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Abstract

Statistical arbitrage enables tests of market efficiency which circumvent the joint-hypotheses

dilemma. This paper makes several contributions to the statistical arbitrage framework. First,

we enlarge the set of statistical arbitrage opportunities in Hogan, Jarrow, Teo, and Warachka

(2004) to avoid penalizing incremental trading profits with positive deviations from their ex-

pected value. Second, we provide a statistical methodology to remedy the lack of consistency

and statistical power in their Bonferroni approach. In addition, this procedure allows for au-

tocorrelation and non-normality in trading profits. Third, we apply our tests to a wide range

of trading strategies based on stock momentum, stock value, stock liquidity, and industry mo-

mentum. Over 50% of these strategies are found to violate market efficiency. We also identify

dominant trading strategies which converge to arbitrage most rapidly.
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1 Introduction

Tests of market efficiency have long been confounded by the joint-hypotheses dilemma, which states

that conclusions regarding market efficiency are always conditioned on an equilibrium model for

stock returns. According to Fama (1998), this caveat limits our profession’s ability to confidently

reject market efficiency despite numerous empirical challenges.

In view of this fundamental dilemma, Hogan, Jarrow, Teo, and Warachka (2004) (HJTW here-

after) develop an innovative technique for testing market efficiency which determines whether persis-

tent anomalies constitute statistical arbitrage opportunities. Their statistical arbitrage framework

replaces the standard t-statistic on the intercept of excess returns with a more stringent test of

market efficiency that examines multiple t-statistics derived from dollar denominated trading prof-

its. Moreover, an important advantage of the statistical arbitrage methodology is its ability to

circumvent the joint-hypotheses dilemma. As with arbitrage opportunities, the definition of statis-

tical arbitrage is independent of any equilibrium model or formulation for expected returns, and its

existence contradicts market efficiency. Indeed, by appealing to arbitrage, assumptions on investor

preferences are minimized.1

Statistical arbitrage is motivated by several generalizations of arbitrage (Benardo and Ledoit,

2000; Cochrane and Saá-Requejo, 2000; Carr, German, and Madan, 2001). Indeed, a standard

finite horizon arbitrage opportunity is a special case of statistical arbitrage. Unlike the Arbitrage

Pricing Theory (APT) of Ross (1976) derived from a cross-sectional limit of multiple assets at a

specific timepoint, statistical arbitrage is a limiting condition across time.2

However, the statistical arbitrage framework of HJTW is deficient in several critical aspects.

First, the HJTW definition of statistical arbitrage penalizes a trading strategy for producing prof-

its with positive deviations from their expected value. Clearly, any investor benefits from positive

deviations in their strategy’s profitability. Bernardo and Ledoit (2000) raise a similar point with

respect to the ubiquitous Sharpe ratio. Second, the statistical test employed by HJTW to detect

statistical arbitrage opportunities is not consistent, resulting in a loss of power in empirical applica-

tions. Specifically, the Bonferroni approach in HJTW is only appropriate when the null hypothesis

involves an intersection of sub-hypotheses, while the null hypothesis of market efficiency adopted
1For example, evaluating trading profits in “good” or “bad” states of the world is unnecessary.
2An alternative definition of statistical arbitrage found in Bondarenko (2003) is discussed in the next section.
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in tests of statistical arbitrage is defined by a union.3 Third, HJTW assume in their tests of sta-

tistical arbitrage that the trading profits tested are serially uncorrelated and normally distributed.

However, serial correlation and departures from normality are well known regularities in empirical

finance. Fourth, HJTW apply the statistical arbitrage framework to only two classes of anomalies:

stock momentum and stock value based strategies.

This paper makes significant contributions to the literature on testing market efficiency by

improving the theory underlying statistical arbitrage as well as its empirical implementation. On

the theoretical front, we alter the fourth axiom in the HJTW definition of statistical arbitrage. Our

modified axiom avoids penalizing a trading strategy for producing profits with positive deviations

from their expected value. This improvement also eliminates a technical condition and the need to

average the variance of trading profits by time when defining statistical arbitrage.

On the statistical front, we introduce a powerful testing methodology for detecting statisti-

cal arbitrage opportunities based on a Min-t statistic. Unlike the HJTW Bonferroni approach,

our test procedure is statistically consistent when evaluating the null hypothesis of market effi-

ciency. Specifically, the statistical arbitrage framework imposes several parametric constraints on

an anomaly’s trading profits, implying the null involves a union of sub-hypotheses. The elements of

this union identify the t-statistics associated with the existence of statistical arbitrage. Intuitively,

since rejecting even a single sub-hypothesis results in the acceptance of market efficiency, the Min-t

statistic evaluates the “weakest” element in the union by focusing on the sub-hypothesis that is

“closest” to being accepted. In applications of the statistical arbitrage framework, our improved

statistical procedure allows for time-varying expectations, serial correlation, and non-normality in

trading profit dynamics.

On the empirical front, we apply our robust statistical arbitrage tests to four broad classes

of anomalies: individual stock momentum, individual stock value, individual stock liquidity, and

industry momentum. Like HJTW, the stock momentum and stock value based strategies are based

on those studied in Jegadeesh and Titman (1993) and Lakonishok, Shleifer, and Vishny (1994)
3This situation is aggravated when more sub-hypotheses are involved, causing a serious restriction on trading

profit dynamics. For example, HJTW consider two processes for incremental trading profits; a constrained mean

(CM) model with constant expected trading profits and a generalized unconstrained mean (UM) model. The UM

model allows for time-varying expected profits but requires additional sub-hypotheses.
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respectively. The stock liquidity strategies buy/short stocks with the lowest/highest past stock

trading volume in the spirit of Brennan, Chordia, and Subrahmanyam (1998)4 while the industry

momentum strategies buy/short industries with the highest/lowest past returns as in Moskowitz

and Grinblatt (1999). Furthermore, we also apply the statistical arbitrage tests to the Fama and

French (1993) HML, SMB, and RMRF risk factors.5 These empirical extensions demonstrate the

applicability of the statistical arbitrage framework to strategies beyond those studied in HJTW.

Using our improved statistical arbitrage methodology, we find that over 50% of the strategies

violate market efficiency. However, none of the risk factors are statistical arbitrages despite the

fact that HML and RMRF both yield statistically positive trading profits. This result is consistent

with their role as risk premiums which are justifiable in equilibrium.

By calculating the probability of loss for each statistical arbitrage opportunity, we also identify

dominant strategies with rapidly declining loss probabilities within each class of anomalies. This is

particularly relevant for short lived investors or those with limited capital who are concerned with

incurring intermediate losses. Such investors include fund managers, who typically face the risk of

retrenchment after a few years of poor performance (see Lakonishok and Vishny (1997)).

We find that the dominant stock momentum strategy is one with a formation period of six

months and a holding period of nine months, while the dominant stock value strategy is one based

on book-to-market ratios with a formation period of one year and a holding period of five years.

Nonetheless, the value strategies which produce statistical arbitrage most consistently are those

derived from sales growth. In addition, although the industry momentum strategies converge to

arbitrage almost as quickly as those of stock momentum, their success is concentrated in portfolios

with shorter three month formation periods while the success of the latter is concentrated in port-

folios with longer six month formation periods.6 In contrast, the stock liquidity strategies converge

to arbitrage very slowly relative to the other types of anomalies.
4According to Brennan, Chordia, and Subrahmanyam (1998), stock trading volume provides incremental explana-

tory power on the cross-section of stock returns after adjusting for momentum, size, and book-to-market effects.
5RMRF is the market return in excess of the risk free rate. HML is the return of the top 30% of stocks minus the

return of the bottom 30% of stocks sorted by book-to-market. SMB is the return of the bottom 30% of stocks minus

the return of the top 30% of stocks sorted by market capitalization.
6This corroborates the observation by Moskowitz and Grinblatt (1999) that unlike individual stock momentum,

industry momentum is strongest in the short term.
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The remainder of this paper is structured as follows. Section 2 reviews the theoretical under-

pinnings of the statistical arbitrage framework for testing market efficiency. Section 3 provides

our modified definition of statistical arbitrage while Section 4 describes our improved statistical

methodology. The data is discussed in Section 5 with empirical results presented in Section 6.

Section 7 concludes and offers directions for future research.

2 Review of Statistical Arbitrage

Previous empirical tests in the market efficiency literature focus exclusively on excess returns. How-

ever, positive excess returns may result from risk premiums associated with an equilibrium model.

Thus, the joint-hypotheses dilemma confounds traditional market efficiency tests. In contrast, as

with arbitrage opportunities, the existence of statistical arbitrage rejects all candidate models of

market equilibrium.7 In particular, their Sharpe ratio and contribution to expected utility are

inconsistent with well functioning financial markets.

Bondarenko (2003) also develops a model-free test of market efficiency capable of circumventing

the joint-hypotheses dilemma, and utilizes the statistical arbitrage terminology. However, several

fundamental differences exist between the HJTW framework and Bondarenko (2003), despite both

approaches appealing to arbitrage. First, the definition of statistical arbitrage in Bondarenko

(2003) operates over a finite time horizon and allows for potentially negative payoffs. Specifically,

Bondarenko (2003) constrains the average terminal payoff to be non-negative. In contrast, to

study the implications of an anomaly’s persistence, we require the probability of a loss to decline

towards zero without specifying a terminal date. Second, Bondarenko requires an asset’s risk

neutral density, with the expected payoff conditioned on future information under the assumption

that the pricing kernel is path independent. In contrast, we limit our attention to the empirical (or

statistical) probability measure underlying observed trading profits. Third and most important, the

two approaches differ significantly in their intended applications. To obtain an asset’s risk neutral

density and condition on its terminal payoff, the approach of Bondarenko (2003) is limited to
7Statistical arbitrage is a sufficient but not necessary condition for market inefficiency. Furthermore, although

no statistical arbitrage does not imply market efficiency, we often refer to these concepts interchangeably given our

empirical objective.
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markets with liquid options while HJTW is suitable for testing a wide range of persistent anomalies.8

2.1 Trading Strategies and Statistical Arbitrage

A trading strategy determines the amount invested in the risky asset at each point in time. In

our analysis, the risky asset consists of an equivalent buy/sell position in the long/short portfolios

of previously documented anomalies. Therefore, a trading strategy is responsible for converting

the returns of previously studied anomalies into dollar denominated profits, while we refer to the

underlying returns themselves as being generated by investment strategies. Specifically, we consider

investment strategies associated with stock momentum, stock value, stock liquidity, and industry

momentum. Only the trading strategy subsequently applied to their returns is unique to the

statistical arbitrage framework.

More importantly, one cannot challenge our empirical results by assuming a different trading

strategy. For example, a trading strategy that rapidly decreases its exposure to the risky long

minus short portfolio position is inappropriate since the persistence of the underlying anomaly

is not addressed.9 Furthermore, this strategy or any other alternative has no bearing on our

empirical findings, since every potential strategy is not required to generate statistical arbitrage.

Indeed, a single trading strategy is sufficient to confirm its existence (as with standard arbitrage

opportunities). Appendix A discusses these issues in greater detail.

Instead, there are two alternatives when challenging our empirical results. First, our choice of

trading strategy may be criticized. Second, the distributional assumptions we impose on trading

profits may be scrutinized.

When implementing any trading strategy, the data snooping critique is relevant.10 Therefore,
8Although options are available on a variety of US equities, they are not available on the trading profits of the

anomalies investigated in the empirical finance literature.
9Such a strategy is the opposite of a doubling strategy which is excluded from standard (finite horizon) arbitrage

theory.
10Haugen and Baker (1996) also investigate the survivorship and look-ahead bias as well as bid-ask bounce in their

study of market efficiency. Section 5 details the caution undertaken when constructing our long and short portfolios

to guard against the look-ahead bias. Naturally, if one rejects an underlying anomaly such as momentum due to

data snooping considerations, then the statistical arbitrage test results are also not relevant. Indeed, the objective

of the statistical arbitrage framework is to replace the intercept test on returns. However, the methodology does not

overcome data snooping issues regarding the formation of anomalous returns.
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the simplicity and long term viability of our approach are both important properties. More im-

portantly, the statistical arbitrage framework is designed to replace the usual t-statistic on the

intercept of abnormal returns. Consequently, our intention is not to “distort” the profitability of

anomalies but examine whether their persistence enables them to produce arbitrage over a long

horizon.

For example, the threat posed to market efficiency by investment strategies such as momentum

stems from their simplicity and use of public information. Although extensive searching for ex-post

zero-cost strategies which generate positive returns is problematic, momentum has survived this

criticism. Analogously, when converting a sequence of momentum returns into dollar denominated

trading profits, the subsequent trading strategy could manipulate returns in a manner that yields

statistical arbitrage. However, the investment strategies which generate momentum returns are far

more complex than our trading strategy which transforms these returns into trading profits.

In summary, the first constraint on a trading strategy emanates from the potential for data

snooping, while the second requires the underlying anomaly’s persistence to be captured. Third,

when applied to a long term price process consistent with market efficiency, the chosen trading

strategy cannot generate statistical arbitrage. For emphasis, a strategy which fails one of these

conditions is not suitable for implementation. However, its existence does not invalidate the sta-

tistical arbitrage framework but merely eliminates this strategy from consideration.

2.2 Trading Strategy for Converting Returns into Trading Profits

When converting the returns of the stock momentum and value anomalies into dollar denominated

trading profits, HJTW’s approach has less exposure to the risky long minus short portfolio position

than the trading strategy we implement. In particular, HJTW buy/sell a constant $1 amount of

the long/short portfolios throughout their entire sample period.

However, over our 35 year sample period (1965 to 2000), the value of $1 declines. Therefore,

we gradually increase our position in the risky portfolios by the accrued value of the money market

account (initialized at $1). Appendix A offers more details on the construction of trading profits.

Specifically, our implementation utilizes equation (15) instead of equation (13) employed by HJTW.

Nonetheless, the simplicity of HJTW’s trading strategy and their insistence on equivalent

long/short positions in the risky portfolios are preserved to correctly examine an anomaly’s persis-
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tence.

2.3 Definitions and Hypotheses

A statistical arbitrage opportunity requires the trading profits of a zero cost, self-financing trading

strategy to satisfy four axioms. Specifically, cumulative discounted trading profits constitute a

statistical arbitrage if they have a positive expectation, a declining time-averaged variance, and a

probability of a loss converging to zero.

Let {vi} for i = 1, . . . , n be a sequence of discounted portfolio values generated by a self-financing

trading strategy. We denote v(n) =
∑n

i=1 ∆vi as the trading strategy’s cumulative discounted

trading profit, with its incremental components represented by ∆vi.

Definition 1 A statistical arbitrage is a zero initial cost, self-financing trading strategy with cu-

mulative discounted trading profits v(n) such that:

1. v(0) = 0

2. lim
n→∞EP [v(n)] > 0

3. lim
n→∞P (v(n) < 0) = 0 and

4. lim
n→∞

V arP [v(n)]
n = 0 if P (v(n) < 0) > 0 ∀n < ∞.

