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We propose a stochastic model for the continuous-time dynamics of a limit order book. The model strikes
a balance between two desirable features: it captures key empirical properties of order book dynamics and
its analytical tractability allows for fast computation of various quantities of interest without resorting to
simulation. We describe a simple parameter estimation procedure based on high-frequency observations of
the order book and illustrate the results on data from the Tokyo stock exchange. Using Laplace transform
methods, we are able to efficiently compute probabilities of various events, conditional on the state of the
order book: an increase in the mid-price, execution of an order at the bid before the ask quote moves, and
execution of both a buy and a sell order at the best quotes before the price moves. Comparison with high-
frequency data shows that our model can capture accurately the short term dynamics of the limit order
book.
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1. Introduction

The evolution of prices in financial markets results from the interaction of buy and sell orders
through a rather complex dynamic process. Studies of the mechanisms involved in trading financial
assets have traditionally focused on quote-driven markets, where a market maker or dealer central-
izes buy and sell orders and provides liquidity by setting bid and ask quotes. The NYSE specialist
system is an example of this mechanism. In recent years, Electronic Communications Networks
(ECN’s) such as Archipelago, Instinet, Brut and Tradebook have captured a large share of the
order flow by providing an alternative order-driven trading system. These electronic platforms
aggregate all outstanding limit orders in a limit order book that is available to market participants
and market orders are executed against the best available prices. As a result of the ECN’s popular-
ity, established exchanges such as the NYSE, Nasdaq, the Tokyo Stock Exchange and the London
Stock Exchange have adopted electronic order-driven platforms, either fully or partially through
“hybrid” systems.

The absence of a centralized market maker, the mechanical nature of execution of orders and
–last but not least– the availability of data have made order-driven markets interesting candidates
for stochastic modelling . At a fundamental level, models of order book dynamics may provide
some insight into the interplay between order flow, liquidity and price dynamics Bouchaud et al.
(2002), Smith et al. (2003), Farmer et al. (2004), Foucault et al. (2005). At the level of applications,
such models provide a quantitative framework for investors and trading desks to optimize trade
execution strategies Alfonsi et al. (2007), Obizhaeva and Wang (2006). An important motivation
for modelling high-frequency dynamics of order books is to use the information on the current
state of the order book to predict its short-term behavior. The focus is therefore on conditional
probabilities of events, given the state of the order book.

The dynamics of a limit order book resembles in many aspects that of a queuing system. Limit
orders wait in a queue to be executed against market orders (or canceled). Drawing inspiration
from this analogy, we model a limit order book as a continuous-time Markov process that tracks the
number of limit orders at each price level in the book. The model strikes a balance between three
desirable features: it can be easily calibrated to high-frequency data, reproduces various empirical
features of order books and is analytically tractable. In particular, we show that our model is
simple enough to allow the use of Laplace transform techniques from the queueing literature to
compute various conditional probabilities. These include the probability of the mid-price increasing
in the next move, the probability of executing an order at the bid before the ask quote moves and
the probability of executing both a buy and a sell order at the best quotes before the price moves,
given the state of the order book. We illustrate these computations in a model estimated from
order book data for a stock on the Tokyo stock exchange.

Related literature. Various recent studies have focused on limit order books. Given the com-
plexity of the structure and dynamics of order books, it has been difficult to construct models
that are both statistically realistic and amenable to rigorous quantitative analysis. Parlour (1998)
and Foucault et al. (2005), Rosu (forthcoming) propose equilibrium models of limit order books.
These models provide interesting insights into the price formation process but contain unobserv-
able parameters that govern agent preferences. Thus, they are difficult to estimate and use in
applications. Some empirical studies on properties of limit order books are Bouchaud et al. (2002),
Farmer et al. (2004), and Hollifield et al. (2004). These studies provide an extensive list of sta-
tistical features of order book dynamics which are challenging to incorporate in a single model.
Bouchaud et al. (2008), Smith et al. (2003), Bovier et al. (2006), Luckock (2003), and Maslov and
Mills (2001) propose stochastic models of order book dynamics in the spirit of the one proposed
here but focus on unconditional / steady–state distributions of various quantities rather than the
conditional quantities we focus on here.
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The model proposed here is admittedly simpler in structure than some others existing in the
literature: it does not incorporate strategic interaction of traders as in game theoretic approaches
Parlour (1998), Foucault et al. (2005) and Rosu (forthcoming), nor does it account for “long
memory” features of the order flow as pointed out by Bouchaud et al. (2002) and Bouchaud et al.
(2008). However, contrarily to these models, it leads to an analytically tractable framework where
parameters can be easily estimated from empirical data and various quantities of interest may be
computed efficiently.

Outline. The paper is organized as follows. §2 describes a stylized model for the dynamics of
a limit order book, where the order flow is described by independent Poisson processes. Estima-
tion of model parameters from high-frequency order book time series data is described in §3 and
illustrated using data from the Tokyo Stock Exchange. In §4 we show how this model can be used
to compute conditional probabilities of various types of events relevant for trade execution using
Laplace transform methods. §5 explores steady state properties of the model using Monte Carlo
simulation and compares conditional probabilities computed by simulation to those computed with
the Laplace transform methods presented in §4.

2. A continuous-time model for a stylized limit order book

2.1. Limit order books

Consider a financial asset traded in an order-driven market. Market participants can post two types
of buy/sell orders. A limit order is an order to trade a certain amount of a security at a given price.
Limit orders are posted to a electronic trading system and the state of outstanding limit orders
can be summarized by stating the quantities posted at each price level: this is known as the limit
order book. The lowest price for which there is an outstanding limit sell order is called the ask price
and the highest buy price is called the bid price.

A market order is an order to buy/sell (a certain quantity of) the asset at the best available
price in the limit order book. When a market order arrives it is matched with the best available
price in the limit order book and a trade occurs. The quantities available in the limit order book
are updated accordingly.

A limit order sits in the order book until it is either executed against a market order or it is
canceled. A limit order may be executed very quickly if it corresponds to a price near the bid and
the ask, but may take a long time if the market price moves away from the requested price or if
the requested price is too far from the bid/ask. Alternatively, a limit order can be canceled at any
time.

