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Abstract

Bid and ask sizes at the top of the order book provide information on

short-term price moves. Drawing from classical descriptions of the order book

in terms of queues and order-arrival rates (Smith et al (2003)), we consider

a diffusion model for the evolution of the best bid/ask queues. We compute

the probability that the next price move is upward, conditional on the best

bid/ask sizes and an additional parameter, the hidden liquidity of the market.

We provide closed-form solutions for the probability in some important special

cases. The model can be useful, among other things, to rank trading venues

in terms of the “information content” of their quotes and to estimate the

hidden liquidity in a market based on high-frequency data. We illustrate the
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approach with an empirical study of a few liquid stocks using quotes from

various exchanges.

Contents

1 Introduction 3

2 Modeling Level I quotes 6

2.1 Hidden liquidity . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 The discrete Poisson model . . . . . . . . . . . . . . . . . . . . 8

3 Diffusion approximation and boundary conditions 11

3.1 Uncorrelated queues . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Perfectly negatively correlated queues (ρ = −1) . . . . . . . . . 14

3.3 Perturbation expansion for ρ ≈ −1 . . . . . . . . . . . . . . . . 15

4 Data analysis 17

4.1 Data description . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.2 Estimation procedure . . . . . . . . . . . . . . . . . . . . . . . 20

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5 Conclusions 23

2



1 Introduction

The term “order book” (OB) is generally used to describe the bid and ask

prices and sizes in continuous-auction exchanges, such as NYSE-ARCA, BATS

or NASDAQ. A distinction is often made between Level I quotes, i.e. the best

bid/ask prices and sizes, and Level II quotes, which consist of all prices and

sizes available in the order book. In either case, the OB provides information

on market depth, allowing traders to estimate the impact of their trades. A

question of obvious interest, given the high degree of transparency of OB data,

is whether the order book provides any information on short-term price moves.

Order book dynamics have been studied by many authors in the econo-

physics literature (see for instance Smith et al [5]), who generally focus on

estimating and simulating the arrivals of limit, market and cancel orders, in

order to model the highly complex dynamics of the market. Order books

models are also of central interest in the market microstructure literature;

they are used to study, for instance, the impact of different types of agents

and trading rules on the market in aggregate. In a 1995 paper, Hasbrouck [4]

used econometric methods to analyze the initial stages of the US stock market

“fragmenting” into regional exchanges, and at the time found “that the pre-

ponderance of the price discovery takes place in the New York Stock Exchange

(NYSE) (a median 92.7 percent information share)”. In recent years, with the

emergence of competing electronic trading venues (ECN’s and Dark Pools) for

the same asset and algorithmic trading, questions related to the quality, speed

and transparency of information on various exchanges have become ever more

relevant for regulators and practitioners alike.

3



We propose here a modeling approach that allows one to measure and

compare the information content of order books and to generate short term

forecasts for price moves. Our approach is inspired by Markov-type models

for the order book, first proposed by Smith, Farmer, Gillemot and Krish-

namurthy (SFGK) and more recently studied in Cont, Stoikov and Talreja

(CST). These models are high-dimensional Markov processes with a state-

space consisting of vectors (bid price, bid size) and (ask price, ask size), and

of Poisson-arrival rates for market, limit and cancellation orders. They are of-

ten referred picturesquely as “zero-intelligence models”, because orders arrive

randomly, rather than being submitted by rational traders with a budget, util-

ity objective, memory, etc. Needless to say, a full description of order books

as a Markov process gives rise to a highly complex system and the solution

of the model (in any sense) is often problematic and of questionable value in

practice.1 For this reason, we choose to simplify such models by considering

instead a reduced, diffusion-type dynamics for bid and ask sizes and focusing

on the top of the book instead of on the entire OB. Of course, such methods

could be generalized, in principle, to incorporate second-best bids and asks

and even more complex descriptions at the expense of simplicity.

We ask a simple, fundamental, question about the OB. Do Level II quotes,

or even Level I quotes, give information about price direction? In other words,

can we forecast the direction of price movements based on bid and ask sizes?