To test for statistical arbitrage, we begin by assuming the following process for incremental

trading profits11

∆vi = µiθ + σiλzi , (1)

where zi are i.i.d. N (0, 1) random variables, although the assumptions of normality and indepen-

dence are subsequently relaxed. The initial quantities z0 = 0 and ∆v0 are both zero by definition.

The parameters σ and λ determine the volatility of incremental trading profits while the param-

eters µ and θ specify their corresponding expectation. In addition, observe that the process for

incremental trading profits is nonstationary when θ or λ is nonzero.
11A geometric Brownian motion (lognormal distribution) which prevents negative values is inappropriate for mod-

eling cumulative or incremental trading profits. Instead, an arithmetic Brownian motion is suitable for the difference

between two portfolios (long minus short) over a ∆ time interval. For a profitable strategy, the functions iθ and

iλ alter this arithmetic process to account for the increasing investment in the riskfree asset over time. Further

justification for this process is found in HJTW (using a Taylor series expansion) and Appendix A of this paper.
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Although a trading profit process is required to facilitate empirical testing in the statistical ar-

bitrage framework, every parametric statistical procedure has an underlying distributional assump-

tion. Indeed, the linear regressions which dominate the traditional empirical anomalies literature

generally assume normality.

It is critically important to emphasize that studying different trading profit processes in the

statistical arbitrage framework is not comparable to assuming multiple models of market equilib-

rium. When testing for statistical arbitrage, this paper enables researchers to select the preferred

trading profit dynamic depending on its time dependence, autocorrelation, and normality. Specif-

ically, existing statistical procedures such as the Akaike Information Criteria (AIC) are capable

of identifying the preferred model for describing the evolution of trading profits. In contrast, the

traditional market efficiency approach specifies an equilibrium (or expected return) model apriori,

the empirical validity of which is a maintained assumption that is not explicitly tested.

Furthermore, as with any statistical test, the parameters estimated from trading profits are

derived from a specific set of data. Hence, the acceptance or rejection of market efficiency is with

respect to a given sample period. Indeed, as discussed in HJTW, statistical arbitrage is intended

to replace the usual t-statistic on the intercept of excess returns which has a similar limitation.

We implement two tests for statistical arbitrage under the assumption that trading profit inno-

vations are uncorrelated with a normal distribution. The model described in equation (1) represents

the unconstrained mean (UM) model which allows for time-varying expected trading profits. We

also consider a more restrictive constrained mean (CM) model that assumes constant expected

trading profits by setting θ equal to zero. Consequently, the CM version of statistical arbitrage has

incremental trading profits evolving as

∆vi = µ + σiλzi . (2)

According to HJTW, statistical arbitrage opportunities exist in the UM model when the fol-

lowing sub-hypotheses hold jointly:12

1. H1: µ > 0

2. H2: λ < 0
12The third hypothesis θ > max{λ− 1

2 ,−1} actually contains two hypotheses but the second component θ > −1 is

a technicality (see Theorem 1 of HJTW) while the remaining three conditions have economic interpretations.
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3. H3: θ > max
{
λ − 1

2 ,−1
}
.

The first sub-hypothesis tests for positive expected profits while the second implies the trad-

ing strategy’s time-averaged variance declines over time. The third sub-hypothesis ensures that a

potential decline in expected trading profits does not prevent convergence to arbitrage. This re-

striction involves the trend in expected profits as well as volatility and allows for negative θ values.

For the CM version of statistical arbitrage in equation (2), the third sub-hypothesis is eliminated.

2.4 Correlated Incremental Trading Profits

Given the manner in which financial anomaly portfolios are typically constructed, autocorrela-

tion may be manifest in their incremental trading profits13. To address this issue, we allow the

innovations of equation (1) to follow an MA(1) process given by

zi = εi + φεi−1 , (3)

where εi are i.i.d. N (0, 1) random variables. We abbreviate the incremental trading profit assump-

tion in equation (1), modified to incorporate serially correlated innovations described by equation

(3), as the UMC model. The corresponding model with constant expected incremental trading

profits but serially correlated innovations is abbreviated CMC, and combines equation (2) with

equation (3).

As proved in HJTW, the presence of an MA(1) process neither alters the conditions for sta-

tistical arbitrage nor increases the number of sub-hypotheses. However, including the additional

parameter φ may improve the statistical efficiency of the remaining parameter estimates and avoid

inappropriate standard errors.

2.5 Probability of Loss

The probability of a trading strategy generating a loss after n periods, as in the third axiom of

Definition 1, depends on the µ, σ, λ, θ, and φ parameters as follows:

Pr{Loss after n periods} = Φ

(
−µ

∑n
i=1 iθ

σ(1 + φ)
√∑n

i=1 i2λ

)
, (4)

13This may be driven by negative serial correlation in stocks or cross-autocorrelation among stocks.
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where Φ(·) is the cumulative standard normal distribution function. This probability converges

to zero at a rate which is faster than exponential as shown in HJTW. Observe that φ directly

influences the convergence rate to arbitrage.

The UMC trading profit process includes all five parameters in equation (4) while the associated

loss probability for the CMC model has θ set equal to zero. By ignoring serial correlation in trading

profits, both the UM and CM models have φ = 0 with the CM model further constraining θ to be

zero. Thus, equation (4) is the most general expression for the convergence rate to arbitrage and

nests the more restrictive trading profit assumptions.

3 Modified Definition of Statistical Arbitrage

This section illustrates the very conservative nature of the previous statistical arbitrage definition

when rejecting market efficiency. In particular, the fourth axiom in Definition 1 is scrutinized. The

example motivates a modified fourth axiom along with updated sub-hypotheses that are summarized

in Proposition 1. We begin with the following example.

Example 1 Consider a series of incremental trading profits that constitute statistical arbitrage,

and the consequences of adding an independent Bernoulli process representing non-negative jumps.

For example, over a trading interval (i − 1, i], assume incremental trading profits, ∆v(i) = v(i) −
v(i− 1), evolve as

∆v(i) = µiθ + σiλzi + iδBi ,

where µ, σ, and δ are positive constants while λ is negative. Bi is a sequence of i.i.d. Bernoulli

random variables with zero mean and unit variance. In the absence of the Bernoulli process (Bi = 0

for all i), the trading profits are consistent with statistical arbitrage provided θ > λ − 1
2 . Denote

the probability underlying the Bernoulli process as π ∈ (0, 1). Observe that the expected value of the

trading profits increases from µiθ to µiθ + iδπ with the addition of positive jumps since E[Bi] = π.

However, the variance of the jump component is i2δπ(1−π) for each increment. Therefore, for

δ ≥ 0, the time-averaged variance of the jump process equals

π(1− π)
1
n

n∑
i=1

i2δ ,

which does not converge to zero.
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In economic terms, the above example presents a trading strategy which is rejected as being

a statistical arbitrage opportunity, despite being more desirable than another which satisfies the

required criteria. Hence, the HJTW statistical arbitrage definition is too conservative in rejecting

market efficiency. The problem stems from the asymmetry between desirable positive deviations and

detrimental negative deviations, a property which compromises the ability of variance to properly

measure risk. This shortcoming motivates a modified fourth axiom that evaluates the semi-variance

of incremental trading profits.

As a result of Example 1, consider the following definition for statistical arbitrage with a mod-

ified fourth axiom.

Definition 2 A statistical arbitrage is a zero initial cost, self-financing trading strategy with cumu-

lative discounted trading profits v(n) and incremental discounted trading profits ∆v(n) such that:

1. v(0) = 0

2. lim
n→∞EP [v(n)] > 0

3. lim
n→∞P (v(n) < 0) = 0 and

4. lim
n→∞V ar [∆v(n)|∆v(n) < 0] = 0.

Observe that the first three axioms are identical to the previous statistical arbitrage definition.

Only the fourth axiom is altered

lim
n→∞V ar [∆v(n)|∆v(n) < 0] = 0 . (5)

Under Definition 2, investors are only concerned about the variance of a potential “drawdown” in

wealth. Provided the incremental trading profits are non-negative, their variability is not penal-

ized. Therefore, when Definition 2 is applied to the trading profits of Example 1, large positive

incremental trading profits caused by the Bernoulli process no longer prevent statistical arbitrage

from being detected.

Three other observations are also worth emphasizing. First, Definition 2 continues to contain

standard finite horizon arbitrage opportunities when the arbitrage profit is invested in the money

market account. Second, in contrast to Definition 1, imposing the technical condition “if P (v(n) <

12



0) > 0 for all n < ∞” on the fourth axiom is no longer required. Third, since the fourth axiom

pertains to incremental trading profits, normalizing the variance by time is unnecessary.

The economic content of the fourth axiom, in both Definition 1 as well as 2, stems from not

having a finite horizon T at which point an arbitrage profit is realized. As compensation for

this uncertainty, structure is imposed on the “risk” profile of the trading strategy across time.

Specifically, both of the fourth axioms instill the limits of arbitrage concept into the statistical

arbitrage framework by requiring intermediate trading profits to become less risky.

3.1 Statistical Implementation

The following proposition facilitates empirical tests of statistical arbitrage on incremental trading

profits under Definition 2.

Proposition 1 Under the modified fourth axiom in equation (5), a trading strategy generates sta-

tistical arbitrage if incremental trading profits satisfy the following conditions:

H1: µ > 0 ,

H2: λ < 0 or θ > λ ,

H3: θ > max
{

λ − 1
2
,−1

}
.

Appendix B provides the details which verify the θ > λ condition in H2. Observe that our

proposed modification only applies to the UM and UMC models, enabling additional statistical

arbitrage opportunities to be detected in circumstances where θ > 0. Conversely, a negative point

estimate for θ implies H2 reverts to the original hypothesis that λ < 0.

Intuitively, positive θ estimates are consistent with right-skewness in the incremental trading

profits, a situation exploited by the earlier example. Figure 1 offers a visual illustration of the

modified fourth axiom in terms of the boundary between no statistical arbitrage and statistical

arbitrage. Observe that the upper half of the first quadrant (above the 45 degree line) is classified

as a statistical arbitrage opportunity under the modified, but not the original, definition.

As a final observation, the probability of a loss in equation (4) is unaltered by the modified fourth

axiom. Furthermore, the economic consequences of a statistical arbitrage opportunity are preserved

in terms of its Sharpe ratio and contribution to expected utility. Thus, the original justification for

statistical arbitrage contradicting market efficiency continues to apply under Definition 2.
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To summarize, this section proposes a weaker set of axioms for testing market efficiency using

statistical arbitrage that prevents positive fluctuations in incremental trading profits from being

penalized. This modification preserves the important properties of the original definition for sta-

tistical arbitrage and yields a similar statistical test for its existence.

4 Robust Tests of Statistical Arbitrage

In this section, we provide a robust statisticalmethodology to test for statistical arbitrage. Although

statistical tests may be conducted with either statistical arbitrage or no statistical arbitrage as the

null, the accepted paradigm has the null hypothesis being market efficiency.

The hypothesis of market inefficiency, namely the existence of statistical arbitrage, consists of

joint restrictions on the parameters underlying the evolution of trading profits. For the UM model,

the following restrictions have to be satisfied simultaneously for a statistical arbitrage opportunity

to exist:14

1. R1 : µ > 0 and

2. R2 : −λ > 0 or θ − λ > 0, and

3. R3 : θ − λ + 1
2 > 0 and

4. R4 : θ + 1 > 0 .

Thus, statistical arbitrage is defined by an intersection of sub-hypotheses. Conversely, the no

statistical arbitrage null hypothesis involves a union of sub-hypotheses (a consequence of DeMor-

gan’s Laws). In particular, the no statistical arbitrage null hypothesis is written as:

1. Rc
1 : µ ≤ 0 or

2. Rc
2 : −λ ≤ 0 and θ − λ ≤ 0, or

3. Rc
3 : θ − λ + 1

2 ≤ 0 or

4. Rc
4 : θ + 1 ≤ 0 .

14A slight change of notation is adopted to separate H3 into two restrictions to facilitate the exposition of the

proposed test.

14



Therefore, market efficiency is accepted provided a single sub-hypothesis Rc
i is satisfied. Statis-

tically, the no statistical arbitrage null hypothesis presents a challenge as the Bonferroni procedure

applies to an intersection, not union, of sub-hypotheses.15 Appendix C examines the Bonferroni

approach in HJTW and highlights its lack of power as the number of sub-hypotheses increase.

Given the limitations of the Bonferroni approach when testing for statistical arbitrage, this

section proposes a new methodology centered on the Min-t statistic. We first consider trading

profit innovations that are assumed to be normally distributed and serially uncorrelated. In these

circumstances, critical values for the Min-t test procedure are estimated using Monte Carlo simu-

lation. We then allow the innovations to be non-normal as well as serially dependent and estimate

p-values for the Min-t statistics using a bootstrap procedure.

4.1 Monte Carlo Procedure for Uncorrelated Normal Errors

When each Ri is considered separately, the t-statistics t(µ̂),
{
t(−λ̂) , t(θ̂ − λ̂)

}
, t
(
θ̂ − λ̂ + 1

2

)
, and

t(θ̂+1) test the restrictions R1, R2, R3, and R4 respectively, where hats denote the MLE parameter

estimates.

Since all the restrictions in Proposition 1 must be simultaneously satisfied to reject the null

hypothesis of no statistical arbitrage, the minimum of their associated t-statistics serves as the

rejection criterion. Therefore, the accompanying test for statistical arbitrage based on Proposition

1 evaluates the following Min-t statistic16

Min-t = Min
{
t(µ̂), t

(
θ̂ − λ̂ + 1

2

)
, t(θ̂ + 1), Max

[
t(−λ̂), t(θ̂ − λ̂)

]}
. (6)

Intuitively, the Min-t statistic evaluates the “weakest” element in the union by focusing on the

sub-hypothesis that is “closest” to being accepted. Thus, the null of no statistical arbitrage is

rejected if Min-t > tc, where the critical value tc depends on the test’s significance level denoted α.

For the CM models, equation (6) becomes

Min-t = Min
{
t(µ̂), t(−λ̂)

}
. (7)

Therefore, as alluded to in the previous section, Definitions 1 and 2 both have identical implemen-

tations in the CM and CMC models.
15See Gourieroux and Monfort (1995), Chapter 19, for an exposition of testing joint hypotheses using the Bonferroni

procedure.
16The original sub-hypotheses for Definition 1 may be tested using a special case of equation (6).
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As the null of no statistical arbitrage involves a family of t-distributions, rather than a single

distribution, the probability of rejecting the null varies across different parameter values. However,

the probability of rejecting the null cannot exceed α. In other words, we require

Pr{Min-t > tc|µ, λ, θ, σ} ≤ α (8)

for all (µ, λ, θ, σ) combinations satisfying the null. Thus, two issues have to be addressed. First,

while the individual t-statistics have asymptotic standard normal distributions, their joint distri-

bution is unknown. Hence, the theoretical distribution of the Min-t statistic is intractable. We

propose to overcome this difficulty using Monte Carlo simulation. Second, to achieve a size-α test

as in equation (8), the critical value tc is maximized over the null’s parameter space.

We first consider the CM model whose two statistical arbitrage sub-hypotheses are R1 and R2.

