a stock-transition pair potentially executed
over multiple days using a combination of internal crosses, external crosses, and open-
market transactions.

The portfolio transitions dataset contains fields identifying the portfolio transi-
tion; its starting and ending dates; the stock traded; the trade date; the number of
shares traded; a buy or sell indicator; the average execution price; the pre-transition
benchmark price (closing price the day before the transition trades began); commis-
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sions; SEC fees; and a trading venue indicator distinguishing among internal crossing
networks, external crossing networks, open market transactions, and in-kind transfers.

When old “legacy” and new “target” portfolios overlap, positions are transferred
from the legacy to the new portfolio as “in-kind” transfers. For example, if the legacy
portfolio holds 10,000 shares of IBM stock and the new portfolio holds 4,000 shares
of IBM, then 4,000 shares are transferred in-kind and the balance of 6,000 shares is
sold. The in-kind transfers do not incur transactions costs and have no effect on our
empirical analysis.

We augment the portfolio transitions data with stock price, returns, and volume
data from CRSP. Only common stocks (CRSP share codes of 10 and 11) listed on
the New York Stock Exchange (NYSE), the American Stock Exchange (Amex), and
NASDAQ in the period of January 2001 through December 2005 are included in
the sample. ADRs, REITS, and closed-end funds are excluded. Also excluded are
stocks with missing CRSP information necessary to construct variables used for em-
pirical tests, transition orders in high-priced Berkshire Hathaway class A shares, and
transition observations which appeared to contain typographical errors and obvious
inaccuracies. Since it is unclear from the data whether adjustments for dividends and
stock splits are made in a consistent manner across all transitions, all observations
with non-zero payouts during the first week following the starting date of portfolio
transitions were excluded from statistical tests.

After exclusions, there are 439,765 observations (“orders”), including 201,401 buy
orders and 238,364 sell orders.

CRSP Data: Prices, Volume, and Volatility. For each of the transition-stock
observations (i = 1, . . . , 439765), we collect data on pre-transition benchmark price,
expected volume, and expected volatility. The benchmark price, denoted P0,i, is
the closing price for the stock the evening before the first trade is made in any of the
stocks in the portfolio transition. A proxy for expected daily trading volume, denoted
Vi (in shares), is the average daily trading volume for the stock in the previous full
pre-transition calendar month.

The expected volatility of daily returns, denoted σi for order i, is calculated using
past daily returns in two different ways.

First, for each security j and each calendar month m, we estimate the monthly
standard deviation of returns σj,m as the square root of the sum of squared daily
returns for the full calendar month m (without de-meaning or adjusting for autocor-

relation). We define σi = σj,m/N
1/2
m , where j corresponds to the stock traded in order

i, m is the previous full calendar month preceding order i, and Nm is the number of
CRSP trading days in month m.

Second, to reduce effects from the positive skewness of the standard deviation
estimates, we estimate for each stock j a third-order moving average process for
the changes in ln(σj,m) for all months m over the entire period 2001-2005: (1 −
L) ln(σj,m) = Θj,0+(1−Θj,1L−Θj,2L

2−Θj,3L
3)uj,m. Letting yj,m denote the estimate
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of ln(σj,m) and V̂j the variance of the prediction error, we alternatively define the

conditional forecast for the volatility of daily returns by σi = exp(yj,m + V̂j/2)/N
1/2
m ,

where m is the current full calendar month for order i.
As noisy estimates of true volatility, these proxies may potentially introduce an

error-in-variables problem into the regressions below. While we report below results
using the second definition of σi based on the log-ARIMA model, these results remain
quantitatively similar when we use the first definition of σi based on simple historical
volatility during the preceding full calendar month.

Except to the extent that the ARIMA model uses in-sample data to estimate
model parameters, we use the pre-transition variables known to the market before
portfolio transition trades are executed in order to avoid any spurious effects from
using contemporaneous variables.

Descriptive Statistics. Table 1 reports descriptive statistics for traded securities
in panel A and for individual transition orders in panel B. The first column reports
statistics for all securities in aggregate; the remaining ten columns report statistics
for stocks in ten dollar volume groups. Instead of dividing the securities into ten
deciles with the same number of securities in each decile, volume break points are set
at the 30th, 50th, 60th, 70th, 75th, 80th, 85th, 90th, and 95th percentiles of trading
volume for the universe of stocks listed on the NYSE with CRSP share codes of 10
and 11. Group 1 contains stocks in the bottom 30th percentile by dollar trading
volume. Group 10 approximately corresponds to the universe of S&P 100 stocks.
The top five groups approximately cover the universe of S&P 500 stocks. Smaller
percentiles for the more active stocks make it possible to focus on the stocks which
are most important economically. Each month the thresholds are recalculated and
the stocks are reshuffled across bins.

Panel A of table 1 reports descriptive statistics for traded securities. For the entire
sample, the median daily volume is $18.72 million, ranging from $1.13 million for the
lowest volume group to $212.85 million for the highest volume group. The median
volatility is 1.93 percent per day, ranging from 1.76 percent in the highest volume
decile to 2.16 in the lowest decile. Since there is so much more cross-sectional variation
in dollar volume than in volatility across stocks, the variation in trading activity across
stocks is related mostly to variation in dollar volume. Trading activity differs by a
factor of 150 between stocks in the lowest group and stocks in the highest group, and
this variation creates statistical power helpful in determining how transactions costs
and order sizes vary with trading activity.

The median quoted bid-ask spread, obtained from the transition dataset, is 12.04
basis points; its mean is 25.42 basis points. From lowest volume group to highest
volume group, the median spread declines monotonically from 40.96 to 4.83 basis
points, by a factor of 8.48. A back-of-the-envelope calculation based on invariance
suggests that spreads should decrease approximately by a factor of 1501/3 ≈ 5.31
from lowest to highest volume group. The difference between 5.31 and 8.48 warrants
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further investigation. The monotonic decline of almost one order of magnitude is
potentially large enough to generate significant statistical power in estimates of a
bid-ask spread component of transactions costs based on implementation shortfall.

Panel B of table 1 reports properties of portfolio transition order sizes. The average
order size is 4.20% of average daily volume, declining monotonically across the ten
volume groups from 16.23% in the smallest group to 0.49% in the largest group, by
a factor of 33.12. The median order is 0.57% of average daily volume, also declining
monotonically from 3.33% in the smallest group to 0.14% in the largest group, by
a factor of 23.79. The invariance hypothesis implies that order sizes should decline
by a factor of approximately 1502/3 ≈ 28.23, a value which matches the data closely.
The medians are much smaller than the means, indicating that distributions of order
sizes are skewed to the right. We show below that the distribution of order sizes fits
closely a log-normal.

The average trading cost (based on implementation shortfall as explained below)
is 16.79 basis points per order, ranging from 44.95 basis points in lowest volume group
to 6.16 basis points in the highest group (excluding commissions and SEC fees) by a
factor of 7.30. Invariance implies that costs should fall by a factor of 1501/3 ≈ 5.31,
somewhat smaller than the actual decline. Note that the SEC fee represents a cost of
about 0.29 basis points and does not vary much across volume groups. The average
commission is 7.43 basis points, declining monotonically from 14.90 basis points for
the lowest group to 2.68 basis points for the highest group. Since commission may be
negotiated for the entire transition, the allocation of commission costs to individual
stocks is an accounting exercise with little economic meaning.

Portfolio transitions consist of orders for dozens or hundreds of stocks, which are
typically executed over several days. About 60% of orders are executed during the
first day of the portfolio transition. Since transition managers often operate under a
“cash-in–advance” constraint—using proceeds from selling stocks in a legacy portfolio
to acquire stocks in a target portfolio—sell orders tend to be executed slightly faster
than buy orders (1.72 days versus 1.85 days). In terms of dollar volume, about 41%,
23%, 15%, 7% and 5% of dollar volume is executed on the first day through the fifth
days, respectively. The two longest transitions in the sample were executed over 18
and 19 business days. The time frame for a portfolio transition is usually set before
its actual implementation begins.

5 Empirical Tests Based on Order Sizes

Market microstructure invariance predicts that the distribution of W̄ 2/3 · Q̃/V̄ does
not vary across stocks or time (see equation (6)). We test these predictions using
data on portfolio transition orders, making the identifying assumption that portfolio
transition orders are proportional to bets.
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Portfolio Transitions and Bets. Since bets are statistically independent intended
orders, bets can be conceptually difficult for researchers to observe. Consider, for
example, a trader who makes a decision on Monday to make one bet to buy 100,000
shares of stock, then implements the bet by purchasing 20,000 shares on Monday and
80,000 shares on Thursday. To an econometrician, this one bet for 100,000 shares
may be difficult to distinguish from two bets for 20,000 shares and 80,000 shares,
respectively. Portfolio transitions make the task of identifying bets easier because the
size of each order in this example is known and recorded on Monday, even if the order
is executed over several subsequent days.

Portfolio transition orders may not have a size distribution matching precisely
the size distribution of typical bets. Transition orders may be smaller than bets if
transitions tend to liquidate a portion of an asset manager’s positions or larger than
bets if transitions liquidate the sum of bets made by the asset manager in the past.
When both target and legacy portfolios hold long positions in the same stock, the
portfolio transition order may represent the difference between two bets.

Let Xi denote the unsigned number of shares transacted in portfolio transition
order i, i = 1, . . . , 439765. The quantity Xi sums shares traded over multiple days,
excluding in-kind transfers.

We make the identifying assumption that, for some constant δ which does not vary
across stocks with different characteristics such as trading activityW , the distribution
of scaled portfolio transition orders δ ·Xi is the same as the distribution of a typical
bet in the same stock at the same time, denoted |Q̃i|.

Invariant Order Size Distribution as Log-Normal. Let Wi := Vi · Pi · σi and
W̄i := V̄i · Pi · σ̄i denote trading activity and bet activity for the stock in transition
order i, respectively. Under the identifying assumption that portfolio transition orders
are proportional to bets, invariance of the theoretical distribution of bets adjusted
for bet activity W̄ 2/3 · |Q̃|/V̄ from equation (6) implies that the empirical distribution

of W̄
2/3
i · δXi/V̄i does not vary with stock characteristics such as volume, volatility,

stock price, or market capitalization.
To facilitate intuitive interpretation of parameter estimates, we scale observations

by a hypothetical “benchmark stock” with share price P ∗ of $40, daily volume V ∗ of
one million shares, and volatility σ∗ of 2% per day, implyingW ∗ = 40·106 ·0.02. Table
1 implies that this benchmark stock would belong to the bottom tercile of S&P 500,
i.e., to volume group 7.

Combining the identifying assumption with equations (1) with (2) to convert the
bet activity variables W̄i and V̄i to trading activity variables Wi and Vi and taking
logs, invariance implies

ln
([Wi

W ∗

]2/3
· Xi

Vi

)
= ln(q̄) + ϵ̃, (44)

where ln(q̄) := E{ln(|Q̃∗|/V ∗)}−1/3 ln(ζ/ζ∗)−2/3 ln(ψ/ψ∗)−ln(δ) and ϵ̃ := ln(|Ĩ|)−
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E{ln(|Ĩ|)} has a zero-mean invariant distribution. Under the identifying assumptions
that the volume multiplier ζ, the volatility multiplier ψ and the portfolio transi-
tion size multiplier δ do not vary across observations, ln(q̄) is an invariant constant
ln(q̄) = E{ln(|Q̃∗|/V ∗)} − ln(δ). Multiplication of Xi/Vi by (Wi/W

∗)2/3 scales each
observation on the left-side so that it has the same invariant distribution as the log
of a hypothetical portfolio transition order in the benchmark stock, expressed as a
fraction of its expected daily volume. If δ = 1, the distribution of portfolio transition
orders matches the distribution of bets.

