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Using data from the London Stock Exchange, we test a model that treats the

statistical mechanics of price formation and the accumulation of stored supply

and demand under the simple assumption that people place orders to trade at

random. The model makes excellent predictions for transaction costs, price

diffusion rates, and a quantity closely related to supply and demand. Thus, it

appears that the price formation mechanism strongly constrains the market,

playing a more important role than the strategic behavior of agents. The re-

markable success of this approach suggests a new and unorthodox approach

to economics.

Since the nineteenth century one of the classic questions in economics has been, “What

determines supply and demand?”. Similarly, since Bachelier (1) introduced the random walk

model for prices in 1900, another important question has been “What determines the price dif-

fusion rate?”. Standard models in economics, which are based on rational utility maximizing

agents, have had only limited success in addressing these questions. In this paper we demon-
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strate that a model built on the opposite approach – that agents are of zero intelligence, and

simply place orders to trade at random – can successfully address these questions and others,

providing one properly models the statistical mechanics of price formation.

Traditionally economics has devoted considerable effort to modeling the strategic behavior

and expectations of agents. While no one would dispute that this is important, it has also been

pointed out that some aspects of economics are independent of the agent model. For example,

Becker (2) showed that a budget constraint is sufficient to guarantee the proper slope of supply

and demand curves, and Gode and Sunder (3) demonstrated that if one replaces the students in

a standard classroom economics experiment by zero-intelligence agents, price setting and other

properties match better than one might expect. In this paper we show that this principle can

be dramatically more powerful, and can make surprisingly accurate quantitative predictions. In

particular, we test a zero-intelligence statistical mechanics model due to Daniels et al. (4, 5),

which builds on earlier work in financial economics (6–9) and physics (10–16). This added

to the prior literature by constructing and approximately solving a simple model for price set-

ting that makes quantitative, testable predictions about fundamental market properties, many of

which can be expressed as simple algebraic formulae.

The model of Daniels et al. (4) assumes a continuous double auction, which is the most

widely used method of price formation in modern financial markets (5). There are two fun-

damental kinds of trading orders: Impatient traders submitmarket orders, which are requests

to buy or sell a desired number of shares immediately at the best available price. More pa-

tient traders submitlimit orders, which include the worst allowable price for the transaction.

Limit orders may fail to result in an immediate transaction, in which case they are stored in a

queue called thelimit order book, illustrated in Fig. 1. As each buy order arrives it is transacted

against accumulated sell limit orders that have a lower selling price, in priority of price and

arrival time. Similarly for sell orders. The lowest selling price offered in the book at any point
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in time is called thebest ask, a(t), and the highest buying price thebest bid, b(t).

The model assumes that two types of zero intelligence agents place and cancel orders ran-

domly (see Fig. 1). Impatient agents place market orders of sizeσ, which arrive at a rateµ

shares per time. Patient agents place limit orders of the same sizeσ, which arrive with a con-

stant rate densityα shares per price per time, and queued limit orders are cancelled at a rateδ,

with dimensions of1/time. Prices change in discrete increments calledticks, of sizedp. To keep

the model as simple as possible, there are equal rates for buying and selling, and order place-

ment and cancellation are Poisson processes. All of these processes are independent except for

coupling through their boundary conditions: Buy limit orders arrive with a constant density over

the semi-infinite interval−∞ < p < a(t), wherep is the logarithm of the price, and sell limit

orders arrive with constant density on the semi-infinite intervalb(t) < p < ∞. As new orders

arrive they may alter the best pricesa andb, which in turn changes the boundary conditions for

subsequent limit order placement. As a resulta(t) andb(t) each make random walks, but be-

cause of coupling of the buying and selling processes the bid-askspreads(t) ≡ a(t)− b(t) is a

stationary random variable. It is this feedback between order placement and price diffusion that

makes this model interesting, and despite its apparent simplicity, quite difficult to understand

analytically (5).

We test the model using data from the London Stock Exchange (LSE) during the period

August 1st 1998 - April 30th 2000, which includes a total of 434 trading days and roughly six

million events. This data set shows all orders and cancellations, making it possible to measure

the parameters of the model. For a more detailed description of the LSE and the dataset see (19).