Obviously, tc is maximized when (µ, λ) = (0, 0). Furthermore, as the t-statistics are scale free,

we are able to select an arbitrary value of σ when estimating tc. We assume σ = 0.01, which

approximates its sample MLE estimate in our later empirical study. To estimate tc, residuals zi

are obtained from a normal random number generator to form the incremental trading profits

∆vi in equation (2) based on assumed model parameters (µ, λ, σ) = (0, 0, 0.01). The estimated

parameters, their individual t-statistics and the corresponding Min-t statistic are then computed.

This procedure is repeated 5,000 times, from which tc is estimated as the 100(1− α) percentile of

the Min-t statistics.

Note that the distribution of Min-t is a function of the sample size n. As the series of trading

profits used in our empirical study vary from 324 to 414 observations, sample sizes of 300 and 400

are examined. However, the results for both values of n are similar. Overall, critical values of

0.4754, 0.7484, and 1.2694 at the 10%, 5%, and 1% significance levels are utilized in subsequent

tests of the CM model. These critical values correspond to the largest estimates in the Monte Carlo

simulations.

For the UM model, there are five inequality restrictions involving three parameters and not all

the restrictions are necessarily binding. Thus, a model within the null family and on the boundary

of all inequality restrictions is not available. Nonetheless, as the t-statistics that comprise the Min-t

statistic are monotonic in the underlying restrictions, it is appropriate to focus on their boundaries.

Consequently, µ is set to −10−6 while the λ and θ parameters are varied along the boundary of the
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no statistical arbitrage / statistical arbitrage region as depicted in Figure 1.17

To control the probability of the Type I error at the stated nominal level, the maximum sim-

ulated critical values across different parameters are utilized in subsequent UM tests. These are

0.4034, 0.6004, and 0.9074 at the 10%, 5%, and 1% significance level respectively.18

4.2 Bootstrap Procedure for Correlated Non-Normal Errors

The previous methodology assumes the innovations in incremental trading profits are normally

distributed and serially uncorrelated. However, both assumptions have been shown to be dubious

in empirical finance (see, for instance, Affleck-Graves and McDonald (1989) and Lo and MacKinlay

(1988)). Thus, we relax these assumptions by allowing trading profit innovations to be non-normal

and serially correlated.

However, the MA(1) process for innovations described by equation (3) introduces an unspecified

nuisance parameter φ. Consequently, searching for the maximum critical values using Monte Carlo

methods becomes intractable. In particular, the influence of φ on the individual components of the

Min-t statistic is unknown, offering little guidance for a search strategy. Therefore, we employ a

bootstrap procedure to estimate the p-values.

Brock, Lakonishok, and LeBaron (1992) introduce the bootstrap technique into the empirical

finance literature to study technical trading rules. Since then, this procedure has been adopted

by many authors including Bessembinder and Chan (1998) as well as Sullivan, Timmermann, and

White (1999). Ruiz and Pascual (2002) provide an excellent survey of the bootstrap method in

empirical finance.

The steps we employ in our bootstrap procedure for the UMC model are:

1. Estimate the parameters of the UM model with MA(1) errors using quasi-MLE and calculate

the residuals ε̂i using the following equations:

ẑi =
∆vi − µ̂ iθ̂

σ̂ iλ̂

17Note that the influence of θ disappears when µ = 0. We also vary the values of µ from -0.01 to -0.0001 and obtain

similar results.
18Since Monte Carlo simulation is employed to estimate the critical values of the Min-t statistic in finite samples,

the nonstationarity of the UM model when θ �= 0 bears no consequence on our test procedure.
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and

ε̂i = ẑi − φ̂ ε̂i−1 ,

with the starting value of ε̂0 being zero. In addition, the Min-t statistic in equation (6) is

calculated.

2. Sample with replacement a set of n residuals denoted {ε∗1, . . . , ε∗n} from the original set of

residuals {ε̂1, . . . , ε̂n}.

3. Generate a bootstrap sample of trading profits ∆v∗i with the parameter values (µ, λ, θ, σ) =(−10−6,−1
2 ,−1, 0.01

)
and the MLE estimate φ̂ using the equations:19

z∗i = ε∗i + φ̂ ε∗i−1

and

∆v∗i = µ iθ + σ iλz∗i .

4. Calculate the MLE estimates for ∆v∗i and hence the Min-t statistic, denoted Min-t�.

5. Repeat Steps 2 to 4 a total of 1,000 times. The estimated p-value of the Min-t statistic is

given by the empirical percentage of bootstrapped Min-t� values that are larger than Min-t

calculated in Step 1.

Implementing the bootstrap procedure for the CMC model follows in an identical fashion with

(µ, λ) = (0, 0). Note that the guidelines provided by Hall and Wilson (1991) as well as Horowitz

(2001) are adhered to in our procedure.20 Section 6 confirms the convergence of the bootstrap

procedure.
19Under the null of no statistical arbitrage with normally and serially uncorrelated errors, these parameter values

provide the largest critical value tc in the Monte Carlo simulations.
20Horowitz (2001) points out that bootstrapping should be used to estimate a test’s critical value based on an

asymptotically pivotal statistic whose asymptotic distribution under the null does not depend on any unknown

parameters. This condition is satisfied by our test as the t-statistics are asymptotically standard normal, and thus

pivotal. Furthermore, Hall and Wilson (1991) argue that the resampling in the bootstrap process should be conducted

in a manner that reflects the null.
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5 Data and Terminology

Our sample period starts in January 1965 and ends in December 2000. Monthly equity returns data

are derived from the Center for Research in Security Prices at the University of Chicago (CRSP).

Our analysis covers all stocks traded on the NYSE, AMEX, and NASDAQ that are ordinary

common shares (CRSP sharecodes 10 and 11), excluding ADRs, SBIs, certificates, units, REITs,

closed-end funds, companies incorporated outside the U.S., and Americus Trust Components.

The stock characteristics underlying the trading strategies include book-to-market equity, cash

flow-to-price ratio, earnings-to-price ratio, annual sales growth, and monthly trading volume. To

calculate book-to-market equity, book value per share is taken from the CRSP/COMPUSTAT

price, dividend, and earnings database. We treat all negative book values as missing. We take the

sum of COMPUSTAT data item 123 (Income before extraordinary items (SCF)) and data item

125 (Depreciation and amortization (SCF)) as cash flow. Only data 123 item is used to calculate

the cash flow if data 125 item is missing. To compute earnings, we draw on COMPUSTAT data

item 58 (Earnings per share (Basic) excluding extraordinary items) and to compute the sales we

utilize COMPUSTAT data item 12 (sales (net)). Share volume is the number of shares traded

divided by the number of shares outstanding. All price and number of outstanding common shares

information employed in the calculation of the ratios are computed at the end of the year.

To ensure that the accounting variables are known before hand and to accommodate variation

in fiscal year ends among firms, sorting on stock characteristics is performed in July of year t using

the accounting information from year t−1. Hence, following Fama and French (1993), to construct

the book-to-market deciles from July 1st of year t to June 30th of year t + 1, stocks are sorted into

deciles based on their book-to-market equity (BE/ME), where the book equity is in the fiscal year

ending in year t − 1 and the market equity is calculated in December of year t − 1. Similarly, to

construct the cash flow-to-price deciles from July 1st of year t to June 30th of year t+1, the stocks

are sorted into deciles based on their cash flow-to-price, where the cash flow is in the fiscal year

ending in year t−1 and the price is the closing price in December of year t−1. Earnings-to-price is

calculated in a similar fashion. All portfolios are rebalanced every month as some firms disappear

from the sample over the 12-month period.

The individual stock momentum strategies we implement follow Jegadeesh and Titman (1993).
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These strategies buy the top return decile and short the bottom return decile based on formation

and holding period combinations of 3, 6, 9, and 12 months. The individual stock value strategies

follow Lakonishok, Shleifer, and Vishny (1994) and buy the top decile and short the bottom decile of

stocks based on book-to-market, cash flow-to-price or earnings-to-price ratios of the past year along

with past sales growth over the past three years. These portfolios are then held for 1, 3, and 5 years.

The individual stock liquidity strategies are based on stock trading volume and buy the bottom

trading volume decile and short the top trading volume decile of stocks in the spirit of Brennan,

Chordia, and Subrahmanyam (1998). The industry momentum strategies follow Moskowitz and

Grinblatt (1999). Stocks are first classified into 20 industries based on their SIC codes.21 The

industry momentum strategy buys the top three return industries and shorts the bottom three

return industries as in Moskowitz and Grinblatt (1999). Like the stock momentum strategies,

the stock liquidity, and industry momentum strategies are based on formation and holding period

combinations of 3, 6, 9, and 12 months. For all strategies, once the long and short portfolio returns

are generated, a self-financing condition is enforced by investing (borrowing) trading profits (losses)

at the riskfree rate. Riskfree rate data is obtained from Kenneth French’s website.

Given the possible permutations of formation and holding periods, we investigate 16 stock

momentum strategies, 12 stock volume strategies, 16 stock liquidity strategies, and 16 industry

momentum strategies. We adopt the notational convention of JTx y for the stock momentum

strategy with a formation period of x months and a holding period of y months. The book-to-

market, cash flow-price, earnings-to-price, and sales growth based value portfolios with a holding

period of y years are denoted BMy, CPy, EPy, and SALEy respectively. The formation period for

all the sales growth strategies is three years while that for the other value strategies is one year.

The stock liquidity and industry momentum portfolios with a formation period of x months and a

holding period of y months are abbreviated VOLx y and INDx y respectively.
21The 20 industries are mining, food, apparel, paper, chemical, petroleum, construction, primary metals, fabri-

cated metals, machinery, electrical equipment, transport equipment, manufacturing, railroads, other transportation,

utilities, department stores, retail, financial, and others. We refer the interested reader to Moskowitz and Grinblatt

(1999) for further details.
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6 Empirical Results

We now discuss the results from applying our improved statistical arbitrage methodology to four

anomalies described in the previous section: stock momentum, stock value, stock liquidity, and

industry momentum strategies. Our analysis implements four trading profit models summarized

in Section 2: CM (constrained mean), UM (unconstrained mean), CMC (constrained mean with

correlation), and UMC (unconstrained mean with correlation). The UM model allows for time

variation in expected trading profits, while its CM counterpart has these being constant. Their

respective UMC and CMC extensions permit autocorrelation and non-normality in trading profits.

The effects of transaction costs, margin requirements, additional reserves for short-selling, higher

borrowing rates than lending rates, and the exclusion of small stocks on statistical arbitrage op-

portunities are investigated in HJTW. Despite these market frictions, conclusions regarding their

existence are not seriously compromised for the CM model. Therefore, we focus our attention in

this paper on different trading profit assumptions, rather than on replicating previous robustness

tests for the influence of market frictions.22

6.1 General Findings

The primary benefit of our Min-t test approach is the statistical power it provides when investigating

trading profits dynamics with time-varying expectations as well as serially correlated non-normal

innovations. Without this statistical power, more complex trading profit formulations cannot be

reliably examined. For example, the statistical arbitrage test results for both the CM and the UM

models are presented in Table 1.23 Unlike the Bonferroni test procedure in HJTW which cannot

detect any UM statistical arbitrage opportunities amongst the stock value anomalies, our results

reveal a strong congruence between the CM and UM specifications for the sales strategies.

As discussed in Subsection 4.1, the critical Min-t values in Table 1 are estimated from a large

scale Monte Carlo experiment, since the errors are normally distributed and uncorrelated in the UM
22Although the stock liquidity strategies involve buying stocks with low trading volume, they also short stocks with

high trading volume. Thus, the short-selling costs associated with these strategies may be lower than those of the

three anomalies.
23Allowing for serial correlation does not introduce a systematic bias into any of the CM and UM parameters versus

those of the CMC and UMC models reported in Tables 2 and 3 respectively. Therefore, the estimated CM and UM

parameters are omitted for brevity but available upon request.
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and CM models. As a robustness check and to cross-validate the bootstrap methodology developed

in Subsection 4.2 for the CMC and UMC models, we apply that methodology to the CM and UM

models by constraining the autocorrelation coefficient φ to be zero. With minor exceptions, the

resulting bootstrapped p-value estimates for the CM and UM models reported in Table 1 agree with

those from the Monte Carlo procedure (which assumes φ = 0 as well as normality). This reassuring

result indicates convergence of the bootstrap procedure, and demonstrates the robustness of the

Min-t statistic with respect to the assumption of normality.

It is also interesting to note that the CMC results for λ, σ, and φ in Table 2 and those of its

UMC counterpart in Table 3 are similar. This consistency attests to our statistical procedure’s

accuracy. As expected, whether or not the θ parameter is calibrated influences the estimate of µ.

However, negative θ estimates in Table 3 are not necessarily indicative of a diminishing anomaly.

By construction, a profitable trading strategy increases the amount invested in the riskfree asset

over time. Thus, declines in expected trading profits may reflect a smaller proportion of wealth

being exposed to the risky long and short portfolios (see Appendix A for details).

In Table 4, we summarize the number of strategies that produce statistical arbitrage at the 5%

and 10% significance levels. The numbers are presented by strategy class (stock momentum, stock

value, stock liquidity, or industry momentum) and by trading profit specification (CM, UM, CMC,

UMC). Table 5 provides additional information at the 5% significance level by detailing which of

the four trading profit models is preferred according to the Akaike Information Criteria. With

the exception of the stock momentum strategies which are sensitive to the estimation of θ, the

statistical arbitrage results are generally consistent across the four trading profit dynamics.

Inferences regarding the presence of statistical arbitrage are usually unchanged after relaxing

the twin assumptions of normality and serial independence. In particular, Table 4 indicates that

most of the portfolios that test positive for statistical arbitrage under the CM (UM) formulation

remain statistical arbitrages in the CMC (UMC) version of the test. With the exception of stock

momentum, the significance of the autocorrelation coefficient estimates φ, and the lack of signifi-

cance for the change in expected profits estimated by θ in Table 3, suggest that preference should

usually be allocated to the CMC model. For stock momentum, the CM model is usually preferred

as serial correlation in trading profit innovations is less prevalent.24 These statements are reinforced
24The negative φ estimates for stock momentum may result from negative serial correlation in stock returns over
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by the Akaike Information Criteria (AIC) results in Table 5.

Overall, Tables 4 and 5 report that out of 60 portfolios, almost half produce statistical arbitrage

at the 5% significance level, and at least 37 portfolios yield statistical arbitrage at the 10% level.

The number of statistical arbitrage opportunities cannot be attributed to the procedure’s Type

I error (even if the strategies are not independent). Hence, it is reasonable to conclude that our

empirical results contradict the Efficient Markets Hypothesis.

6.2 Statistical Arbitrage Opportunities Across Trading Strategy Classes

In this subsection, we compare the statistical arbitrage opportunities across the four classes of

trading strategies (stock momentum, stock value, stock liquidity, and industry momentum), and

summarize their implications for market efficiency.

The stock liquidity strategies consistently exhibit statistical arbitrage opportunities as almost

all of these 16 strategies test positive for statistical arbitrage at the 5% significance level across

each of the four trading profit formulations. Thus, the capacity of the stock liquidity strategies to

generate statistical arbitrage is largely independent of the formation and holding periods, as well

as the specified trading profit process.