As we examine this hypothesis, we will also examine the stronger log-normality
hypothesis—not implied by microstructure invariance—that ϵ̃ has a normal distri-
bution, which implies invariant log-normal distribution for order sizes adjusted for
trading activity W 2/3 · |Q̃|/V .

Under the assumption of log-normality, the predictions of equation (44) can be
calibrated by two parameter estimates, the sample of mean and the sample variance.
The pooled sample mean of −5.71 is an estimate of ln(q̄), and the pooled sample
variance of 2.53 is an estimate of the variance of ϵ̃. Since exp(−5.71) ≈ 0.0033, log-
normality implies a median portfolio transition order size of 0.33% of expected daily
volume for the benchmark stock. Since exp(2.531/2) ≈ 4.90, a one standard deviation
increase in order size is a factor of 4.90 for all stocks.

There is not much difference in the distributions of buy and sell orders. For buy
orders, the mean is −5.70 for the variance is 2.51; for sell orders, the mean is −5.71
and the variance is 2.55.

Order Size Distribution for Volume and Volatility Groups. Log-normality
and invariance of bets imply that the distribution of 2/3 · log(Wi/W

∗) + log(Xi/Vi)
should remain approximately N(−5.71, 2.54) for subsets of orders sorted into different
groups based on characteristics such as dollar volume, volatility, stock price, and
turnover.

To examine this hypothesis visually, we plot the empirical distributions of the
left-hand side of equation (44), 2/3 · ln(Wi/W

∗) + ln(Xi/Vi), for selected volume and
volatility groups. As before, we define ten dollar volume groups with thresholds corre-
sponding to the 30th, 50th, 60th, 70th, 75th, 80th, 85th, 90th, and 95th percentiles of
NYSE dollar volume. We define five volatility groups with thresholds corresponding
to the 20th, 40th, 60th, and 80th percentiles of returns standard deviation for NYSE
stocks. On each plot, we superimpose the bell-shaped density function N(−5.71, 2.53)
matching the mean and variance of the pooled sample.

Figure 2 shows plots of the empirical distributions of ln[Xi/Vi] + 2/3 · ln[Wi/W
∗]

for volume groups 1, 4, 7, 9, and 10 and for volatility groups 1, 3 and 5. Consistent
with the invariance hypothesis, these fifteen distributions of W -adjusted order sizes
are all visually strikingly similar to the normal distribution with the pooled mean
and variance N(−5.71, 2.53). Results for the remaining 35 subgroups also look very
similar and therefore are not presented in this paper. The visual similarity of the
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distributions is reflected in the similarity of their first four moments. For the 15
volume-volatility groups, the means range from −6.03 to −5.41, close to the mean
of −5.71 for the pooled sample. The variances range from 2.23 to 2.90, also close to
the variance of 2.53 for the pooled sample. The skewness ranges from −0.21 to 0.10,
close to skewness of zero for the normal distribution. The kurtosis ranges from 2.73
to 3.38, also close to the kurtosis of 3 for a normal random variable. These results
suggest that the assumption that order sizes are distributed as log-normal random
variables is a reasonable one. Scaling order sizes by (W/W ∗)2/3, as implied by the
invariance hypothesis, adjusts the means of the distributions so that they do appear
visually to be similar.

Despite the visual similarity, a Kolmogorov-Smirnov test rejects the hypothesis
that all fifty empirical distributions are generated from the same normal distribution.
The standard deviation of the means across bins is larger than implied by a common
normal distribution. Microstructure invariance does not describe the data perfectly,
but it is close enough to suggest that invariance makes a good benchmark from which
the modest deviations seen in these plots can be investigated in future research.

Figure 3 further examines log-normality by focusing on the tails of the distri-
butions of portfolio transition orders. For each of the five volume groups 1, 4, 7,
9, and 10, panel A shows quantile-quantile plots of the empirical distribution of
ln[Xi/Vi] + 2/3 · ln[Wi/W

∗] versus a normal distribution with the same mean and
variance. The more similar these empirical distributions are to a normal distribution,
the closer the plots should be to the 45-degree line. Panel B shows logs of ranks based
on scaled order sizes. Under the hypothesis of log-normality, the right tail should be
quadratic. A straight line in the right tail implies a power law. Both panels show
that the empirical distributions are similar to a normal distribution, except in the far
right and left tails.

In panel A, the smallest orders in the left tails tend to be smaller than implied
by a normal distribution. These observations are economically insignificant. Most
of them represent one-share transactions in low-price stocks (perhaps the result of
coding errors in the data). There are too few such orders to have a meaningful effect
on our statistical results.

In panel A, the largest orders in the right tails are much more important econom-
ically. On each subplot, a handful of positive outliers (out of 400,000+ observations)
do not appear to fit a normal distribution. The largest orders in low-volume stocks
appear to be smaller than implied by a normal distribution, and the largest orders in
high-volume stocks appear to be larger than implied by a normal distribution.

The finding that the largest orders in low-volume stocks are smaller than implied
by a log-normal may be explained by reporting requirements. According to Section
13(d) of the 1934 Act and Regulation 13D, institutions are required to report their
holdings whenever they acquire ownership of more than 5 percent of the outstanding
shares of publicly traded companies. To avoid reporting requirements, large institu-
tional investors may intentionally acquire fewer shares when intended holdings would
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otherwise exceed the 5% reporting threshold. Indeed, all 400,000+ portfolio transition
orders are for amounts smaller than 4.5% of shares outstanding. A closer examination
reveals that the five largest orders for low-volume stocks accounts for about 2%, 3%,
4%, 4%, and 4% of shares outstanding, respectively, just below the 5% threshold.
The largest order in high-volume stocks is for about 1% of shares outstanding.

To summarize, we conclude that the distribution of portfolio transition order sizes
appears to conform closely—but not exactly—to the hypothesis of bet size invariance.
Furthermore, the distribution of order sizes appears to be quite similar to—but not
exactly equal to—a log-normal.

OLS Estimates of Order Size. The order size predictions from equation (44) can
be tested using a simple log-linear OLS regression

ln
[Xi

Vi

]
= ln

[
q̄
]
+ α0 · ln

[Wi

W ∗

]
+ ϵ̃. (45)

Invariance of bets implies α0 = −2/3. To adjust standard errors of OLS estimates of
α0 for positive contemporaneous correlation in transition order sizes across different
stocks, the 439,765 observations are pooled by week over the 2001-2005 period into
4,389 clusters across 17 industry categories. The double clustering by weeks and
industries conservatively adjusts standard errors for large portfolio transitions that
may involve hundreds of relatively large orders, executed during the course of a week
and potentially concentrated in particular industries.

A potential econometric difficulty with the log-linear specification in equation
(45) is that taking the log of order size as a fraction of average daily volume may
create large negative outliers from tiny, economically meaningless orders, with the
inordinately large influence on reported results. Since we have shown above that the
shape of the distribution of scaled order sizes closely matches a log-normal, these tiny
orders are expected to have only a negligible distorting effect on estimates.

Table 2 presents estimates for the OLS coefficients in equation (45). The first
column of the table reports the results of a regression pooling all the data. The four
other columns in the table report results for four separate OLS regressions in which
the parameters are estimated separately for NYSE Buys, NYSE Sells, NASDAQ Buys,
and NASDAQ Sells.

For the entire sample, the estimate for α0 is α̂0 = −0.62 with standard error of
0.009. Economically, the point estimate for α0 is close to the value −2/3 predicted
by the invariance hypothesis, but the hypothesis α0 = −2/3 is strongly rejected
(F = 25.31, p < 0.0001) because the standard error is very small.

When the sample is broken down into NYSE Buys, NYSE Sells, NASDAQ Buys,
and NASDAQ Sells, it is interesting to note that the estimated coefficients for buy
orders, −0.63 for NYSE and −0.71 for NASDAQ, are closer to −2/3 than the coeffi-
cients for sell orders, −0.59 for both NYSE and NASDAQ. Since portfolio transitions
tend to be applied to long-only portfolios, sell orders might represent liquidations of
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past bets. If the size distribution of sell orders depends on past values of volume and
volatility—not current values—there is an errors-in-variables problem which may bias
coefficient estimates.

Quantile Estimates of Order Sizes. Table 7 in Appendix presents quantile re-
gression results for equation (45) based on the 1st (smallest orders), 5th, 25th, 50th,
75th, 95th, and 99th percentiles (largest orders). The corresponding quantile esti-
mates for α0 are −0.65, −0.64, −0.61, −0.62, −0.61, −0.64, and −0.63, respectively.
Although the hypothesis α0 = −2/3 is rejected due to small standard errors, all quan-
tile estimates are economically close to the value of −2/3 predicted by the invariance
hypothesis.

Model Calibration and Its Economic Interpretation. To calibrate the hy-
pothesis of bet size invariance with log-normality, we impose the restriction α0 = −2/3
on equation (45). Thus, only the constant term in the regression needs to be esti-
mated. The results of this calibration exercise are presented in table 3. The estimated
constant term, −5.71, is the previously reported sample mean of ln(q̄) in equation
(44). The mean-square error, 2.53 is the previously reported sample variance of ϵ̃ in
equation (44).

The log of trading activity ln(W/W ∗), with the coefficient α0 = −2/3 imposed
by invariance, explains a significance percentage of the variation of order size as a
fraction of volume Xi/Vi; the R

2 (with zero degrees of freedom) is 0.3149.
When the parameter α0 is estimated rather than held fixed, as reported in table

2, changing α0 from the predicted value of α0 = −2/3 to the estimated value of
α̂0 = −0.62 increases the R2 from R2 = 0.3149 reported in table 3 to R2 = 0.3167
reported in table 2, a modest increase of 0.0018. Although statistically significant,
the addition of one degree of freedom does not add much explanatory power.

We relax the specification further by allowing the coefficients on the three compo-
nents of trading activity—volatility σi, price P0,i, and volume Vi—as well as monthly
turnover rate νi to vary freely:

ln
[Xi

Vi

]
= ln

[
q̄
]
+α0·ln

[Wi

W ∗

]
+b1·ln

[ σi
0.02

]
+b2·ln

[P0,i

40

]
+b3·ln

[ Vi
106

]
+b4·ln

[ νi
1/12)

]
+ϵ̃.

This regression imposes on ln(Wi/W∗) the coefficient α0 = −2/3 predicted by
invariance and then allows the coefficient b1, b2, b3, b4 on the three components of
Wi and turnover rate to vary freely. The invariance hypothesis implies b1 = b2 =
b3 = b4 = 0. Table 3 reports that increasing the degrees of freedom from one to four
increases the R2 of the regression from R2 = 0.3167 to R2 = 0.3229, an increase of
0.0062. Although statistically significant, the improvement in R2 is again modest.