We consider a market where limit orders can be placed on a price grid {1, . . . , n} representing
multiples of a price tick. We track the state of the order book with a continuous-time process
X(t) ≡ (X1(t), . . . ,Xn(t))t≥0, where |Xp(t)| is the number of outstanding limit orders at price p,
1 ≤ p ≤ n. If Xp(t) < 0, then there are −Xp(t) bid orders at price p; if Xp(t) > 0, then there are
Xp(t) ask orders at price p.

The ask price pA(t) at time t is then defined by

pA(t) = inf{p = 1, . . . , n, Xp(t) > 0}∧ (n +1).

Similarly, the bid price pB(t) is defined by

pB(t)≡ sup{p = 1, . . . , n, Xp(t) < 0, }∨ 0

Notice that when there are no ask orders in the book we force an ask price of n+1 and when there
are no bid orders in the book we force a bid price of 0. The mid-price pM (t) and the bid-ask spread
s(t) are defined by

pM(t)≡ pB(t) + pA(t)
2

and s(t)≡ pA(t)− pB(t).



Cont, Stoikov and Talreja: A stochastic model for order book dynamics
5

Since most of the trading activity takes place in the vicinity of the bid and ask prices, it is useful
to keep track of the number of outstanding orders at a given distance from the bid/ask. To this
end, we define

QB
i (t) =

{
XpA(t)−i(t) 0 < i < pA(t)
0 pA(t)≤ i < n,

(1)

the number of buy orders at a distance i from the ask and

QA
i (t) =

{
XpB(t)+i(t) 0 < i < n− pB(t)
0 n− pB(t)≤ i < n,

(2)

the number of sell orders at a distance i from the bid. Although X(t) and (pA(t), pB(t),QA(t),QB(t))
contain the same information, the second representation highlights the shape or depth of the book
relative to the best quotes.

2.2. Dynamics of the order book

Let us now describe how the limit order book is updated by the inflow of new orders. For a state
x∈Z

n and 1≤ p≤ n, define
xp±1 ≡ x± (0, . . . ,1, . . . ,0),

where the 1 in the vector on the right-hand side is in the p-th component. Assuming that all
orders are of unit size (in empirical examples we will take this unit to be the average size of limit
orders observed for the asset),

• a limit buy order at price level p < pA(t) increases the quantity at level p: x→ xp−1

• a limit sell order at price level p > pB(t) increases the quantity at level p: x→ xp+1

• a market buy order decreases the quantity at the ask price: x→ xpA(t)−1

• a market sell order decreases the quantity at the bid price: x→ xpB(t)+1

• a cancellation of an oustanding limit buy order at price level p < pA(t) decreases the quantity
at level p: x→ xp+1

• a cancellation of an oustanding limit sell order at price level p > pB(t) decreases the quantity
at level p: x→ xp−1

The evolution of the order book is thus driven by the incoming flow of market orders, limit orders
and cancellations at each price level, each of which can be represented as a counting process. It
is empirically observed Bouchaud et al. (2002) that incoming orders arrive more frequently in the
vicinity of the current bid/ask price and the rate of arrival of these orders depends on the distance
to the bid/ask.

To capture these empirical features in a model that is analytically tractable and allows to
compute quantities of interest in applications –most notably conditional probabilities of various
events– we propose a stochastic model where the events outlined above are modelled using
independent Poisson processes. More precisely, we assume that, for i≥ 1,

• Limit buy (resp. sell) orders arrive at a distance of i ticks from the opposite best quote at
independent, exponential times with rate λ(i),

• Market buy (resp. sell) orders arrive at independent, exponential times with rate μ,
• Cancellations of limit orders at a distance of i ticks from the opposite best quote occur at a

rate proportional to the number of outstanding orders: if the number of outstanding orders at that
level is x then the cancellation rate is θ(i)x. This assumption can be understood as follows: if we
have a batch of x outstanding orders, each of which can be canceled at an exponential time with
parameter θ(i), then the overall cancellation rate for the batch is θ(i)x.
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• The above events are mutually independent.

Typically, the arrival rates λ : {1, . . . , n}→ [0,∞) are decreasing functions of the distance to the
bid/ask: most orders are placed close to the current price. Empirical studies suggest a power law

λ(i) =
k

iα

as a plausible specification (see Zovko and Farmer (2002) or Bouchaud et al. (2002)).
Given the above assumptions, X is a continuous-time Markov chain with state space Z

n and
transition rates given by

x→ xp−1 with rate λ(pA(t)− p) for p < pA(t),
x→ xp+1 with rate λ(p− pB(t)) for p > pB(t),
x→ xpB(t)+1 with rate μ
x→ xpA(t)−1 with rate μ
x→ xp+1 with rate θ(pA(t)− p)|xp| for p < pA(t),
x→ xp−1 with rate θ(p− pB(t))|xp| for p > pB(t),

Proposition 1 X is an ergodic Markov process. In particular, X has a proper stationary distri-
bution.

Proof. Define N ≡ (N(t), t ≥ 0), where N(t)≡∑n

i=1 |Xi(t)|. Then X(t) = (0, . . . ,0) if and only
if N(t) = 0. But N is simply a birth-death process with birth rate bounded from above by λ ≡
2
∑n

i=0 λ(i) and death rate in state i, μi ≡ 2μ+ iθ. Then, we have the inequalities
∞∑

i=1

λi

μ1 · · ·μi

<
∞∑

i=1

1
i!

(
λ

θ

)i

= e
λ
θ − 1 <∞,

and ∞∑
i=1

μ1 · · ·μi

λi
>

M∑
i=1

μ1 · · ·μi

λi
+

∞∑
i=M+1

(
2μ+Mθ

λ

)i

=∞,

for M > 0 chosen large enough so that 2μ+Mθ > λ. Therefore, by (Asmussen 2003, Corollary 2.5)
the birth-death process is ergodic. Since X is clearly irreducible, it follows that X is also ergodic.