The stock momentum strategies of Jegadeesh and Titman (1993) exhibit less consistency across

the four trading profit specifications. In particular, the CM and CMC test results differ from those

of the unconstrained UM and UMC models. However, Table 3 indicates that the θ parameter

is insignificant. Thus, the constrained models offer a more accurate description of trading profit

dynamics as estimating the unnecessary θ parameter reduces the test’s statistical power. Further

evidence supporting the constrained models is provided by the Akaike Information Criteria in Table

5, while HJTW document the same effect using a Likelihood Ratio Test (LRT).

Of the stock value strategies, those based on past three-year sales growth exhibit statistical

arbitrage with the greatest consistency. Indeed, all three of these strategies are statistical arbitrage

opportunities at the 5% level, compared to one book-to-market strategy and one cash flow-to-price

strategy. In contrast, none of the earnings-to-price strategies test positive for statistical arbitrage.

short monthly horizons. In particular, the stocks in the long and short positions remain in these respective portfolios

over several periods which could induce negative serial correlation in their returns. Karolyi and Kho (2004) find

evidence of negative serial correlation in stock momentum returns.
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Thus, our results suggest that value investors should consider past sales growth as an indication of

value, as opposed to other popular metrics such as earnings-to-price.

It is intriguing to compare the results for the industry momentum strategies with the results

for the stock momentum strategies. We find that the industry momentum strategies only test pos-

itive for statistical arbitrage with shorter formation periods such as three months. Moskowitz and

Grinblatt (1999) observe a similar phenomenon as industry momentum appears strongest in the

short term (at the one-month horizon). In the context of statistical arbitrage, while almost all the

industry momentum portfolios have positive expected trading profits, only those with short forma-

tion periods yield statistical arbitrage. This pattern arises because with long formation periods,

the volatility of the industry momentum profits fails to decline over time.

Within a given class of anomalies, the preferred description of trading profits according to the

Akaike Information Criteria is identical for all but one strategy (SALE1). Although many statistical

arbitrage opportunities under the UM and UMC models are revealed, allowing for time-varying

trading profits is not warranted.

Furthermore, observe that when any of the four trading profit models detects statistical arbitrage

for a given trading strategy, the preferred description usually yields statistical arbitrage. The

exceptions to this generality are the book-to-market strategies with one and three year holding

periods, along with four industry momentum portfolios.25

6.3 Probability of Loss

Another advantage of the statistical arbitrage methodology is its ability to yield the probability

of a loss at specific time horizons. Shleifer and Vishny (1997) demonstrate the importance of

capital constraints and intermediate losses to trading decisions. Given these considerations, not

all statistical arbitrage opportunities are equally desirable and the convergence rates of the loss

probabilities to zero (arbitrage) offer guidance regarding which strategies to pursue. From this

perspective, our statistical procedures are of considerable practical importance as they identify

dominant strategies in each of the four classes.

Table 5 records the number of months required for the loss probability to fall below five and one
25These are the IND3 12, IND6 3, IND6 6, and IND6 9 industry momentum strategies.
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percent for each trading strategy that yields statistical arbitrage at the 5% level of significance.26 All

else being equal, equation (4) implies a positive autocorrelation coefficient φ reduces the convergence

rate to zero. Conversely, even if time variation in expected incremental profits captured by θ is

significantly negative, the rate of convergence to arbitrage may not be reduced as its calibration

often results in a larger estimate of the profit parameter µ.

The dominant stock momentum and industry momentum strategies only require 71 and 66

months respectively for their loss probabilities to decline below five percent. The dominant stock

momentum strategy has a formation period of six months and a holding period of nine months,

while the dominant industry momentum strategy has a formation period of three months and a

holding period of three months. Plots of these loss probabilities are found in Figures 2 and 3

respectively for each trading profit dynamic that yields statistical arbitrage at the 5% significance

level.

The dominant value strategy derived from a book-to-market strategy with a formation period of

one year and a subsequent five year holding period. Comparing across the four types of anomalies,

this strategy experiences the most rapid convergence to arbitrage as only 41 months are required

before its loss probability declines below 5%, with Figure 4 offering a visual illustration of this

phenomena. Interestingly, the dominant industry momentum and value strategies consistently

produce statistical arbitrage at the 5% significance level across all four trading profit specifications.

Observe that while fewer stock momentum, stock value, and industry momentum portfolios

constitute statistical arbitrage opportunities in comparison to the stock liquidity portfolios, they

converge to arbitrage more rapidly. The small expected trading profits associated with the stock

liquidity strategies are responsible for their slow convergence rates. Thus, they require extremely

patient investors.
26The entries in Table 5 are computed using equation (4) which assumes normality. Therefore, as a robustness check,

distribution-free bootstrapped loss probabilities are also computed based on 10,000 trials. This bootstrap procedure

searches every generated sample path to determine the relative frequency of incurring a loss at each monthly horizon.

However, the results are nearly identical to those produced by equation (4) and are omitted for brevity but available

upon request.
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6.4 Test of Risk Premiums

Although a risk premium should enable investors to profit from bearing its risk, the resulting profits

cannot generate statistical arbitrage and be compatible with an equilibrium model. Indeed, the

excess compensation offered by a statistical arbitrage opportunity has no equilibrium justification.

Thus, the role of a risk premium is not contradicted if its trading profits generate statistical arbi-

trage. Instead, such a result finds the premium’s compensation excessive relative to that which is

justifiable in equilibrium.27

Given the limited success of the BM1 strategy in producing statistical arbitrage, we investigate

the profits from a Fama and French (1993) HML trading strategy as well as its SMB counterpart

for comparative purposes.28 In addition, we also analyze an equity premium proxied for by the

market factor of Fama and French (1993) denoted RMRF. Appendix A demonstrates that an

equity whose purchase is financed by riskfree borrowing cannot generate statistical arbitrage unless

the volatility of equity is declining (while continuing to offer a positive premium). Consequently,

testing the RMRF premium for statistical arbitrage serves as a robustness test of our empirical

implementation. As with our earlier anomalies, the trading profits implied by the HML, SMB, and

RMRF strategies are studied from January 1965 to December 2000.

Parameter estimates and statistical arbitrage test results for the three risk premiums are re-

ported in Table 6. Empirically, none are found to produce statistical arbitrage, although the strate-

gies are profitable since all their corresponding µ estimates are positive. Thus, the compensation

these premiums provide is justifiable in equilibrium.

6.5 Final Observations

For comparison, we also implement HJTW’s trading strategy (as described in equation (13) of

Appendix A) when converting the returns generated by the four anomalies into dollar denominated

trading profits. For every anomaly and all four trading profit formulations, the number of statistical
27As an extreme example, consider an economy in which the expected return of a stock is 30% per annum with a

corresponding volatility of only 1%, while the riskfree rate is fixed at 2%. Intuitively, the magnitude of this equity

premium is not compatible with equilibrium.
28Although, BM1 and HML have identical one year formation and holding periods, HML is derived from the

30th and 70th book-to-market percentiles of the NYSE, while BM1 is defined via the 10th and 90th book-to-market

percentiles for the NYSE, NASDAQ, and AMEX markets.
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arbitrage opportunities is found to increase. Thus, market efficiency is rejected even more strongly

when HJTW’s more conservative construction of trading profits is considered.29

Consequently, the single greatest improvement offered by this paper is the improved Min-t

statistical procedure, and its associated advantage of allowing for serial correlation in trading

profits. Indeed, when statistical arbitrage is detected for a trading strategy, the corresponding

λ estimates are generally negative. Thus, trading profits are not sufficiently right-skewed in the

strategies we implement to require the modified fourth axiom in Definition 2.

7 Conclusion

Given the importance of market efficiency to finance, every effort should be undertaken to accurately

assess the validity of this fundamental tenet. Two important contributions for testing market

efficiency using statistical arbitrage are proposed in this paper.

First, we modify one of the statistical arbitrage axioms. This theoretical improvement corrects

the very conservative nature of the original statistical arbitrage definition when rejecting market

efficiency. In addition, besides eliminating the need for imposing a technical condition on trading

profits, our improved definition is more intuitive since averaging their variance by time is no longer

required.

Second, a more powerful test procedure is provided that circumvents the limitations of Hogan,

Jarrow, Teo, and Warachka (2004)’s Bonferroni approach. Empirically, we document the impor-

tance of our robust statistical tests on stock momentum, stock value, stock liquidity, and industry

momentum strategies. Our improved methodology resolves the empirical disparity in Hogan, Jar-

row, Teo, and Warachka (2004) by identifying statistical arbitrage opportunities when expected

incremental trading profits are time-varying. The second contribution also allows for serial correla-

tion and non-normality in trading profit innovations. This extension enables us to investigate the

sensitivity of our decision to reject market efficiency with respect to these generalizations, without

compromising our ability to detect statistical arbitrage opportunities.

By implementing our modified tests on four broad classes of well-known stock market anomalies,

we uncover a large number of statistical arbitrage opportunities that are hard to reconcile with the
29Recall from Subsection 2.2 that HJTW maintain a constant $1 position in the long and short portfolios over the

entire sample period.
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Efficient Markets Hypothesis. Furthermore, when ascertaining dominant strategies which converge

most rapidly to standard arbitrage opportunities, incorporating autocorrelation into trading profits

is crucial.

In summary, this paper improves the definition and implementation of statistical arbitrage to

minimize the possibility of accepting market efficiency due to right-skewed trading profits or a lack

of statistical power. Indeed, we confirm the appropriateness of statistical arbitrage as a test of

market efficiency by describing the evolution of trading profits with time-varying processes that

have autocorrelated and non-normal innovations.

Promising avenues for future research include testing other persistent anomalies, such as the

abnormal returns from earnings announcements, analyst forecasts or changes in dividend policy,

for statistical arbitrage.
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Appendices

A Trading Strategies and Statistical Arbitrage

The existence of statistical arbitrage opportunities is determined by the profits derived from a

trading strategy. Although this strategy is not necessarily motivated by excess returns, consider

the regression of raw returns yti on factors fk,ti

yti = α̂0 +
K∑

k=1

α̂k fk,ti + ε̂ti , (9)

where the estimated α̂k coefficients for K > 1 are associated with premiums for market risk,

size, book-to-market or other possibilities and ε̂ti are i.i.d. errors. The multifactor regression
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representation in equation (9) contains CAPM and the Fama-French three factor model. If returns

conform with the above specification, then α̂0 is statistically insignificant.

There are two issues surrounding equation (9) in our context. First, there are no equilibrium

models designed for long time horizons. Second, the parameter estimates are not traded assets

since they cannot be bought or sold. Nonetheless, equation (9) may motivate an application of the

statistical arbitrage methodology by returning to the portfolio(s) which generated yti .

A.1 Buy and Hold Strategy

Let i represent the time index ti for notational simplicity, and consider a $1 investment in the long

portfolio with $1 of the short portfolio being sold at time zero. Define RL and RS as the return of

the long and short portfolio respectively. Let L(i) = exp
{∑i

j=1 RL
j

}
and S(i) = exp

{∑i
j=1 RS

j

}
denote the long and short portfolios, which are linear combinations of limited liability assets whose

prices cannot become negative.

A buy and hold strategy has cumulative trading profits equaling

V (i) = $ [L(i)− S(i)] , (10)

with a discounted value v(i) = V (i)e−ri of

v(i) = exp

⎧⎨
⎩

i∑
j=1

(
RL

j − r
)⎫⎬⎭− exp

⎧⎨
⎩

i∑
j=1

(
Rs

j − r
)⎫⎬⎭ def

= l(i)− s(i) . (11)

For ease of exposition, we return to continuous time and place a common lognormal structure

on the two portfolios. This economy facilitates an illustrative analysis with the following definitions

l(t) = l(0) exp
{(

RL − r − 1
2σ2

L

)
t + σLWL

t

}
s(t) = s(0) exp

{(
RS − r − 1

2σ2
S

)
t + σSWS

t

}
,

where WL
t and WS

t are independent Brownian motions with corresponding volatilities denoted σL

and σS. These dynamics are chosen to simplify computations although none of their individual

parameters require calibration. Furthermore, having uncorrelated Brownian motions is also without

loss of generality.

The increments of equation (11) are obtained via Ito’s lemma (bi-variate version) on the function

v(l(t), s(t)) = l(t)− s(t). The difference between two lognormal processes has also been studied by
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Margrabe (1978) in the context of an option to exchange two risky securities. Unlike the application

of Ito’s lemma in option pricing, there is no partial derivative with respect to time and the linear

function has second derivatives equaling zero. Consequently, the increments of equation (11) over

a ∆ time interval are

dv(t) =
[
(RL − r) dt + σL dWL

t

]
l(t)− [(RS − r) dt + σS dWS

t

]
s(t)

= r v(t) dt +
[
RL l(t)− RS s(t)

]
dt +

[
σL l(t) dWL

t − σS s(t) dWS
t

]
, (12)

which are normally distributed but with a time-varying mean and variance that reflect the l(t) and

s(t) portfolio values.

However, the buy and hold strategy yields trading profits that are very sensitive to the start

date and the length of the time horizon being studied. For example, the long position increases

exponentially as past gains increase the amount invested in this risky portfolio. Consequently,

if profitable, this strategy has l(t) becoming larger than s(t), implying a disparity between the

amount invested in the long portfolio and the amount sold of the short portfolio. Unfortunately,

this property obscures the strategy’s ability to capture an anomaly’s persistence. Finally, equation

(10) is not appropriate for frequent (monthly) realizations of intermediate gains and losses. These

limitations are overcome in the next subsection.

To provide a connection with Appendix B of HJTW, note that the purchase of a risky (but

limited liability) asset financed with riskfree borrowing has L(t) = A(t) and S(t) = exp {rt}, where

r is the riskfree interest rate. Thus, RL = µ and σL = σ while RS = r and σS = 0, which reduces

equation (12) to

dA(t) = (µ − r)A(t)dt + σA(t)dWt .

As expected, the fourth axiom prevents the discounted geometric Brownian motion in the above

equation from producing statistical arbitrage.

A.2 Trading Strategy Implementation

At time zero, there is no difference between our trading strategy and the previous buy and hold

strategy. However, the trading strategy HJTW and we implement places the cumulative profit in

the money market account each month. Thus, to properly capture an anomaly’s persistence, we
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both maintain an equivalent buy/sell position in the risky long/short portfolios across time. As a

result, only the RL and RS return sequences are necessary.

In contrast to equation (10), HJTW’s trading strategy yields cumulative trading profits equaling

V (j) = exp {r} V (j − 1) + $1
[
exp

{
RL

j

}− exp
{
RS

j

}]
. (13)

Observe that this strategy ensures that $1 of the risky long/short portfolio is bought/sold each

month. Thus, profits (or losses) are harvested based on the returns of the long and short portfolios

in the previous period. Consequently, trading profits are constructed recursively.

Furthermore, time-varying moments are induced by an allocation between the fraction of wealth

invested in the riskfree asset versus the positions in the risky portfolios. In particular, $1 is exposed

to the risky long minus short position while the accumulated value Vx(j − 1) is deposited into

(borrowed from) the money market account.