Invariance explains much—but not quite all—of the variation in portfolio transi-
tion order size across stocks.
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The point estimates for the coefficient on volatility of b̂1 = 0.42, the coefficient
on price of b̂2 = 0.24, the coefficient on share volume of b̂3 = 0.06, the coefficient on
turnover rate of b̂4 = −0.18 are all statistically significant, with standard errors of
0.040, 0.019, 0.010 and 0.015, respectively (see table 8 in the Appendix). The coeffi-
cients on volatility and price are significantly positive indicating that order size—as
a fraction of average daily volume—does not decrease with increasing volatility and
price as fast as predicted by the invariance hypothesis. The statistically significant
positive coefficient on volume may be partially offset by statistically significant neg-
ative coefficient on turnover rate.

Discussion. The documented log-normality of bet size is strikingly different from
typical assumptions of microstructure models, where innovations in order flow from
noise traders are distributed as a normal, not a log-normal or power law. Although
normal random variables are a convenient modeling device—they allow conditional ex-
pectations to be linear functions of underlying jointly normally distributed variables—
their implications are qualitatively very different.

The log-variance of 2.53 of bet size distribution implies that a large fraction of
trading volume and even larger fraction of returns variance come from large bets.

Let η(z) and N(z) denote the PDF and CDF of a standardized normal distribu-
tion, respectively. Define F (z̄, p) by F (z̄, p) =

∫∞
z=z̄

exp(p ·
√
2.53 · z) · η(z) · dz. It is

easy to show that F (z̄, p) = exp(p2 ·2.53/2) · (1−N(z̄−p ·
√
2.53)). This implies that

the fraction of the pth moment of order size arising from bets greater than z̄ standard
deviations above the log-mean is given by F (z̄, p)/F (−∞, p) = 1−N(z̄ − p ·

√
2.53).

Plugging p = 1, we find that bets larger than z̄ standard deviations above the log-
mean (median) generate a fraction of total trading volume given by 1−N(z̄−

√
2.53).

Bets larger than the 50th percentile generate 94.41% of trading volume (z̄ = 0). Bets
larger than than

√
2.53 standard deviations above the log-mean (median) bet size—

i.e., the largest 5.39% of bets—generate 50% of trading volume (z̄ =
√
2.53).

Plugging p = 2, we find that bets larger than z̄ standard deviations above the log-
mean bet size contribute a fraction of total returns variance given by 1−N(z̄−2·

√
2.53)

under the assumption that the contribution of bets to price variance is proportional
to their squared size. Bets greater than the 50th percentile generate 99.93% of returns
variance (z̄ = 0). Bets larger than than 2 ·

√
2.53 = 3.18 standard deviations above

the log-mean—i.e., the largest 0.07% of bets—generate 50% of returns variance (z̄ =
2 ·

√
2.53). For example, if the benchmark stock has about 85 bets per day for each

of 252 trading days in a calendar year, the estimates then imply that the 1, 155
largest bets out of 21, 420 bets during the year generate half of trading volume and
approximately the 15 largest bets generate half of returns variance during that year.

Actual trading volume and returns volatility fluctuate over time. Rare large bets
may not only account for a significant percentage of returns variance but may also
account for some of the stochastic time series variation in volatility. We conjecture
that the pattern of short term volatility associated with execution of rare large bets
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may depend on the speed with which such bets are executed. Large market distur-
bances such as the stock market crash of 1929 and 1987, the liquidation of Jerome
Kerviel’s trades for Société Générale, and the flash crash of May 6, 2010 could have
been induced by execution of gigantic bets.

Another implication of log-normality may be greater kurtosis in the empirical
distribution of price changes than a normal distribution would suggest. Given the
estimated log-variance of 2.53, the excess kurtosis of one bet has the enormous value
of exp(10) or about 22,000. Thus, excess kurtosis in daily price changes may be
influenced more by the kurtosis of individual bets than by the random number of
bets arriving each day.

Our thinking about trading games is different from that of the “time change”
literature, which goes back to Mandelbrot and Taylor (1967) and Clark (1973). Man-
delbrot and Taylor (1967) begin with the intuition that the distribution of price
changes is a stable distribution, i.e., a distribution such that a linear combination
of two independent random variables has the same shape, up to location and scale
parameters. Since it has fatter tails than a normal distribution, it is confined to be
a stable Pareto distribution. Following that line of research, the econophysics litera-
ture such as Gopikrishnan et al. (1998), Plerou et al. (2000), and Gabaix et al. (2006)
estimates different power-laws for the probability distributions of different variables
and search for price-formation models consistent with those distributions. Whether
order size follows a power law or a log-normal distribution is an interesting question
for future research.

Clark (1973) suggests an alternative hypothesis that the distribution of daily price
changes is subordinated to a normal distribution with a time clock linked to a log-
normally distributed trading volume. The log-normal distribution is neither stable
nor infinitely divisible; the sum of random variables with independent log-normal
distributions is not log-normal. Thus, if daily price changes can be described by
Clark’s hypothesis, neither half-day price changes nor weekly price changes will be
described by the same hypothesis.

In some sense, our approach seems to be closer to Mandelbrot and Taylor (1967)
who imagine orders of different sizes arriving in the market, with business time linked
to their arrival rates rather than trading volume.

The log-normality of bet size may be related to log-normality of assets under
management for financial firms. Schwarzkopf and Farmer (2010) study the size of U.S.
mutual funds and find that its distribution closely conforms a log-normal with log-
variance of about 2.50, similar to our estimates of log-variance for portfolio transition
orders. The annual estimates are very stable during twelve years from 1994 to 2005,
ranging from 2.43 to 2.59. For years 1991, 1992, and 1993, the log-variance estimates
of 1.51, 1.98, and 2.09 are slightly lower, probably because many observations are
missing from the CRSP U.S. mutual funds dataset for those years.

Empirical regularities similar to those implied by invariance can be found masked
in the previous literature. Bouchaud, Farmer and Lillo (2009) report, for example,
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that the number of TAQ prints per day is proportional to market capitalization raised
to powers between 0.44 to 0.86. Under the assumption that volatility and turnover
rates are stable across stocks as shown in table 1, the midpoint 0.65 of that interval
is close to 2/3 implied by invariance for the number of bets per day, i.e., the inverse
of average order size to volume ratio.

6 Empirical Tests Based on Transactions Costs

To examine statistically whether transactions costs conform to the predictions of mar-
ket microstructure invariance in equation (9), we use the concept of implementation
shortfall developed by Perold (1988). Specifically, we estimate costs by comparing the
average execution prices of portfolio transition orders with closing prices the evening
before any portfolio transition orders begin to be executed. Our tests measure implicit
transactions costs resulting from bid-ask spreads and market impact; they exclude
explicit transactions costs such as commissions and fees.

Portfolio Transitions and Implementation Shortfall. In portfolio transitions,
quantities to be traded are known precisely before trading begins, these quantities
are recorded accurately, and all intended quantities are executed. In other trading
situations, quantities intended to be traded may not be recorded accurately, and
orders may be canceled or quantities may be revised in response to price movements
after trading begins. When orders are canceled after prices move in an unfavorable
direction or when order size is increased after prices move in a favorable direction,
implementation shortfall may dramatically underestimate actual transactions costs.
Portfolio transitions data are not subject to these concerns.

Portfolio transition trades are unlikely to be based on short-lived private infor-
mation about specific stocks because decisions to undertake portfolio transitions and
their timing likely result from regularly scheduled meetings of investment committees
and boards of plan sponsors, not from fast-breaking private information in the hands
of fund managers. Transactions cost estimates are therefore unlikely to be biased
upward as a result of short-lived private information being incorporate into prices
while orders are being executed.

These properties of portfolio transitions are not often shared by other data. Con-
sider a dataset built up from trades by a mutual fund, a hedge fund, or a proprietary
trading desk at an investment bank. In such samples, the intentions of traders may
not be recorded in the dataset. For example, a dataset might time stamp a record
of a trader placing an order to buy 100,000 shares of stock but not time stamp a
record of the trader’s actual intention to buy another 200,000 shares after the first
100,000 shares are bought. Furthermore, trading intentions may not coincide with
realized trades because the trader changes his mind as market conditions change.
Indeed, traders often condition their trading strategies on prices by using limit orders
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or canceling orders, thus hard-wiring into their strategies a selection bias problem for
using such data to estimate transactions costs. The dependence of actually traded
quantities on prices usually makes it impossible to use implementation shortfall in a
meaningful way to estimate market depth and bid-ask spreads from data on trades
only. Portfolio transitions data are particularly well suited for using implementation
shortfall to measure transactions costs because portfolio transitions data avoid these
sources of statistical bias.

Non-linear Regression Framework. The predictions invariance makes about
transactions costs can be expressed in terms of a non-linear regression. To justify
nonlinear regression estimation, we can think of implementation shortfall as repre-
senting the sum of two components: (1) the transactions costs incurred as a result of
order execution and (2) the effect of other random price changes between the time
the benchmark price is set and the time the trades are executed. If we make the iden-
tifying assumption that the implementation shortfall from the portfolio transition
dataset is an unbiased estimate of the transactions cost, we can think of modeling the
other random price changes as an error in a regression of implementation shortfall on
transactions costs.

For example, suppose that while one portfolio transition order is being executed,
there are 99 other bets being executed at the same time. The temporary and perma-
nent price impact of executing the portfolio transition order shows up as a transactions
cost, while the temporary and permanent price impact of the other 99 unobserved
bets being executed shows up as other random price changes. Since the portfolio tran-
sition order is one of 100 bets being simultaneously executed, the R2 of the regression
is likely to be about 0.01.

For each transition order i, let IBS,i denote a buy-sell indicator variable which is
+1 for buy orders and −1 for sell orders. For transition order i, let Ci denote the
transactions cost as a fraction of the value transacted. Let Si denote the implemen-
tation shortfall, defined by Si = IBS,i · (Pex,i − P0,i)/P0,i,where Pex,i is the average
execution price of order i and P0,i is its benchmark price. Implementation shortfall
is positive when orders are unusually costly and negative when orders are unusually
cheap. Since we want the error in our regression be positive when the stock price is
moving up and negative when the stock price is moving down, we multiply both the
implementation shortfall Si and the transactions cost C(Xi) by the buy-sell indicator.
The regression specification can be then written as IBS,i ·Si = IBS,i ·Ci+ ϵ̃. Note that
IBS,i · Si = (Pex,i − P0,i)/P0,i since I2BS,i = 1.

Invariance imposes the restriction that the unobserved transactions cost Ci has
the form given in equation (9), which can be written

Ci = ι2 · C̄B · σ̄i · W̄−1/3
i · f

(W̄ 2/3
i

ι
· Xi

V̄i

)
. (46)

Using equation (1) and equation (2), we replace the “bar” variables σ̄, V̄ , and W̄
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with observable variables σ, V , and W and with potentially unobservable constants.
This gives us the nonlinear regression

IBS,i · Si = IBS,i ·
[ ψ
ψ∗

]2/3[ ζ
ζ∗

]1/3[ σi
σ∗

][Wi

W ∗

]−1/3

· f(Ii · δ−1)/L∗ + ϵ̃i, (47)

where Ii := ϕ−1·(Wi/W
∗)2/3·Xi/Vi with invariant constant ϕ := δ−1ιψ−2/3(ζ/2)−1/3(W ∗)−2/3

obtained from equation (6) and illiquidity measure for the benchmark stock 1/L∗ :=
ι2 · C̄B · σ̄∗ · [W̄ ∗]−1/3 obtained from equation (8). Note that f(Ii · δ−1)/L∗ denotes the
invariant cost function for the benchmark stock, expressed as a fraction of notional
value, similar to equation (9).

