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This article studies momentum in stock returns, focusing on the role of industry, size, and
book-to-market (B/M) factors. Size and B/M portfolios exhibit momentum as strong as
that in individual stocks and industries. The size and B/M portfolios are well diversified,
so momentum cannot be attributed to firm- or industry-specific returns. Further, industry,
size, and B/M portfolios are negatively autocorrelated and cross-serially correlated over
intermediate horizons. The evidence suggests that stocks covary “too strongly” with
each other. I argue that excess covariance, not underreaction, explains momentum in the
portfolios.

Momentum is one of the strongest and most puzzling asset pricing anomalies.
Jegadeesh and Titman (1993) show that past winners continue to outperform
past losers over horizons of 3–12 months. For example, from 1965 to 1989,
stocks in the top 12-month return decile beat stocks in the bottom decile
by 6.8%, on average, during the subsequent six months (t-statistic = 3�40).
Momentum is puzzling because it suggests that prices are not even weak-
form efficient. For it to be rational, risk would have to increase after positive
returns, contrary to the intuition that risk should actually decline. Empirically
Jegadeesh and Titman find that risk adjustment tends to accentuate rather than
explain momentum [see also Fama and French (1996)].
This article further studies momentum in stock returns, focusing on the role

of industry, size, and book-to-market (B/M) factors. The literature generally
attributes momentum to firm-specific returns. It argues that investors either
underreact or belatedly overreact to firm-specific news [e.g., Jegadeesh and
Titman (2001)]. Barberis, Shleifer, and Vishny (1998), Daniel, Hirshleifer,
and Subrahmanyam (1998), and Hong and Stein (1999) all develop behav-
ioral models motivated in part by the same interpretation. In this article, I
show that firm-specific returns, together with the behavioral models, cannot
explain a significant component of momentum.
The article reports two sets of tests. First, I explore the profitability of

portfolio-based momentum strategies. Jegadeesh and Titman (1993) use indi-
vidual firms in their tests; they find that the best-performing stocks in the
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past continue to beat the worst-performing stocks. Moskowitz and Grinblatt
(1999) find a similar pattern in industry portfolios; the best-performing indus-
tries continue to beat the worst performers. I extend these results to size,
B/M, and double-sorted size-B/M portfolios (5, 10, or 15 size and B/M port-
folios; 9, 16, or 25 double-sorted portfolios). Momentum in these portfolios
is as strong, and in some cases stronger, than momentum in individual stocks
or industries. Moreover, size and B/M momentum is distinct from industry
momentum in that neither subsumes the other.
These results are informative. They show, first, that momentum is robust

and pervasive. It shows up in stocks and many types of portfolios, typi-
cally with very high significance (t-statistics> 4 are common). More impor-
tantly, the evidence shows that momentum cannot be attributed solely to
firm-specific returns. The size and B/M portfolios are very well diversified.
For example, size deciles each contain an average of 350 stocks from 1941 to
1999, while the 16 size-B/M portfolios each contain an average of 200 stocks
from 1963 to 1999. The portfolios are also diversified across industries, and
their returns seem best described as “macroeconomic.” These observations
imply one of two things: either firm-specific returns do not explain momen-
tum at all, or there must be multiple sources of momentum in returns. A
coherent story should explain why momentum shows up in, say, individual
stocks and size quintiles, but vanishes at the market level (if anything, market
returns show signs of reversals). Existing behavioral models do not explain
this pattern.
The second set of tests focuses on the autocorrelation patterns in returns.

It is well known that momentum is not the same as positive autocorrelation:
momentum is a cross-sectional result (winners beat losers), while autocor-
relation is a time-series phenomenon (a stock’s past and future returns are
correlated). Lo and MacKinlay (1990) show that momentum might be caused
by autocorrelation in returns, lead-lag relations among stocks (cross-serial
correlation), or cross-sectional dispersion in unconditional means. Intuitively
a stock that outperformed other stocks in the past might continue to do so for
three reasons: (1) the stock return is positively autocorrelated, so its own past
return predicts high future returns; (2) the stock return is negatively correlated
with the lagged returns on other stocks, so their poor performance predicts
high future returns; and (3) the stock simply has a high unconditional mean
relative to other stocks.
Empirically I find that lead-lag relations among stocks play an important

role. The tests focus on industry, size, and B/M portfolios because auto-
correlations are difficult to estimate for individual stocks. All three sets of
portfolios are negatively auto- and cross-serially correlated. To be specific, I
estimate the correlation between annual returns and future monthly returns
for up to 18 months in the future. From 1941 to 1999, the correlation between
an industry’s annual return and its return two months later averages −0�005.
The correlation declines steadily to −0�064 by month 10, after which it

534



Momentum and Autocorrelation in Stock Returns

begins to rise. The estimates for size and B/M portfolios are similar, declin-
ing to approximately −0�070 by month 10 or 11. Cross-serial correlations
among portfolios are also negative and follow the same pattern. Importantly,
the lead-lag effects tend to be stronger than autocorrelations, and this differ-
ence creates momentum profits.
There are two explanations for these results. We might observe momentum,

together with negative autocorrelation, if investors underreact to portfolio-
specific news but overreact to macroeconomic events. Second, I show that
excess covariance among stocks could produce a similar result, where “excess
covariance” means, loosely, that prices covary more strongly than dividends. I
present two models to illustrate how excess covariance can generate momen-
tum. In the first model, investors mistakenly believe that news about one firm
contains information about other firms. Prices covary more than they would
if investors understood that news is firm specific. In the second model, prices
covary too strongly because of fluctuations in the market risk premium. In
both cases, momentum profits can be positive even though returns are nega-
tively autocorrelated.
It is difficult to distinguish among these explanations. For example, they

all predict that cross-serial correlations will be negative, but that portfolio-
specific returns will be persistent (consistent with the evidence). I argue,
however, that portfolio-specific underreaction does not explain size and B/M
momentum. Most simply, it seems unlikely that investors would underreact
to size- or B/M-related news, but overreact to market news. I emphasize,
again, that the size and B/M portfolios are quite broad—5, 10, or 15 port-
folios. News about these portfolios, like news about the overall market, is
appropriately defined as macroeconomic. Thus a story in which investors
react differently to idiosyncratic and macroeconomic news cannot explain
the evidence. Instead, a model needs to explain why investors underreact to
one type of macroeconomic news, but not another. That combination seems
unlikely to me, and no behavior model predicts it.
Empirically the autocorrelation patterns in returns are inconsistent with

portfolio-specific underreaction. Focusing on size quintiles, the large-stock
portfolio has the least “idiosyncratic” risk. The underreaction story suggests
therefore that it should be the most negatively autocorrelated, yet quintile
5’s autocorrelation is actually the second closest to zero. Moreover, the lead-
lag relations among large and small stocks are too large to be explained by
market reversals. Finally, I show that the Fama and French (1993) three-factor
model absorbs much of the serial correlation in size and B/M portfolios (but
not industries). Overall the evidence suggests that excess covariance among
portfolios explains industry, size, and B/M momentum.
The remainder of the article is organized as follows. Section 1 estab-

lishes some basic results on momentum. Section 2 presents several models
of momentum, emphasizing the potential role of excess covariance among
stocks. Section 3 explores the autocorrelation and cross-serial correlation
patterns in returns. Section 4 concludes.
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1. Momentum in Stock Returns

I begin, in this section, with some basic empirical results on momentum. I esti-
mate profits using individual stocks, industries, and size and B/M portfolios.

1.1 Data
The tests use all NYSE, AMEX, and Nasdaq common stocks on the Center
for Research in Security Prices (CRSP) database. The B/M portfolios require
accounting data, so they are restricted to stocks on Compustat (the full CRSP
sample is used for all other tests). The analysis considers the period 1941–
1999, although Compustat restricts B/M portfolios to May 1963–December
1999. I exclude the pre-1941 data primarily to avoid the Depression era.
Also, Jegadeesh and Titman (1993) find that momentum is negligible, or
even negative, from 1927 to 1940. (Including the earlier data does not alter
the conclusions.)
For tests with individual stocks, firms must have 12 months of past returns

(no restriction is placed on survival going forward). I also form industry,
size, B/M, and double-sorted size-B/M portfolios. Moskowitz and Grinblatt
(1999) argue that momentum can be traced to industry factors. I use size and
B/M portfolios because there is much evidence that they capture risk factors
in earnings and returns [e.g., Fama and French (1993, 1995)].
The portfolios are constructed as follows. I calculate monthly returns for

15 industry portfolios, 5, 10, or 15 size and B/M portfolios, and 9, 16, or 25
size-B/M portfolios. Industries are based on two-digit SIC codes as reported
by CRSP; they typically contain firms in consecutive two-digit codes, but
some exceptions were made. Size portfolios are based on the market value of
equity in the previous month. B/M portfolios are based on the ratio of book
equity in the previous fiscal year to market equity in the previous month.
Book values are updated four months after the fiscal year, and to reduce
selection biases in Compustat, firms must have three years of accounting
data before they are included in the B/M portfolios [see Kothari, Shanken,
and Sloan (1995)]. Following Fama and French (1993), the breakpoints for
size and B/M portfolios are determined by equally spaced NYSE percentiles.
I report some tests using both equal- and value-weighted portfolios, but the
majority of the article focuses on value-weighted portfolios.
Table 1 reports summary statistics for the portfolios. For brevity, it shows

only the industry portfolios, size deciles, and 16 size-B/M portfolios. The
table reveals two important facts. First, there is considerable cross-sectional
variation in the portfolios. Average monthly returns range from 0.99% to
1.39% for the industries, 1.06% to 1.48% for the size portfolios, and 0.92%
to 1.59% for the size-B/M portfolios. Standard deviations range from 3.46%
for utilities up to 7.22% for small, low-B/M stocks. Second, the portfolios
are quite well diversified. The average number of stocks in an industry is
231, in a size decile is 347, and in a size-B/M portfolio is 199. All but
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three portfolios average more than 63 stocks and most have more than 100.
Also, many tests will use portfolios divided less finely (e.g., size and B/M
quintiles), which are even better diversified. Firm-specific factors should not
be important for these portfolios.