Overall, the return generated by equation (13) may be decomposed as

[1 − π(j)] exp {r}+ π(j)
[
exp

{
RL

j

}− exp
{
RS

j

}]
(14)

for π(j)
def
= 1

1+Vx(j−1) over a single time increment. Thus, the fraction 1 − π(j) is invested in the

riskfree asset while the remaining π(j) percent is kept in the risky portfolios. A profitable strategy

has π(j) → 0, which justifies the trading profit specifications in Section 2 such as equation (1).

Intuitively, this strategy creates a riskless “cash account” (with a zero investment) whose magnitude

depends on the trading strategy’s profitability.

Note that in applications of the statistical arbitrage methodology, the interest rate is not as-

sumed to be constant nor is stationarity imposed on the asset returns. These features of the data

provide additional sources of variability with respect to time.

Equation (13) may be altered by having an equivalent position, denoted x(t), other than $1 in

the risky portfolios

Vx(j) = exp {r}Vx(j − 1) + $x(j)
[
exp

{
RL

j

}− exp
{
RS

j

}]
. (15)

This strategy remains self-financing as x(j) dollars of the long (short) portfolio are bought (sold) at

time j. However, having x(j) = B(j) gradually increases our exposure to the risky portfolios over

time. As reported in Section 6, this trading strategy is less likely to induce statistical arbitrage.30

30Recall that our analysis of discounted incremental trading profits, denoted ∆v(t) in Section 2, accounts for the

time-value-of-money.

33



The factor π(j) in equation (14) is easily modified to become B(j)
B(j)+Vx(j−1) with the intuition behind

the risky and riskfree asset decomposition remaining. For clarification, HJTW have x(j) ≡ 1

although the value of $1 declines over time.

For additional intuition, we may appeal to the most well-known application of arbitrage, the

Black Scholes option pricing theory. Their trading strategy replicates a European call or put

option, and cannot be separated from their final pricing formula. By way of contrast, Black Scholes

derive the appropriate trading strategy for replicating an option assuming price dynamics to avoid

arbitrage. Our framework requires the opposite perspective. We choose the simplest possible

trading strategy and allow historical data to determine in-sample profit dynamics which may or

may not produce arbitrage. Overall, the test for statistical arbitrage determines whether the simple

self-financing (x(j),−x(j)) linear combination of portfolios yields a traded asset providing a positive

expected profit, decreasing risk, and a declining loss probability whose incremental contributions

are either positive or have declining variance.

A.3 Stock and Riskfree Asset

The purchase of an individual equity (or market index) financed by riskfree borrowing yields an

equity premium. To simplify our analysis, we consider a linearized version of the cumulative

trading profits generated by equation (15). Subsection 6.4 details the empirical implementation of

the equity premium.

With x(j) = B(j) defined as (1 + r)j in equation (15), cumulative trading profits equal

Vx(0) = $0

Vx(1) = $B(1)N (
µ − r, σ2

)
+ (1 + r)Vx(0)

= $B(1)N (
µ − r, σ2

)
Vx(2) = $B(2)N (

µ − r, σ2
)

+ (1 + r)Vx(1)

= $B(2)
[N (

µ − r, σ2
)

+ N (
µ − r, σ2

)]
Vx(3) = $B(3)N (

µ − r, σ2
)

+ (1 + r)Vx(2)

= $B(3)
[N (

µ − r, σ2
)

+ N (
µ − r, σ2

)
+ N (

µ − r, σ2
)]

,
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and so forth which leads to the following recursion

Vx(i) = $B(i)
i∑

j=1

N (
µ − r, σ2

)
,

with a discounted value of

vx(i) = $
i∑

j=1

N (
µ − r, σ2

)
,

whose increments ∆vx(j) are distributed N (
µ − r, σ2

)
and therefore fail to generate statistical

arbitrage. Indeed, only if the variability of stock returns is decreasing over time (while the stock

continues to offer a positive excess return) could statistical arbitrage ever be generated.

A.4 Constraint on Trading Strategy

For illustration, consider the influence of a general time-varying strategy on the distribution of

incremental trading profits

∆vx(j) d∼ x(j)N (
αj, ν

2
j

)
,

where N
(
αj, ν

2
j

)
describes the underlying returns of the anomaly being tested for statistical arbi-

trage. The cumulative (discounted) trading profit has the following distribution

vx(i) = N
⎛
⎝ i∑

j=1

x(j)αj,

i∑
j=1

x2(j)ν2
j

⎞
⎠ .

The above equation demonstrates the relationship between the trading strategy which converts

returns into dollar denominated profits and its implied distribution.

However, a decreasing function x(j) could satisfy the second axiom with

i∑
j=1

x(j)αj

either not converging or converging to a positive number, with the fourth axiom satisfied through

a reduction in the strategy’s exposure to the risky position. For example, let αj and ν2
j be positive

constants and consider the trading strategy

x(j) =
1
j

which has a sum that fails to converge,

i∑
j=1

1
j

→ ∞ , (16)
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although its sum of squares

i∑
j=1

1
j2

→ 0 (17)

converges. This trading strategy satisfies the axioms of statistical arbitrage after drastically modi-

fying the returns of the original anomaly.

However, recall that statistical arbitrage is intended to test whether the persistence of an

anomaly is sufficient to yield arbitrage profits in the long run. Thus, we are testing whether

the four classes of strategies in Section 5 violate market efficiency, not whether their returns are

capable of being manipulated into a rejection of market efficiency. Indeed, the test for statistical

arbitrage is designed to replace the single t-statistic on the intercept of excess returns, not dis-

tort the profitability of an existing anomaly. In addition, as with arbitrage, only a single trading

strategy capable of generating statistical arbitrage is required for market efficiency to be violated.

In particular, a decreasing function xD(j) > xD(j +1) is not viable in the long run as the role of

the underlying anomaly in the analysis diminishes over time. Thus, an anomaly’s persistence is not

properly measured by a declining trading strategy. Indeed, such a strategy deliberately avoids the

underlying anomaly as time progresses. Therefore, economic considerations dictate that trading

strategies are constrained to have the property that x(j + 1) ≥ x(j). Hence, the HJTW strategy is

valid as well as equation (15) with x(j) = B(j). However, only those rapidly declining strategies

whose sum of squared terms converge, as in equation (17), are formally required to be excluded

from consideration.

In the existing literature, doubling strategies are exogenously excluded from the set of arbitrage

opportunities, a restriction that is justified by a wealth constraint.31 In the context of statistical

arbitrage, declining strategies are disallowed as they prevent the underlying anomaly’s persistence

from being measured. Moreover, such strategies would imply infinitesimally small transactions in

the risky position which are not feasible, notwithstanding the transaction costs incurred to pursue

no potential gain from the anomaly.32

31Even at the end of our 35 year sample period, B(i), is less than $9. Furthermore, the gradual increase in the

risky position implied by equation (15) for x(j) = B(j) does not pose a problem to a wealth constraint.
32For emphasis, our focus on purchasing/selling $1 of the long/short portfolio also implies that fractions of individual

securities are purchased or sold. However, scaling up this investment enables integer valued investments in the

individual securities. Thus, the equivalent $1 position is without loss of generality as we are ultimately concerned
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B Verification of Semi-Variance Sub-Hypotheses

The quantity V ar [∆v(t)|∆v(t) < 0] is computed from the distribution of ∆v(t), which equals

N (
µtθ, σ2t2λ

)
. The conditional variance is expressed as

V ar [∆v(t)|∆v(t) < 0] =
1√

2πσ2t2λ

∫ 0

−∞
(x− µtθ)2e

−(x−µtθ)2

2σ2t2λ dx

=
1√
2π

∫ −µtθ

σtλ

−∞

(
σtλy

)2
e

−y2

2 dy

=
σ2t2λ

√
2π

∫ −µtθ

σtλ

−∞
y2e

−y2

2 dy (18)

≤ σ2t2λ , (19)

after a change of variables y = x−µtθ

σtλ
which implies σtλdy = dx. The inequality in equation (19)

stems from
1√
2π

∫ −µtθ

σtλ

−∞
y2e

−y2

2 dy ≤ 1√
2π

∫ ∞

−∞
y2e

−y2

2 dy = 1 ,

since the second term equals the second moment (or variance) of a standard normal random variable.

Thus, the constraint λ < 0 is a sufficient condition for the fourth axiom to hold. However, the

integral
1√
2π

∫ −µ
σ

tθ−λ

−∞
y2e

−y2

2 dy

also converges to zero provided θ > λ. Indeed, if θ > λ, then tθ−λ → ∞ as t → ∞ which implies the

range of integration declines to zero. Thus, a weaker version of the fourth axiom implies statistical

arbitrage occurs if either λ < 0 or θ > λ.

To provide an alternative perspective and confirm the above result, observe that the integral in

equation (18) equals

µtθ−λ

√
2πσ2

e
−µ2t2(θ−λ)

2σ2 + N

(−µtθ−λ

σ

)
. (20)

Although there is no closed form solution for the standard normal cdf, a polynomial approximation

(for x < 0) is available in Hull (2000) as

N (x) = N ′(x)
(

a1
1

1 + γx
+ a2

1
(1 + γx)2

+ a3
1

(1 + γx)3
+ h.o.t.

)
,

with transforming the returns generating by previously documented anomalies into associated trading profits.
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where a1, a2, a3, and γ are constants. Ignoring the constants a1, σ, and µ as well as the contribution

of 1
1+γx implies the relevant terms of equation (20) are of the order

tθ−λe−t2(θ−λ)
+ e−t2(θ−λ)

.

The product t2λ from equation (18) or (19) results in the above expression becoming

tθ+λe−t2(θ−λ)
+ t2λe−t2(θ−λ)

.

Since the exponential function converges to zero for θ − λ faster than the power function increases

towards ∞, the conditional semi-variance becomes zero in the limit as t → ∞.

C Bonferroni Approach for Testing Multiple Hypotheses

This appendix discusses the Bonferroni approach for testing sub-hypotheses, with particular refer-

ence to testing for statistical arbitrage as in HJTW.

Let H0 be the null hypothesis consisting of K sub-hypotheses h1, ..., hK, all of which are required

to hold under H0. Thus, the rejection of even one sub-hypothesis rejects the null H0. As a

consequence, H0 is the intersection of sub-hypotheses given by

H0 :
K⋂

i=1

hi .

In the Bonferroni procedure, each sub-hypothesis hi is tested at a given level of significance αi with

a critical region denoted Ci so that Pr(Ci|H0) = αi. The critical region of the null hypothesis H0 is

the union
⋃K

i=1 Ci. Let Cc
i be the complement of Ci. The null hypothesis H0 is accepted if all the

sub-hypotheses are accepted. Suppressing the conditioning notation, the probability of accepting

H0 is Pr
(⋂K

i=1 Cc
i

)
.

The Bonferroni inequality states that

Pr

(
K⋂

i=1

Cc
i

)
≥ 1−

K∑
i=1

Pr(Ci) = 1−
K∑

i=1

αi

from which we obtain
K∑

i=1

αi ≥ 1 − Pr

(
K⋂

i=1

Cc
i

)
. (21)

Therefore,
∑K

i=1 αi is an upper bound on the size of the statistical test, that is, the probability of

committing a Type I error.
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If H0 is not satisfied, then at least one sub-hypothesis, say hj , is not satisfied. As

Pr

(
K⋃

i=1

Ci

)
≥ Pr(Cj) ,

we observe that if all the sub-tests reject their sub-hypothesis with probability one as the sample

size tends to infinity, Pr(Cj) → 1, then Pr
(⋃K

i=1 Ci

)
→ 1. As a result, the Bonferroni test is

consistent.

However, in the statistical arbitrage test conducted by HJTW, the null hypothesis of no statisti-

cal arbitrage is a union of sub-hypotheses. This statement is a consequence of the fact that to reject

no statistical arbitrage, all the sub-hypotheses must be rejected. Rejecting one sub-hypothesis is

not sufficient to reject no statistical arbitrage. Thus, the null hypothesis is defined as

H∗
0 :

K⋃
i=1

hi

and the probability of accepting H∗
0 is Pr

(⋃K
i=1 Cc

i

)
. As the probability of a union is greater than

its corresponding intersection, we have

Pr

(
K⋃

i=1

Cc
i

)
≥ Pr

(
K⋂

i=1

Cc
i

)
(22)

which, when combined with equation (21), yields the relationship

K∑
i=1

αi ≥ 1 − Pr

(
K⋂

i=1

Cc
i

)
≥ 1 − Pr

(
K⋃

i=1

Cc
i

)
. (23)

Thus, we conclude that
∑K

i=1 αi is also an upper bound on the size of the test for the null hypothesis

H∗
0 defined in terms of a union. However, equation (23) implies the Bonferroni inequality is a weaker

bound for H∗
0 than for H0. Furthermore, the Bonferroni test is generally not consistent for H∗

0 ,

in contrast to H0. Indeed, when K is large the actual size of the Bonferroni test for H∗
0 may be

far below
∑K

i=1 αi, resulting in a test with low power. Conversely, the Min-t test has the correct

nominal size. To the extent that searching for the maximum probability of rejection over the

parameter space H0 results in the true maximum, the power of the test is also enhanced.
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Figure 1: Regions corresponding to the null hypothesis of no statistical arbitrage as well as rejections of the null
under both the Hogan, Jarrow, Teo, and Warachka (2004) definition of statistical arbitrage and our definition
which modifies the fourth axiom.
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Figure 2: The trading strategy JT6 9 denotes a Jegadeesh and Titman (1993) stock momentum portfolio with a
formation period of six months and a holding period of nine months. Plotted above, for the JT6 9 trading strategy,
are loss probabilities derived from parameter estimates of the CM (constrained mean) and CMC (constrained mean
with correlation) versions of statistical arbitrage. Both of these trading profit formulations result in positive tests
for statistical arbitrage at the 5% significance level. The probability of a loss is computed according to equation
(4) with the preferred model for trading profits being the CM version as reported in Table 5.
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Figure 3: The industry momentum portfolio of Moskowitz and Grinblatt (1999) denoted IND3 3 has a three month
formation and holding period. Plotted above, for the IND3 3 trading strategy, are loss probabilities derived from
parameter estimates of the CM (constrained mean) and UM (unconstrained mean) models along with their
counterparts CMC (constrained mean with correlation) and UMC (unconstrained mean with correlation). The
probability of a loss is computed according to equation (4) with the preferred model for trading profits being the
CMC version as reported in Table 5.
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Figure 4: The book-to-market portfolio of Lakonishok, Shleifer, and Vishny (1994) denoted BM5 has a one year
formation period and a five year holding period. Plotted above, for the BM5 trading strategy, are loss probabilities
derived from parameter estimates of the CM (constrained mean) and UM (unconstrained mean) models along with
their counterparts CMC (constrained mean with correlation) and UMC (unconstrained mean with correlation).
The probability of a loss is computed according to equation (4) with the preferred model for trading profits being
the CMC version as reported in Table 5.