�
The ergodicity of X is a desirable feature: it allows to compare time averages of various quantities

(average shape of the order book, average price impact, etc.) to expectations of these quantities
computed in the model. The steady-state behavior of X will be further discussed in §5.1.

3. Parameter estimation

3.1. Description of the data set

Our data consists of time-stamped sequences of trades (market orders) and quotes (prices, quan-
tities of outstanding limit orders) for the 5 best price levels on each side of the order book, for
stocks traded on the Tokyo stock exchange. This data set, referred to as Level II order book data,
provides a more detailed view of price dynamics than the Trade and Quotes (TAQ) data often used
for high frequency data analysis, which consist of prices and sizes of trades (market orders) and
time-stamped updates in the price and size of the bid and ask quotes.

In Table 1, we display a sample of three consecutive trades for Sky Perfect Communications.
Each row provides the time, size and price of a market order. We also display a sample of Level II
bid side quotes. Each row displays the 5 bid prices (pb1, pb2, pb3, pb4 and pb5), as well as the
quantity of shares bid at these respective prices (qb1, qb2, qb3, qb4, qb5).
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time price size
9:11:01 74300 1
9:11:04 74600 2
9:11:19 74400 1

time pb1 pb2 pb3 pb4 pb5 qb1 qb2 qb3 qb4 qb5
9:11:01 74300 74200 74000 73900 73800 12 13 1 52 11
9:11:03 74400 74300 74200 74000 73900 20 12 13 1 52
9:11:04 74400 74300 74200 74000 73900 21 11 13 1 52
9:11:05 74400 74300 74200 74000 73900 34 4 13 1 52
9:11:19 74400 74300 74200 74000 73900 33 4 13 1 52

Table 1 A sample of 3 trades and 5 quotes for Sky Perfect Communications

3.2. Estimation procedure

Recall that in our stylized model we assume orders to be of unit size. In the data set, we first
compute the average size of market orders Sm, of limit orders Sl and of canceled orders Sc and
choose the size unit to be the average size of a limit order Sl: a block of orders of size Sl is counted
as one event. The limit order arrival rate function for 1≤ i≤ 5 can be estimated by

λ̂(i) =
Nl(i)

T
,

where Nl(i) is the total number of limit orders that arrived at a distance i from the opposite best
quote. Nl(i) is obtained by enumerating the number of times that a quote increases in size at a
distance of 1 ≤ i ≤ 5 ticks from the opposite best quote. We then extrapolate by fitting a power
law function of the form

λ̂(i) =
k

iα

(suggested by Zovko and Farmer (2002) or Bouchaud et al. (2002)). The power law parameters k
and α are obtained by a least squares fit

min
k,α

5∑
i=1

(
λ̂(i)− k

iα

)2

.

Estimated arrival rates at distances 0≤ i≤ 10 from the opposite best quote are displayed in Figure
1(a).

The arrival rate of market orders is then estimated by

μ̂ =
Nm

T

Sm

Sl

,

where T is the length of our sample (in minutes) and Nm is the number of market orders. Note
that we ignore market orders that do not affect the best quotes, as is the case when a market order
is matched by a hidden or ‘iceberg’ order.

Since the cancellation rate in our model is proportional to the number of orders at a particular
price level, in order to estimate cancellation rate we first need to estimate the steady state shape of
the order book Qi, which is the average number of orders at a distance of i ticks from the opposite



Cont, Stoikov and Talreja: A stochastic model for order book dynamics
8

1 2 3 4 5 6 7 8 9 10
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

Distance from opposite quote

 

 

data

model

(a) Limit orders rates

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Distance from opposite quote

A
rr

iv
al

 r
at

e

 

 

data
model

(b) Cancellation rates

Figure 1 The arrival rates as a function of the distance from the opposite quote

i
1 2 3 4 5

λ̂(i) 1.85 1.51 1.09 0.88 0.77
θ̂(i) 0.71 0.81 0.68 0.56 0.47
μ̂ 0.94
k 1.92
α 0.52

Table 2 Estimated parameters: Sky Perfect Communications.

best quote, for 1≤ i≤ 5. If M is the number of quote rows and SB
i (j) the number of shares bid at

a distance of i ticks from the ask on the jth row, for 1≤ j ≤M , we have

QB
i =

1
Sl

1
M

M∑
j=1

SB
i (j)

The vector QA
i is obtained analogously and Qi is the average of QA

i and QB
i .

An estimator for the cancellation rate function is then given by

θ̂(i) =
Nc(i)
TQi

Sc

Sl

for i≤ 5 and θ̂(i) = θ̂(5) for i > 5.

The fitted values are displayed in Figure 1(b). Nc(i) is obtained by counting the number of times
that a quote decreases in size at a distance of 1≤ i≤ 5 ticks from the opposite best quote, excluding
decreases due to market orders.

Estimated parameter values for Sky Perfect Communications are given in Table 2.

4. Laplace transform methods for computing conditional probabilities

As noted above, an important motivation for modelling high-frequency dynamics of order books
is to use the information provided by the limit order book for predicting short-term behavior of
various quantities which are useful in trade execution and algorithmic trading. For instance, the
probability of the mid-price moving up versus down, the probability of executing a limit order
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at the bid before the ask quote moves and the probability of executing both a buy and a sell
order at the best quotes before the price moves. These quantities can be expressed in terms of
conditional probabilities of events, given the state of the order book. In this section we show that
the model proposed in §2 allows such conditional probabilities to be analytically computed using
Laplace methods. After presenting some background on Laplace transforms in §4.1, we give various
examples of these computations. The probability of an increase in the mid-price is discussed in
§4.2, the probability that a limit order executes before the price moves is discussed in §4.3 and
the probability of executing both a buy and a sell limit order before the price moves is discussed
in §4.4. Laplace transform methods allow efficient computation of these quantities, bypassing the
need for Monte Carlo simulation.

4.1. Laplace transforms and first-passage times of birth-death processes

We first recall some basic facts about two-sided Laplace transforms and discuss the computation
of Laplace transforms for first-passage times of birth-death processes (Abate and Whitt (1999)).
Given a function f : R→R, its two-sided Laplace transform is given by

f̂(s) =
∫ ∞

−∞
e−stf(t)dt,

where s is a complex numbers. When f is the probability density function (pdf) of some random
variable X, its two-sided Laplace transform can also be written as

f̂(s) = E[e−sX ].