1.2 Momentum profits
To test for momentum, I form portfolios that buy winners and sell losers.
Jegadeesh and Titman (1993) focus on decile-based strategies, which buy
the top 10% of firms and sell the bottom 10%. I consider, instead, strategies
that hold assets in proportion to their market-adjusted returns. Specifically,
an asset’s weight in month t is

wi� t =
1
N
	rki� t−1− rkm� t−1� (1)

where rki� t−1 equals the asset’s k-month return ending in t−1, rkm� t−1 equals
the corresponding return on the equal-weighted index, and N is the total
number of stocks. This portfolio invests most heavily in stocks with the
highest past returns, but any asset that performed above average is given
positive weight. Since m is the equal-weighted index, it is easy to show that
the weights sum to zero. To ease the interpretation of the results, the tables
report profits for a rescaled version of the portfolio that invests $1 long and
$1 short every month.
The portfolio defined by Equation (1) is more convenient than a decile-

based strategy for two reasons. First, the portfolio invests in all assets, not just
the extremes. This makes it easier to apply the strategy to industry, size, and
B/M portfolios, which consist of anywhere from 5 to 25 portfolios. Second,
Lo and MacKinlay (1990) show that profits from this strategy can be easily
tied to the autocorrelation of returns, a fact that I will use later.
Table 2 reports momentum profits using the different sets of portfolios.

The strategies are based on past 12-month returns. Jegadeesh and Titman
(1993) show that, for individual stocks, strategies based on 3- to 12-month
returns are profitable. In preliminary tests I found momentum in both 6- and
12-month returns, and I focus on 12-month returns for simplicity. The table
shows profits for up to 18 months after formation. The table reports only
the odd months, 1, 3, 5, etc., but the discussion will sometimes refer to the
missing months.
Momentum is strong in both individual stocks and portfolios. The results

for stocks and industries are consistent with Jegadeesh and Titman (1993) and
Moskowitz and Grinblatt (1999): momentum is significant for 7–9 months
after formation, but quickly diminishes and turns to contrarian profits. Over
the first 6 months, the cumulative profit from individual stocks is 3.55% per
dollar long (t-statistic= 4�02). This compares with 3.04% for value-weighted
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Table 2
Momentum profits, 1941–1999

Month after formation

Assets 1 3 5 7 9 11 13 15 17

Individual stocks
Average return 0�500 0�800 0�451 0�098 −0�133 −0�333 −0�534 −0�484 −0�508
t-statistic 3�08 5�03 3�06 0�72 −1�02 −2�61 −4�14 −3�84 −4�51

15 industry portfolios
VW Average return 0�741 0�497 0�382 0�327 0�185 0�023 −0�093 −0�198 −0�138

t-statistic 6�62 4�39 3�43 3�07 1�71 0�22 −0�91 −2�00 −1�43
EW Average return 1�005 0�626 0�409 0�249 0�077 −0�109 −0�276 −0�328 −0�291

t-statistic 8�76 5�47 3�68 2�34 0�70 −1�01 −2�66 −3�30 −3�01
5 size portfolios
VW Average return 0�509 0�341 0�462 0�446 0�296 0�212 0�236 0�310 0�288

t-statistic 4�65 2�95 4�08 4�06 2�59 1�88 2�18 2�85 2�64
EW Average return 0�597 0�404 0�525 0�472 0�303 0�241 0�273 0�324 0�299

t-statistic 4�77 3�05 4�03 3�74 2�33 1�85 2�26 2�63 2�40
15 size portfolios
VW Average return 0�505 0�393 0�422 0�405 0�297 0�193 0�217 0�274 0�209

t-statistic 4�47 3�21 3�66 3�82 2�66 1�65 2�09 2�76 2�05
EW Average return 0�635 0�499 0�537 0�512 0�403 0�266 0�275 0�335 0�278

t-statistic 4�60 3�35 3�81 3�94 3�22 2�03 2�29 2�79 2�38
5 B/M portfoliosa

VW Average return 0�419 0�456 0�397 0�347 0�268 0�263 0�070 0�156 0�168
t-statistic 3�22 3�40 3�07 2�73 2�08 2�12 0�60 1�24 1�36

EW Average return 0�822 0�684 0�604 0�626 0�569 0�465 0�247 0�313 0�424
t-statistic 6�49 5�36 4�63 4�82 4�30 3�66 1�91 2�44 3�37

10 B/M portfoliosa

VW Average return 0�434 0�382 0�330 0�272 0�184 0�223 0�076 0�165 0�154
t-statistic 3�54 2�98 2�64 2�16 1�43 1�76 0�68 1�38 1�31

EW Average return 0�925 0�765 0�673 0�692 0�622 0�517 0�286 0�370 0�471
t-statistic 7�08 5�71 5�09 5�18 4�54 4�10 2�34 2�92 3�88

9 size-B/M portfoliosa

VW Average return 0�807 0�570 0�446 0�529 0�432 0�215 0�059 0�159 0�186
t-statistic 5�47 3�81 3�02 3�65 3�00 1�55 0�41 1�10 1�31

EW Average return 0�977 0�694 0�587 0�687 0�638 0�413 0�238 0�319 0�350
t-statistic 6�33 4�56 3�98 4�81 4�57 2�87 1�60 2�18 2�39

25 size-B/M portfoliosa

VW Average return 0�799 0�542 0�381 0�438 0�357 0�150 −0�024 0�047 0�100
t-statistic 5�60 3�84 2�86 3�29 2�74 1�17 −0�18 0�37 0�77

EW Average return 0�923 0�626 0�501 0�573 0�492 0�275 0�081 0�155 0�215
t-statistic 6�22 4�34 3�69 4�28 3�78 2�06 0�59 1�16 1�59

The table reports profits for momentum strategies based on past 12-month returns. The strategies use either individual stocks or
portfolios sorted by industry, size, and book-to-market (equal- or value-weighted, as indicated in the table). The strategies invest
wit = 	1/N	ri� t−1 − rm� t−1) in asset i, where ri� t−1 − rm� t−1 is the asset’s lagged return in excess of the equal-weighted
index; the weights are rescaled to have $1 long and $1 short. The tests use all NYSE, AMEX, and Nasdaq stocks with the
necessary return and accounting data. Returns are measured in percent. Bold denotes average returns greater than 1.645 standard
errors from zero.
a Statistics for May 1963–December 1999.

and 3.65% for equal-weighted industries (t-statistics = 4�75 and 5.62,
respectively).1

The results for size and B/M portfolios are new. Profits for these portfo-
lios are as strong, and in some instances stronger, than those from individ-
ual stocks or industries. Over the first 6 months, the cumulative profit from

1 The table reports profits in each month, not cumulative returns. The t-statistics mentioned in the text for
cumulative returns are calculated using the rolling-portfolio approach of Jegadeesh and Titman (1993, p. 68).
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value-weighted size quintiles is 2.56%, from value-weighted B/M deciles
is 2.14%, and from 25 value-weighted size-B/M portfolios is 3.23% (t-
statistics= 4�16, 2.99, and 4.18, respectively).2 In all cases, profits are larger
for equal-weighted portfolios, with corresponding estimates of 3.02%, 4.61%,
and 3.93% (t-statistics = 4�16, 5.97, and 4.93). The estimates imply large
Sharpe ratios, equal to the t-statistics divided by

√
T . In the full sample,

a t-statistic of 4 implies a Sharpe ratio of 0.15, and in the truncated sam-
ple, it implies a Sharpe ratio of 0.19 (compared with 0.18 for the CRSP
value-weighted index from 1941 to 1999). The table also shows that profits
decay quite slowly, often remaining significant for the full 18 months. That
contrasts with reversals after a year for individual stocks and industries.
Previous studies attribute momentum to firm-specific returns [e.g.,

Jegadeesh and Titman (1993), Grundy and Martin (2001)]. However, that
cannot explain the results for size and B/M portfolios. (Industry momen-
tum is difficult to classify: industry returns are not “firm-specific,” yet they
might still be described as “idiosyncratic.”) As mentioned earlier, the size
and B/M portfolios are quite well diversified, typically containing more than
100 stocks. Further, Table 2 shows that using broader portfolios has almost
no effect on profits: the estimates from 5 size portfolios are similar to those
from 15, the estimates from 5 B/M portfolios are similar to those from 10,
and the estimates from 9 double-sorted portfolios are similar to those from
25. These portfolios should contain little idiosyncratic risk, so it seems likely
that macroeconomic factors, not firm-specific news, explain their momentum.
Table 3 further explores the connection between firm, industry, and size-