Table 1: Tests of statistical arbitrage with the CM (constrained mean) and UM (unconstrained mean) models

For the sample period of January 1965 to December 2000, Min-t statistics and bootstrapped p-values for
statistical arbitrage are presented. The UM (unconstrained mean) model allows for time-varying expected
trading profits while its CM (constrained mean) counterpart has constant expected trading profits. Both models
have uncorrelated trading profit innovations as described in equations (1) and (2). Four types of strategies
are considered: stock momentum, value, stock liquidity, and industry momentum based strategies. The JTx y

portfolios are stock momentum portfolios with a formation period of x months and a holding period of y months
as in Jegadeesh and Titman (1993). BMy, CPy, EPy, and SALEy are book-to-market, cash flow-to-price,
earnings-to-price, and sales growth based value strategies respectively with a formation period of 1 year (3 years
for sales growth) and a holding period of y years as in Lakonishok, Shleifer, and Vishny (1994). The VOLx y

and INDx y are stock liquidity and industry momentum based strategies with a formation period of x months
and a holding period of y months. The VOL portfolio buys the bottom decile of stocks and shorts the top decile
of stocks sorted by share volume/shares outstanding. The IND portfolio buys the top 3 industries and shorts the
bottom 3 industries sorted by industry return as in Moskowitz and Grinblatt (1999) who group US stocks into
20 industries by their SIC codes. The Min-t test statistics are defined in equations (6 ) and (7) for the respective
UM and CM versions of statistical arbitrage. For emphasis, asterisks in parentheses denote the significance
associated with bootstrapped p-values while those without parentheses denote significance generated by Monte
Carlo simulation: * = significant at the 10% level; ** = significant at the 5% level; *** = significant at the 1%
level.

Panel A: Momentum strategies

Sample Size CM Model UM Model

Portfolio n Min-t p-value Min-t p-value

JT3 3 398 –1.128 0.690 –0.415 0.461

JT3 6 398 2.294 *** 0.000 (***) 0.099 0.247

JT3 9 398 3.803 *** 0.000 (***) 0.119 0.250

JT3 12 398 2.508 *** 0.000 (***) 0.348 0.140

JT6 3 398 1.760 *** 0.002 (***) 0.119 0.250

JT6 6 398 4.162 *** 0.000 (***) 0.118 0.255

JT6 9 398 3.049 *** 0.000 (***) 0.366 0.137

JT6 12 398 1.928 *** 0.001 (***) 0.375 0.100 (*)

JT9 3 398 3.153 *** 0.000 (***) 0.025 0.317

JT9 6 398 3.207 *** 0.000 (***) 0.371 0.116

JT9 9 398 2.239 *** 0.000 (***) 0.430 * 0.084 (*)

JT9 12 398 1.491 *** 0.006 (***) 0.445 * 0.100 (*)

JT12 3 398 2.924 *** 0.000 (***) 0.323 0.131

JT12 6 398 2.344 *** 0.001 (***) 0.405 * 0.095 (*)

JT12 9 398 1.700 *** 0.004 (***) 0.485 * 0.083 (*)

JT12 12 398 1.167 ** 0.025 (**) 0.404 * 0.090 (*)

Panel B: Value strategies

BM1 414 0.111 0.168 1.005 *** 0.009 (***)

BM3 372 0.233 0.155 0.993 *** 0.006 (***)

BM5 324 1.293 *** 0.003 (***) 1.157 *** 0.003 (***)

CP1 414 –0.266 0.393 –10.801 0.984

CP3 372 0.827 ** 0.056 (*) 0.451 * 0.106

CP5 324 1.017 ** 0.029 (**) 0.371 0.095 (*)

EP1 414 –5.320 1.000 –0.149 0.955

EP3 372 –1.413 0.769 –0.140 0.851

EP5 324 –0.191 0.317 –1.371 0.800

SALE1 378 1.336 *** 0.003 (***) 1.198 *** 0.001 (***)

SALE3 336 1.530 *** 0.007 (***) 1.362 *** 0.000 (***)

SALE5 288 2.627 *** 0.000 (***) 1.073 *** 0.005 (***)



Panel C: Liquidity based strategies

Sample Size CM Model UM Model

Portfolio n Min-t p-value Min-t p-value

VOL3 3 398 0.897 ** 0.036 (**) 0.896 ** 0.015 (**)

VOL3 6 398 0.881 ** 0.025 (**) 0.882 ** 0.018 (**)

VOL3 9 398 0.973 ** 0.027 (**) 0.977 *** 0.008 (***)

VOL3 12 398 1.121 ** 0.026 (**) 1.126 *** 0.006 (***)

VOL6 3 398 0.974 ** 0.027 (**) 0.980 *** 0.007 (***)

VOL6 6 398 1.027 ** 0.021 (**) 1.034 *** 0.006 (***)

VOL6 9 398 1.109 ** 0.023 (**) 1.120 *** 0.005 (***)

VOL6 12 398 1.245 ** 0.021 (**) 1.234 *** 0.002 (***)

VOL9 3 398 1.035 ** 0.023 (**) 0.000 0.117

VOL9 6 398 1.098 ** 0.019 (**) 1.094 *** 0.004 (***)

VOL9 9 398 1.219 ** 0.018 (**) 0.870 ** 0.016 (**)

VOL9 12 398 1.347 *** 0.014 (**) 1.244 *** 0.001 (***)

VOL12 3 398 1.166 ** 0.011 (**) 1.174 *** 0.003 (***)

VOL12 6 398 1.214 ** 0.014 (**) 0.960 ** 0.010 (***)

VOL12 9 398 1.331 *** 0.005 (***) 1.141 *** 0.000 (***)

VOL12 12 398 1.455 *** 0.004 (***) 1.362 *** 0.000 (***)

Panel D: Industry momentum strategies

IND3 3 398 0.791 ** 0.050 (**) 0.808 ** 0.031 (**)

IND3 6 398 0.829 ** 0.038 (**) 0.836 ** 0.028 (**)

IND3 9 398 1.174 ** 0.018 (**) 0.934 ** 0.012 (**)

IND3 12 398 –0.065 0.278 0.852 ** 0.013 (**)

IND6 3 398 0.350 0.119 0.353 0.112

IND6 6 398 0.336 0.121 0.715 ** 0.044 (**)

IND6 9 398 –0.899 0.623 0.692 ** 0.037 (**)

IND6 12 398 –0.823 0.595 0.426 * 0.086 (*)

IND9 3 398 1.870 *** 0.002 (***) 0.626 ** 0.045 (**)

IND9 6 398 –0.321 0.364 0.556 ** 0.055 (*)

IND9 9 398 –0.793 0.589 0.392 0.115

IND9 12 398 –0.561 0.457 0.269 0.179

IND12 3 398 –0.596 0.496 0.440 * 0.086 (*)

IND12 6 398 –0.728 0.564 0.055 0.231

IND12 9 398 –0.518 0.442 –0.174 0.307

IND12 12 398 0.152 0.190 –0.091 0.355



Table 2: Tests of statistical arbitrage with the CMC (constrained mean with correlation) model

For the sample period of January 1965 to December 2000, statistical arbitrage test results for the CMC
model are presented. The CMC (constrained mean with correlation) model features correlated innovations
in trading profits described by a MA(1) process and expected trading profits that are constant over time, as
described in equations (2) and (3). The tests are applied to four types of strategies: stock momentum, value,
stock liquidity, and industry momentum based strategies. The JTx y portfolios are stock momentum portfolios
with a formation period of x months and a holding period of y months as in Jegadeesh and Titman (1993).
BMy, CPy, EPy, and SALEy are book-to-market, cash flow-to-price, earnings-to-price, and sales growth based
value strategies respectively with a formation period of 1 year (3 years for sales growth) and a holding period of
y years as in Lakonishok, Shleifer, and Vishny (1994). The VOLx y and INDx y are stock liquidity and industry
momentum based strategies with a formation period of x months and a holding period of y months. The VOL
portfolio buys the bottom decile of stocks and shorts the top decile of stocks sorted by share volume/shares
outstanding. The IND portfolio buys the top 3 industries and shorts the bottom 3 industries sorted by industry
return as in Moskowitz and Grinblatt (1999) who group US stocks into 20 industries by their SIC codes. For
each trading strategy, the first row records the MLE parameter estimates of the CM model with MA(1) errors,
while the second row records their t-statistics. The Min-t test statistic is defined in equation (7). Trading
strategies that yield statistical arbitrage at the 10%, 5%, and 1% significance levels are denoted by *, **, and
*** respectively.

Panel A: Momentum strategies

Parameters (t-statistics)

growth rate

Portfolio mean profit µ of std dev λ std dev σ autocorrelation φ Min-t p-value

JT3 3 –0.002 ( –1.11 ) –0.183 ( –3.59 ) 0.086 ( 3.51 ) 0.022 ( 0.41 ) -1.107 0.700

JT3 6 0.003 ( 2.37 ) –0.208 ( –3.96 ) 0.085 ( 3.50 ) –0.031 ( –0.50 ) 2.374 0.000 (***)

JT3 9 0.005 ( 4.16 ) –0.191 ( –3.83 ) 0.070 ( 3.65 ) –0.043 ( –0.64 ) 3.831 0.000 (***)

JT3 12 0.006 ( 5.32 ) –0.122 ( –2.53 ) 0.045 ( 3.84 ) –0.066 ( –0.81 ) 2.534 0.000 (***)

JT6 3 0.004 ( 1.81 ) –0.220 ( –4.21 ) 0.125 ( 3.49 ) –0.026 ( –0.45 ) 1.811 0.003 (***)

JT6 6 0.008 ( 4.37 ) –0.209 ( –4.19 ) 0.108 ( 3.66 ) –0.043 ( –0.68 ) 4.190 0.000 (***)

JT6 9 0.009 ( 5.59 ) –0.147 ( –3.07 ) 0.073 ( 3.86 ) –0.053 ( –0.71 ) 3.073 0.000 (***)

JT6 12 0.008 ( 5.04 ) –0.101 ( –1.96 ) 0.055 ( 3.56 ) –0.069 ( –0.80 ) 1.961 0.001 (***)

JT9 3 0.007 ( 3.30 ) –0.203 ( –4.11 ) 0.125 ( 3.63 ) –0.040 ( –0.63 ) 3.298 0.000 (***)

JT9 6 0.010 ( 5.20 ) –0.153 ( –3.22 ) 0.090 ( 3.87 ) –0.053 ( –0.71 ) 3.221 0.000 (***)

JT9 9 0.009 ( 4.95 ) –0.116 ( –2.27 ) 0.071 ( 3.59 ) –0.067 ( –0.78 ) 2.270 0.000 (***)

JT9 12 0.007 ( 4.09 ) –0.084 ( –1.54 ) 0.057 ( 3.35 ) –0.074 ( –0.78 ) 1.540 0.002 (***)

JT12 3 0.009 ( 4.12 ) –0.144 ( –2.93 ) 0.097 ( 3.71 ) –0.060 ( –0.74 ) 2.928 0.000 (***)

JT12 6 0.009 ( 4.35 ) –0.124 ( –2.37 ) 0.084 ( 3.49 ) –0.069 ( –0.79 ) 2.373 0.001 (***)

JT12 9 0.008 ( 3.82 ) –0.095 ( –1.75 ) 0.069 ( 3.37 ) –0.071 ( –0.76 ) 1.750 0.001 (***)

JT12 12 0.006 ( 2.95 ) –0.070 ( –1.22 ) 0.058 ( 3.14 ) –0.074 ( –0.77 ) 1.221 0.012 (**)

Panel B: Value strategies

BM1 0.015 ( 5.51 ) –0.004 ( –0.06 ) 0.052 ( 2.78 ) 0.094 ( 1.41 ) 0.055 0.194

BM3 0.012 ( 5.38 ) –0.017 ( –0.23 ) 0.040 ( 2.70 ) 0.139 ( 2.38 ) 0.234 0.159

BM5 0.011 ( 5.36 ) –0.069 ( –1.23 ) 0.043 ( 3.55 ) 0.194 ( 3.06 ) 1.227 0.009 (***)

CP1 –0.001 ( –0.25 ) –0.200 ( –3.40 ) 0.209 ( 3.74 ) 0.189 ( 2.33 ) –0.251 0.406

CP3 0.002 ( 0.77 ) –0.168 ( –2.40 ) 0.111 ( 3.55 ) 0.077 ( 1.52 ) 0.768 0.071 (*)

CP5 0.002 ( 0.96 ) –0.233 ( –2.73 ) 0.125 ( 3.13 ) 0.080 ( 1.33 ) 0.956 0.043 (**)

EP1 –0.000 ( –0.06 ) 0.291 ( 5.00 ) 0.013 ( 4.23 ) 0.205 ( 3.03 ) –5.000 1.000

EP3 –0.001 ( –0.19 ) 0.116 ( 1.36 ) 0.024 ( 2.76 ) 0.118 ( 2.09 ) –1.359 0.725

EP5 –0.001 ( –0.16 ) –0.047 ( –0.63 ) 0.044 ( 3.17 ) 0.173 ( 2.60 ) –0.155 0.275

SALE1 0.009 ( 5.23 ) –0.092 ( –1.30 ) 0.050 ( 2.57 ) 0.066 ( 0.92 ) 1.301 0.007 (***)

SALE3 0.006 ( 3.94 ) –0.127 ( –1.60 ) 0.046 ( 2.44 ) 0.103 ( 1.47 ) 1.598 0.006 (***)

SALE5 0.005 ( 3.20 ) –0.169 ( –2.85 ) 0.049 ( 3.43 ) 0.148 ( 2.36 ) 2.846 0.000 (***)



Panel C: Liquidity based strategies

Parameters (t-statistics)

growth rate

Portfolio mean profit µ of std dev λ std dev σ autocorrelation φ Min-t p-value

VOL3 3 0.005 ( 1.68 ) –0.040 ( –1.03 ) 0.065 ( 5.07 ) 0.111 ( 2.00 ) 1.025 0.021 (**)

VOL3 6 0.006 ( 2.00 ) –0.039 ( –1.01 ) 0.063 ( 5.12 ) 0.115 ( 2.09 ) 1.010 0.025 (**)

VOL3 9 0.006 ( 2.14 ) –0.043 ( –1.09 ) 0.063 ( 4.98 ) 0.123 ( 2.27 ) 1.094 0.026 (**)

VOL3 12 0.006 ( 2.23 ) -0.049 ( –1.23 ) 0.064 ( 4.87 ) 0.130 ( 2.41 ) 1.230 0.008 (***)

VOL6 3 0.006 ( 2.07 ) –0.043 ( –1.11 ) 0.067 ( 5.14 ) 0.112 ( 2.04 ) 1.112 0.020 (**)

VOL6 6 0.007 ( 2.26 ) –0.045 ( –1.15 ) 0.066 ( 4.98 ) 0.118 ( 2.16 ) 1.149 0.024 (**)

VOL6 9 0.007 ( 2.30 ) –0.050 ( –1.22 ) 0.067 ( 4.81 ) 0.127 ( 2.36 ) 1.223 0.007 (***)