SinceWi, Xi, and Vi are observable, the quantity ϕ ·Ii is observable. The quantity
Ii itself in equation (47), however, is not observable because the constant ϕ is defined
in terms of potentially unobservable constants ι, δ, ψ, and ζ. To estimate the nonlinear
regression equation (47), we substitute for f(.) a different function f ∗(.) defined by
f∗(x) = (ψ/ψ∗)2/3 · (ζ/ζ∗)1/3 · f(ϕ−1δ−1x). Using x = ϕ · Ii, the right side of equation
(47) becomes a simpler expression in terms of observable data, with various potentially
unobserved constants incorporated into the definition of f ∗, whose functional form
is to be estimated from the data. Under the identifying assumptions ψ = ψ∗ and
ζ = ζ∗, we have f ∗(ϕIi) = f(Ii · δ−1). The unobserved constants affect the economic
interpretation of the scaling of the estimated functional form for f ∗, but they do not
otherwise affect the estimation itself.

In order to estimate equation (47), we make two further adjustments, one based
on statistics and one based on economics.

First, the variance of errors in the regression is likely to be proportional in size to
the variance of returns and the execution horizon. To correct for heteroscedasticity
resulting from differences in return volatility, we divide both the right and left sides
by return volatility σi/σ

∗, where σ∗ = 0.02. The root mean squared error of the
regression is approximately equal to 0.02, consistent with the interpretation that
portfolio transition orders are executed in about one day. Invariance suggests that
orders might be executed over horizons inversely proportional to the speed of business
time γ, implying very slow executions for large orders in stock with low trading
activity. Portfolio transitions are, however, usually implemented within a clearly
defined tight time frame, which has the effect of speeding up the “natural” execution
horizon for inactive stocks.

Second, to control for the economically and statistically significant influence that
general market movements have on implementation shortfall, we add the CRSP value-
weighted market return Rmkt,i on the first day of the transition to the right side of
the regression equation. To the extent that portfolio transition orders are sufficiently
large to move the entire U.S. stock market, this adjustment will result in understated
transactions costs by measuring only the idiosyncratic component of transactions
costs. It is an interesting subject for future research to investigate how large trades
in multiple stocks affect general market movements.
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Upon making these two changes and using the definition of f∗(.), regression equa-
tion (47) becomes

IBS,i · Si ·
(0.02)

σi
= βmkt ·Rmkt,i ·

(0.02)

σi
+ IBS,i ·

[Wi

W ∗

]α
· f ∗(ϕIi)/L

∗ + ϵi. (48)

where invariance implies α = −1/3. The function f ∗(ϕI)/L∗ measures the transac-
tions cost for the benchmark stock in terms of the observable value ϕI = X̃/V . We do
not undertake separate estimates of transactions cost parameters for internal crosses,
external crosses, and open market transactions. Such estimates would be difficult to
interpret due to selection bias resulting from transition managers optimally choosing
trading venues to minimize costs.

Although invariance itself does not specify a function form for f∗(.)/L∗, the re-
gression places strong cross-sectional restrictions on the shape of the transactions cost
function. In addition to the restriction α = −1/3, it requires that the same function
f∗(ϕI)/L∗ with ϕI = (Wi/W

∗)2/3 ·Xi/Vi for order i be used for all stocks.
To adjust standard errors for positive contemporaneous correlation in returns, the

observations are pooled by week over the 2001-2005 period into 4,389 clusters across
17 industry categories using the pooling option on Stata.

Dummy Variable Regression. Before reporting regression results for specific
functional forms for f ∗(.), we first report results of dummy variable regressions of
transactions costs.

We sort all 439, 765 orders into 100 order size bins of equal size based on the value
of “invariant” order size ϕ · Ii = [Wi/W

∗]2/3 · [Xi/Vi]. As before, we also place each
order into one of ten volume groups based on average dollar trading volume in the
underlying stock PiVi, with thresholds corresponding to the 30th, 50th, 60th, 70th,
75th, 80th, 85th, 90th, and 95th percentiles of NYSE dollar volume. As shown in
section 5, the distribution of ϕIi is approximately invariant across volume groups;
across all volume groups k = 1, . . . , 10, bin h therefore has a similar number of
observations and values of ϕIi of similar magnitude.

In the regression equation (48), we replace the function f ∗(ϕIi)/L
∗ with 1, 000

dummy variables D∗
i (k, h), k = 1, . . . , 10 and h = 1, . . . , 100, where D∗

i (k, h) = 1
if bet i belongs to volume group k based on dollar volume PiVi and to order size
bin h based on ϕIi; otherwise D∗

i (k, h) = 0. We then estimate 1, 000 coefficients
f∗(k, h)/L∗, k = 1, . . . , 10, h = 1, . . . , 100 for the dummy variables using a separate
OLS regression for each of the volume groups, k = 1, . . . , 10,

IBS,i ·Si ·
(0.02)

σi
= βmkt ·Rmkt ·

(0.02)

σi
+ IBS,i ·

[Wi

W ∗

]−1/3

·
100∑
h=1

D∗
i (k, h) ·f ∗(k, h)/L∗+ ϵ̃i.

(49)
For volume group k, the dummy variable coefficients f∗(k, h)/L∗, h = 1, . . . , 100,

track the shape of function f∗(.)/L∗, without imposing any particular restrictions
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on its functional form. Invariance predicts that the ten values of the coefficients
f∗(k, h)/L∗, k = 1, . . . , 10 should be the same for each order size bin h, h = 1, . . . , 100.

Figure 4 shows ten plots, one for each of the ten volume groups, with the 100
estimated coefficients for the dummy variables plotted as solid dots in each plot.
On each plot, we also superimpose the 95th percent confidence intervals for 100
dummy variable coefficients estimated based on the pooled sample (dotted lines).
The superimposed confidence bands help to assess the degree of similarity between
cost functions estimated separately based on observations in each volume bin.

On each of the ten plots, the horizontal and vertical axes are scaled in the same
way to facilitate comparison. On the horizontal axis, we plot the value for order-
size bin h equal to the log of the average ϕIi for observations in that size bin and
corresponding volume group k.

On the right vertical axis, we plot the values of the dummy variable coefficients
f∗(k, h)/L∗ quantifying for the benchmark stock the cost function as a fraction of
notional value, scaled in basis points. To make deviations of cost patterns from
invariants visually obvious, we have effectively scaled cost functions as suggested
by invariance using regression (49): We multiply orders sizes Xi/Vi by (Wi/W

∗)2/3

and divide implementation shortfalls Si by L∗/L = (σi/σ
∗) · (Wi/W

∗)−1/3. Here
1/L∗ := ι2 · C̄B · σ̄∗ · [W̄ ∗]−1/3 is the illiquidity measure for the benchmark stock from
equation (47).

On the left vertical axis, we plot actual average transactions cost f∗(k, h)/Lk as a
fraction of notional value, scaled in basis points. For each volume group k, this scaling
reverses invariance-based scaling by multiplying estimated coefficients f ∗(k, h)/L∗ by
L∗/Lk, where 1/Lk is the illiquidity measure for orders in volume group k given by
1/Lk := ι2 · C̄B · σ̄kmed · (W̄ k

med)
−1/3, with σ̄kmed denoting median bet volatility and

W̄ k
med denoting median bet activity for volume group k.
Without appropriate scaling, the data do not reveal its invariant properties. The

actual costs on the left vertical axes vary significantly across volume groups. In the
low volume group, costs range from −220 basis points to 366 basis points; in the high
volume group, costs range from −33 basis point to 55 basis points, 7 times less than
in the low volume group.

After applying “invariance” scaling, however, our plots appear to be visually con-
sistent with the invariance hypothesis. For all ten subplots in figure 4, the estimated
dummy variable coefficients on the right vertical axes are very similar across volume
groups. They also line up along the superimposed confidence band.

Moving from low-volume groups to high-volume groups, these estimates also be-
come visually more noisy. For low volume group one, dummy estimates lie within
the confidence band, very tightly pining down the estimated shape for the function
f∗(.)/L∗. For volume group ten, many dummy estimates lie outside of the confidence
band, with 11 observations above the band and about 40 observations being below.
These patterns suggest that the statistical power of our tests concerning transactions
costs comes mostly from low-volume groups.

39



Since transition orders are executed over a fixed and limited number of calendar
days, the execution in business time is faster for low-volume stocks and slower for
high-volume stocks. When a transition order in a low-volume stock is being executed,
there are therefore probably fewer other bets being executed at the same time; this
makes the R2 of the regression higher. In the same amount of calendar time, many
more bets are being executed for the high-volume stocks, making the R2 much lower.
The more patient business-time pace of execution for high-volume stocks may explain
why their execution costs appear to be slightly less expensive than low-volume stocks.

Transactions Cost Estimates in Non-Linear Regression. We next report es-
timates of specific parametric functional forms for cost function f ∗(.)/L∗, assumed to
be the sum of a constant bid-ask spread term and a market impact term which is a
power of ϕ · I. For this particular specification, the non-linear regression (48) can be
written as

IBS,i ·Si ·
(0.02)

σi
= βmkt ·Rmkt ·

(0.02)

σi
+IBS,i ·κ̄∗0 ·

[Wi

W ∗

]α1

+IBS,i ·κ̄∗I ·
[Wi

W ∗

]α2

·
[ ϕIi
0.01

]z
+ ϵ̃.

(50)
where ϕIi/0.01 = (Wi/W

∗)2/3 · Xi

(0.01)Vi
. The explanatory variables are scaled so that,

for the benchmark stock, execution of one percent of daily volume has price impact
cost of κ̄∗I and fixed bid-ask spread of κ̄∗0, both measured as a fraction of the value
traded, with units of 10−4 equivalent to basis points in this paper. Equation (50) is
an empirical version of equation (41).

First, we report estimates of the six parameters (βmkt, z, α1, κ̄
∗
0, α2, κ̄

∗
I) in equa-

tion (50) using non-linear regression. Second, we calibrate the three-parameter linear
impact model of equation (11) with parameters (βmkt, κ̄

∗
0, κ̄

∗
I) by imposing the addi-

tional invariance restrictions α1 = α2 = −1/3 and the linear cost restriction z = 1.
Third, we also calibrate the three-parameter square root model of equation (12) with
parameters (βmkt, κ̄

∗
0, κ̄

∗
I) by imposing the alternate restriction z = 1/2. Finally, we

examine a twelve-parameter generalization of equation (50) which replaces powers α1

and α2 of trading activity W with powers of volatility σ, price P , volume V , and
turnover η. The results support invariance, with the square root version of invariance
explaining transactions costs somewhat better than the linear version.

The parameter estimates for the six parameters βmkt, κ̄
∗
0, z, α1, κ̄

∗
I , α2 in the

non-linear regression (50) are reported in table 4.
For the coefficient βmkt which multiplies the market return Rmkt, the estimate is

ˆβmkt = 0.65 with standard error 0.013. The fact that ˆβmkt < 1 suggests that many
transition orders are executed early on the first day.