B/M momentum. The bottom line is that each appears to be distinct. Specifi-
cally, I repeat the tests in Table 2, but now report benchmark-adjusted profits
in place of raw profits. For individual stocks, momentum is adjusted for
industry, size, or size-B/M effects: every stock is matched either to its indus-
try, size decile, or size-B/M quintile (5× 5 sort), and momentum profits
are then estimated using returns in excess of the benchmark. For indus-
try momentum, each stock is matched to its size decile or size-B/M quintile
before forming the industries. The industry return is then the average of size-
or size-B/M-adjusted returns for stocks in that industry. Similarly, for size
and B/M portfolios, each stock is matched to its industry before calculating
returns for the portfolio.
The table shows that, in every case, profits are similar to the raw returns

in Table 2. For individual stocks, industry-adjusted profits equal 2.90% (t-
statistic= 3�71) and size-B/M-adjusted profits equal 3.69% (t-statistic= 4�69)
over the first 6 months. These compare with 3.55% for raw returns. [The
results for industry-adjusted returns are consistent with the 12-month results

2 The estimates for B/M and size-B/M portfolios are based on a shorter time period, May 1963–December
1999. This tends to handicap their t-statistics relative to those from the full sample.
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Table 3
Benchmark-adjusted profits, 1941–1999

Month after formation

Assets 1 3 5 7 9 11 13 15 17

Individual stocks—industry-adjusted returns
Average return 0�317 0�694 0�374 0�069 −0�127 −0�273 −0�438 −0�379 −0�419
t-statistic 2�18 4�90 2�86 0�57 −1�10 −2�41 −3�78 −3�34 −4�10

Individual stocks—size-adjusted returns
Average return 0�406 0�737 0�391 0�055 −0�152 −0�349 −0�533 −0�489 −0�501
t-statistic 2�86 5�48 3�12 0�49 −1�42 −3�40 −5�23 −4�85 −5�47

Individual stocks—size and B/M-adjusted returnsa

Average return 0�537 0�810 0�456 0�177 −0�018 −0�258 −0�475 −0�409 −0�434
t-statistic 3�51 5�70 3�46 1�48 −0�16 −2�29 −4�25 −3�60 −4�09

15 industry portfolios—size-adjusted returns
VW Average return 0�660 0�443 0�331 0�274 0�154 0�003 −0�103 −0�210 −0�146

t-statistic 6�37 4�22 3�20 2�75 1�53 0�03 −1�08 −2�27 −1�63
EW Average return 0�900 0�553 0�344 0�197 0�042 −0�136 −0�278 −0�327 −0�281

t-statistic 8�51 5�28 3�35 1�99 0�42 −1�37 −2�93 −3�59 −3�19
15 industry portfolios—size and B/M-adjusted returnsa

VW Average return 0�567 0�396 0�304 0�382 0�212 0�060 −0�055 −0�169 −0�125
t-statistic 4�31 2�94 2�28 3�00 1�67 0�50 −0�46 −1�44 −1�10

EW Average return 0�848 0�534 0�366 0�321 0�189 0�001 −0�185 −0�258 −0�208
t-statistic 6�55 4�27 3�00 2�70 1�54 0�01 −1�59 −2�28 −1�84

5 size portfolios—industry-adjusted returns
VW Average return 0�453 0�304 0�406 0�390 0�279 0�197 0�212 0�277 0�247

t-statistic 4�72 3�02 4�10 4�06 2�80 2�00 2�27 2�95 2�60
EW Average return 0�477 0�322 0�435 0�408 0�280 0�221 0�245 0�301 0�266

t-statistic 4�43 2�85 3�91 3�76 2�51 1�97 2�37 2�82 2�47
15 size portfolios—industry-adjusted returns
VW Average return 0�454 0�363 0�386 0�382 0�293 0�200 0�218 0�265 0�197

t-statistic 4�38 3�23 3�66 3�94 2�87 1�86 2�33 2�95 2�15
EW Average return 0�517 0�415 0�456 0�453 0�368 0�253 0�262 0�318 0�257

t-statistic 4�37 3�26 3�75 4�00 3�37 2�23 2�53 3�03 2�55
9 size-B/M portfolios—industry-adjusted returnsa

VW Average return 0�712 0�495 0�391 0�434 0�386 0�217 0�094 0�198 0�223
t-statistic 6�25 4�29 3�41 3�85 3�42 1�93 0�83 1�77 2�03

EW Average return 0�798 0�598 0�528 0�604 0�581 0�419 0�315 0�397 0�407
t-statistic 6�72 5�17 4�70 5�48 5�31 3�69 2�67 3�46 3�52

25 size-B/M portfolios—industry-adjusted returnsa

VW Average return 0�711 0�486 0�351 0�374 0�320 0�151 0�028 0�105 0�151
t-statistic 6�41 4�42 3�31 3�54 3�08 1�43 0�27 1�02 1�47

EW Average return 0�780 0�557 0�482 0�561 0�505 0�349 0�250 0�328 0�343
t-statistic 6�71 4�89 4�38 5�15 4�66 3�12 2�19 2�97 3�08

The table reports benchmark-adjusted profits for momentum strategies based on past 12-month returns. The strategies are the
same as those in Table 2 (using identical weights). For individual stocks, benchmark returns are determined by the stock’s
industry, size, or size-B/M grouping (the size grouping is based on NYSE deciles and the size-B/M grouping is based on NYSE
quintiles). The benchmark for industry portfolios is determined by the size and B/M characteristics of firms in the industry.
The benchmark for size and size-B/M portfolios is determined by the industrial mix of firms in the portfolio. The tests use
all NYSE, AMEX, and Nasdaq stocks with the necessary return and accounting data. Returns are measured in percent. Bold
denotes average returns greater than 1.645 standard errors from zero.
a Statistics for May 1963–December 1999.

of Moskowitz and Grinblatt (1999).]3 Similarly industry momentum seems to
be distinct from size and size-BM momentum. The benchmark-adjusted prof-
its from any of the portfolio-based strategies have about the same magnitude,
and follow the same patterns, as the raw profits in Table 2. The statistical

3 Note, again, that size- and B/M-adjusted profits are estimated from a shorter time period, May 1963–December
1999. Momentum profits are remarkably stable before and after 1963, so comparison across time periods poses
no difficulty (within sample comparisons are similar).
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significance of industry momentum drops slightly compared with Table 2,
while the significance of size and B/M momentum actually goes up.
The evidence in Tables 2 and 3 suggests that momentum is a pervasive

feature of returns. It shows up, separately and quite strongly, in individual
stocks, industries, and size and B/M portfolios. Perhaps more importantly,
momentum appears to be both a micro- and macroeconomic phenomenon.
The macroeconomic component is, to my knowledge, new to this article.4 The
results suggest two possibilities: either the standard explanation for momen-
tum, which attributes it to firm-specific returns, is wrong, or there are multiple
sources of momentum in returns. Distinguishing between these possibilities is
difficult. The remainder of the article will focus on the macroeconomic com-
ponent, but I will offer several explanations that might apply to both firm
and portfolio momentum. Ultimately, however, the article will have little to
say directly about individual-stock momentum.

2. Sources of Momentum

The evidence above suggests that firm-specific returns do not fully explain
momentum. This section discusses in more detail the potential sources of
momentum. I present several models that generate momentum in quite dif-
ferent ways. The models illustrate a range of price behavior, but they are not
meant to be entirely accurate descriptions of stock prices, nor to span all the
possible sources of momentum.

2.1 Framework
It is useful to begin with a general framework for thinking about momentum.
I follow the approach of Lo and MacKinlay (1990), who emphasize that
profits depend on both autocorrelations and the lead-lag relations among
stocks.
For simplicity, the analysis focuses on one-period returns (the results are

easily adapted to multiple-period returns; see footnote 5). I am interested in a
momentum portfolio like the one used in Section 1. Specifically, the portfolio
weight of asset i in month t equals

wi� t =
1
N
	ri� t−1− rm� t−1� (2)

where ri� t−1 is the asset’s return in month t−1 and rm� t−1 is the return on the
equal-weighted index in month t−1. Profits for this portfolio can be easily
tied to the autocorrelation and cross-serial correlation of returns. Assume

4 Several recent articles also explore macroeconomic aspects of momentum. Chordia and Shivakumar (2001)
argue that momentum can be explained by time variation in expected returns across the business cycle. Asness,
Liew, and Stevens (1997) and Bhojraj and Swaminathan (2001) find momentum in international stock indices.
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that returns have unconditional mean � ≡ E�rt� and autocovariance matrix
�≡ E�	rt−1−�	rt−�′�. The portfolio return in month t equals

�t =
∑
i

wi� tri� t =
1
N

∑
i

	ri� t−1− rm� t−1ri� t� (3)

and the expected profit is

E��t� =
1
N
E

[∑
i

ri� t−1ri� t

]
− 1
N
E

[
rm� t−1

∑
i

ri� t

]