VOL6 12 0.007 ( 2.30 ) –0.056 ( –1.35 ) 0.067 ( 4.73 ) 0.133 ( 2.47 ) 1.349 0.012 (**)

VOL9 3 0.007 ( 2.19 ) –0.046 ( –1.14 ) 0.068 ( 4.89 ) 0.110 ( 2.03 ) 1.136 0.015 (**)

VOL9 6 0.007 ( 2.28 ) –0.049 ( –1.19 ) 0.068 ( 4.76 ) 0.121 ( 2.24 ) 1.193 0.012 (**)

VOL9 9 0.007 ( 2.28 ) –0.054 ( –1.30 ) 0.069 ( 4.66 ) 0.129 ( 2.41 ) 1.303 0.012 (**)

VOL9 12 0.007 ( 2.31 ) –0.060 ( –1.43 ) 0.069 ( 4.64 ) 0.134 ( 2.47 ) 1.426 0.002 (***)

VOL12 3 0.007 ( 2.24 ) –0.051 ( –1.26 ) 0.070 ( 4.79 ) 0.121 ( 2.24 ) 1.126 0.016 (**)

VOL12 6 0.007 ( 2.25 ) –0.053 ( –1.28 ) 0.069 ( 4.70 ) 0.125 ( 2.31 ) 1.283 0.009 (***)

VOL12 9 0.007 ( 2.27 ) –0.058 ( –1.40 ) 0.070 ( 4.65 ) 0.130 ( 2.40 ) 1.398 0.004 (***)

VOL12 12 0.007 ( 2.29 ) –0.064 ( –1.52 ) 0.070 ( 4.63 ) 0.135 ( 2.46 ) 1.522 0.007 (***)

Panel D: Industry momentum strategies

IND3 3 0.008 ( 4.41 ) –0.049 ( –0.97 ) 0.040 ( 3.74 ) 0.121 ( 2.19 ) 0.975 0.036 (**)

IND3 6 0.006 ( 3.66 ) –0.058 ( –1.11 ) 0.036 ( 3.62 ) 0.187 ( 3.50 ) 1.114 0.019 (**)

IND3 9 0.006 ( 4.35 ) –0.063 ( –1.31 ) 0.032 ( 4.10 ) 0.211 ( 3.89 ) 1.313 0.014 (**)

IND3 12 0.006 ( 4.43 ) –0.012 ( –0.23 ) 0.023 ( 3.90 ) 0.223 ( 3.79 ) 0.233 0.166

IND6 3 0.008 ( 3.66 ) –0.031 ( –0.67 ) 0.042 ( 4.17 ) 0.175 ( 3.34 ) 0.672 0.062 (*)

IND6 6 0.008 ( 3.94 ) –0.023 ( –0.53 ) 0.036 ( 4.51 ) 0.217 ( 4.44 ) 0.531 0.087 (*)

IND6 9 0.008 ( 4.14 ) 0.025 ( 0.51 ) 0.026 ( 4.09 ) 0.267 ( 5.14 ) –0.514 0.454

IND6 12 0.006 ( 3.37 ) 0.026 ( 0.46 ) 0.025 ( 3.45 ) 0.256 ( 4.53 ) –0.457 0.402

IND9 3 0.009 ( 3.86 ) –0.080 ( –1.87 ) 0.054 ( 4.46 ) 0.233 ( 4.76 ) 1.874 0.000 (***)

IND9 6 0.009 ( 3.84 ) 0.010 ( 0.23 ) 0.033 ( 4.54 ) 0.259 ( 5.23 ) –0.225 0.338

IND9 9 0.007 ( 3.39 ) 0.033 ( 0.63 ) 0.028 ( 3.72 ) 0.253 ( 4.84 ) –0.629 0.534

IND9 12 0.005 ( 2.53 ) 0.018 ( 0.36 ) 0.029 ( 3.84 ) 0.239 ( 4.38 ) –0.356 0.399

IND12 3 0.010 ( 4.15 ) 0.010 ( 0.19 ) 0.036 ( 4.03 ) 0.261 ( 5.11 ) –0.193 0.343

IND12 6 0.008 ( 3.49 ) 0.021 ( 0.41 ) 0.032 ( 3.81 ) 0.251 ( 4.91 ) –0.409 0.404

IND12 9 0.006 ( 2.74 ) 0.010 ( 0.22 ) 0.033 ( 4.18 ) 0.252 ( 4.85 ) –0.220 0.337

IND12 12 0.004 ( 1.90 ) –0.020 ( –0.43 ) 0.036 ( 4.00 ) 0.234 ( 4.49 ) 0.429 0.084 (*)



Table 3: Tests of statistical arbitrage with the UMC (unconstrained mean with correlation) model

For the sample period of January 1965 to December 2000, statistical arbitrage test results for the UMC
model are presented. The UMC (unconstrained mean with correlation) model has correlated trading profit
innovations described by a MA(1) process and expected trading profits that are time-varying, as described in
equations (1) and (3). The tests are applied to four types of strategies: stock momentum, value, stock liquidity,
and industry momentum based strategies. The JTx y portfolios are stock momentum portfolios with a formation
period of x months and a holding period of y months as in Jegadeesh and Titman (1993). BMy, CPy, EPy,
and SALEy are book-to-market, cash flow-to-price, earnings-to-price, and sales growth based value strategies
respectively with a formation period of 1 year (3 years for sales growth) and a holding period of y years as in
Lakonishok, Shleifer, and Vishny (1994). The VOLx y and INDx y are stock liquidity and industry momentum
based strategies with a formation period of x months and a holding period of y months. The VOL portfolio
buys the bottom decile of stocks and shorts the top decile of stocks sorted by share volume/shares outstanding.
The IND portfolio buys the top 3 industries and shorts the bottom 3 industries sorted by industry return as in
Moskowitz and Grinblatt (1999) who group US stocks into 20 industries by their SIC codes. For each trading
strategy, the first row records the MLE parameter estimates of the UM model with MA(1) errors, while the
second row records their t-statistics. The Min-t test statistic is defined in equation (6). Trading strategies that
yield statistical arbitrage at the 10%, 5%, and 1% significance levels are denoted by *, **, and *** respectively.

Panel A: Momentum strategies

Parameters (t-statistics)

growth rate growth rate

Portfolio mean profit µ of std dev λ of mean profit θ std dev σ autocorrelation φ Min-t p-value

JT3 3 –0.003 ( –0.41 ) –0.183 ( –3.54 ) –0.056 ( –0.13 ) 0.086 ( 3.46 ) 0.022 ( 0.41 ) –0.413 0.425

JT3 6 0.002 ( 0.10 ) –0.198 ( –3.67 ) 0.151 ( 0.08 ) 0.076 ( 3.49 ) –0.031 ( –0.40 ) 0.101 0.197

JT3 9 0.000 ( 0.12 ) –0.194 ( –3.87 ) 0.675 ( 0.47 ) 0.071 ( 3.66 ) –0.047 ( –0.69 ) 0.123 0.221

JT3 12 0.001 ( 0.37 ) –0.122 ( –2.51 ) 0.308 ( 0.62 ) 0.045 ( 3.81 ) –0.069 ( –0.83 ) 0.368 0.121

JT6 3 0.001 ( 0.19 ) –0.161 ( –3.74 ) 0.265 ( 0.56 ) 0.085 ( 4.58 ) –0.040 ( –0.70 ) 0.192 0.127

JT6 6 0.000 ( 0.12 ) –0.213 ( –4.17 ) 0.587 ( 0.41 ) 0.110 ( 3.59 ) –0.046 ( –0.72 ) 0.123 0.278

JT6 9 0.002 ( 0.38 ) –0.147 ( –3.03 ) 0.272 ( 0.57 ) 0.073 ( 3.80 ) –0.055 ( –0.73 ) 0.383 0.109

JT6 12 0.002 ( 0.40 ) –0.102 ( –1.93 ) 0.244 ( 0.52 ) 0.055 ( 3.49 ) –0.071 ( –0.81 ) 0.400 0.106

JT9 3 0.000 ( 0.02 ) –0.207 ( –3.77 ) 0.815 ( 0.10 ) 0.127 ( 3.31 ) –0.042 ( –0.65 ) 0.021 0.290

JT9 6 0.003 ( 0.39 ) –0.154 ( –3.18 ) 0.209 ( 0.44 ) 0.090 ( 3.80 ) –0.054 ( –0.72 ) 0.386 0.095 (*)

JT9 9 0.003 ( 0.45 ) –0.116 ( –2.24 ) 0.203 ( 0.50 ) 0.071 ( 3.54 ) –0.068 ( –0.79 ) 0.454 0.089 (*)

JT9 12 0.004 ( 0.47 ) –0.084 ( –1.53 ) 0.126 ( 0.32 ) 0.057 ( 3.33 ) –0.075 ( –0.78 ) 0.470 0.087 (*)

JT12 3 0.005 ( 0.34 ) –0.144 ( –2.88 ) 0.119 ( 0.22 ) 0.097 ( 3.64 ) –0.060 ( –0.74 ) 0.338 0.124

JT12 6 0.005 ( 0.43 ) –0.124 ( –2.35 ) 0.126 ( 0.29 ) 0.084 ( 3.45 ) –0.069 ( –0.79 ) 0.429 0.097 (*)

JT12 9 0.005 ( 0.51 ) –0.095 ( –1.74 ) 0.082 ( 0.22 ) 0.069 ( 3.35 ) –0.071 ( –0.76 ) 0.510 0.079 (*)

JT12 12 0.004 ( 0.42 ) –0.070 ( –1.22 ) 0.079 ( 0.18 ) 0.058 ( 3.13 ) –0.074 ( –0.77 ) 0.424 0.097 (*)

Panel B: Value strategies

BM1 0.006 ( 0.69 ) –0.001 ( –0.01 ) 0.167 ( 0.61 ) 0.051 ( 7.81 ) 0.093 ( 2.63 ) 0.593 0.004 (***)

BM3 0.005 ( 0.71 ) –0.015 ( –0.46 ) 0.154 ( 0.56 ) 0.040 ( 6.40 ) 0.138 ( 3.09 ) 0.608 0.007 (***)

BM5 0.007 ( 0.72 ) –0.065 ( –1.60 ) 0.093 ( 0.34 ) 0.042 ( 5.18 ) 0.193 ( 3.93 ) 0.722 0.005 (***)

CP1 –0.106 ( –0.65 ) –0.198 ( –13.04 ) –0.812 ( –1.13 ) 0.206 ( 11.68 ) 0.186 ( 7.24 ) –0.158 0.452

CP3 0.007 ( 0.19 ) –0.168 ( –7.45 ) –0.227 ( –0.20 ) 0.111 ( 8.09 ) 0.077 ( 1.45 ) 0.188 0.081 (*)

CP5 0.001 ( 0.08 ) –0.232 ( –8.54 ) 0.247 ( 0.11 ) 0.125 ( 6.73 ) 0.080 ( 1.17 ) 0.080 0.160

EP1 0.019 ( 0.17 ) 0.301 ( 14.03 ) –1.647 ( –0.32 ) 0.012 ( 8.23 ) 0.204 ( 6.15 ) –0.378 0.797

EP3 –0.000 ( –0.03 ) 0.116 ( 5.23 ) 0.620 ( 0.12 ) 0.024 ( 8.25 ) 0.117 ( 1.98 ) –0.034 0.417

EP5 –0.000 ( –0.01 ) –0.047 ( –2.14 ) 0.667 ( 0.04 ) 0.044 ( 8.57 ) 0.172 ( 2.58 ) 0.209 0.228

SALE1 0.009 ( 0.65 ) –0.092 ( –2.81 ) 0.001 ( 0.00 ) 0.050 ( 6.45 ) 0.066 ( 1.83 ) 0.649 0.004 (***)

SALE3 0.014 ( 0.60 ) –0.129 ( –3.39 ) –0.184 ( –0.54 ) 0.046 ( 5.77 ) 0.102 ( 2.28 ) 0.595 0.002 (***)

SALE5 0.016 ( 0.64 ) –0.166 ( –3.84 ) –0.259 ( –0.77 ) 0.048 ( 5.00 ) 0.147 ( 3.01 ) 0.635 0.003 (***)



Panel C: Liquidity based strategies

Parameters (t-statistics)

growth rate growth rate

Portfolio mean profit µ of std dev λ of mean profit θ std dev σ autocorrelation φ Min-t p-value

VOL3 3 0.004 ( 0.93 ) –0.039 ( –1.03 ) 0.034 ( 0.19 ) 0.065 ( 5.15 ) 0.111 ( 2.00 ) 0.929 0.011 (**)

VOL3 6 0.005 ( 1.01 ) –0.039 ( –1.02 ) 0.026 ( 0.15 ) 0.063 ( 5.19 ) 0.115 ( 2.09 ) 1.005 0.010 (***)

VOL3 9 0.005 ( 1.01 ) –0.043 ( –1.11 ) 0.025 ( 0.14 ) 0.063 ( 5.07 ) 0.123 ( 2.27 ) 1.005 0.006 (***)

VOL3 12 0.006 ( 1.06 ) –0.049 ( –1.24 ) 0.024 ( 0.15 ) 0.064 ( 4.94 ) 0.130 ( 2.41 ) 1.064 0.006 (***)

VOL6 3 0.006 ( 1.06 ) –0.042 ( –1.12 ) 0.015 ( 0.09 ) 0.067 ( 5.22 ) 0.112 ( 2.04 ) 1.058 0.003 (***)

VOL6 6 0.006 ( 1.05 ) –0.045 ( –1.16 ) 0.015 ( 0.09 ) 0.066 ( 5.07 ) 0.118 ( 2.16 ) 1.053 0.004 (***)

VOL6 9 0.006 ( 1.00 ) –0.050 ( –1.24 ) 0.013 ( 0.07 ) 0.066 ( 4.90 ) 0.127 ( 2.36 ) 1.000 0.005 (***)

VOL6 12 0.006 ( 0.95 ) –0.055 ( –1.37 ) 0.012 ( 0.06 ) 0.067 ( 4.82 ) 0.133 ( 2.47 ) 0.949 0.012 (**)

VOL9 3 0.006 ( 1.09 ) –0.045 ( –1.15 ) 0.009 ( 0.06 ) 0.068 ( 4.98 ) 0.110 ( 2.03 ) 1.087 0.003 (***)

VOL9 6 0.007 ( 1.31 ) –0.049 ( –1.21 ) 0.009 ( 0.07 ) 0.068 ( 4.82 ) 0.121 ( 2.24 ) 1.206 0.004 (***)

VOL9 9 0.006 ( 0.74 ) –0.054 ( –1.33 ) 0.011 ( 0.04 ) 0.069 ( 4.77 ) 0.129 ( 2.40 ) 0.743 0.039 (**)

VOL9 12 0.006 ( 0.99 ) –0.059 ( –1.44 ) 0.013 ( 0.07 ) 0.069 ( 4.71 ) 0.134 ( 2.47 ) 0.989 0.011 (**)

VOL12 3 0.006 ( 1.13 ) –0.051 ( –1.27 ) 0.014 ( 0.09 ) 0.070 ( 4.86 ) 0.121 ( 2.24 ) 1.126 0.005 (***)