1In fact, one might argue that “zero-intelligence” may not characterize the fashion in which
continuous auctions are conducted. Traders, often aided by sophisticated computer algorithms,
position their orders to take advantage of situations observed in the order book as well as to fill
large block orders on behalf of customers. Rules such as first-in-first-out, and the possibility of
capturing rebates for posting limit orders (adding liquidity) result in markets in which there is a
significant amount of strategizing conditionally on the state of the OB.

4



The degree to which this can be done given the OB could be called the infor-

mation content. For example, if the sizes of queues do not provide information,

then, if ∆P denotes the next price move, then

Prob.{∆P > 0 |OB} = Prob.{∆P < 0 |OB} = 0.5,

where the probabilities are conditional on observing the OB. If the OB is

“informative”, we expect that

Prob.{∆P > 0 |OB} = p(OB),

i.e. that the order book provides a forecast of next price move in the form of

a conditional probability. The information contained in the OB, if any, should

tell us to what extent p(OB) differs from 0.5 based on the observation of limit

orders in the book and on the statistics of the queue sizes as they vary in time.

Thus, our goal is to create diffusion models, inspired by SFGK or CST, that

can be used to forecast the direction of stock-price moves based on measurable

statistical quantities. In contrast to CST, we explicitly model bid and ask

quotes with some hidden liquidity, i.e. sizes that are not shown in the OB,

but which may influence the probability of an upward move in the price. The

idea of estimating hidden liquidity is not new to the trading literature (see

Burghadt et al (2006), who estimate it’s magnitude by comparing sweep-to-fill

prices to VWAP prices).
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2 Modeling Level I quotes

In the Markov model of CST, the OB has two distinguished queues repre-

senting the sizes at best bid and the best ask levels, which are separated by

the minimum tick size. Market, limit and cancellation orders arrive at both

queues according to Poisson processes. One of the following two events must

then happen first:

1. The ask queue is depleted and the best ask price goes up by one tick and

the price “moves up”.

2. The bid queue is depleted and the best bid price goes down by one tick

and the price “moves down”.

The dynamics leading to a price change may thus be viewed as a “race to

the bottom”: the queue that hits zero first causes the price to move in that

direction.

As it turns out, the predictions of such models are not consistent with

market observations. If they were, this would imply that if the best ask size

becomes much smaller than the best bid size, the probability that the next

price move is upward should approach 100%. However, empirical analysis (see

Section 4) shows that this probability does not increase to unity as the ask

size goes to zero.

2.1 Hidden liquidity

We hypothesize that this happens for two reasons: first, markets are frag-

mented; liquidity is typically posted on various exchanges. In the U.S. stock
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markets, for example, Reg NMS requires that all market orders be routed to

the venue with the best price. Moreover, limit orders that could be immedi-

ately executed at their limit price on another market need to be rerouted to

those venues. Thus, one needs to consider the possibility that once the best

ask on an exchange is depleted, the price will not necessarily go up, since an

ask order at that price may still be available on another market and a new

bid cannot arrive until that price is cleared on all markets. The second reason

is the existence of trading algorithms that split large orders into smaller ones

that replenish the best quotes as soon as they are depleted (“iceberg orders”).

In the sequel, we will model this by assuming that there is a fixed hidden

liquidity (size) behind the best bid and ask quotes. This hidden liquidity may

correspond to iceberg orders or orders present on another exchange. Quotes on

other exchanges, although not technically hidden from anybody, may be sub-

ject to latencies and therefore only available to some traders with the fastest

data feeds. The main adjustable parameter in our model, the hidden liquidity,

will be an important indicator of the information content of the OB.

In summary, the main new idea in our interpretation of the OB models is

that we do not immediately assume that a true change in price occurs when

either of the queues first hits zero. Rather, we take the following view. We

postulate that a price transition takes place whenever the first of two events

happens:

1. The size for the best ask price goes to zero and the hidden liquidity at

that price is depleted. Intuitively, we assume that the price has only

moved if there is “support” at a new bid level. This can only happen
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if all ask orders on all exchanges are cleared at that price and iceberg

orders are exhausted.

2. Alternatively, the size for the best bid price goes to zero and the hidden

liquidity at that price is depleted.