In this case, we also say that f̂ is the two-sided Laplace transform of the random variable itself. We
work with two-sided Laplace transforms here because for our purposes the function f will usually
correspond to the pdf of a random variable with both positive and negative support. From now
on, we drop the prefix “two-sided” when referring to two-sided Laplace transforms. When we say
conditional Laplace-transform of the random variable X conditional on the event A, we mean the
Laplace transform of the conditional pdf of X given A.

Recall that if X and Y are independent random variables with well-defined Laplace transforms,
then

f̂X+Y (s) = E[e−s(X+Y )] = E[e−sX ]E[e−sY ] = f̂X(s)f̂Y (s). (3)

If for some γ ∈ R we have
∫∞
−∞ |f̂(σ + iω)|dω < ∞ and f(t) is continuous at t, then the inverse

transform is given by the Bromwich contour integral

f(t) =
1

2πi

∫ σ+i∞

σ−i∞
etsf̂(s)ds. (4)

The continued fraction associated with a sequence {an, n≥ 1} of partial numerators and {bn, n≥
1} of partial denominators, which are complex numbers with an 
= 0 for all n ≥ 1, is the sequence
{wn, n≥ 1}, where

wn = t1 ◦ t2 ◦ · · · ◦ tn(0), n≥ 1, tk(u) =
ak

bk +u
, k ≥ 1.

If w ≡ limn→∞ wn, then the continued fraction is said to be convergent and the limit w is said to
be the value of the continued fraction (Abate and Whitt (1999)). In this case, we write

w ≡Φ∞
n=1

an

bn

.
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Consider now a birth-death process with constant birth rate λ and death rates μi in state i ≥ 1,
and let σb denote the first-passage time of this process to 0 given it begins in state b. Next, notice
that we can write σB as the sum

σb = σb,b−1 +σb−1,b−2 + · · ·+σ1,0,

where σi,i−1 denotes the first-passage time of the birth-death process from the state i to the state
i−1, for i = 1, . . . , b, and all terms on the right-hand side are independent. If f̂b denotes the Laplace
transform of σb and f̂i,i−1 denotes the Laplace transform of σi,i−1, for i = 1, . . . , b, then we have by
(3),

f̂b(s) = Πb
i=1f̂i,i−1(s). (5)

Therefore, in order to compute f̂b, it suffices to compute the simpler Laplace transforms f̂i,i−1, for
i = 1, . . . , b. By Equation (4.9) of Abate and Whitt (1999), we see that the Laplace transform of
f̂i,i−1 is given by

f̂i,i−1(s) =− 1
λ

Φ∞
k=i

−λμk

λ+μk + s
. (6)

The computation there is based on a recursive relationship between the f̂i,i−1, i = 1, . . . , b, which
is derived by considering the first transition of the birth-death process. Combining (5) and (6), we
obtain

f̂b(s) =
(
− 1

λ

)b(
Πb

i=1Φ
∞
k=i

−λμk

λ+μk + s

)
. (7)

We will use this result in all our computations below.

4.2. Direction of price moves

We now compute the probability that the mid-price increases at its next move. The first move in
the mid-price occurs at the first-passage time of the bid or ask queue to zero or, if the bid/ask
spread is greater than one, the first time a limit order arrives inside the spread. Throughout this
section, let XA ≡ XpA(·)(·) and XB ≡ |XpB(·)(·)|, and let σA and σB be the first-passage times of
XA and XB to 0, respectively. Let WB ≡ {WB(t), t≥ 0} (WA ≡ {WA(t), t≥ 0}) denote the number
of orders remaining at the bid (ask) at time t of the initial XB(0) (XA(0)) orders and let εB (εA)
be the first-passage time of WB (WA) to 0. Furthermore, let T be the time of the first change in
mid-price:

T ≡ inf{t≥ 0, pM (t) 
= pM (0)}.
In this subsection, we are interested in computing the conditional probability that the mid-price
increases before decreasing:

P[pM (T ) > pM (0)|XA(0) = a,XB(0) = b, s(0) = S], (8)

where S > 0. For ease of notation, we will omit the conditioning variables in all proofs below.
The idea for computing (8) is to observe that XA and XB behave as independent birth-death

processes and WA and WB behave as independent pure-death processes for t≤ T . More precisely:

Lemma 2 Let s(0) = S. Then
1. There exist independent birth-death processes X̃A and X̃B with birth rate λ(S) and death rate

μ+ iθ(S) in state i≥ 1, such that for all 0≤ t≤ T , X̃A(t) = XA(t) and X̃B(t) = XB(t).
2. There exist independent pure death processes W̃A and W̃B with death rate μ+iθ(S) in state i≥

1, such that for all 0≤ t≤ T , W̃A(t) = WA(t) and W̃B(t) = WB(t). Furthermore, W̃A is independent
of X̃B, W̃B is independent of X̃A, W̃A ≤ X̃A and W̃B ≤ X̃B.
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The conditional probability (8) can then be computed as follows:

Proposition 3 (Probability of increase in mid-price) Let f̂j,S be given by

f̂j,S(s) =
(
− 1

λ(S)

)j(
Πb

i=1Φ
∞
k=i

−λ(S) (μ+ kθ(S))
λ(S) +μ+ kθ(S) + s

)
, (9)

for j ≥ 1, and let ΛS ≡∑S−1

i=1 λ(i). Then (8) is given by the inverse Laplace transform of

F̂a,b,S(s) =
1
s

(
f̂b,S(s+ΛS) +

ΛS

ΛS + s
(1− f̂b,S(s+ΛS))

)(
f̂a,S(ΛS − s) +

ΛS

ΛS − s
(1− f̂a,S(ΛS − s))

)
,

(10)
evaluated at 0. When S = 1, (10) reduces to

F̂a,b,1(s) =
1
s
f̂a,1(s)f̂b,1(−s). (11)

Proof. We will first focus on the special case when S = 1 and then extend the analysis to the
case S > 1 using Lemma 4 below. Construct X̃A and X̃B as in Lemma 2. When S = 1, the price
changes for the first time exactly when one of the two independent birth-death processes X̃A and
X̃B reaches the state 0 for the first time. Both of these birth-death processes have constant birth
rates λ(1) and death rates μ + iθ(1), i ≥ 1. Thus, given our initial conditions, the distribution of
T is given by the minimum of the independent first passage times σA and σB . Furthermore, the
quantity (8) is given by P[σA < σB ]. By (7), the conditional Laplace transform of σA − σB given
the initial conditions is given by f̂a,1(s)f̂b,1(−s) so that the conditional Laplace transform of the
cumulative distribution function (cdf) of σA −σB is given by (11). Thus, our desired probability is
given by the inverse Laplace transform of (11) evaluated at 0.