= 1
N

∑
i

	�i+�2
i − 	�m+�2

m� (4)

where �i and �m are the autocovariances of asset i and the equal-weighted
index, respectively. Equation (4) shows that profits depend on the magnitude
of asset autocovariances relative to the market’s autocovariance. In matrix
notation, the average autocovariance equals tr(�/N and the autocovariance
of the market portfolio equals �′��/N 2, where tr(·) denotes the sum of the
diagonals and � is a vector of ones. Therefore

E��t� =
1
N
tr	�− 1

N 2
�′��+�2

�

= N −1
N 2

tr	�− 1
N 2

[
�′��− tr	�

]+�2
�� (5)

where �2
� is the cross-sectional variance of unconditional expected returns

[collecting the �i and �m terms in Equation (4)]. The second line rearranges
the first to isolate the diagonal and off-diagonal elements of �.5

This decomposition says that momentum can arise in three ways. First,
stocks might be positively autocorrelated, implying that a firm with a high
return today is expected to have high returns in the future. Second, cross-
serial correlations might be negative, implying that a firm with a high return
today predicts that other firms will have low returns in the future. In this
case, the stock does relatively well in the future only because other stocks
do poorly. (We will see below that this phenomenon is closely linked to
“excess” covariance among stocks.) The third term arises because momentum
strategies, by their nature, tend to buy stocks with high unconditional means:
on average, stocks with the highest unconditional expected returns also have
the highest realized returns. Thus profits can be positive in the absence of
time-series predictability.

5 The tests actually consider strategies based on past 12-month returns (and held for 1–18 months). Expected
profits can be decomposed in a similar manner. Suppose that annual returns have unconditional mean � and
the covariance between month t+k returns and lagged 12-month returns equals �k ≡E�	r12t −�	rt+k−�′�.
The expected profit in month t+k is E��t+k�= tr	�k/N − �′�k�/N 2+��� .
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The decomposition above is useful for understanding the models. I should
point out, however, that it is not unique; there are alternative ways to decom-
pose profits that suggest different roles for auto- and cross-serial correla-
tions. Suppose, for example, that firm-specific returns are persistent, but total
returns are negatively autocorrelated because of market-wide reversals. In this
case, a decomposition based on firm-specific returns might lead to different
conclusions than the one above. In fact, we can make a stronger observation:
momentum profits are (almost) equivalent to positive autocorrelation in asset-
specific returns. To see this, define the asset-specific return as the difference
between the asset’s return and the equal-weighted index:

si� t ≡ ri� t− rm� t� (6)

Substituting into Equation (3), the expected momentum profit is

E��t� =
1
N

∑
i

E	si� t−1ri� t

= 1
N

∑
i

cov	si� t−1� si� t+�2
�� (7)

where the second line uses the fact that market-adjusted returns sum to zero
across stocks. Ignoring �2

�, this equation shows that momentum profits, by
construction, equal the average autocovariance of asset-specific returns.
Notice that Equation (7) does not help us understand the source of momen-

tum profits: any model of momentum must imply that asset-specific returns
are positively autocorrelated. Yet we will see below that momentum can be
caused by a variety of underlying price behavior. It would be wrong to look
at firm-specific returns, find they are positively autocorrelated, and conclude
that firm-specific underreaction explains momentum. Firm-specific returns
can be persistent either because investors underreact to asset-specific news
or, as the models later show, because stocks covary too strongly. These two
possibilities are fundamentally different, but the decomposition in Equation
(7) cannot disentangle them. I discuss these issues further in Section 3.

2.2 Basic model of stock prices
I now turn to the models. They are based on a simple representation of
stock prices, adapted from Summers (1986) and Fama and French (1988).
Assume that the vector of log prices, pt , can be separated into permanent
and transitory components (ignore dividends):

pt = qt+�t� (8)

where qt follows a random walk and �t is a stationary process with mean
zero. I will be more precise about how qt and �t covary with each other
below. The logic behind this equation is that prices follow a random walk if
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expected returns are constant; time variation in expected returns implies that
prices also contain a mean-reverting component.
The random walk component, qt , can be thought of as the present value

of expected dividends discounted at a constant rate. Innovations in qt will be
interpreted as news about dividends, while innovations in �t will be inter-
preted as news about expected returns [see Campbell (1991)]. The vector qt
follows the process

qt = �+qt−1+�t� (9)

where � is the expected drift and �t is white noise with mean zero and
covariance matrix  . Combining with the equation above, continuously com-
pounded returns equal

rt = pt−pt−1 = �+�t+��t� (10)

where ��t = �t−�t−1. In general, shocks to dividends and shocks to expected
returns will be correlated. The vector of unconditional expected returns is
E�rt�= �.

2.3 Constant expected returns
Begin with the benchmark case in which prices follow a random walk. In
terms of the model above, �t = 0 for every t. Returns are unpredictable, so
first-order autocovariances are zero. Expected momentum profits from one-
period returns equal

E��t�= �2
�� (11)

where �2
� is the cross-sectional variance of expected returns. As we saw

above, expected profits can be positive even without predictability because
the portfolio tends to buy stocks with the highest expected returns. This effect
will typically be small. Intuitively, realized returns provide an extremely
noisy measure of unconditional means, so the momentum strategy chooses
stocks primarily on noise in this model.

2.4 Underreaction
Momentum is typically associated with underreaction. To capture the idea
that prices respond slowly to news, assume that the temporary component of
prices is given by

�t =−��t−�2�t−1−�3�t−2− ! ! ! � (12)

where 0< � < 1 and �t represents news about dividends [see Equation (9)].
Prices deviate from a random walk because they take many periods to fully
incorporate news. When information arrives, prices immediately react by
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	1−��t . After k periods, prices reflect 	1−�k of the news received at t.
In this model, returns are given by

rt = �+ 	1−��t+ 	�−1�t−1� (13)

Underreaction decreases volatility and, more importantly, induces positive
autocorrelation in returns. In particular, the first-order autocovariance
matrix is

cov	rt� rt−1=
(
�
1−�
1+�

)
 � (14)

where  is the dividend covariance matrix. Underreaction is the same for
all stocks, implying that the autocovariance matrix is proportional to  . The
expression in parentheses is positive, so autocorrelations and cross-serial cor-
relations will typically be positive. Momentum profits can be found using Lo
and MacKinlay’s (1990) decomposition:

E��t�= �
1−�
1+�

[
1
N
tr	 − 1

N 2
�′ �

]
+�2

�� (15)

Again, the expression in brackets must be positive because  is a covariance
matrix. Thus, underreaction leads to momentum.

2.5 Overreaction
Underreaction, along with positive autocorrelation, is the most common inter-
pretation of momentum. Section 2.1, however, showed that lead-lag relations
among stocks can also play a role. The final two models illustrate sources of
cross-serial correlation in returns. Both models contain “excess” covariance
among stocks: prices covary more strongly than dividends. The first model,
in this subsection, assumes that investors overreact to news about one firm
when evaluating the prospects of other firms. The second model assumes that
the aggregate risk premium changes over time.
Recall that prices are represented by pt = qt+�t , where the random walk

component is qt =�+qt−1+�t . To highlight the central ideas in this section,
assume that shocks to dividends are completely asset specific, or cov(�t =
�2
�I , where I is an identity matrix. Investors, however, mistakenly believe that

news about one asset contains information about other assets. In particular,
suppose the temporary component of price equals

�t = B�t+B��t−1+B�2�t−2+· · · � (16)

where 0<�< 1 and B is an N×N matrix with zero diagonal terms (investors
understand how each asset’s news affects in own value) and positive off-
diagonals (investors overreact when valuing other assets). When information
arrives, prices immediately react by 	I+B�t . After k periods, prices reflect
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(I + �k−1B) of the news received at t. We will put additional restrictions
on the matrix B below, but the idea is that B determines how much stocks
covary with each other.
Fluctuations around a random walk are persistent but temporary. In par-

ticular, �t = ��t−1+B�t , and returns equal rt = �+ 	I+B�t+ 	�−1�t−1.
Returns become more volatile and negatively autocorrelated. The variance of
returns equals

cov	rt= �2
�

[
I +B+B′ + 2

1+�BB
′
]
� (17)

which has positive off-diagonals, representing excess covariance. The first-
order autocovariance matrix is given by

cov	rt� rt−1= �2
�	�−1

[
B+ 1

1+�BB
′
]
� (18)

which is everywhere negative since � < 1 and B has only nonnegative terms.
In other words, both the autocorrelations and cross-serial correlations are
negative, consistent with the intuition that investors overreact to news.
Without further restrictions on the matrix B, we cannot sign momentum

profits: either the negative autocovariances or the negative cross-serial covari-
ance might dominate. Intuitively it seems reasonable to assume that news
about one firm would have a smaller, but positive, effect on other stocks. In
particular, suppose that the matrix B equals

B = b���′ − I�� (19)

where b is a scalar such that 0 < b < 1. The matrix has zero diagonals and
b everywhere else. The symmetry of the matrix is assumed for convenience.
More importantly, the restriction on b implies that a shock to firm i has a
smaller effect on other firms. Momentum profits equal

E��t�= �2
�

b	�−1	N −1
N

[
b

1+� −1
]
+�2

�� (20)

which is positive for 0<b < 1. As long as the type of overreaction described
in this section is not too large, momentum profits will be positive.