2.2 The discrete Poisson model

Adopting the language of queuing theory, we refer to the number of shares

offered at the lowest ask price as the ask queue. Similarly, the number of shares

bid at the highest bid price is called the bid queue. Following CST (2010),

we view these queues as following a continuous time Markov chain (CTMC)

where time is continuous and share quantities are discrete, consistently with a

minimum order size. 2 We adopt the following notation

h = minimum order size

λa = arrival rate of limit orders at the ask

λb = arrival rate of limit orders at the bid

µa = arrival rate of (buy) market orders at the ask or cancellations at the ask

µb = arrival rate of (sell) market orders at the bid or cancellations at the bid

(2.1)

The model for the top of the order book is a continuous-time discrete space

2Note that in CST, market orders and cancellations are modeled separately resulting in queues
sizes that revert around an equilibrium level. Such microstructural distinctions are not essential at
the macroscopic level, i.e. when we fit the model to transactions data.
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process in which the evolution of the queues follows a Markov process in which

a state is (X,Y ), where X = bid queue size and Y =ask queue size. Each

state can transition into four neighboring states by increasing or decreasing

the queue sizes. The transition rates are given by

λ0,1 = λa

λ0,−1 = µa

λ
−1,0 = µb

λ1,0 = λb. (2.2)

Empirically, we know that the queue sizes are negatively correlated. Therefore,

it is convenient to incorporate correlation between the bid and the ask queues

in our model as well. To do this, we introduce additional diagonal transitions.3

We set

λ
−1,+1 = λ+1,−1 = η > 0. (2.3)

With these conventions, we have

3An alternative approach would be to keep the 4-point template and make the transition rates
state-dependent. We chose a simple “diagonal transition” model instead. The latter can be viewed
as describing transitions observed after a two time-units instead of one, for example. Such mi-
crostructural distinctions are not essential at the macroscopic level, i.e. when we fit the model to
transaction data.
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E [Xt+∆t − Xt|Xt, Yt] = h (λ1,0 − λ
−1,0) ∆t + o(∆t)

= h (λb − µb)∆t + o(∆t)

and, similarly,

E [Yt+∆t − Yt|Xt, Yt] = h (λa − µa)∆t + o(∆t)

E
[

(Xt+∆t − Xt)
2|Xt, Yt

]

= h2 (λb + µb + 2η) ∆t + o(∆t)

E
[

(Yt+∆t − Yt)
2|Xt, Yt

]

= h2 (λa + µa + 2η) ∆t + o(∆t)

E [(Xt+∆t − Xt)(Yt+∆t − Yt)|Xt, Yt] = h2 (2η) ∆t + o(∆t).

It follows that the drifts and the variances of the queue sizes are given by

mX = h (λb − µb)

mY = h (λa − µa)

σ2
X = h2 (λb + µb + 2η)

σ2
Y = h2 (λa + µa + 2η) . (2.4)

If we assume, for simplicity that there is symmetry between bid and offer sizes,

i.e. that λa = λb = λ, µa = µb = µ, then

mX = mY = h (λ − µ)

σ2
X = σ2

Y = h2 (λ + µ + 2η) (2.5)
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In particular, the correlation between the bid and the ask queues is

ρ =
−2η

λ + µ + 2η
. (2.6)

A further simplification can be made if we assume that the drifts vanish, which

is accomplished by setting

λ = µ.

This gives

σ2
X = σ2

Y = 2h2 (λ + η)

ρ =
−η

λ + η
(2.7)

3 Diffusion approximation and boundary

conditions

Let < X > and < Y > denote, respectively, the average (or median) size of

the queues Xt, Yt. We assume that the average queue sizes are much larger

than the typical quantity of shares traded and that the frequency of orders per

unit time is high, i.e. < X >=< Y >≫ h and λ, η ≫ 1.

We define the coarse-grained variables

x = X/ < X >, y = Y/ < Y >,
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which measure the queue sizes “macroscopically”, and set

σ2 =
2h2 (λ + η)

< X >2
, (3.1)

Under these assumptions, by the functional central limit theorem for Poisson

processes [1], the process (xt, yt) can be approximated by the diffusion

dxt = σdW
(1)
t

dyt = σdW
(2)
t

E
(

dW (1)dW (2)
)

= ρdt, (3.2)

where σ is defined in (3.1), ρ is defined in (2.7), and W (1),W (2) are standard

Brownian motions. 4

We consider the function u(x, y) representing the probability that the next

price move is up, given that we observe the (standardized) bid/ask sizes (x, y).