We now move on to the case where S > 1. Let σi
A denote the first time an ask order arrives i

ticks away from the bid and σi
B denote the first time a bid order arrives i ticks away from the ask,

for i = 1, . . . , S − 1. The time of the first change in mid-price is now given by

T = σA ∧σB ∧min{σi
A, σi

B , i = 1, . . . , S − 1}.
Notice that X̃A and X̃B are independent of the mutually independent arrival times σi

A, σi
B, for

i = 1, . . . , S − 1. Also, notice that σi
A and σi

B are exponentially distributed with rates λ(i) for
i = 1, . . . , S−1. The first change in mid-price is an increase if there is an arrival of a limit bid order
within S − 1 ticks of the best ask or X̃A hits zero, before there is an arrival of a limit ask order
within S − 1 ticks of the best bid or X̃B hits zero. Thus, the quantity (8) can be written as

P[σA ∧σ1
B ∧ . . .∧σS−1

B < σB ∧σ1
A ∧ . . .∧σS−1

A ] = P[σA ∧σΣ
B < σB ∧σΣ

A], (12)

where σΣ
A and σΣ

B are independent exponential random variables both with rate ΛS . In order to
compute (12), we first need to compute the conditional Laplace transform of the minimum σB ∧σΣ

A.
This is given in Lemma 4, substituting σΣ

A for Z. The conditional Laplace transform of the random
variable σB ∧σΣ

A−σA∧σΣ
B can then be computed using (3) and the probability (8) can be computed

by inverting the conditional Laplace transform of the cdf of this random variable and evaluating
at 0 as in the case S = 1. �

Lemma 4 Let Z be an exponentially distributed random variable with parameter Λ. Then the
Laplace transform of the random variable σB ∧Z is given by

f̂b(s+Λ) +
Λ

Λ+ s
(1− f̂b(s+Λ)),

where f̂b is given in (9).
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Proof. We first compute the density fσB∧Z of the random variable σB ∧Z in terms of the density
fb of the random variable σB. Since Z is exponential with rate Λ, we have for all t≥ 0,

P[σB ∧Z < t] = 1−P[σB > t]P[Z > t] = 1− (1−FσB
(t))e−Λt.

Taking derivatives with respect to t gives

fσB∧Z(t) = fb(t)e−Λt +Λ(1−Fb(t))e−Λt,

for t≥ 0, where Fb(t) is the cdf of σB. Also, fσB∧Z(t) = 0 for t < 0. The Laplace transform of σB ∧Z
is thus given by

f̂σB∧Z(s) =
∫ ∞

−∞
e−stfσB∧σΣ

B
(t)dt

=
∫ ∞

0

e−st
(
fb(t)e−Λt +Λ(1−Fb(t))e−Λt

)
ds

=
∫ ∞

0

e−t(s+Λ)fb(t)dt+Λ
∫ ∞

0

(1−Fb(t))e−t(s+Λ)dt

= f̂b(s+Λ) +
Λ

Λ+ s

(
1− f̂b(s+Λ)

)
,

where the last equality follows from integration by parts. �
Proposition 3 yields a numerical procedure for computing the probability that the next change

in the mid-price will be an increase. We discuss implementation of the procedure in §5.2.3.

4.3. Executing an order before the mid-price moves

Traders who submit limit orders obtain a better price than if they had submitted a market order
but face the risk of non-execution and the “winner’s curse”. Whereas a market order executes with
certainty, limit orders stay in the order book until either a matching order is entered or the order is
canceled. The probability that a limit order is executed before the price moves is therefore useful in
quantifying the choice between a limit order and a market order. We now compute the probability
that an order placed at the bid price is executed before any movement in the mid-price, given that
the order is not canceled. Our result holds for initial spread S ≡ s(0)≥ 1, but we remark that in
the case where S = 1 the probability we are interested is equal to the probability that the order is
executed before the mid-price moves away from the desired price, given the order is not canceled.
Although we focus here on an order placed at the bid price, since our model is symmetric in bids
and asks, our result also holds for orders placed at the ask price.

We introduce some new notation, which we will used in this subsection as well as the next. Let
NCb (NCa) denote the event that an order that never gets canceled is placed at the bid (ask) at
time 0.

Then, the probability that an order placed at the bid is executed before the mid-price moves is
given by

P[εB < T |XB(0) = b,XA(0) = a, s(0) = S,NCb]. (13)

Proposition 5 (Probability of order execution before mid-price moves) Define f̂a,S(s)
as in (9) and let ĝj,S be given by

ĝj,S(s) = Πj
i=1

μ+ θ(S)(i− 1)
μ+ θ(S)(i− 1) + s

(14)
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for j ≥ 1, and let ΛS ≡∑S−1

i=1 λ(i). Then the quantity (13) is given by the inverse Laplace transform
of

F̂a,b,S(s) =
1
s
ĝb,S(s)

(
f̂b,S(2ΛS − s) +

2ΛS

2ΛS − s
(1− f̂b,S(2ΛS − s))

)
, (15)

evaluated at 0. When S = 1, (15) reduces to

F̂a,b,1(s) =
1
s
ĝb,1(s)f̂a,1(−s). (16)

Proof. Construct X̃A and W̃B using Lemma 2. Let us first consider the case S = 1. Let T
′ ≡

εB ∧T denote the first time when either the process W̃B hits 0 or the mid-price changes. Conditional
on an infinitely patient order being placed at the bid price at time 0, T

′
is the first time when either

that order gets executed or the mid-price changes. Notice that conditional on our initial conditions,
εB is given by a sum of b independent exponentially distributed random variables with parameters
μ+(i− 1)θ(1), for i = 1, . . . , b, and independent of X̃A. Thus, the conditional Laplace transform of
εB given our initial conditions is given by (14). Since, in the case S = 1 the mid-price can change
before time εB if and only if σA < εB, the quantity (13) can be written simply as P[εB < σA]. Using
(3) with the conditional Laplace transforms of εB and σA, given in (14) and (9) respectively, we
obtain (16).