The point estimate of the estimated bid-ask spread exponent is α̂1 = −0.49, with
standard error 0.050, three standard errors lower than the predicted value α1 = −1/3.
This result may not be economically meaningful because the estimated coefficient on
the bid-ask spread itself, 2 · κ̄∗0, is not significantly different from zero.
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The point estimate for α2 is α̂2 = −0.32 with standard error 0.015. Since in-
variance implies α2 = −1/3, this result strongly supports invariance. When the four
parameters are estimated separately for NYSE Buys, NYSE Sells, NASDAQ Buys,
and NASDAQ Sells, the estimated coefficient for α2 are −0.40, −0.33, −0.41, and
−0.29, respectively.

The estimate for the market impact curvature parameter z is ẑ = 0.57 with
standard error 0.039. This suggests that a square-root specification (z = 1/2) may
describe observed transactions costs better than a linear specification (z = 1). Note
that invariance does not place any restrictions on parameter z itself.

The point estimate of κ̄∗I is κ̂∗I = 10.69 · 10−4 with standard error 1.376 · 10−4.
The estimates of κ̄∗I are higher for buy orders than for sell orders (12.08 · 10−4 versus
9.56 · 10−4 for NYSE; 12.33 · 10−4 versus 9.34 · 10−4 for NASDAQ).

Results for the five-parameter linear specification, regression equation (50) with
parameter z restricted to be equal to one, are reported in table 9 in the Appendix.
The estimate of the bid-ask spread cost κ̄∗0 is 6.28·10−4 with standard error 0.890·10−4

and the estimate of the exponent α1 is α̂1 = −0.39 with standard error 0.020. The
estimate of the market impact cost κ̄∗I is 2.73 · 10−4 with standard error 0.252, and
the estimate of the exponent α2 is α̂2 = −0.31 with standard error of 0.028.

Model Calibration. Table 5 presents estimates for the three parameters βmkt, κ̄
∗
0,

and κ̄∗I in equation (50), imposing the invariance restrictions α1 = α2 = −1/3 and
also imposing either a linear transactions cost model z = 1 or a square root model
z = 1/2.

In the linear specification with z = 1, the point estimate for market impact cost
κ̂∗I is equal to 2.5003 · 10−4, and the point estimate for bid-ask spread cost κ̂∗0 is equal
8.2134 · 10−4. For the benchmark stock, these estimates imply that the total cost of
a hypothetical trade of one percent of daily volume incurs the costs of about 10.71
basis points.

In the square-root specification with z = 1/2, the point estimate for market impact
cost κ̂∗I is equal to 12.0787 · 10−4, and the point estimate for half bid-ask spread κ̂∗0 is
equal 2.0763 · 10−4.

The benchmark stock belongs to volume group seven, and the corresponding aver-
age quoted spread in table 1 for that group is 12.04 basis points. The implied spread
estimate of about 16.42 basis points for the linear model is close to the quoted spread,
whereas the spread estimate of 4.16 basis points for the square root model could have
been biased downwards due to collinearity between a constant term and a square-root
term in the regression in a region next to zero.

Economic Interpretation. A comparison of the R-squares in table 4 and table 5
provides strong support for the invariance. When the coefficient on W/W∗ is fixed
at the invariance-implied value of -1/3 and only two transactions cost parameters κ̄∗I
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and κ̄∗0 are estimated, as in table 5, the R-square is R2 = 0.0991 for a linear specifi-
cation and R2 = 0.1007 for a square-root specification. The square root specification
performs slightly better than the linear specification. Adding the three additional
parameters α1, α2 and z only mildly increases the R-square to R2 = 0.1010, as in
table 5.

We also consider a more general specification with eleven coefficients estimated.
The exponents on the three components of trading activity Wi (volatility σi, price
P0,i, volume Vi) as well as the coefficient on the monthly turnover νi are allowed to
vary freely. The estimated regression equation is

IBS,i · Si ·
(0.02)

σi
= βmkt ·Rmkt ·

(0.02)

σi
IBS,i · κ̄∗0 ·

[Wi

W ∗

]−1/3

·
σβ1i · P β2

0,i · V
β3
i · νβ4i

(0.02)(40)(106)(1/12)
+

+ IBS,i · κ̄∗I ·
[ ϕIi
0.01

]z
·
[Wi

W ∗

]−1/3

·
σβ5i · P β6

0,i · V
β7
i · νβ8i

(0.02)(40)(106)(1/12)
+ ϵ̃.

Because the exponents on the W -terms are set to be −1/3, the invariance hypothesis
predicts β1 = β2 = β3 = β4 = β5 = β6 = β7 = β8 = 0.

Table 5 shows that despite increasing the number of estimated parameters from
four to eleven, the R-square in the aggregate regression increases from R2 = 0.1010
to only R2 = 0.1016. The estimates of β1, β2, β3, β4, β5, β6, β7, and β8 are shown in
table 11 in Appendix. The estimates of β1, β2, β3, β4 are often statistically significant,
but these explanatory variables are multiplied by statistically insignificant coefficient
κ̄∗0. Almost all estimates of β5, β6, β7, and β8 are statistically insignificant, both for
the pooled sample as well as four sub-samples.

In all three specifications, separate regressions for NYSE Buys, NYSE Sells, NAS-
DAQ Buys, and NASDAQ Sells suggest that price impact costs are higher for buy
orders than for sell orders. This is consistent with the idea in Obizhaeva (2009) that
the market believes that buy orders—especially buy orders in portfolio transitions—
contain more information than sell orders.

OLS Estimates for Quoted Spread. Since invariance implies that bid-ask spread
costs are proportional to σ̄ · W̄−1/3, intuition suggests that quoted spreads may also
have this invariant property. As a supplement to our empirical results on transactions
costs, we test this prediction using data on quoted spreads, supplied in the portfolio
transition data as pre-trade information for each transition order.

Let si denote the dollar quoted spread for order i. Applying equation (11) or (12)
to quoted spreads, we obtain

si/Pi ∝ σ̄i · W̄−1/3
i . (51)

Using equation (1) and equation (2), we can write the log-linear OLS regression

ln
[ si
Pi · σi

]
= ln s̄+ α3 · ln

[Wi

W ∗

]
+ ϵ̃i, (52)
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where invariance implies α3 = −1/3. The constant term ln s̄ := ln[s∗/(40 · 0.02)] +
2/3 ln(ψ/ψ∗) − 1/3 ln(ζ∗/ζ) quantifies the dollar spread s∗ for the benchmark stock
as a fraction of dollar volatility P ∗ ·σ∗, under the identifying assumptions ζ = ζ∗ and
ψ = ψ∗.

Table 6 presents the regression results. The point estimate α̂3 = −0.35 has stan-
dard error 0.003. For sub-samples of NYSE Buys, NYSE Sells, NASDAQ Buys, and
NASDAQ Sells, the estimates are −0.31, −0.32, −0.40, and −0.39, respectively. Al-
though the hypothesis α3 = −1/3 is usually rejected, the estimates are economically
very close to −1/3 predicted by invariance. The point estimate of ln s̄ is equal to
−3.07, implying a quoted spread of exp(−3.07) · 0.02 ≈ 9 · 10−4 for the benchmark
stock. This number is similar to median spread of 8.12 basis points for volume group
seven in table 1.

It can be shown that an implicit spread proportional to σ̄ · W̄−1/3, as implied by
invariance, provides a better proxy for the actually incurred spread costs than the
quoted spread itself. If regression equation (50) is estimated with linear impact z = 1,
using only the 436,649 observations for which quoted bid-ask spread data is supplied,
we obtain R2 = 0.0992. Now replace the invariance implied spread cost proportional
to σ̄ · W̄−1/3 with the quoted half spread 1/2 · si/Pi in equation (11). The estimated
equation is

IBS,i·Si·
(0.02)

σi
= βmkt·Rmkt·

(0.02)

σi
+IBS,i·h·

1

2
· si
P0,i

·(0.02)
σi

+IBS,i·κ̄I ·
[ ϕIi
0.01

]
·
[Wi

W ∗

]α2

+ϵ̃.

We find that the R2 drops from R2 = 0.0992 to R2 = 0.0976 (see table 10 in the
Appendix). The point estimate of the coefficient on the quoted half-spread coefficient
is ĥ = 0.71. The estimates are equal to 0.61, 0.74, 0.61, and 0.75, when estimated for
NYSE Buys, NYSE Sells, NASDAQ Buys, and NASDAQ Sells. One interpretation of
the estimate of 0.71 is that transition managers incur as a transactions cost only 71%
of the quoted half-spread. The values are consistent with the intuition in Goettler,
Parlour and Rajan (2005) that endogenously optimizing traders capture a fraction
of the bid-ask spread by mixing between market orders and limit orders. It is also
possible that noise in the quoted spread biases the coefficient towards zero and reduces
the explanatory power of the regression. Note that this errors in variables problem
does not bias the coefficient estimate in equation (52), where the quoted spread is on
the left side.

Consistent with our findings and predictions of invariance, Bouchaud, Farmer and
Lillo (2009) and Dufour and Engle (2000) report that the quoted bid-ask spread is
proportional to the standard deviation of percentage returns between trades.

Discussion. Figure 5 plots the 100 estimated coefficients for the dummy variables
and their 95th confidence intervals from regression equation (49) estimated for pooled
sample. The linear and square root cost functions with parameters calibrated in table
5 are superimposed. A linear specification is 2.50 · 10−4 · ϕI/0.01 + 8.21 · 10−4 (black
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solid line), and a square-root specification is 12.07 ·10−4 ·
√
ϕI/0.01+2.08 ·10−4 (grey

solid line). Both specifications result in estimates economically close to each other.
Consistent with the higher reported R2 for the square root model than the linear

model in table 5, the square-root specification fits the data slightly better than the
linear specification, particularly for large orders in the size bins from 90th to 99th
percentile. Similarly, most studies find that total price impact is best described by a
concave function. For example, Almgren et al. (2005) find the estimate of temporary
price impact curvature ẑ = 0.60 for their sample of almost 30, 000 U.S. stock orders
executed by Citigroup between 2001 and 2003, comparable to our estimate of ẑ = 0.56
when we fix α1 = α2 = −1/3 in regression equation (50). To differentiate temporary
impact from permanent impact of earlier executed trades, Almgren et al. (2005)
assume a particular execution algorithm with a constant rate of trading. We do not
quantify these costs components separately but rather focuses on the total costs.

Intuition might suggest that for gigantic orders, the square root model would
predict dramatically lower transactions costs than the linear model, making it easy
to distinguish the predictions of one model from the other. When the estimated
linear and square root cost functions are superimposed on ten plots in figure 4, we
find that both specifications provide economically similar estimates of transactions
costs, even up to the 99th and 100th size bins. Consistent with our results about bet
size, there are not enough observations of gigantic transition orders in high-volume
stocks to create statistically compelling differences between the square root and linear
models for the most active stocks. For the very largest orders in the 100th size bin for
the highest volume group in figure 4, the estimated dummy variable fits the higher
cost estimates of the linear model better than the square root model. In comparison
with the square root model, this suggests that linear specification provides better
predictions of market impact for very large orders in very active markets.

7 Implications.

The invariance relationships (5), (6), (9), (13), and (14) are like a structural model
which describes how the microstructure of financial markets work. The model is fully
specified by constants describing the moments of Ĩ and the shape of the unmodeled
function CB(.), which determines C̄B. These constants can be inferred from the esti-
mates in section 5 and section 6, but their interpretation depends on the assumptions
about volume multiplier ζ, volatility multiplier ψ, and deflator δ.