From diffusion theory, this function satisfies the differential equation

σ2 (uxx + 2ρuxy + uyy) = 0, x > 0, y > 0, (3.3)

or, simply,

uxx + 2ρuxy + uyy = 0 for x > 0, y > 0. (3.4)

The boundary conditions satisfied by u(x, y) will depend on what assump-

4Notice that these processes are pure diffusions without drift. Drift considerations are important
to maintain queue sizes finite and, for instance, to model the fact that bid and ask sizes are typically
mean-reverting. However, drifts are less important to describe order books in the vicinity of a price
transition, when one or both queues are small. See Cont et al. (CST) for discussions about drifts
and the constraints that they impose on the Poisson model for the OB.
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tions are made about how the price changes once one of the queues is depleted.

This is a key point to formulate a realistic model for forecasting price moves,

based on a coarse-grained description of the OB. If we assume, naively, that

the order-book represents fully the liquidity in the market at a particular price

level, then the mid-price will move up once the ask queue is depleted i.e. when

yt = 0 for the first time, since no more sellers are present at that level. In this

case, the probability that the price will increase corresponds to the probability

that the diffusion (3.2) exits the quadrant {(x, y);x > 0, y > 0} through the

x-axis. The corresponding boundary conditions for u(x, y) are therefore

u(0, y) = 0, for y > 0,

u(x, 0) = 1, for x > 0. (3.5)

However, we know empirically that an upward price move might not take

place when the ask queue is depleted, due to additional liquidity at that level,

which we call hidden liquidity. This hidden liquidity can be attributed to either

iceberg orders or by virtue of a Reg-NMS-type mechanism in which there are

other markets that still post liquidity on the ask-side at the same level and

which must be honored before the mid price can move up.

A simple way to model this is to assume that there is an additional amount

of liquidity, denoted by H, representing the fraction of average book size (<

X > or < Y >) which is “hidden” or absent from the book. A true price

transition takes place if the hidden liquidity is exhausted. In other words, we

observe queues of size x or y but the “true” size of the queues are x + H and
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y + H. Thus, if we denote by p(x, y;H) the probability of an upward price

move conditional on the observed queue sizes (x, y) and the hidden liquidity

parameter H, we have

p(x, y;H) = u(x + H, y + H), (3.6)

where u(x, y) satisfies the diffusion equation on the first quadrant of the (x, y)

plane with boundary conditions (3.3).

3.1 Uncorrelated queues

If we assume that ρ = 0, we obtain, from (3.4 ), (3.5)

u(x, y) =
2

π
Arctan

(

x

y

)

. (3.7)

This is immediate from the fact that the “argument function” Arctan
(

x
y

)

is

harmonic. Thus, if ρ = 0 we have

p(x, y;H) =
2

π
Arctan

(

x + H

y + H

)

. (3.8)

3.2 Perfectly negatively correlated queues (ρ = −1)

To derive a closed-form solution for p(x, y;H), it is convenient to introduce

the coordinates
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p = x + y

q = y − x. (3.9)

The partial differential operator with ρ = −1 can be written in the simple

form

uxx − 2uxy + uyy = 4uqq,

which suggests that u is an affine function of q. Taking into account the

boundary conditions satisfied by u, we find that

u(x, y) =
1

2

(

1 −
q

p

)

=
x

x + y
. (3.10)

It follows that if ρ = −1, then

p(x, y;H) =
x + H

x + y + 2H
. (3.11)

3.3 Perturbation expansion for ρ ≈ −1

In practice, the correlation between queue sizes tends to be negative with

−1 < ρ < 0. We consider the case of high negative correlation, ρ = −1 + ǫ,

where ǫ is a small number. We seek a solution of (3.4), (3.5) which is exact for

ǫ = 0 and correct to any desired order in ǫ when the perturbation parameter
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is positive. This solution will take the form

u(p, q) = u(0)(p, q) + ǫu(1)(p, q) + ǫ2u(2)(p, q) + ...