This analysis can be extended to the case where S > 1 just as in the proof of Proposition 3.
When S > 1, our desired quantity can be written as P[εB < σA ∧ σΣ

B ∧ σΣ
A]. Since the conditional

distribution of σΣ
B ∧σΣ

A is exponential with parameter 2ΛS. As in the proof of Proposition 3, Lemma
4 then yields the result. �

4.4. Making the spread

We now compute the probability that two orders, one placed at the bid price and one placed at the
ask price, are both executed before the mid-price moves, given that the orders are not canceled.
If the probability of executing both a buy and a sell limit order before the price moves is high, a
statistical arbitrage strategy can be designed by submitting limit orders at the bid and the ask and
wait for both orders to execute. If both orders execute before the price moves, the strategy has paid
off the bid-ask spread: we refer to this situation as “making the spread”. Otherwise, losses may be
minimized by submitting a market order and losing the bid-ask spread. We restrict attention to
the case where the initial spread is one tick: S = 1. The probability of making the spread can be
expressed as

P[max{εA, εB}< T |XB(0) = b,XA(0) = a, s(0) = 1,NCa,NCb]. (17)

The following result allows to compute this probability using Laplace transform methods:

Proposition 6 The probability (17) of making the spread is given by ha,b +hb,a, where

ha,b =
∞∑

i=0

a∑
j=1

P[εj < σi]
∫ ∞

0

P X
0,i(t)P

W
a,j(t)gb(t)dt, (18)

where

P X
0,i(t) =

e−λX (t)λX(t)i

i!
, λX(t)≡ λ

θ

(
1− e−θt

)
(19)

P W
a,j(t)≡

(
eQW

a t
)

a,j
≡
( ∞∑

k=0

tk

k!
(QW

a )k

)
a,j

(20)
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QW
a ≡

⎡
⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0
μ −μ 0 · · · 0
0 μ+ θ −μ− θ · · · 0
...

...
. . . . . .

...
0 0 · · · μ+(a− 1)θ −μ− (a− 1)θ

⎤
⎥⎥⎥⎥⎥⎦ . (21)

and gb is the inverse Laplace transform of ĝb,1, which is given in (14).

Proof. Since S = 1, T = min{σA, σB}, and the quantity (17) can be written as

P[max{εB, εA}< min{σB , σA}]. (22)

Construct X̃A, X̃B, W̃A and W̃B using Lemma 2. Let T
′
= max{εA, εB} ∧ T denote the first time

when either both the processes W̃A and W̃B have hit 0 or the mid-price has changed. Conditional
on infinitely patient orders being placed at the best bid and ask prices at time 0, T

′
is the first

time when either both the orders get executed or the mid-price changes. Furthermore, by Lemma
2, W̃A and W̃B are independent pure death processes with death rate μ+ iθ(1) in state i≥ 1, and
W̃A(t) ≤ X̃A(t) and W̃B(t)≤ X̃B(t). This implies that εA and εB are independent and σA and σB

are independent with εA ≤ σA and εB ≤ σB. Using these properties we obtain

P[max{εB , εA}< min{σB , σA}] = P[εB < σA, εA < σB]
= P[εB < σA, εA < σB, εB < εA] + P[εB < σA, εA < σB , εA < εB]
= P[εA < σB, εB < εA] + P[εB < σA, εA < εB ]
= ha,b +hb,a (23)

where we define ha,b = P[εB < εA < σB ], the probability that the order placed at the bid is executed
before the order placed at the ask and the order at the ask is executed before the bid quote
disappears. We now focus on computing ha,b. Conditioning on the value of εB gives

ha,b =
∫ ∞

0

P[εB < εA < σB |εB = t]gb(t)dt. (24)

Focusing on the first factor in the integrand in (24) and conditioning on the values of X̃B(t) and
W̃A(t) gives us

P[εB < εA < σB |εB = t] =
∞∑

i=0

a∑
j=0

P[εB < εA < σB |εB = t, X̃B(t) = i, W̃A(t) = j]P[X̃B(t) = i, W̃A(t) = j|εB = t]

=
∞∑

i=0

a∑
j=1

P[εj < σi]P[X̃B(t) = i|εB = t]P[W̃A(t) = j|εB = t]

=
∞∑

i=0

a∑
j=1

P[εj < σi]P[X̃B(t) = i|εB = t]P[W̃A(t) = j] (25)

Combining the equations (23)-(25) and using Tonelli’s theorem to interchange the integral and the
summation gives us

ha,b =
∞∑

i=0

a∑
j=1

P[εj < σi]
∫ ∞

0

P[X̃B(t) = i|εB = t]P[W̃A(t) = j]gb(t)dt.

The quantity P[X̃B(t) = i|εB = t] can be computed using an analogy with the M/M/∞ queue.
The number of orders in the bid queue at the time when the bid order placed at time 0 has executed
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is simply the number of customers in an initially empty M/M/∞ queue with arrival rate λ and
service rate θ, which has a Poisson distribution with mean given by (19). This remark leads to
(??).