2.6 Time-varying risk premium
Overreaction is one possible source of excess covariance. Of course, stocks
can also covary “too strongly” in the absence of any irrationality. In this
section I assume that excess covariance is caused by time variation in the
aggregate risk premium.
Recall, for the last time, the basic model: pt = qt+�t and qt = �+qt−1+

�t . If changes in the risk premium drive temporary price movements, then all
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asset prices should fluctuate together in a specific way. In particular, assume
that price fluctuations around a random walk are perfectly correlated across
assets, so that

�t = xt'� (21)

where xt is a positively autocorrelated scalar with mean zero and ' is an
N × 1 vector that describes the sensitivity of asset prices to changes in the
risk premium. I assume that all elements of ' are positive, so expected
returns move together over time. The notation ' is not accidental: if each
asset’s risk is constant, then price fluctuations around the random walk should
be related to the asset’s risk. Suppose, for example, the capital asset pric-
ing model (CAPM) holds and market betas are constant. Then changes in
firms’ expected returns are proportional to their betas, implying that tempo-
rary price fluctuations should also be closely linked to beta. Although I make
no assumption here about the validity of the CAPM, the notation ' is chosen
to capture this intuition.
In this model, stocks covary “too strongly” because they are sensitive

to changes in the risk premium. Returns are given by rt = �+�t +'�xt ,
where �xt = xt−xt−1. It seems reasonable to assume that �xt is positively
correlated with �t . The vector �t measures news about dividends, while �xt
measures the price effect of changes in the risk premium. If cash flows and
the risk premium move in opposite directions, �xt and �t will be positively
related. This suggests, for example, that the market’s expected return will be
lower during expansions than recessions, consistent with empirical evidence
[e.g., Fama and French (1989), Campbell (1991)].
Assume for simplicity that xt follows an AR(1) process, xt = �xt−1+ (t .

The covariance between innovations of the dividend process and �xt equals

)≡ cov	�t��xt= cov	�t� (t� (22)

where the last equality follows from the fact that �t is uncorrelated with
prior information. All elements of ) are assumed to be positive, consistent
with the intuition in the previous paragraph. The covariance matrix of returns
equals

cov	rt=  +�2
�x''

′ +')′ +)'′� (23)

Because all elements of cov	rt are greater than  , this equation implies that
time variation in the risk premium increases the variances and covariances
of returns. The first-order autocovariance matrix is

cov	rt� rt−1= ��x''
′ + 	�−1')′� (24)

where ��x < 0 is the autocovariance of �xt . Like the prediction of the over-
reaction model, return autocorrelations and cross-serial correlations are both
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negative. Momentum profits take a particularly simple form:

E��t�= ��x�
2
'+ 	�−1�'�)+�2

�� (25)

where �2
' is the cross-sectional variance of ' and �'�) is the cross-sectional

covariance between ' and ). This equation follows from the decomposition
in Section 2.1.
To interpret Equation (25), recall that ) equals the covariance between

dividends and temporary price movements, while ' measures the sensitivity
of stock prices to changes in the risk premium. For positive profits, it must be
true that stocks whose prices are sensitive to the risk premium (high 'i) have
cash flows that do not covary strongly with the risk premium (low )i). This
condition is plausible. Suppose, for example, that small firms are sensitive to
business conditions, so their cash flows covary strongly with the risk premium
(high )i). At the same time, we might expect that the duration of a firm’s cash
flows determines how sensitive its price is to movements in the risk premium.
If small stocks have a shorter duration than large stocks, then movements in
the risk premium would have a smaller direct effect on their value (low 'i).
Under these conditions, a momentum strategy can earn positive profits. The
point here is not to argue that we should expect momentum, but only to
provide some intuition about the conditions that would be necessary.

2.7 Summary
The models above show that momentum can arise in a variety of ways.
Underreaction is one possible source, but not the only; excess covariance can
also lead to momentum. Distinguishing among the stories is difficult. Over-
reaction and a time-varying risk premium generate similar patterns of auto-
correlations and cross-serial correlations; any attempt to disentangle these
stories bumps up against Fama’s (1970) joint-testing problem (it relies on an
equilibrium model of returns). Even distinguishing between excess covari-
ance and underreaction might not be easy if investors react differently to
micro- and macroeconomic news. The next section shows that underreaction
to asset-specific news and overreaction to macroeconomic news can generate
patterns that are similar to excess covariance. Recognizing these difficulties,
the remainder of the article investigates the autocorrelation patterns in returns
to better understand momentum profits.

3. Autocorrelation Patterns in Returns

The models in Section 2 showed that momentum is consistent with a variety
autocorrelation and cross-serial correlation patterns in returns. This section
explores the patterns in detail for value-weighted industry, size, and B/M
portfolios.
The earlier tests, in Section 1, considered strategies based on 12-month

returns; I estimated profits for 1–18 months after the momentum portfolios
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were formed. This section follows a similar approach. I test whether a port-
folio’s annual return is correlated with its own and other portfolios’ monthly
returns for up to 18 months in the future. Thus I am interested in the auto-
covariance matrices �k ≡ E�	r12t − �	rt+k −�′�, where � and � are the
vectors of expected 1- and 12-month returns, and k = 1 to 18.

3.1 Autocorrelations
The autocorrelation matrices are too large to report for every lag. Table 4
summarizes them for the industry portfolios and the size and B/M quintiles.
The table reports the average, across the 18 lags, of the autocorrelation matri-
ces. The portfolio used as the predictive variable changes as you move down
the columns and the portfolio whose return is being predicted changes as you
move across the rows (see the definition of �k above). Statistical significance
is difficult to assess analytically, so the tests are based on bootstrap simula-
tions. The simulations replicate the empirical tests using artificial time series
of returns, constructed by sampling with replacement from the actual return
series. This procedure, repeated many times, creates a sampling distribution
under the null.
The results in Table 4 are striking. The autocorrelations and cross-serial

correlations are almost entirely negative and often statistically significant
(roughly half of the estimates). Across the three sets of portfolios, the average
autocorrelation equals −0�04 and the average cross-serial correlation equals
−0�05. The estimates are similar for the three sets of portfolios, although the
shorter sample used for B/M portfolios (May 1963–December 1999) means
that their statistical significance is lower. The standard error of the estimates,
not reported in the table, is approximately 0.025 for industry and size port-
folios and 0.033 for B/M portfolios.
The table reveals a number of interesting patterns. For the size portfolios,

the autocorrelations are most negative for the 3rd and 4th quintiles (−0�05
and −0�07, respectively). The estimates are closer to zero for the smallest and
very largest stocks. The top three quintiles are negatively correlated with the
future returns on all portfolios, while the smallest stocks are negatively cor-
related with the future returns on quintiles 4 and 5. These lead-lag relations
are quite strong, especially the predictive power of quintile 5. Statistically,
no simulation out of 5,000 yields an estimate as negative as that for quintile
5 leading quintile 1.
Table 4 provides an interesting contrast with the momentum results in

this and other articles. The literature suggests that momentum is one of the
strongest asset pricing anomalies, while prior evidence of mean reversion in
returns is weak [e.g., Fama and French (1988), Richardson (1993)]. Table 4
shows, however, that reversals, not continuations, completely dominate the
autocorrelation matrices. Importantly, that observation is true for all three
sets of portfolios, so it does not appear to be sensitive to the way portfolios
are formed.
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The results are consistent with the excess-covariance models in Section 2.
There is no evidence of persistence in returns, as suggested by models of
underreaction. Alternatively, investors might simply underreact to portfolio-
specific news but overreact to market news. Suppose, for example, that we
decompose returns into ri� t = 'irm� t+�i� t , where rm is negatively autocorre-
lated and �i is positively autocorrelated. Assume, further, that rm��i, and �j
are independent at all leads and lags (i 	= j). Then the autocovariance of ri
is �i = '2

i �m+��i and the cross-serial covariance between ri� t and rj� t−1 is
�ij ='i'j�m. Cross-serial correlations pick up the reversals in market returns,
and so will be negative. Autocorrelations pick up market reversals and the
persistence in �i; they will be negative if market reversals dominate. These
predictions are similar to the models in Section 2.
Table 4 provides some guidance for distinguishing among the models.