The leading-order term in the expansion is the exact solution for ρ = −1,

given by (3.10). Substituting the above expansion in the PDE and collecting

terms of order ǫ, we find that u(1) satisfies the equation

4u(1)
qq = −2u(0)

xy = −2(u(0)
pp − u(0)

qq ), −p < q < +p, (3.12)

with boundary conditions

u(1)(p, q) = 0 q = p, (3.13)

u(1)(p, q) = 0 q = −p. (3.14)

Substituting the exact expression for u(0) in (3.10), we have

4u(1)
qq = −2u(0)

pp = −
2q

p3
. (3.15)

Integrating twice both sides of the equation with respect to q and taking into

account the boundary conditions, we obtain

u(1)(p, q) =
1

12

(

q

p
−

q3

p3

)

. (3.16)

Hence,

u(x, y) =
x

x + y
+ ǫ

1

12

(

y − x

x + y
−

(y − x)3

(x + y)3

)

+ O(ǫ2).
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and we obtain, for ρ ≈ −1, the approximation formula

p(x, y;H) ≈
x + H

x + y + 2H
+ (1 − |ρ|)

1

12

(

y − x

x + y + 2H
−

(y − x)3

(x + y + 2H)3

)

.

(3.17)

4 Data analysis

In this section, we study the information content of the best quotes for the

tickers QQQQ, XLF, JPM, and AAPL, over the first five trading days in 2010

(i.e. Jan 4-8). All four tickers are traded on various exchanges, and this allows

us to compare the information content of these venues. In other words we will

be computing the probability:

Prob.{∆P > 0 |OB} = p(OB),

discussed in the introduction, for ∆P defined to be the next midprice move,

and for OB defined to be the pair of bid and ask sizes (x, y).

In our data analysis, we focus on the hidden liquidity for the perfectly

negatively correlated queues model, i.e.

p(x, y;H) =
x + H

x + y + 2H
(4.1)

which we estimate by minimizing square errors with respect to the empirical

probabilities.

In practice, when performing our data analysis, we find it easier to bucket
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the data in deciles of queue sizes, rather than normalizing by the average

queue size, as we did in Section 3. The implied hidden liquidity parameter

we compute in the sequel can therefore be interpreted as a fraction of the

maximum observed queue size.

4.1 Data description

The data comes from the WRDS database, more specifically the consolidated

quotes of the NYSE-TAQ data set. Each row has a timestamp (between the

hours of 10:00 and 16:00, rounded to the nearest second), a bid price, an ask

price, a bid size, an ask size and an exchange flag, indicating if the quote was

on NASDAQ (T), NYSE-ARCA (P) or BATS (Z), see Table 1 for a sample

of the data. There are other regional exchanges, but for the purpose of this

study, we focus on these venues as they have significantly more than one quote

per second.

In table 2, we present some summary statistics for the tickers QQQQ,

XLF, JPM and AAPL, across the three exchanges. The tickers QQQQ, XLF

and JPM are ideal candidates, because their bid-ask spread is almost always

one tick (or one cent) wide, much like our stochastic model. We also pick

AAPL, whose spread most often trades at 3 cents (or three ticks wide), due

to AAPL’s relatively high stock price. Though our model does not strictly

consider spreads greater than one, we use it to fit our model, conditional on

the spread, i.e. OB = (x, y, s) where s is the spread in cents.
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symbol date time bid ask bsize asize exchange
QQQQ 2010-01-04 09:30:23 46.32 46.33 258 242 T
QQQQ 2010-01-04 09:30:23 46.32 46.33 260 242 T
QQQQ 2010-01-04 09:30:23 46.32 46.33 264 242 T
QQQQ 2010-01-04 09:30:24 46.32 46.33 210 271 P
QQQQ 2010-01-04 09:30:24 46.32 46.33 210 271 P
QQQQ 2010-01-04 09:30:24 46.32 46.33 161 271 P