Our empirical tests provide not only evidence in favor of the invariance hypotheses
but also inputs for the calibration process. Our empirical results can be summarized as
follows. The distribution of portfolio transition orders |X̃|—expressed as a fraction
of volume—is approximately a log-normal. It is therefore fully described by two
parameters, the log-mean for the benchmark stock estimated to be −5.71 and the
log-variance estimated to be 2.53 (see table 3). The following formula shows how
these estimates can be extrapolated to stocks with other levels of trading activity
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W = σPV and volume V :

ln
[ |X̃|
V

]
≈ −5.71− 2

3
· ln
[ W

(0.02)(40)(106)

]
+
√
2.53 · Z̃, Z̃ ∼ N(0, 1) (53)

Our empirical results also suggest that transactions cost functions can be described
by either a linear model or a square root model. Since both models also have a
constant bid-ask spread term, each model is described by two parameters. For an
order of 1% of average daily volume in the benchmark stock, the estimates imply
market impact costs of κ̄I = 2.50 · 10−4 and spread costs of κ̄0 = 8.21 · 10−4 for the
linear model as well as market impact costs of κ̄I = 12.08 · 10−4 and spread costs of
κ̄0 = 2.08 · 10−4 for the square root model (see table 5). The following formulas show
how these estimates can be extrapolated to execution costs of an order of X shares
for stocks with other levels of trading activity W , volume V and volatility σ:

C(X) =
σ

0.02

(8.21
104

·
[

W

(0.02)(40)(106)

]−1/3

+
2.50

104
·
[

W

(0.02)(40)(106)

]1/3
X

(0.01)V

)
.

(54)

C(X) =
σ

0.02

(2.08
104

·
[

W

(0.02)(40)(106)

]−1/3

+
12.08

104
·
[ X

(0.01)V

]1/2)
. (55)

We calibrate the distribution of the invariant Ĩ using calibrated values for the
distribution of order sizes in equation (53). The distribution of Ĩ is linked to the
distribution of portfolio transition orders X̃ by equation ϕ · |Ĩ| = X̃/V · (W/W ∗)2/3

with the constant ϕ := ιδ−1ψ−2/3(ζ/2)−1/3(W ∗)−2/3, as explained in the discussion
after equation (47). The log-normality of portfolio transition orders implies the log-
normality of |Ĩ|, and the estimated moments of X̃/V · (W/W ∗)2/3 put restrictions on
moments of invariant Ĩ.

The distribution of invariant Ĩ can be therefore approximated by the product of
two independent random variables: (1) a buy-sell indicator variable ĨBS taking values
of +1 or −1 with equal probability, and (2) a log-normal random variable with log-
mean µI and log-variance σ2

I . Matching log-moments of ϕ·|Ĩ| to calibrated constants of
−5.71 and 2.53 from equation (53)—E{ln(ϕ·|Ĩ|)} = −5.71 and V {ln(ϕ·|Ĩ|)} = 2.53—
we find

Ĩ ∼ ĨBS · eµI+σI ·Z̃ = ĨBS · e5.6599+lnψ+ 1
2
ln(ζ/2)+ 3

2
ln δ+

√
2.53·Z̃ . (56)

In the baseline case of ψ = ζ/2 = δ = 1, the invariant Ĩ ∼ ĨBS ·exp{5.6599+
√
2.53·Z̃}.

More generally, interpretation of the estimated constants in equation (53) depends on
assumptions about values of the volatility multiplier ψ, the intermediation multiplier
ζ, and the deflator δ.

We calibrate the average cost of a bet C̄B = E{C(Q̃)·P ·|Q̃|} using two approaches.
One approach is based on the linear model, and the other approach is based on the
square root model. Both approaches assume scaled portfolio transition orders δ ·Xi
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have the same distribution as a typical bet |Q̃|, implying that C̄B = E{C(X̃ · δ) · P ·
X̃ · δ}. First, using the linear model from equations (53) and (54), we obtain

C̄B = 1730 · δ2 + 385 · δ. (57)

Second, using the square root model from equations (53) and (55), we obtain

C̄B = 1586 · δ3/2 + 98 · δ. (58)

In the baseline case with δ = 1, the linear model implies cost of executing a bet
C̄B = $2, 115, which is higher than the cost C̄B = $1, 684 implied by the square root
model.

The calibrated invariants Ĩ and C̄B imply specific quantitative relationships con-
cerning various market microstructure variables. Those predictions depend on our
assumptions about volatility multiplier ψ, volume multiplier ζ, and deflator δ.

The structure of the meta-model imposes the additional restriction on the invari-
ants and says that the standard deviation of invariant Ĩ is equal to invariant C̄B, i.e.,
equivalently C̄B = E|Ĩ|/m, as seen from equation (31). Note that this restriction
does not appear during the discussion of the invariance hypotheses in section 1. The
economic intuition of this restriction is that market makers must be able to break
even trading against bets which move prices due to their information content. Using
equation (56), we find m := E{|Q̃|}/{E{Q̃2}}1/2 ≈ exp(−

√
2.53/2) ≈ 0.28 and write

the restriction in terms of unidentified parameters of volume multiplier ζ, volatility
multiplier ψ, and deflator δ as

C̄B = $3569 · δ3/2 · (ζ/2)1/2 · ψ, (59)

where C̄B depends on deflator δ as shown either in equation (57) or in equation (58).
The equation above is not satisfied for a baseline set of parameters ψ = ζ/2 = δ =

1. There exist, however, many parameters satisfying that constraint. For illustration
purposes, we select two sets of arbitrary parameters with reasonable values: (1) ψ =
0.55, ζ = 2.3, and δ = 1 for the linear model and (2) ψ = 0.5, ζ = 2, and δ = 0.4 for
the square root model.

For these sets of parameters consistent with the meta-model, the implications
of invariance hypotheses can be stated in a consolidated form as in the invariance
theorem in section 2. To derive those implications, we substitute V̄ , σ̄ and W̄ for V, σ
and W in equations (30) and (31), then use equation (1), equation (2) and m ≈ 0.28
from equation (56),

γ =

(
λ · (2/ζ)V
ψσ · P ·m

)2

=

(
E{|Q̃|}
(2/ζ)V

)−1

=
(ψσ · L)2

0.282
=

ψ2σ2

θ2τ · Σ
=

ρ

θ2τ
=

(
(2/ζ)ψW

0.28C̄B

)2/3

.

(60)
Q̃

V̄
∼ δ ·

[ W

(0.02)(40)(106)

]−2/3

· e−5.71+
√
2.53·Z̃ , Z̃ ∼ N(0, 1). (61)
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Given estimates of C̄B and particular choice of the constants ψ, ζ, and δ, these
equations summarize the main quantitative implications of the invariance hypotheses,
calibrated based on portfolio transition data and consistent with the meta-model.

The values of the number of bets per day γ, their size Q̃, long-term market impact
λ, illiquidity 1/L, efficiency (1/Σ)1/2, resilience ρ, and cost functions can be immedi-
ately calculated given observableW and its components V and σ. For the benchmark
stock with price $40, volume 1 million shares per day, and volatility 2 percent per
day, for example, some of the calibrated variables are presented in the table.

C̃B γ∗ E{|Q̃∗|}/V ∗ λ∗ 1/L∗

(1) ψ = 0.55, ζ = 2.3, δ = 1.0 $2,115 75 1.16% 1.23 · 10−6 45 · 10−4

(2) ψ = 0.50, ζ = 2.0, δ = 0.4 $440 219 0.46% 1.67 · 10−6 24 · 10−4

For an order equal to 1% of average daily volume, for example, the calibrated
parameter of the long-term impact for linear case implies that the percentage long-
term impact λ · 106 · 0.01/40 is equal to 3.08 · 10−4. Since bid-ask spread costs are
estimated to be less than impact costs for the linear model, the linear model implies
not only that bid-ask spread costs 8.21 · 10−4 are transitory, but also a portion of
the linear impact 2 · 2.50 · 10−4 of the “last” trade in a bet will, on average, go away
as the price mean-reverts to its long-term level. For square root transactions costs,
the bid-ask spread costs and some of the price impact costs will mean revert away as
well, but for gigantic bets, the concavity of the square root function implies greater
long-term impact than the short-term impact associated with transactions costs. Of
course, these implications apply to bets of “average” information content. In a more
general model, markets might figure out quickly that some bets are informed and
other bets are not; gigantic bets may have information content less than proportional
to their sizes.

The decomposition of total impact into permanent and temporary components
is closely related to market efficiency and resilience, which depend on the third in-
variants quantifying the precision per bet θ2τ in equation (30). Calibration of this
invariant and also deeper understanding of temporary and permanent impacts re-
quire the analysis of price dynamics induced by portfolio transition orders or other
transactions. We leave these important questions for the future research.

Our calibration relies on a number of assumptions regarding whether portfolio
transitions are similar in terms of size and associated transactions costs to typical
bets. In the future, a better calibration of the invariants Ĩ, C̄B, and θ2τ as well as
estimation of multipliers ψ, ζ, and δ will be necessary to sharpen predictions based
on invariance principles.
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8 Conclusion: Future Research

We have shown that the predictions based on market microstructure invariance largely
hold in portfolio transitions data for equities. We conjecture that predictions based
on invariance can be found to hold in other data as well, such as transactions in
the Trades and Quotes (“TAQ”) dataset, changes in holdings recorded in 13-F filings
of institutional investment managers, institutional trades reported in the Ancerno
dataset, and other datasets. We conjecture that data on news articles can help to
show that information flows are confined to the same business time as trading.

We conjecture that predictions of market microstructure invariance may generalize
to other markets such as bond markets, currency markets, and futures markets, as
well as to other countries. Whether market microstructure invariance applies this
generally poses an interesting set of issues for future research.
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Table 2: OLS Estimates of Order Size.

NYSE NASDAQ

All Buy Sell Buy Sell

ln
[
q̄
]

-5.67 -5.68 -5.63 -5.75 -5.65
(0.017) (0.023) (0.018) (0.035) (0.032)

α0 -0.62 -0.63 -0.59 -0.71 -0.59
(0.009) (0.011) (0.008) (0.019) (0.015)

R2 0.3167 0.2587 0.2646 0.4298 0.3542
Q∗/V ∗ · δ−1 × 10−4 34.62 34.14 35.98 31.80 34.78

#Obs 439,765 131,530 150,377 69,871 87,987

Table presents the estimates ln q̄ and α0 for the regression:

ln
[Xi

Vi

]
= ln

[
q̄
]
+ α0 · ln

[Wi

W ∗

]
+ ϵ̃.

Each observation corresponds to transition order i with order size Xi, bench-
mark price P0,i, expected daily volume Vi, expected daily volatility σi, trading
activity Wi. q̄ is the measure of order size such that Q∗/V ∗ measures the me-
dian order size for a benchmark stock. The benchmark stock has daily volatility
of 2%, share price of $40, and daily volume of one million shares. The standard
errors are clustered at weekly levels for 17 industries and shown in parentheses.
The sample ranges from January 2001 to December 2005.
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Table 3: OLS Estimates for Order Size: Model Calibration.