Before I discuss the evidence, it is useful to reflect on the portfolio-specific
underreaction story. The intuition is that investors might react differently to
idiosyncratic and market-wide news. However, I am not aware of any behav-
ioral model that predicts this result. The recent articles by Barberis, Shleifer,
and Vishny (1998), Daniel, Hirshleifer, and Subrahmanyam (1998), and Hong
and Stein (1999) do not differentiate between firm-specific and market-wide
news. Indeed, the authors suggest that their models apply to both. Therefore,
even if we believe that portfolio-specific underreaction explains momentum,
Table 4 rejects the behavioral models as a general description of prices.
There is also a serious flaw in the underreaction story: the returns for size

and B/M quintiles, and to a less extent industry portfolios, cannot reasonably
be described as “idiosyncratic.” Recall that the size and B/M portfolios are
quite broad. Further, there is much evidence that their returns capture com-
mon risk factors in returns [Fama and French (1993)]. Thus there seems little
basis for predicting that investors will underreact to size- and B/M-specific
news, but overreact to market news—both are macroeconomic. Notice that,
in contrast, the models in Section 2 do not require that investors react dif-
ferently to one type of news than another. Those models say that momentum
profits and negative autocorrelation arise from the same source.
Empirically the size quintiles provide evidence against the portfolio-spec-

ific underreaction story. To see why, suppose that negative autocorrelation is
driven entirely by market reversals. The autocorrelation of a portfolio should
be a weighted average of the market and portfolio-specific return autocorre-
lations:

cor	rit� rit−1= +icor	rmt� rmt−1+ 	1−+icor	�it� �it−1� (26)

where +i is the squared correlation between ri and rm.
6 I show later that

cor	�it� �it−1 is similar across size quintiles, so most of the variation in

6 Cor(rit � rit−1 = cov	rit � rit−1/var	ri = 	'2
i �m + ��i/var	ri, where �m and ��i are the autocovariances

of market and portfolio-specific returns, respectively. Equation (26) follows by substituting �m = var	rm×
cor	rmt� rmt−1 and ��i = var	�i× cor	�it � �it−1 in the numerator.
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cor(rit� rit−1) should come from differences in +i. In other words, if market
reversals explain negative autocorrelation, portfolios with the least “idiosyn-
cratic” risk should be the most negatively autocorrelated. Empirically that
is not true. Quintile 5 easily has the least idiosyncratic risk (+i varies from
0.64 for quintile 1 to 0.98 for quintile 5), yet its autocorrelation is the sec-
ond closest to zero. The difference with portfolio 4 is significant at the 1.8%
level.
The cross-serial correlations are also difficult to reconcile with portfolio-

specific underreaction. Using the results above, if market reversals explain
cross-serial covariances, the covariance between ri� t and rj� t−1 is 'i'j�M .
Collecting assets, cov(rt−1� rt = ''′�M , which is a matrix whose rows and
columns are all proportional to the vector of market betas (ignore the diag-
onals). Similarly the matrix of cross-serial correlations should have rows
that are proportional to the vector of correlations with the market portfolio.7

Table 4 shows that this prediction is not true. For the size portfolios, the
cross-serial correlations in the bottom row have exactly the wrong pattern;
they should be closest to zero for the smallest stocks. Also, moving up the
matrix, the pattern of coefficients reverses, so the rows are far from propor-
tional to each other. The patterns for industry and B/M portfolios provide
similar, but less distinct, problems for the underreaction story.
The cross-serial correlations could, in principle, be generated by either

of the excess-covariance models in Section 2. Unfortunately the models
are not developed precisely enough to make strong predictions about the
pattern of autocorrelations and cross-serial correlations (other than the fact
they should be negative). For the overreaction model, we would need to
know which stocks are likely to exhibit the most excess covariance. For the
time-varying risk premium model, we would need an equilibrium model of
expected returns. I will provide evidence shortly using the CAPM and the
Fama and French (1993) three-factor model.

3.2 Autocorrelations and the forecast horizon
The summary statistics above are informative, but they mask changes in the
autocorrelation matrices across lags. Table 5 explores how the autocorrela-
tions change as the lag increases from 1 to 18 months. Specifically I estimate
the slope coefficient when a portfolio’s monthly return is regressed on its
lagged annual return. I focus on autocorrelations because it is not practical
to report cross-serial correlations for every lag. The table shows results for
size quintiles, 15 industry portfolios, and 9 double-sorted size-B/M portfolios.
I now use the double-sorted portfolios, in place of B/M quintiles, because
they should be more informative.

7 Pre- and postmultiply the covariance matrix by S−1, where S is a diagonal matrix with portfolios’ standard
deviations on its diagonal.
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Table 5
Autocorrelations, 1941–1999

Forecast horizon (months)

Portfolio 1 3 5 7 9 11 13 15 17

Size portfolios
Small �016 −�002 −�003 −�004 −�006 −�007 −�010 −�006 −�006
2 �007 −�010 −�008 −�009 −�013 −�014 −�015 −�007 −�008
3 �000 −�016 −�012 −�013 −�016 −�018 −�016 −�007 −�008
4 −�007 −�020 −�017 −�020 −�022 −�023 −�020 −�011 −�010
Big �000 −�006 −�007 −�010 −�015 −�018 −�019 −�011 −�008
Average �003 −�011 −�009 −�011 −�014 −�016 −�016 −�008 −�008
Wald test (.2) 27�0 20�1 11�0 13�7 10�2 9�7 5�3 3�8 2�0

Industry portfolios
Natural resources −�002 −�012 −�008 −�007 −�008 −�018 −�019 −�020 −�018
Construction −�004 −�011 −�006 −�009 −�016 −�022 −�019 −�011 −�011
Food, tobacco �014 �008 �005 �003 −�005 −�006 −�014 −�012 −�009
Construction products �013 −�005 −�005 −�009 −�014 −�016 −�020 −�012 −�009
Logging, paper −�003 −�007 −�002 −�008 −�014 −�015 −�014 −�011 −�014
Chemicals �004 −�001 �001 −�004 −�012 −�012 −�017 −�014 −�016
Petroleum −�001 −�003 −�008 −�009 −�014 −�019 −�018 −�020 −�015
Machinery �003 −�010 −�006 −�003 −�010 −�014 −�009 �006 �003
Electrical equipment �002 −�007 −�006 −�005 −�008 −�012 −�013 −�007 −�007
Transport equipment �007 −�004 −�004 −�005 −�011 −�019 −�017 −�011 −�011
Shipping −�002 −�015 −�015 −�019 −�024 −�028 −�024 −�013 −�008
Utilities, telecom. �011 �006 −�002 −�011 −�009 −�012 −�011 −�003 �003
Trade �007 −�011 −�012 −�015 −�012 −�018 −�026 −�018 −�015
Financial �001 −�013 −�010 −�015 −�015 −�017 −�019 −�011 −�012
Services, other �011 −�004 −�007 −�006 −�003 −�006 −�013 −�008 −�004
Average �004 −�006 −�006 −�008 −�012 −�016 −�017 −�011 −�009
Wald test (.2) 13�2 16�1 10�0 14�3 11�5 14�3 14�9 17�5 15�0

Size-B/M portfoliosa

Small Low �008 −�011 −�007 −�001 −�008 −�013 −�020 −�009 −�005
2 �005 −�011 −�002 �001 −�008 −�012 −�019 −�009 −�011
High �008 −�010 −�001 �000 −�006 −�008 −�016 −�008 −�013

Medium Low −�007 −�022 −�012 −�007 −�011 −�020 −�022 −�010 −�005
2 −�006 −�016 −�004 −�006 −�009 −�014 −�016 −�003 −�005
High −�008 −�023 −�010 −�011 −�012 −�012 −�020 −�005 −�011

Large Low −�003 −�006 −�005 −�002 −�004 −�012 −�021 −�016 −�007
2 −�008 −�006 �000 −�005 −�006 −�012 −�012 �002 �002
High −�006 −�019 −�007 −�010 −�012 −�018 −�019 �000 −�004

Average −�002 −�014 −�005 −�005 −�008 −�013 −�018 −�006 −�007
Wald test (.2) 11�7 12�5 6�0 5�1 2�6 4�9 6�6 4�8 5�0

The table reports, for lags of 1–18 months, the OLS slope coefficient when a portfolio’s monthly return is regressed on its own
past 12-month return. The table shows estimates for value-weighted industry, size, and size-B/M portfolios, described more fully
in Table 1. Bold denotes estimates that are greater than 1.645 standard errors from zero or Wald statistics that are significant at
the 10% level.
a Statistics for May 1963–December 1999.

The autocorrelations again provide no evidence of persistence in returns,
even at short horizons. The estimates are uniformly negative beyond month
1.8 Statistically they are most reliably negative for industry and size portfo-
lios, which is not surprising given that the sample is much shorter for the
size-B/M portfolios. (The standard errors cluster between 0.0085 and 0.0095

8 The anomalous results for month 1 are probably explained by the lead-lag relations in weekly returns docu-
mented by Lo and MacKinlay (1990). Jegadeesh and Titman (1995) argue that the weekly lead-lag patterns
have little effect on momentum profits.
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for industry and size portfolios and between 0.012 and 0.014 for size-B/M
portfolios.) Interestingly, the estimates decline for about a year. For the size
portfolios, the average is −0�007 in month 2, dropping to −0�019 by month
10 (standard errors of 0.008). The average is more than 1.75 standard errors
below zero in months 8–13. Similarly, for industry portfolios, the average
autocorrelation in month 2 is −0�003 and reaches a minimum of −0�017 in
month 10 (standard errors of 0.007). The estimates are again more than 1.75
standard errors from zero in months 8–14. The U-shaped pattern in autocor-
relations is not reflected in momentum profits, which decline steadily as the
forecast horizon increases (see Table 2).9

Economically the estimates imply significant time variation in expected
returns. Annual returns typically have a standard deviation between 20% and
25%. Therefore a two standard deviation increase in annual returns implies
a 40—50 basis point drop in future returns if the slope is −0�01. Many of
the estimates are this large. For the average size portfolio, the cumulative
slope coefficient over 6 months is −0�043 and over 12 months is −0�135.
The corresponding estimates are −0�023 and −0�104 for industry portfolios
−0�044 and −0�112 for size-B/M portfolios. The implied changes in expected
returns appear to be economically large.