The quantity P[W̃A(t) = j] is the probability that a pure death process with death rate μ+(k−
1)θ(1) in state k ≥ 1 is in state j at time t, given it begins in state a. The infinitesimal generator of
this pure death process is given by (21). Thus, by Corollary II.3.5 of Asmussen (2003), P[W̃A(t) = j]
is given by (20). �

5. Numerical Results

Our stochastic model allows one to compute various quantities of interest by simulating the evolu-
tion of the order book and and by using the Laplace transform methods presented in §4, based on
parameters μ, λ and θ estimated from the order flow. In this section we compute these quantities
for the example of Sky Perfect Communications and compare them to empirically observed values,
in order to assess the precision of the description provided by our model.

In §5.1, we compare empirically observed long-term behavior (e.g. unconditional properties) of
the order book to simulations of the fitted model. Although these quantities may not be particularly
important for traders who are interested in trading in a short time scale, they indicate how well
the model reproduces the average properties of the order book. In §5.2, we compare conditional
probabilities of various events in our model to frequencies of the events in the data. We also compare
results using the Laplace transform methods developed in §4 to our simulation results.

5.1. Long term behavior

Recent empirical studies on order books Bouchaud et al. (2002, 2008) have mainly focused on aver-
age properties of the order book, which, in our context correspond to unconditional expectations of
quantities under the stationary measure of X: the steady state shape of the book and the volatility
of the mid-price. The ergodicity of the Markov chain X, shown in Proposition 1, implies that such
expectations E[f(X∞)] can be computed in the model by simulating the order book over a large
horizon T and averaging f(X(t)) over the simulated path:

1
T

∫ T

0

f(X(t))dt→E[f(X∞)] as T →∞.

5.1.1. Steady state shape of the book We simulate the order book over a long horizon
(n = 106 events) and observe the mean number of orders Qi at distances 1≤ i≤ 30 ticks from the
opposite best quote. The results are displayed in Figure 2. The steady state profile of the order
book describes the average market impact of trades Farmer et al. (2004), Bouchaud et al. (2008).
Figure 2 shows that the average profile of the order book displays a hump (in this case, at two
ticks from the bid/ask), as observed in empirical studies Bouchaud et al. (2008). Note that this
hump feature does not result from any fine-tuning of model parameters or additional ingredients
(such as correlation between order flow and past price moves).

5.1.2. Volatility Define the realized volatility of the asset over a day to be given by

RVn =

√√√√ n∑
i=1

(
log
(

Pi+1

Pi

))2

,

where n is the number of quotes in a day and the prices Pi represent the mid-price of the stock. In
the first day of the sample, we compute a realized volatility of 0.0219 after a total of 370 trades.
After repeatedly simulating our model for 370 trades (using parameters λ, μ and θ estimated
from the order book time series) we obtained a 95% confidence interval for realized volatility of
0.0228 ± 0.0003. Interestingly, this estimator yields the correct order of magnitude for realized
volatility solely based on intensity parameters for the order flow (λ,μ, θ).
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Figure 2 Simulation of the steady state profile of the order book: Sky Perfect Communications.

5.2. Conditional distributions

As discussed in the introduction, conditional distributions are the main quantities of interest for
applications in high-frequency trading. A good description of conditional distributions of variables
describing the order book give one the ability to predict their behavior in the short term, which is
of obvious interest in optimal trade execution and the design of trading strategies.

5.2.1. One-step transition probabilities In order to assess the model’s usefulness for short-
term prediction of order book behavior, we compare one-step transition probabilities implied by
our model to corresponding empirical frequencies. In particular, we consider the probability that
the number of orders at a given price level increases given that it changes.

Define Tm as the time of the mth event in the order book:

T0 = 0, Tm+1 ≡ inf{t≥ Tm|X(t) 
= X(Tm)}. (26)

The probability that the number of orders at a distance i from the opposite best quote moves from
n to n +1 at the next change is given by

Pi(n)≡ P[QA
i (Tm+1) = n +1 |QA

i (Tm) = n,QA
i (Tm+1) 
= n, s(Tm) = 1] =

{
λ(1)

λ(1)+μ+nθ(1)
, i = 1,

λ(i)

λ(i)+nθ(i)
, i > 1.

(27)
To see how the above expression arises, consider the case i = 1. The next change in QA

1 is an increase
if an arrival of a limit order at price QA

1 occurs before any of the limit orders at QA
1 cancel or a

market buy order occurs. But since an arrival of a limit order at price QA
1 occurs with rate λ(1)

and a cancellation or market buy order occurs at rate μ+nθ(1), the probability that an arrival of
a limit order occurs first is given by λ(1)/(λ(1) +μ+nθ(1)).

Denoting empirical quantities with a hat, e.g. Q̂B
i (t) is the empirically observed number of bid

orders at a distance of i units from the ask price at time t, an estimator for the above probability
is given by

P̂i(n)≡ B̂up + Âup

B̂change + Âchange

,
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Figure 3 Probability of an increase in the number of orders at distance i from the opposite best quote in the next
change, for i = 1, . . . ,5.

where

B̂up =
∣∣∣{m|Q̂B

i (T̂m) = n, Q̂B
i (T̂m+1) > n}

∣∣∣
Âup =

∣∣∣{m|Q̂A
i (T̂m) = n, Q̂A

i (T̂m+1) > n}
∣∣∣

B̂change =
∣∣∣{m|Q̂B

i (T̂m) = n, Q̂B
i (T̂m+1) 
= n}

∣∣∣
Âchange =

∣∣∣{m|Q̂A
i (T̂m) = n, Q̂A

i (T̂m+1) 
= n}
∣∣∣

In Figure 3, Pi(n) and P̂i(n) for 1≤ i≤ 5 are shown for Sky Perfect Communications. We see that
these probabilities are reasonably close in most cases, indicating that the short-term dynamics of
the order book are well-described by the model.