NYSE NASDAQ

All Buy Sell Buy Sell

Restricted Specification: α0 = −2/3, b1 = b2 = b3 = b4 = 0

ln
[
q̄
]

-5.71 -5.70 -5.68 -5.70 -5.77
(0.019) (0.023) (0.019) (0.042) (0.039)

Q∗/V ∗ · δ−1 × 10−4 33.13 33.46 34.14 33.46 31.20
MSE 2.53 2.61 2.54 2.32 2.56
R2 0.3149 0.2578 0.2599 0.4278 0.3479

Unrestricted Specification With 5 Degrees of Freedom: α0 = −2/3.

R2 0.3229 0.2668 0.2739 0.4318 0.3616

#Obs 439,765 131,530 150,377 69,871 87,987

Table presents the estimates ln q̄ and the mean squared error (MSE) for the
regression:

ln
[Xi

Vi

]
= ln

[
q̄
]
+α0·ln

[Wi

W ∗

]
+b1·ln

[ σi
0.02

]
+b2·ln

[P0,i

40

]
+b3·ln

[ Vi
106

]
+b4·ln

[ νi
1/12)

]
+ϵ̃.

with α0 restricted to be −2/3 as predicted by invariance hypothesis and b1 =
b2 = b3 = 0. Each observation corresponds to transition order i with order size
Xi, benchmark price P0,i, expected daily volume Vi, expected daily volatility
σi, trading activity Wi, and monthly turnover rate νi. q̄ is the measure of order
size such that Q∗/V ∗ measures the corresponding percentile of order size for a
benchmark stock. The benchmark stock has daily volatility of 2%, share price
of $40, and daily volume of one million shares. The R-squares are reported
for restricted specification with α0 = −2/3, b1 = b2 = b3 = b4 = 0 as well as
for unrestricted specification with coefficients ln q̄ and b1, b2, b3, b4 allowed to
vary freely. The standard errors are clustered at weekly levels for 17 industries
and shown in parentheses. The sample ranges from January 2001 to December
2005.
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Table 4: Transactions Cost Estimates in Non-Linear Regression.

NYSE NASDAQ

All Buy Sell Buy Sell

βmkt 0.66 0.63 0.62 0.76 0.78
(0.013) (0.016) (0.016) (0.037) (0.036)

κ̄∗0 × 104 1.77 -0.27 1.14 0.77 3.55
(0.837) (2.422) (1.245) (4.442) (1.415)

α1 -0.49 -0.37 -0.50 0.53 -0.44
(0.050) (1.471) (0.114) (1.926) (0.045)

κ̄∗I × 104 10.69 12.08 9.56 12.33 9.34
(1.376) (2.693) (2.254) (2.356) (2.686)

z 0.57 0.54 0.56 0.44 0.63
(0.039) (0.056) (0.062) (0.051) (0.086)

α2 -0.32 -0.40 -0.33 -0.41 -0.29
(0.015) (0.037) (0.029) (0.035) (0.037)

R2 0.1010 0.1118 0.1029 0.0945 0.0919
#Obs 439,765 131,530 150,377 69,871 87,987

Table presents the estimates for βmkt, z, α1, κ̄
∗
0, α2, and κ̄∗I in the regression:

IBS,i·Si·
(0.02)

σi
= βmkt·Rmkt·

(0.02)

σi
+IBS,i·κ̄∗0·

[Wi

W ∗

]α1

+IBS,i·κ̄∗I ·
[Wi

W ∗

]α2

·
[ ϕIi
0.01

]z
+ϵ̃.

(62)
where ϕIi/0.01 = Xi/(0.01Vi) · (Wi/W

∗)2/3. Si is implementation shortfall.
Rmkt is the value-weight market return for the first day of transition. The
trading activity Wi is the product of expected volatility σi, benchmark price
P0,i, and expected volume Vi. The scaling constant W ∗ = (0.02)(40)(106) is the
trading activity for the benchmark stock with volatility of 2% per day, price
$40 per share, and trading volume of one million shares per day. Xi is the
number of shares in the order i. κ̄∗I is the market impact costs of executing
a trade of one percent of daily volume in a benchmark stock, and κ̄∗0 is the
effective spread cost. The standard errors are clustered at weekly levels for 17
industries and shown in parentheses. The sample ranges from January 2001 to
December 2005.
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Table 5: Transactions Costs: Model Calibration.

NYSE NASDAQ

All Buy Sell Buy Sell

Linear Model: z = 1, β1 = β2 = β3 = β4 = β5 = β6 = β7 = β8 = 0.

κ̄∗0 × 104 8.2134 7.1934 6.7698 9.1832 9.2658
(0.5776) (1.1215) (0.7943) (1.5627) (0.7811)

κ̄∗I × 104 2.5003 3.3663 1.9220 3.4614 2.4629
(0.1903) (0.3700) (0.2650) (0.3953) (0.3267)

R2 0.0991 0.1102 0.1012 0.0926 0.0897

Square Root Model: z = 1/2, β1 = β2 = β3 = β4 = β5 = β6 = β7 = β8 = 0.

κ̄∗0 × 104 2.0763 -1.3091 0.9167 2.2844 4.6530
(0.7035) (1.2779) (0.9264) (2.0554) (0.8244)

κ̄∗I × 104 12.0787 15.6544 11.0986 13.5025 10.4063
(0.7416) (1.2177) (1.2979) (1.4564) (1.2069)

R2 0.1007 0.1116 0.1027 0.0941 0.0911

Unrestricted Specification With 12 Degrees of Freedom.

R2 0.1016 0.1121 0.1032 0.0957 0.0944

#Obs 439,765 131,530 150,377 69,871 87,987

Table presents the estimates κ̄∗0 and κ̄∗I for the regression:

IBS,i · Si ·
(0.02)

σi
= βmkt ·Rmkt ·

(0.02)

σi
IBS,i · κ̄∗0 ·

[Wi

W ∗

]−1/3
·

σβ1i · P β2
0,i · V

β3
i · νβ4i

(0.02)(40)(106)(1/12)
+

+ IBS,i · κ̄∗I ·
[ ϕIi
0.01

]z
·
[Wi

W ∗

]−1/3
·

σβ5i · P β6
0,i · V

β7
i · νβ8i

(0.02)(40)(106)(1/12)
+ ϵ̃.

where invariant ϕIi/0.01 = Xi/(0.01Vi) · (Wi/W
∗)2/3. Si is implementation

shortfall. Rmkt is the value-weight market return for the first day of transition.
The trading activity Wi is the product of expected volatility σi, benchmark
price P0,i, and expected volume Vi. The scaling constant W ∗ = (0.02)(40)(106)
is the trading activity for the benchmark stock with volatility of 2% per day,
price $40 per share, and trading volume of one million shares per day. Xi is
the number of shares in the order i. κ̄∗I is the market impact costs of exe-
cuting a trade of one percent of daily volume in a benchmark stock, and κ̄∗0
is the effective spread cost. The R-squares are reported for restricted speci-
fication as well as for unrestricted specification with twelve coefficients βmkt,
z, λ̄, κ̄, β1, β2, β3, β4, β5, β6, β7, β8 allowed to vary freely. The standard errors
are clustered at weekly levels for 17 industries and shown in parentheses. The
sample ranges from January 2001 to December 2005.
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Table 6: OLS Estimates of Log of Quoted Spread.

NYSE NASDAQ

All Buy Sell Buy Sell

ln s̄ -3.07 -3.09 -3.08 -3.04 -3.04
(0.008) (0.008) (0.008) (0.013) (0.012)

α3 -0.35 -0.31 -0.32 -0.40 -0.39
(0.003) (0.003) (0.003) (0.004) (0.004)

R2 0.4744 0.3545 0.3964 0.5516 0.5721
eln s̄ · 0.02× 104 9.28 9.10 9.19 9.57 9.57

#Obs 434,920 130,700 149,197 68,833 86,190

Table presents the estimates ln s̄ and α3 for the regression:

ln
[ si
Pi · σi

]
= ln s̄+ α3 · ln

[Wi

W ∗

]
+ ϵ̃i,

Each observation corresponds to order i. The left-hand side variable is the
logarithm of the quoted bid-ask spread si/P0,i as a fraction of expected return
volatility σi. The trading activity Wi is the product of expected daily volatility
σi, benchmark price P0,i, and expected daily volume Vi, measured as the last
month’s average daily volume. The scaling constant W ∗ = (0.02)(40)(106)
corresponds to the trading activity for the benchmark stock with volatility of
2% per day, price $40 per share, and trading volume of one million shares per
day. The median percentage spread for a benchmark stock is exp(ln s̄) · 0.02.
The standard errors are clustered at weekly levels for 17 industries and shown
in parentheses. The sample ranges from January 2001 to December 2005.
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Figure 5: Transactions Cost Functions.
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Figure shows estimates of transactions cost functions based on entire sam-
ple. On the horizonal axis, there are 100 equally spaced bins based on

re-scaled order sizes, ϕI = X̃/V ·
(
Wi/W

∗
)2/3

. The plot contains 100

estimates f∗(k, h)/L∗, h = 1, ..100 from regression,

IBS,i·Si·
(0.02)

σi
= βmkt·Rmkt·

(0.02)

σi
+IBS,i·

[Wi

W ∗

]−1/3

·
100∑
h=1

D∗
i (k, h)·f∗(k, h)/L∗+ϵ̃i.

Xi is an order size in shares, Vi is the average daily volume in shares,
and Wi is the measure of trading activity. The vertical axis presents
estimated transactions cost invariant f ∗(.)/L in basis points. The 95th
percent confidence interval are superimposed (dotted lines). A linear func-
tion is 2.50 · 10−4 · ϕI/0.01 + 8.21 · 10−4 (black solid line). A square-root
function is 12.07 · 10−4 ·

√
ϕI/0.01 + 2.08 · 10−4 (grey solid line). The

sample ranges from January 2001 to December 2005.
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Table 7: Quantile Estimates of Order Size.

p1 p5 p25 p50 p75 p95 p99

ln
[
q̄
]

-9.37 -8.31 -6.73 -5.66 -4.59 -3.05 -2.05
(0.008) (0.006) (0.004) (0.003) (0.004) (0.006) (0.009)

α0 -0.65 -0.64 -0.61 -0.62 -0.61 -0.64 -0.63
(0.005) (0.003) (0.002) (0.002) (0.002) (0.003) (0.005)

Pseudo R2 0.1621 0.1534 0.1650 0.1727 0.1795 0.1949 0.2232
Q∗/V ∗ · δ × 10−4 0.85 2.46 11.95 34.83 101.53 473.59 1287.35

#Obs 439,765 439,765 439,765 439,765 439,765 439,765 439,765

Table presents the estimates ln q̄ and α0 for the quantile regression:

ln
[Xi

Vi

]
= ln

[
q̄
]
+ α0 · ln

[Wi

W ∗

]
+ ϵ̃.

Each observation corresponds to transition order i with order size Xi, bench-
mark price P0,i, expected daily volume Vi, expected daily volatility σi, trading
activity Wi. q̄ is the measure of order size such that Q∗/V ∗ measures the corre-
sponding percentile of order size for a benchmark stock. The benchmark stock
has daily volatility of 2%, share price of $40, and daily volume of one million
shares. The standard errors are shown in parentheses. The sample ranges from
January 2001 to December 2005.
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Table 8: OLS Estimates for Order Size: Model Calibration.