3.3 Autocorrelations and momentum profits
From the evidence above, it is clear that persistence in returns does not
explain momentum. Table 6 shows this formally using Lo and MacKinlay’s
(1990) decomposition. Recall from Section 2.1 that expected momentum
profits equal

E��t+k�=
N −1
N 2

tr	�k−
1
N 2
��′�k�− tr	�k�+����� (27)

where �k is the covariance between rt+k and r12t , and ���� is the cross-
sectional covariance between expected 1- and 12-month returns. The first
term depends on autocorrelations (“Auto” in the table), the second term
depends on cross-serial correlations (“Cross”), and the last term picks up
the effects of cross-sectional dispersion in unconditional means (“Means”).
The standard errors require some explanation. For simplicity the table

reports only the average standard error across the 18 lags. This is innocuous
because the standard errors should all be the same (except that the sample
sizes differ slightly). More importantly, the table shows two sets of estimates.
The first set, “LM std error,” is based on the asymptotic results of Lo and

9 The slope estimates in these regressions are biased downward, but the bias is small and cannot explain the
results. For the full sample, the bias is approximately −0�002 based on bootstrap simulations. Lewellen (2001)
explores the patterns in greater detail.
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Table 6
Decomposition of momentum profits, 1941–1999

Industry portfolios 5 size portfolios 9 size-B/M portfoliosa

Month Auto Cross Means Total Auto Cross Means Total Auto Cross Means Total

1 2�49 0�85 0�15 3�49 3�08 −1�28 0�13 1�93 −0�09 2�72 0�42 3�05
3 −2�51 4�80 0�14 2�43 −3�99 5�11 0�13 1�25 −5�35 6�75 0�42 1�83
5 −2�59 4�18 0�14 1�73 −3�27 4�51 0�14 1�37 −2�18 3�49 0�43 1�74
7 −2�99 4�34 0�13 1�48 −3�26 4�53 0�12 1�39 −1�47 3�05 0�43 2�01
9 −4�22 5�08 0�13 0�99 −4�87 5�87 0�13 1�14 −3�35 4�38 0�45 1�48
11 −5�91 5�92 0�12 0�13 −5�33 6�32 0�14 1�13 −5�27 5�83 0�45 1�02
13 −6�70 5�92 0�12 −0�66 −5�52 6�29 0�13 0�90 −7�39 7�11 0�45 0�18
15 −4�57 3�42 0�12 −1�03 −3�02 3�79 0�13 0�90 −2�89 2�99 0�47 0�57
17 −3�88 3�12 0�11 −0�65 −3�09 3�73 0�14 0�79 −2�88 3�08 0�47 0�66

LM SE 3�84 3�68 — 0�61 4�57 4�29 — 0�50 5�80 5�54 — 0�68
Bootstrap SE 2�66 2�56 0�11 0�37 2�93 2�84 0�14 0�33 4�15 3�99 0�26 0�56

The table reports total profits, along with the Lo and MacKinlay (1990) decomposition, for momentum strategies based on
past 12-month returns. The strategies invest wit = 	1/N	ri� t−1 − rm� t−1 in asset i, where ri� t−1 − rm� t−1 is the asset’s
lagged return in excess of the equal-weighted index. Auto is the component of profit attributed to autocorrelation, Cross is the
component attributed to cross-serial correlation, and Means is the component attributed to unconditional expected returns. The
LM standard error is based on the asymptotic results of Lo and MacKinlay and the bootstrap standard error is estimated from
simulations. Returns are measured in percent. Bold denotes estimates that are more than 1.645 standard errors from zero based
on the bootstrap simulations.
a Statistics for May 1963–December 1999.

MacKinlay (1990, Appendix 2). The second set is based on bootstrap sim-
ulations, similar to those described earlier. The discussion below focuses on
the bootstrap estimates.10

The table confirms the earlier results. Autocorrelations are always negative
after month 1, and therefore reduce momentum profits. (The magnitudes are
difficult to interpret because the size of the long-short position changes over
time; see Table 2 for a rescaled portfolio that invests $1 long and $1 short
every month.) For the industry portfolios, the autocovariance component of
profits equals −2�51 (t-statistic=−0�94) in month 3 and declines to −6�70
(t-statistic=−2�52) in month 13. In comparison, the cross-serial component
equals 4.80 (t-statistic= 1�87) in month 3 and rises to 6.87 (t-statistic= 2�68)
in month 10. Total profits decline because cross-serial correlations do not
fully offset changes in autocorrelations. Size and size-B/M portfolios show a
similar pattern, but autocorrelations drop more slowly and total profits remain
positive.11

Cross-sectional variation in expected returns has only a small effect on
profits. For the industry portfolios, unconditional expected returns contribute

10 Surprisingly, the bootstrap standard errors are smaller than the LM estimates. I do not have a good explanation
for the difference. One possibility is that the LM standard errors are consistent even when returns are serially
correlated; the bootstrap standard errors are accurate only under the null. As a robustness check, I repeated
the simulations allowing for heteroscedasticity [the equal-weighted index follows a GARCH(1,1) process and
the volatility of all stocks moves together]. The standard errors from these simulations are quite similar to
those from the i.i.d. simulations, with less than a 5% change in the estimates.

11 The decomposition suffers from a small-sample bias because autocorrelations and cross-serial correlations
are biased downward. Simulations suggest that the bias is relatively small. The bias in the autocovariance
component is approximately −0�50 for industry and size portfolios and −0�77 for size-B/M portfolios. The
corresponding biases in the cross-serial covariance components are approximately 0.41 and 0.66, respectively.
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between 0.11 and 0.15 to momentum profits. To put these in perspective,
total profits range from 3.49 to −1�03. The evidence is similar for size and
B/M portfolios (the double-sorted portfolios suggest a somewhat larger role
for unconditional means). These results are opposite those of Conrad and
Kaul (1998). Conrad and Kaul argue that unconditional expected returns are
the most important source of profits. However, their conclusions are based
on individual stock returns, and it seems likely that noise in the estimates
drives their results. Jegadeesh and Titman (2001) discuss Conrad and Kaul’s
methodology in detail.

3.4 Market-adjusted returns
The analysis so far provides two facts about market-adjusted returns:
(1) momentum is equivalent to persistence in market-adjusted returns
(Section 2.1), and (2) the lead-lag relations among stocks are not fully
explained by reversals in market returns (Section 3.1). The first observation
implies that market-adjusted returns must be positively autocorrelated, but
that does not help distinguish between competing models. The second obser-
vation suggests that market-adjusted returns will exhibit interesting lead-lag
patterns. Table 7 looks specifically at the predictability of market-adjusted
returns, defined simply as the difference between the portfolio’s return and
the CRSP value-weighted index (the results are similar if I adjust for beta).
The table shows, not surprisingly, that market-adjusted returns are posi-

tively autocorrelated. The estimates are highly significant for all three sets of
portfolios. The average autocorrelation equals 0.08 for size portfolios, 0.06
for B/M portfolios, and 0.02 for industry portfolios.12 The size quintiles show
no clear pattern across portfolios, but the estimate is largest for quintile 1.
The pattern is clearer for B/M portfolios, with autocorrelations greatest for
high B/M stocks.
The cross-serial correlations are also strong. For the most part, the pat-

terns reflect the contemporaneous correlation among portfolios. Boudoukh,
Richardson, and Whitelaw (1994) show that the lead-lag relation between
two portfolios, i and j , should depend on their contemporaneous correla-
tion: cor	ri� t−1� rj� t= cor	rj� t−1� rj� t×cor	ri� t� rj� t. This result, which also
applies to market-adjusted returns, holds if ri� t−1 does not contain incremen-
tal information about rj� t beyond j’s own past return. Without showing the
details, the cross-serial correlations are generally, but not always, consistent
with this prediction. (For a counterexample, note that the cross-serial corre-
lations in a given column should always be less than autocorrelation in that
column. This restriction is sometimes grossly violated; e.g., B/M quintiles 2
and 3 or industries 9, 13–15.)

12 The autocorrelation of market-adjusted returns appears smallest for industry portfolios. That finding is some-
what misleading. Industry momentum persists for less than a year, but the estimates in Table 7 are based on
the autocorrelation matrices for 18 months. The autocorrelations are stronger for the first 12 months, equal to
0.05 for the average industry.
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Table 7 contains one other piece of information about the predictability of
market-adjusted returns. In the final row of each panel, I report the corre-
lation between portfolio-specific returns and the lagged 12-month return on
the CRSP value-weighted index. Interestingly, the table shows that market
returns have strong predictive power. Focusing on size portfolios, the corre-
lation is significantly negative for size quintiles 1–4 and significantly positive
for quintile 5. The estimates are also significant for high B/M stocks and 5
of the 15 industries. In other words, portfolio-specific returns are not only
predictable using the portfolio’s own past returns, but they are also strongly
predictable using the market return. That result is consistent with excess
covariance in returns. It is not predicted by portfolio-specific underreaction,
and helps explain why that model does not describe the autocorrelation pat-
terns in Table 4 (see the discussion in 3.1).