VOL12 6 0.006 ( 1.17 ) –0.053 ( –1.30 ) 0.010 ( 0.07 ) 0.069 ( 4.76 ) 0.125 ( 2.31 ) 1.171 0.004 (***)

VOL12 9 –0.186 ( –0.03 ) –0.007 ( –0.21 ) –2.130 ( –0.11 ) 0.054 ( 6.01 ) 0.138 ( 3.08 ) –0.085 0.919

VOL12 12 0.006 ( 1.14 ) –0.064 ( –1.54 ) 0.010 ( 0.06 ) 0.070 ( 4.69 ) 0.135 ( 2.46 ) 1.142 0.003 (***)

Panel D: Industry momentum strategies

IND3 3 0.008 ( 0.74 ) –0.049 ( –1.78 ) –0.012 ( –0.05 ) 0.041 ( 7.27 ) 0.121 ( 2.50 ) 0.742 0.004 (***)

IND3 6 0.006 ( 0.55 ) –0.058 ( –1.12 ) 0.010 ( 0.03 ) 0.036 ( 3.67 ) 0.187 ( 3.48 ) 0.548 0.066 (*)

IND3 9 0.003 ( 0.78 ) –0.060 ( –1.27 ) 0.165 ( 0.70 ) 0.031 ( 4.15 ) 0.211 ( 3.88 ) 0.781 0.021 (**)

IND3 12 0.003 ( 0.86 ) –0.008 ( –0.15 ) 0.168 ( 0.79 ) 0.023 ( 3.79 ) 0.222 ( 3.77 ) 0.819 0.019 (**)

IND6 3 0.008 ( 0.70 ) –0.031 ( –0.67 ) 0.005 ( 0.02 ) 0.042 ( 4.16 ) 0.175 ( 3.33 ) 0.667 0.037 (**)

IND6 6 0.003 ( 0.59 ) –0.021 ( –0.48 ) 0.191 ( 0.61 ) 0.036 ( 4.46 ) 0.216 ( 4.43 ) 0.594 0.047 (**)

IND6 9 0.002 ( 0.54 ) 0.029 ( 0.57 ) 0.301 ( 0.89 ) 0.026 ( 3.89 ) 0.265 ( 5.09 ) 0.540 0.070 (*)

IND6 12 0.002 ( 0.42 ) 0.025 ( 0.45 ) 0.201 ( 0.45 ) 0.025 ( 3.45 ) 0.255 ( 4.51 ) 0.390 0.115

IND9 3 0.003 ( 0.52 ) –0.078 ( –1.83 ) 0.218 ( 0.62 ) 0.054 ( 4.47 ) 0.233 ( 4.74 ) 0.521 0.067 (*)

IND9 6 0.002 ( 0.45 ) 0.013 ( 0.27 ) 0.324 ( 0.80 ) 0.033 ( 4.33 ) 0.258 ( 5.19 ) 0.453 0.088 (*)

IND9 9 0.001 ( 0.31 ) 0.034 ( 0.63 ) 0.432 ( 0.74 ) 0.028 ( 3.68 ) 0.251 ( 4.78 ) 0.313 0.136

IND9 12 0.001 ( 0.20 ) 0.016 ( 0.32 ) 0.280 ( 0.30 ) 0.029 ( 3.86 ) 0.238 ( 4.36 ) 0.201 0.177

IND12 3 0.004 ( 0.58 ) 0.010 ( 0.20 ) 0.160 ( 0.50 ) 0.036 ( 3.98 ) 0.261 ( 5.11 ) 0.467 0.106

IND12 6 0.006 ( 0.35 ) 0.020 ( 0.38 ) 0.066 ( 0.12 ) 0.033 ( 3.74 ) 0.251 ( 4.92 ) 0.079 0.205

IND12 9 0.012 ( 0.28 ) 0.014 ( 0.26 ) –0.154 ( –0.20 ) 0.032 ( 3.58 ) 0.252 ( 4.85 ) –0.206 0.286

IND12 12 0.033 ( 0.70 ) –0.005 ( –0.08 ) –0.501 ( –0.89 ) 0.034 ( 3.28 ) 0.236 ( 4.50 ) 0.007 0.321



Table 4: Summary of statistical arbitrage opportunities

The sample period is from January 1965 to December 2000. Statistical arbitrage test results are summa-
rized for four models of trading profit processes: CM (constrained mean), UM (unconstrained mean), CMC
(constrained mean with correlation), and UMC (unconstrained mean with correlation). The UM model allows
for time variation in expected trading profits while its CM counterpart has constant expected trading profits.
The UMC and CMC models feature, in addition, correlated innovations in trading profits that are described by
a MA(1) process. The tests are applied to four types of strategies: stock momentum, value, stock liquidity, and
industry momentum based strategies. The stock momentum strategies buy the highest return decile and short
the lowest return decile of stocks as in Jegadeesh and Titman (1993). The stock value strategies buy the highest
decile and short the lowest decile of stocks sorted on book-to-market, cash flow-to-price, earnings-to-price, and
sales growth, as in Lakonishok, Shleifer, and Vishny (1994). The stock liquidity strategies buy the lowest trading
volume decile and short the highest trading volume decile of stocks in the spirit of Brennan, Chordia, and
Subrahmanyam (1998). The industry momentum strategies buy the top three return industries and short the
bottom three return industries as in Grinblatt and Moskowitz (1999).

Panel A: Statistical arbitrage opportunities at the 10% level of significance

Number Trading profit model

Type of trading strategy tested CM UM CMC UMC

Stock momentum: Jegadeesh and Titman (1993) 16 15 6 15 6

Stock value: Lakonishok, Shleifer, and Vishny (1994) 12 6 7 6 7

Stock liquidity: Brennan, Chordia, and Subrahmanyam (1998) 16 16 15 16 15

Industry momentum: Moskowitz and Grinblatt (1999) 16 4 10 7 9

Total 60 41 38 44 37

Panel B: Statistical arbitrage opportunities at the 5% level of significance

Number Trading profit model

Type of trading strategy tested CM UM CMC UMC

Stock momentum: Jegadeesh and Titman (1993) 16 15 0 15 0

Stock value: Lakonishok, Shleifer, and Vishny (1994) 12 5 6 5 6

Stock liquidity: Brennan, Chordia, and Subrahmanyam (1998) 16 16 15 16 15

Industry momentum: Moskowitz and Grinblatt (1999) 16 4 7 4 5

Total 60 40 28 40 26



Table 5: Comparing loss probabilities across trading profit models

The sample period is from January 1965 to December 2000. The number of months until the loss proba-
bility declines below 1% and 5 % are recorded, using equation (4), for various statistical arbitrage models:
UM, CM, UMC, and CMC. The UM (unconstrained mean) model allows for time-varying expected trading
profits while the CM (constrained mean) model imposes constant expected trading profits. Both the UM and
CM models have uncorrelated trading profit innovations as described in equations (1) and (2) respectively.
In contrast, their UMC (unconstrained mean with correlation) and CMC (constrained mean with correlation)
counterparts allow for serial correlation in trading profits through the addition of an MA(1) process given in
equation (3). The models are applied to four groups of strategies: stock momentum, value, stock liquidity, and
industry momentum based strategies. The JTx y portfolios are stock momentum portfolios with a formation
period of x months and a holding period of y months as in Jegadeesh and Titman (1993). BMy, CPy, EPy,
and SALEy are book-to-market, cash flow-to-price, earnings-to-price, and sales growth based value strategies
respectively with a formation period of 1 year (3 years for sales growth) and a holding period of y years as in
Lakonishok, Shleifer, and Vishny (1994). The VOLx y and INDx y are stock liquidity and industry momentum
based strategies with a formation period of x months and a holding period of y months. The VOL portfolio
buys the top decile of stocks and shorts the bottom decile of stocks sorted by share volume/shares outstanding.
The IND portfolio buys the top 3 industries and shorts the bottom 3 industries sorted by industry return as
in Moskowitz and Grinblatt (1999) who group US stocks into 20 industries by their SIC codes. The Akaike
Information Criteria (AIC) identifies the preferred model for describing incremental trading profit dynamics.

Panel A: Momentum strategies

Preferred Loss Probability below 5% Loss Probability below 1%

Portfolio Model CM UM CMC UMC CM UM CMC UMC

JT3 3 CM - - - - - - - -

JT3 6 CM 286 - 273 - 468 - 447 -

JT3 9 CM 123 - 116 - 205 - 192 -

JT3 12 CM 73 - 64 - 128 - 112 -

JT6 3 CM 423 - 408 - 688 - 663 -

JT6 6 CM 122 - 113 - 200 - 185 -

JT6 9 CM 71 - 65 - 121 - 112 -

JT6 12 CM 74 - 66 - 132 - 117 -

JT9 3 CM 177 - 168 - 292 - 168 -

JT9 6 CM 81 - 73 - 138 - 125 -

JT9 9 CM 79 - 71 - - - 124 -

JT9 12 CM 100 - 86 - 100 - 156 -

JT12 3 CM 112 - 102 - 193 - 175 -

JT12 6 CM 99 - 88 - 173 - 154 -

JT12 9 CM 114 - 101 - 204 - 180 -

JT12 12 CM 170 - 149 - 313 - 273 -

Panel B: Value strategies

BM1 CMC - 60 - 69 - 101 - 116

BM3 CMC - 53 - 63 - 88 - 106

BM5 CMC 31 43 41 55 58 73 76 93

CP1 CMC - - - - - - - -

CP3 CMC - - - - - - - -

CP5 CMC 703 - 732 - 1137 - 1179 -

EP1 CMC - - - - - - - -

EP3 CMC - - - - - - - -

EP5 CMC - - - - - - - -

SALE1 CM 50 49 55 55 90 89 99 99

SALE3 CMC 78 40 92 49 137 85 160 106

SALE5 CMC 97 42 119 55 165 97 201 128



Panel C: Liquidity based strategies

Preferred Loss Probability below 5% Loss Probability below 1%

Portfolio Model CM UM CMC UMC CM UM CMC UMC

VOL3 3 CMC 320 317 385 388 611 584 731 711

VOL3 6 CMC 229 232 279 282 437 432 530 522

VOL3 9 CMC 196 202 249 252 373 375 470 465

VOL3 12 CMC 185 187 230 234 350 347 432 428

VOL6 3 CMC 213 217 265 264 405 407 502 493

VOL6 6 CMC 179 183 224 227 357 342 422 422

VOL6 9 CMC 174 178 221 222 322 334 415 410

VOL6 12 CMC 174 176 222 225 312 328 414 414

VOL9 3 CMC 193 - 239 236 366 - 451 440

VOL9 6 CMC 177 182 223 224 334 342 418 416

VOL9 9 CMC 178 177 225 223 333 330 421 412

VOL9 12 CMC 173 176 219 222 322 325 408 407

VOL12 3 CMC 184 187 231 229 346 348 433 424

VOL12 6 CMC 183 184 231 231 344 344 432 427

VOL12 9 CMC 179 184 226 - 334 341 420 -

VOL12 12 CMC 179 176 222 228 326 361 410 418

Panel D: Industry momentum strategies

IND3 3 CMC 52 48 66 63 99 93 123 120

IND3 6 CMC 71 68 95 - 134 130 177 -

IND3 9 CMC 52 81 73 108 97 134 134 175

IND3 12 CMC - 68 - 93 - 116 - 155

IND6 3 CMC - - - 90 - - - 171

IND6 6 CMC - 85 - 118 - 142 - 193

IND6 9 CMC - 86 - - - 138 - -

IND6 12 CMC - - - - - - - -

IND9 3 CMC 68 109 93 - 125 171 168 -

IND9 6 CMC - - - - - - - -

IND9 9 CMC - - - - - - - -

IND9 12 CMC - - - - - - - -

IND12 3 CMC - - - - - - - -

IND12 6 CMC - - - - - - - -

IND12 9 CMC - - - - - - - -

IND12 12 CMC - - - - - - - -



Table 6: Tests of statistical arbitrage on Fama and French (1993) risk factors

The sample period is from January 1965 to December 2000. Statistical arbitrage test results are reported
for the Fama and French (1993) size and book-to-market based risk factors (SMB and HML) as well as the equity
premium (RMRF). Estimated parameter values, with their individual t-statistics reported below in parentheses,
are provided for each of the four trading profit models: UM, CM, UMC, and CMC. The UM (unconstrained
mean) model allows for time-varying expected trading profits while the CM (constrained mean) model has
constant expected trading profits. Both the UM and CM models have uncorrelated trading profit innovations as
described in equations (1) and (2) respectively. In contrast, their UMC (unconstrained mean with correlation)
and CMC (constrained mean with correlation) counterparts allow for serial correlation in trading profits through
the addition of an MA(1) process given in equation (3). Statistical significance at the 10%, 5%, and 1% levels is
denoted with *, **, and *** respectively. The Akaike Information Criteria (AIC) identifies the preferred model
for describing incremental trading profit dynamics, which we highlight in boldface.

Parameters

Trading (t-statistics)

Risk Profit growth rate growth rate Test Statistics

Factors Model mean profit µ of std dev λ of mean profit θ std dev σ autocorrelation φ Min-t p-value

HML CM 0.004 0.197 - 0.010 - –4.679 1.000

( 2.98 ) ( 4.68 ) - ( 4.77 ) -

UM 0.004 0.200 –0.003 0.010 - –1.184 0.714

( 1.30 ) ( 4.68 ) ( –0.02 ) ( 4.78 ) -

CMC 0.004 0.198 - 0.010 0.153 –4.579 1.000

( 2.64 ) ( 4.58 ) - ( 4.61 ) ( 2.85 )

UMC 0.004 0.198 –0.000 0.010 0.153 –0.607 0.901

( 0.63 ) ( 6.49 ) ( –0.00 ) ( 6.18 ) ( 4.01 )

SMB CM 0.002 0.050 - 0.026 - –0.887 0.564

( 1.36 ) ( 0.89 ) - ( 3.99 ) -

UM 0.031 0.064 –0.525 0.024 - –1.058 0.690

( 3.91 ) ( 1.06 ) ( –4.02 ) ( 3.68 ) -

CMC 0.002 0.061 - 0.024 0.104 –1.073 0.623

( 1.31 ) ( 1.07 ) - ( 3.98 ) ( 1.27 )

UMC 0.031 0.074 –0.523 0.022 0.100 –1.584 0.991

( 0.77 ) ( 3.08 ) ( –1.38 ) ( 7.32 ) ( 3.58 )

RMRF CM 0.005 0.054 - 0.034 - –1.126 0.720

( 2.06 ) ( 1.13 ) - ( 4.24 ) -

UM 0.001 –0.050 0.132 0.095 - 0.160 0.189

( 0.16 ) ( –0.83 ) ( 0.12 ) ( 2.16 ) -

CMC 0.005 0.057 - 0.033 0.053 –1.176 0.721

( 1.96 ) ( 1.18 ) - ( 4.25 ) ( 0.93 )

UMC 0.001 –0.080 0.134 0.093 0.050 0.128 0.141

( 0.13 ) ( –1.97 ) ( 0.10 ) ( 4.70 ) ( 1.24 )