5.2.2. Direction of price moves This section and the next two are devoted to the com-
putation of conditional probabilities using the Laplace transform methods described in §4. These
computations require the numerical inversion of Laplace transforms. The inversions are performed
by shifting the random variable X under study by a constant c such that P[X + c ≥ 0] ≈ 1, then
inverting the corresponding one-sided Laplace transform using the methods proposed in Abate
and Whitt (1992) and Abate and Whitt (1995). When computing the probability of an increase
in mid-price, one can find a good shift c by using the fact that when a = b the probability of an
increase in mid-price is .5. This shift c should also serve well for cases where a 
= b. Table 3 com-
pares the empirical frequencies of an increase in mid-price to model-implied probabilities, given
an initial configuration of b orders at the bid price, a orders at the ask price and a spread of 1,
for various values of a and b. We computed these quantities using Monte Carlo simulation (using
30,000 replications) and the Laplace transform methods described in §4. The simulation results,
reported as 95% confidence intervals, agree with the Laplace transform computations and show
that the probability of an increase in the mid-price is well captured by the model.
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a
b 1 2 3 4 5
1 .512 .304 .263 .242 .226
2 .691 .502 .444 .376 .359
3 .757 .601 .533 .472 .409
4 .806 .672 .580 .529 .484
5 .822 .731 .640 .714 .606

a
b 1 2 3 4 5
1 .499 ± .006 .333 ± .005 .258 ± .005 .213 ± .005 .187 ± .005
2 .663 ± .005 .495 ± .006 .411 ± .006 .346 ± .005 .307 ± .005
3 .743 ± .006 .589 ± 006 .506 ± .006 .434 ± .006 .389 ± .006
4 .788 ± .005 .652 ± .006 .564 ± .006 .503 ± .006 .452 ± .006
5 .811 ± .004 .693 ± .005 .615 ± .006 .547 ± .006 .504 ± .006

a
b 1 2 3 4 5
1 .500 .336 .259 .216 .188
2 .664 .500 .407 .348 .307
3 .741 .593 .500 .437 .391
4 .784 .652 .563 .500 .452
5 .812 .693 .609 .548 .500

Table 3 Probability of an increase in mid-price: empirical frequencies (top), simulation results (95% confidence
intervals) (middle), and Laplace transform method results (bottom).

5.2.3. Executing an order before the mid-price moves Table 4 gives probabilities com-
puted using both simulation and our Laplace transform method for executing a bid order before a
change in mid-price for various values of a and b and for S = 1. Since our data set does not allow
us to track specific orders, empirical values for these quantities, as well as the quantities in §5.2.4,
are not obtainable.

5.2.4. Making the spread Table 5 gives probabilities computed using both simulation and
our Laplace transform method for executing both a bid and an ask order at the best quotes
before the mid-price changes. One interesting observation here is that for a fixed value of a, as b
is increased, the probability of making the spread is not monotonic. Thus, for a fixed number of
orders at the ask price the probability of making the spread is maximized for a nontrivial optimal
number of orders at the bid price.

6. Conclusion

We have proposed a stylized stochastic model describing the dynamics of a limit order book, where
the occurrence of different types of events –market orders, limit orders and cancellations– are
described in terms of independent Poisson processes.

The formulation of the model, which can be viewed as a queuing system, is entirely based on
observable quantities and its parameters can be easily estimated from observations of the events in
the order book. The model is simple enough to allow analytical computation of various conditional
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a
b 1 2 3 4 5
1 .498 ± .004 .642 ± .004 .709 ± .004 .748 ± .004 .779 ± .004
2 .299 ± .004 .451 ± .004 .536 ± .004 .592 ± .004 .632 ± .004
3 .204 ± .004 .335 ± .004 .422 ± .004 .484 ± .004 .532 ± .004
4 .152 ± .003 .264 ± .004 .344 ± .004 .403 ± .004 .450 ± .004
5 .117 ± .003 .213 ± .004 .291 ± .004 .342 ± .004 .394 ± .004

a
b 1 2 3 4 5
1 .497 .641 .709 .749 .776
2 .302 .449 .535 .591 .631
3 .206 .336 .422 .483 .528
4 .152 .263 .344 .404 .452
5 .118 .213 .287 .346 .393

Table 4 Probability of executing a bid order before a change in mid-price: simulation results (95% confidence
intervals) (top) and Laplace transform method results (bottom).

a
b 1 2 3 4 5
1 .268 ± .004 .306 ± .004 .312 ± .004 .301 ± .004 .286 ± .004
2 .306 ± .004 .384 ± .004 .406 ± .004 .411 ± .004 .401 ± .004
3 .312 ± .004 .406 ± .004 .441 ± .004 .455 ± .004 .456 ± .004
4 .301 ± .004 .411 ± .004 .455 ± .004 .473 ± .004 .485 ± .004
5 .286 ± .004 .401 ± .004 .456 ± .004 .485 ± .004 .491 ± .004

a
b 1 2 3 4 5
1 .266 .308 .309 .300 .288
2 .308 .386 .406 .406 .400
3 .309 .406 .441 .452 .452
4 .300 .406 .452 .471 .479
5 .288 .400 .452 .479 .491

Table 5 Probability of making the spread: simulation results (95% confidence intervals) (top) and Laplace
transform method results (bottom).

probabilities of order book events via Laplace transform methods, yet rich enough to capture ade-
quately the short-term behavior of the order book: conditional distributions of various quantities
of interest show good agreement with the corresponding empirical distributions for parameters
estimated from data sets from the Tokyo Stock Exchange. The ability of our model to compute
conditional distributions is useful for short-term prediction and design of automated trading strate-
gies. Finally, simulation results illustrate that our model also yields realistic features for long-term
(steady state) average behavior of the order book profile and of price volatility.
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One by-product of this study is to show how far a stochastic model can go in reproducing the
dynamic properties of a limit order book without resorting to detailed behavioral assumptions
about market participants or introducing unobservable parameters describing agent preferences,
as in the market microstructure literature.

This model can be extended in various ways to take into account a richer set of empirically
observed properties Bouchaud et al. (2008). Correlation of the order flow with recent price behavior
can be modeled by introducing state-dependent intensities of order arrivals. The heterogeneity of
order sizes, which appears to be an important ingredient, can be incorporated via a distribution of
order sizes. Both of these features conserve the Markovian nature of the process. A more realistic
distribution of inter-event times may also be introduced by modelling the event arrivals via renewal
processes. It remains to be seen whether the analytical tractability of the model can be preserved
when such ingredients are introduced. We look forward to exploring such extensions in a future
work.
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