NYSE NASDAQ

All Buy Sell Buy Sell

Restricted Specification: α0 = −2/3, b1 = b2 = b3 = b4 = 0

ln
[
q̄
]

-5.71 -5.70 -5.68 -5.70 -5.77
(0.019) (0.023) (0.019) (0.042) (0.039)

Q∗/V ∗ · δ × 104 33.13 33.46 34.14 33.46 31.20
MSE 2.53 2.61 2.54 2.32 2.56
R2 0.3149 0.2578 0.2599 0.4278 0.3479

Unrestricted Specification With 5 Degrees of Freedom: α0 = −2/3.

ln
[
q̄
]

-5.53 -5.55 -5.48 -5.77 -5.48
(0.019) (0.026) (0.019) (0.051) (0.047)

b1 0.42 0.47 0.53 0.19 0.33
(0.040) (0.050) (0.043) (0.094) (0.087)

b2 0.24 0.17 0.29 0.04 0.33
(0.019) (0.021) (0.017) (0.049) (0.040)

b3 0.06 0.06 0.07 -0.06 0.07
(0.010) (0.012) (0.009) (0.026) (0.021)

b4 -0.18 -0.24 -0.22 -0.02 -0.11
(0.015) (0.020) (0.017) (0.040) (0.032)

R2 0.3229 0.2668 0.2739 0.4318 0.3616

#Obs 439,765 131,530 150,377 69,871 87,987

Table presents the estimates and the mean squared error (MSE) for the regres-
sion:

ln
[Xi

Vi

]
= ln

[
q̄
]
+α0·ln

[Wi

W ∗

]
+b1·ln

[ σi
0.02

]
+b2·ln

[P0,i

40

]
+b3·ln

[ Vi
106

]
+b4·ln

[ νi
1/12)

]
+ϵ̃.

with α0 restricted to be −2/3 as predicted by invariance hypothesis and b1 =
b2 = b3 = 0. Each observation corresponds to transition order i with order size
Xi, benchmark price P0,i, expected daily volume Vi, expected daily volatility
σi, trading activity Wi, and monthly turnover rate νi. q̄ is the measure of order
size such that Q∗/V ∗ measures the corresponding percentile of order size for a
benchmark stock. The benchmark stock has daily volatility of 2%, share price
of $40, and daily volume of one million shares. The R-squares are reported
for restricted specification with α0 = −2/3, b1 = b2 = b3 = b4 = 0 as well as
for unrestricted specification with coefficients ln q̄ and b1, b2, b3, b4 allowed to
vary freely. The standard errors are clustered at weekly levels for 17 industries
and shown in parentheses. The sample ranges from January 2001 to December
2005.
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Table 9: Transactions Cost Estimates in Non-Linear Regression with Linear Impact.

NYSE NASDAQ

All Buy Sell Buy Sell

βmkt 0.66 0.63 0.62 0.77 0.77
(0.013) (0.016) (0.016) (0.037) (0.036)

κ̄∗0 × 104 6.28 6.51 5.43 5.94 6.54
(0.890) (1.600) (1.154) (2.147) (1.501)

α1 -0.40 -0.36 -0.39 -0.44 -0.40
(0.020) (0.048) (0.029) (0.051) (0.031)

κ̄∗I × 104 2.73 2.63 2.10 3.69 3.13
(0.252) (0.460) (0.346) (0.663) (0.765)

α2 -0.31 -0.45 -0.31 -0.32 -0.28
(0.028) (0.038) (0.041) (0.056) (0.058)

R2 0.0993 0.1105 0.1014 0.0931 0.0901
#Obs 439,765 131,530 150,377 69,871 87,987

Table presents the estimates for βmkt, α1, κ̄
∗
0, α2, and κ̄∗I in the regression:

IBS,i·Si·
(0.02)

σi
= βmkt·Rmkt·

(0.02)

σi
+IBS,i·κ̄∗0·

[Wi

W ∗

]α1

+IBS,i·κ̄∗I ·
[Wi

W ∗

]α2

·
[ ϕIi
0.01

]z
+ϵ̃.

(63)
where z = 1 and ϕIi/0.01 = Xi/(0.01Vi) · (Wi/W

∗)2/3. Si is implementation
shortfall. Rmkt is the value-weight market return for the first day of transition.
The trading activity Wi is the product of expected volatility σi, benchmark
price P0,i, and expected volume Vi. The scaling constant W ∗ = (0.02)(40)(106)
is the trading activity for the benchmark stock with volatility of 2% per day,
price $40 per share, and trading volume of one million shares per day. Xi is
the number of shares in the order i. κ̄∗I is the market impact costs of executing
a trade of one percent of daily volume in a benchmark stock, and κ̄∗0 is the
effective spread cost. The standard errors are clustered at weekly levels for 17
industries and shown in parentheses. The sample ranges from January 2001 to
December 2005.
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Table 10: Transactions Cost Estimates in Non-Linear Regression with Quoted Spread.

NYSE NASDAQ

All Buy Sell Buy Sell

βmkt 0.65 0.63 0.62 0.76 0.77
(0.013) (0.016) (0.015) (0.036) (0.037)

κ̄I × 104 2.95 2.97 2.24 3.76 2.95
(0.261) (0.504) (0.366) (0.700) (0.749)

α2 -0.32 -0.44 -0.32 -0.37 -0.33
(0.029) (0.036) (0.039) (0.053) (0.060)

h 0.71 0.61 0.74 0.61 0.75
(0.053) (0.110) (0.094) (0.127) (0.073)

R2 0.0976 0.1094 0.1010 0.0891 0.0872

#Obs 436,649 131,100 149,600 69,218 86,731

Table presents the estimates for βmkt, κ̄I , α2, and h in the regression:

IBS,i·Si·
(0.02)

σi
= βmkt·Rmkt·

(0.02)

σi
+IBS,i·h·

1

2
· si
P0,i

·(0.02)
σi

+IBS,i·κ̄I ·
[ ϕIi
0.01

]
·
[Wi

W ∗

]α2

+ϵ̃.

where invariant Ii =
Xi

(0.01)Vi
·
[
Wi
W ∗

]2/3
. Each observation corresponds to or-

der i. IBS,i is a buy/sell indicator, Si is implementation shortfall, Rmkt is the
value-weight market return for the first day of transition. The term (0.02)/σi
adjusts for heteroscedasticity. The trading activity Wi is the product of ex-
pected volatility σi, benchmark price P0,i, and expected volume Vi. The scaling
constant W ∗ = (0.02)(40)(106) is the trading activity for the benchmark stock
with volatility of 2% per day, price $40 per share, and trading volume of one
million shares per day. Xi is the number of shares in the order i. κ̄I is the
market impact costs of executing a trade of one percent of daily volume in a
benchmark stock. si/P0,i is the quoted spread. The standard errors are clus-
tered at weekly levels for 17 industries and shown in parentheses. The sample
ranges from January 2001 to December 2005.
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Table 11: Transactions Costs: Model Calibration.

NYSE NASDAQ

All Buy Sell Buy Sell

Linear Model: z = 1, β1 = β2 = β3 = β4 = β5 = β6 = β7 = β8 = 0.

βmkt 0.6571 0.6308 0.6195 0.7693 0.7771
(0.0135) (0.0159) (0.0158) (0.0371) (0.0365)

κ̄0 × 104 8.2134 7.1934 6.7698 9.1832 9.2658
(0.5776) (1.1215) (0.7943) (1.5627) (0.7811)

κ̄I × 104 2.5003 3.3663 1.9220 3.4614 2.4629
(0.1903) (0.3700) (0.2650) (0.3953) (0.3267)

R2 0.0991 0.1102 0.1012 0.0926 0.0897

Square Root Model: z = 1/2, β1 = β2 = β3 = β4 = β5 = β6 = β7 = β8 = 0.

βmkt 0.6552 0.6285 0.6192 0.7598 0.7782
(0.0134) (0.0158) (0.0159) (0.0365) (0.0364)

κ̄0 × 104 2.0763 -1.3091 0.9167 2.2844 4.6530
(0.7035) (1.2779) (0.9264) (2.0554) (0.8244)

κ̄I × 104 12.0787 15.6544 11.0986 13.5025 10.4063
(0.7416) (1.2177) (1.2979) (1.4564) (1.2069)

R2 0.1007 0.1116 0.1027 0.0941 0.0911

Unrestricted Specification With 12 Degrees of Freedom.

βmkt 0.66 0.63 0.62 0.76 0.78
(0.013) (0.016) (0.015) (0.036) (0.036)

κ̄∗0 × 104 0.94 -0.05 0.47 1.55 1.61
(0.675) (0.124) (0.556) (1.698) (1.148)

β1 -0.43 -2.47 -1.08 -0.44 -0.46
(0.147) (0.890) (0.392) (0.489) (0.131)

β2 0.17 2.87 0.23 0.20 0.11
(0.072) (1.230) (0.231) (0.127) (0.109)

β3 -0.56 1.85 -0.47 -0.47 -0.49
(0.159) (0.754) (0.296) (0.238) (0.155)

β4 0.62 0.13 0.49 0.49 0.58
(0.173) (0.620) (0.490) (0.313) (0.175)

κ̄∗I × 104 9.36 11.61 10.93 8.88 5.00
(1.307) (2.471) (1.804) (3.340) (2.033)

z 0.58 0.54 0.52 0.58 0.63
(0.041) (0.039) (0.042) (0.094) (0.083)

β5 0.02 -0.11 0.36 -0.17 -0.23
(0.135) (0.192) (0.229) (0.252) (0.242)

β6 -0.14 -0.11 0.03 -0.27* -0.22
(0.061) (0.113) (0.100) (0.120) (0.113)

β7 0.01 -0.07 0.04 0.00 -0.16
(0.037) (0.050) (0.052) (0.099) (0.100)

β8 0.08 0.07 -0.11 0.08 0.39
(0.067) (0.086) (0.101) (0.143) (0.153)

R2 0.1016 0.1121 0.1032 0.0957 0.0944

#Obs 439,765 131,530 150,377 69,871 87,987
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Table presents the estimates for the regression:

IBS,i · Si ·
(0.02)

σi
= βmkt ·Rmkt ·

(0.02)

σi
IBS,i · κ̄∗0 ·

[Wi

W ∗

]−1/3
·

σβ1i · P β2
0,i · V

β3
i · νβ4i

(0.02)(40)(106)(1/12)
+

+ IBS,i · κ̄∗I ·
[ ϕIi
0.01

]z
·
[Wi

W ∗

]−1/3
·

σβ5i · P β6
0,i · V

β7
i · νβ8i

(0.02)(40)(106)(1/12)
+ ϵ̃.

where ϕIi/0.01 = Xi/(0.01Vi) · (Wi/W
∗)2/3. Si is implementation shortfall.

Rmkt is the value-weight market return for the first day of transition. The
trading activity Wi is the product of expected volatility σi, benchmark price
P0,i, and expected volume Vi. The scaling constant W ∗ = (0.02)(40)(106) is the
trading activity for the benchmark stock with volatility of 2% per day, price $40
per share, and trading volume of one million shares per day. Xi is the number of
shares in the order i. κ̄∗I is the market impact costs of executing a trade of one
percent of daily volume in a benchmark stock, and κ̄∗0 is the effective spread cost.
The R-squares are reported for restricted specification as well as for unrestricted
specification with twelve coefficients βmkt, z, κ̄

∗
I , κ̄

∗
0, β1, β2, β3, β4, β5, β6, β7, β8

allowed to vary freely. The standard errors are clustered at weekly levels for 17
industries and shown in parentheses. The sample ranges from January 2001 to
December 2005.
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