Table 1: A sample of the raw data

Ticker Exchange num quotes quotes/sec avg(spread) avg(bsize+asize) avg(price)
XLF NASDAQ 0.7M 7 0.010 8797 15.02
XLF NYSE 0.4M 4 0.010 10463 15.01
XLF BATS 0.4M 4 0.011 7505 14.99

QQQQ NASDAQ 2.7M 25 0.010 1455 46.30
QQQQ NYSE 4.0M 36 0.011 1152 46.27
QQQQ BATS 1.6M 15 0.011 1055 46.28
JPM NASDAQ 1.2M 11 0.011 87 43.81
JPM NYSE 0.7M 6 0.012 47 43.77
JPM BATS 0.6M 5 0.014 39 43.82

AAPL NASDAQ 1.3M 13 0.034 9.1 212.50
AAPL NYSE 0.4M 4 0.046 5.7 212.66
AAPL BATS 0.6M 6 0.054 4.5 212.43

Table 2: Summary statistics
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4.2 Estimation procedure

1. We split the data set into three subsets, one for each exchange. Items

2-6 are repeated separately for each exchange and each ticker.

2. We remove zero and negative spreads.

3. We “bucket” the bid and ask sizes, by taking deciles of the bid and ask

size and normalizing queue sizes so that (i, j) represents the ith decile of

the bid size and the jth decile of the ask size respectively.

4. For each bucket (i, j), we compute the empirical probability that the

price goes up uij . This is done by looking forward to the next mid price

change and computing the empirical percentage of occurrences of (i, j)

that ended up going up, before going down.

5. We count the number of occurrences of the (i, j) bucket, and denote this

distribution dij .

6. We minimize least squares for the negatively correlated queues model,

i.e.

min
H

∑

i,j

[

(

uij −
i + H

i + j + 2H

)2

dij

]

(4.2)

and obtain an implied hidden liquidity H for each exchange.

4.3 Results

We first illustrate the predictions of our model for the ticker XLF on the

Nasdaq exchange (T). We report the empirical probabilities of an up move,

given the bid and ask sizes in table 3, as well as the model probabilities,

given by equation (4.1) with H estimated with the procedure described above.
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Notice that even for very large bid sizes and small ask sizes (say the 90th

percentile of sizes at the bid and the 10th percentile of sizes at the ask) the

empirical probability of the mid price moving upward is high (0.85) but not

arbitrary close to one. The same is true of our model, which assumes there is

a hidden liquidity H behind both quotes. We interpret H as a measure of the

information content of the bid and ask sizes: the smaller H is, the more size

matters. The larger the H, the closer all probabilities will be to 0.5, even for

drastic size imbalances.

In table 4, we display the hidden liquidity H for the four tickers and three

exchanges. These results indicate that size is most important for

• XLF on NASDAQ,

• QQQQ on NYSE-ARCA and for

• JPM on BATS.

Finally we calculate H for AAPL, for different values of the bid-ask spread

(s = 1, 2 and 3 cents). We find that sizes of

• AAPL are more informative on NASDAQ, and that they matter most

when the spread is small.

Modeling stocks with larger spreads may require more sophisticated models of

the order book, possibly including Level II information. Since a majority of

US equities trade at average spreads of several cents, we consider this avenue

worthy of future research.
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decile 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
sizes < 1250 < 1958 < 2753 < 3841 < 4835 < 5438 < 5820 < 6216 < 6742
0.1 0.50 0.38 0.25 0.25 0.32 0.26 0.23 0.23 0.15
0.2 0.61 0.50 0.47 0.41 0.36 0.40 0.38 0.27 0.20
0.3 0.75 0.53 0.50 0.43 0.39 0.37 0.43 0.39 0.28
0.4 0.74 0.58 0.57 0.50 0.42 0.42 0.47 0.46 0.37
0.5 0.68 0.64 0.61 0.58 0.50 0.51 0.48 0.49 0.41
0.6 0.74 0.60 0.63 0.58 0.49 0.50 0.50 0.50 0.49
0.7 0.78 0.62 0.57 0.53 0.52 0.50 0.50 0.60 0.53
0.8 0.77 0.73 0.61 0.54 0.51 0.50 0.40 0.50 0.42
0.9 0.85 0.79 0.72 0.63 0.60 0.51 0.47 0.57 0.50