3.5 The three-factor model
Either of the excess-covariance models could generate the serial correlation
patterns in returns. So far I have not tried to distinguish between them. I
take a step in this direction now, focusing on the Fama and French (1993)
three-factor model.13

Before discussing the results, it is useful to provide some perspective on
the tests. This article has considered, throughout, size and B/M portfolios that
look much like the factors. The returns on size and B/M quintiles typically
have three-factor R2s close to 95%. It should come as little surprise, then,
that the factors themselves exhibit momentum, or that the factors explain
much of the momentum in size and B/M portfolios. However, that finding
does not answer the basic question: why does momentum—in either the
factors or the portfolios—arise in the first place? If the three-factor model
explains momentum, this supports the argument that macroeconomic factors
are important. But I would argue anyway that the returns on size and B/M
portfolios are best interpreted as macroeconomic. Thus while the tests are
interesting, I have left them until the end because the autocorrelations are
more informative about the source of momentum.
To test whether the three-factor model absorbs momentum, I focus directly

on profits rather than the autocorrelation patterns in returns. Table 8 shows
two sets for results. The first row shows momentum profits earned by the
Fama and French factors. The strategy is similar to before, investing in the
factors in proportion to their past 12-month returns. The remaining rows show
risk-adjusted profits for industry, size, and B/M portfolios. The three-factor
model is used to adjust returns in both the formation and holding periods; in
other words, both the investment weights and the reported profits are based

13 I thank Ken French for providing the factors, which can be found on his website at web.mit.edu/kfrench/www.
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Table 8
Momentum profits using the three-factor model, 1941–1999

Month after formation

Assets 1 3 5 7 9 11 13 15 17

FF factors
Average return 0�609 0�372 0�368 0�373 0�264 0�085 −0�054 −0�009 0�177
t-statistic 3�68 2�22 2�21 2�37 1�61 0�54 −0�34 −0�06 1�14

15 industry portfolios—FF residuals
Average return 0�590 0�434 0�304 0�200 0�119 −0�038 −0�079 −0�203 −0�144
t-statistic 5�81 4�16 2�94 1�99 1�19 −0�40 −0�83 −2�19 −1�59

5 size portfolios—FF residuals
Average return 0�114 0�102 0�090 0�071 0�043 0�026 −0�008 0�010 0�002
t-statistic 2�58 2�23 1�99 1�60 1�03 0�62 −0�19 0�24 0�05

5 B/M portfolios—FF residualsa

Average return 0�084 0�059 0�092 0�061 0�052 0�036 −0�074 −0�101 −0�101
t-statistic 1�01 0�72 1�17 0�77 0�65 0�46 −0�97 −1�28 −1�31

9 size-B/M portfolios—FF residualsa

Average return 0�142 0�037 0�033 0�015 0�028 −0�016 −0�078 −0�015 0�030
t-statistic 2�19 0�60 0�56 0�25 0�47 −0�28 −1�40 −0�29 0�54

25 size-B/M portfolios—FF residualsa

Average return 0�146 0�066 0�037 −0�003 −0�011 −0�075 −0�140 −0�091 −0�068
t-statistic 2�30 1�08 0�64 −0�04 −0�19 −1�39 −2�56 −1�79 −1�29

The table reports profits for momentum strategies based on past 12-month returns. The first row reports a strategy using the
Fama and French (1993) factors. The remaining rows use the three-factor model to adjust returns during both the formation and
postformation period. To isolate time-series patterns in the residuals, the intercepts in the preliminary three-factor regressions
are permitted to be nonzero. The momentum strategy invests in assets in proportion to their abnormal returns, scaled so the
weights on both sides of the trade sum to $1. Returns are measured in percent. Bold denotes average returns greater than 1.645
standard errors from zero.
a Statistics for May 1963–December 1999.

on three-factor residuals.14 The residuals for each portfolio are estimated from
a full-sample regression, allowing the intercept to be nonzero.
The factors exhibit fairly strong momentum, although not as significant or

persistent as those from size and B/M portfolios (see Table 2). Momentum
profits decline from 0.61% in month 1 to 0.26% in month 9 (t-statistics =
3�68 and 1.61, respectively). The cumulative profit over the first six months
is 2.60% (t-statistic= 2�81). This is similar to the profit from value-weighted
size and B/M quintiles, but smaller than that from double-sorted size-B/M
portfolios (3.43% for nine size-B/M portfolios, with a t-statistic= 4�11).
The three-factor model largely explains momentum in size and B/M port-

folios, but not in industries. Over the first 6 months, industry profits equal
2.46% after adjusting for three-factor risk, down slightly from 3.04% for
raw returns (the t-statistic remains above 4). This result is similar to the
characteristic-adjusted profits in Table 3 [see also Moskowitz and Grin-
blatt (1999)]. In contrast, momentum in size and B/M quintiles, as well as
9 or 25 double-sorted portfolios, greatly diminishes. Comparing raw and

14 Note that I do not simply regress momentum profits from the earlier tables on the three-factor model. That
approach is inappropriate because momentum portfolios’ factor loadings change over time. Instead, the port-
folio weights are determined by three-factor residuals, and the profit equals the weighted-average residual
during the holding period.
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adjusted returns over the first 6 months, profits drop from 2.56% to 0.60%
for size quintiles, from 2.45% to 0.47% for B/M quintiles, and from 3.23%
to 0.40% for 25 size-B/M portfolios. Of these, only the estimate for size
portfolios remains significant (t-statistic = 2�42). Overall, the three-factor
model appears to explain most, if not all, of the momentum in size and
B/M portfolios.

4. Conclusion

There is now considerable evidence of momentum in stock returns. With the
exception of Moskowitz and Grinblatt (1999), the literature argues that firm-
specific returns drive momentum. Further, theoretical models of momentum,
such as Barberis, Shleifer, and Vishny (1998), Daniel, Hirshleifer, and Sub-
rahmanyam (1998), and Hong and Stein (1999), predict that stock returns
will be positively autocorrelated.
This article shows that size and B/M portfolios exhibit momentum as

strong as that in individual stocks and industries. That finding suggests
that momentum is a pervasive feature of returns. Moreover, it implies that
momentum cannot be attributed simply to firm-specific returns. The size and
B/M portfolios are quite well diversified, so their returns reflect systematic
risks. Macroeconomic factors, not firm-specific returns, must be responsible
for size and B/M momentum.
In principle, size and B/M momentum might be explained by investor

underreaction. However, that explanation seems unlikely from both an empir-
ical and theoretical standpoint. Empirically the returns on industry, size, and
B/M portfolios are negatively autocorrelated and cross-serially correlated.
This rules out a simple underreaction model. However, it is potentially consis-
tent with portfolio-specific underreaction, along with macroeconomic rever-
sals, but this story also has a hard time explaining the evidence: (1) large
stocks are weakly negatively autocorrelated, yet they predict other portfolios
quite strongly (the cross-serial correlations are stronger than the underreac-
tion story predicts); (2) market returns predict portfolio-specific returns on
many size, B/M, and industry portfolios (a feature not anticipated by the
underreaction story); and (3) the Fama and French (1993) three-factor model
largely absorbs the serial correlation patterns in size and B/M portfolios.
Theoretically the underreaction story is unappealing because it says that

investors react differently to portfolio-specific and market-wide news. No
behavioral model predicts that result; indeed, I am aware of no model that
explicitly distinguishes between firm-specific and market-wide returns. Per-
haps more critically, news about size and B/M portfolios cannot reasonably
be described as idiosyncratic. Thus a story in which investors react differently
to idiosyncratic and macroeconomic news is not sufficient. Instead, a model
needs to explain why investors underreact to some types of macroeconomic
news, but overreact to others.
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As an alternative to underreaction, I have proposed two models of excess
covariance among stocks. Excess covariance means, loosely, that stock
returns covary more strongly than dividends. In the first model, investors
mistakenly believe that news about one firm contains information about other
stocks. In the second model, stock prices react to changes in the aggregate
risk premium. Both models generate autocorrelation patterns that are consis-
tent with the data. Further, momentum and negative serial correlation come
from the same underlying phenomenon.
There remain many unanswered questions about momentum. The most

glaring omission of this article is evidence for individual stocks. Size and
B/M momentum appears to be statistically distinct from individual-stock
momentum. It would be useful to know whether they are caused by the
same economic phenomenon, and in particular whether the excess-covariance
models apply to individual stocks. There is evidence that individual-stock
momentum might be explained by underreaction. For example, Bernard and
Thomas (1990) argue that investors underreact to earnings announcements,
although cross-serial correlation might complicate those results. The bottom
line may well be that there are several sources of momentum in returns.
To close, I note that the evidence in this article should be interesting

beyond its implications for momentum. The autocorrelation matrices, espe-
cially the cross-serial correlations, provide strong evidence of reversals in
annual returns; the statistical significance is much stronger than suggested by
previous studies [e.g., Fama and French (1988), Richardson (1993)]. Also,
momentum in size and B/M portfolios, as well as in the Fama and French
(1993) factors, implies that size and B/M effects change considerably over
time; there would appear to be times when large stocks are expected to out-
perform small stocks, and when low B/M stocks are expected to outperform
high B/M stocks. These observations could be important for investment deci-
sions, testing asset pricing models, and evaluating the performance of mutual
funds.
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