decile 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
sizes = 1250 = 1958 = 2753 = 3841 = 4835 = 5438 = 5820 = 6216 = 6742
0.1 0.50 0.42 0.36 0.31 0.28 0.25 0.23 0.21 0.19
0.2 0.58 0.50 0.44 0.39 0.35 0.32 0.29 0.27 0.25
0.3 0.64 0.56 0.50 0.45 0.41 0.37 0.35 0.32 0.30
0.4 0.69 0.61 0.55 0.50 0.46 0.42 0.39 0.37 0.34
0.5 0.72 0.65 0.59 0.54 0.50 0.46 0.43 0.41 0.38
0.6 0.75 0.68 0.63 0.58 0.54 0.50 0.47 0.44 0.42
0.7 0.77 0.71 0.65 0.61 0.57 0.53 0.50 0.47 0.45
0.8 0.79 0.73 0.68 0.63 0.59 0.56 0.53 0.50 0.47
0.9 0.81 0.75 0.70 0.66 0.62 0.58 0.55 0.53 0.50

Table 3: Empirical vs. Model probabilities for the probability of an upward move
(XLF), on Nasdaq (T). Rows represent bid size percentiles (i), columns represent ask
size percentiles (j). The model is given by p(i, j) = i+H

i+j+H
with H = 0.15

Ticker NASDAQ NYSE BATS

XLF 0.15 0.17 0.17
QQQQ 0.21 0.04 0.18
JPM 0.17 0.17 0.11

AAPL s = 1 0.16 0.90 0.65
AAPL s = 2 0.31 0.60 0.64
AAPL s = 3 0.31 0.69 0.63

Table 4: Implied hidden liquidity across tickers and exchanges
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5 Conclusions

Based on a diffusion model of the liquidity at the top of the order book, we

proposed closed-form solutions for the probability of a price uptick conditional

on Level-I quotes. The probability is a function of the bid size, the ask size

and an adjustable parameter, H, the hidden liquidity. The advantage of this

simple model is that it can be fitted to high-frequency data and produces an

implied hidden liquidity parameter, obtained by fitting tick data (from WRDS)

to the proposed formulas. The result is that we can classify different markets

in terms of their hidden liquidity or, equivalently, how informative the Level I

quotes of a stock are in terms of forecasting the next price move (up or down).

If the hidden size is small (compared to the typical size shown in the market

under consideration), we say that the best quotes are informative. Statistical

analysis for different stocks shows the following results:

• for XLF (SPDR Financial ETF), NASDAQ has the least hidden liquidity;

• for QQQQ (Powershares Nasdaq-100 Tracker), NYSE-ARCA has the

least hidden liquidity;

• for JPM (J.P. Morgan & Co.) BATS has the least hidden liquidity and

• for AAPL (Apple Inc.) NASDAQ has the least hidden liquidity.

We used only 5 days of data for these calculations and a study of the stability

of our hidden liquidity parameter over longer periods remains to be done.

Nevertheless, the approach presented here seems to provide a way of comparing

trading venues, in terms of their information content and hidden liquidity, and

hence on the possibility of forecasting price changes from their orderbook data.

23



References

[1] P. Billingsley, Convergence of Probability Measures, John Wiley and Sons,

1999, New York.

[2] G. Burghadt, J. Hanweck, and L. Lei (2006) Measuring Market Impact

and Liquidity, The Journal of Trading, Fall 2006, Vol. 1, No. 4, pp. 70-84

[3] R. Cont, S. Stoikov, R. Talreja (2010) A Stochastic Model for Order Book

Dynamics, Operations Research, Vol. 58, No. 3, May-June 2010, pp. 549-

563.

[4] J. Hasbrouck (1995), One security, many markets: determining the contri-

butions to price discovery, Journal of Finance, Vol 1, No. 4 , pp 1175-1199

[5] E. Smith, J. D. Farmer, L. Gillemot, and S. Krishnamurthy, (2003), Sta-

tistical Theory of the Continuous Double Auction, Quantitative Finance,

Vol. 3, pp. 481-514.

24