We chose 11 stocks with at least 300,000 events in the sample and at least 80 events on any given

day. We measure the average value of the five above-defined parametersµ, α, δ, σ, anddp for

each day, making the assumption that the parameters of the model are stationary within each

day, but change from day to day.
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The bid-ask spread is of central interest in financial markets because it is an important

component of transaction costs. The mean value of the spread predicted based on a mean

field theory analysis of the model iŝs = (µ/α)f(σδ/µ, dp/pc), wheref is a relatively slowly

varying non-dimensional function (5). To test this relationship, we measure the actual average

spread̄s across the full time period for each stock, and compare to the predicted average spread

ŝ based on order flows. To test our hypothesis that the two values coincide, we perform a

regression of the formlog s̄ = A log ŝ + B. The regression, shown in Fig. 2(a), hasR2 = 0.96,

with A = 0.99 ± 0.10 andB = 0.06 ± 0.29, in comparison to the model predictionsA = 1

andB = 0. We thus very strongly reject the null hypothesis thatA = 0, indicating that the

predictions are far better than random. Even more surprising, we are unable to reject the null

hypotheses thatA = 1 andB = 0, indicating that we match the data extremely well even

without fitting any free parameters. See (19) for details of the error analysis.

Another quantity of primary interest is the price diffusion rate, which drives the volatility of

prices and is the primary determinant of financial risk. If we assume that prices make a random

walk, then the diffusion rate measures the size and frequency of its increments. The variance

V of an uncorrellated normal random walk after timet grows asV (t) = Dt, whereD is the

diffusion rate. Numerical experiments indicate that the short term price diffusion rate predicted

by the model isD̂ = kµ5/2δ1/2σ−1/2α−2 wherek is a constant. As for the spread, we compare

this to the actual price diffusion ratēDi for each stock averaged over the 21 month period,

and regress the logarithm of the predicted vs. actual values, as shown in Fig. 2(b). This gives

R2 = 0.76, with A = 1.33± 0.25 andB = 2.43± 1.75. Thus, we again strongly reject the null

hypothesis thatA = 0. The results are not quite as good as they are for the spread, but we are

still unable to reject the null hypothesis thatA = 1 andB = 0; in each case the measured value

is a little more than one standard deviation too high. We have accomplished something that is

rather hard to achieve in economics, i.e. we have made testable predictions that are validated
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without any adjustment of free parameters. However, an important caveat is that problems in

measuring the parametersα and δ introduce some arbitrariness into the intercept parameter

B (19).

Finally, the model makes a prediction about market impact, which is the dominant source

of transaction costs for large traders, and is related to supply and demand. When a market

order of sizeω arrives it causes transactions which can cause a change in the midpoint price

m(t) ≡ (a(t) + b(t))/2. The average market impact functionφ is the average logarithmic

midpoint price shift∆p conditioned on order size,φ(ω) = E[∆p|ω].

The nondimensional coordinates dictated by the model are very useful for understanding the

average market impact function. There are five parameters of the model and three fundamen-

tal dimensional quantities (shares, price, andtime), leading to only two independent degrees

of freedom. Since the order flow ratesµ, α, andδ are more important than the discreteness

parametersσ anddp, it is natural to construct non-dimensional units based on the order flow

parameters alone. There are unique combinations of the three order flow rates with units of

shares, price, andtime. These define a characteristic number of sharesNc = µ/δ, a characteris-

tic price intervalpc = µ/α, and a characteristic timescaletc = 1/δ. These characteristic values

can be used to define nondimensional coordinatesp̂ = p/pc for price,N̂ = N/Nc for shares,

andt̂ = t/tc for time.

Each market orderωi causes a possible price change∆pi, defining an impact event(ωi, ∆pi).

If we bin together events with similarω and plot the mean order size as a function of the mean

price impact∆p, we typically see highly variable behavior for different stocks, as shown in

Fig. 3(b). However, if we plot the data in nondimensional units, we see a collapse of the

data onto roughly a single curve, as shown in Fig. 3(a). The variations from stock to stock

are quite small; on average the corresponding bins for each stock deviate from each other by

about8%, roughly the size of the statistical sampling error. We have made an extensive anal-
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ysis, but due to problems caused by the long-memory property of these time series, it remains

unclear whether these differences are statistically significant (19). In contrast, using standard

coordinates the differences are highly statistically significant. This collapse illustrates that the

non-dimensional coordinates dictated by the model provide substantial explanatory power, and

that we understand how the market impact varies from stock to stock by a simple transformation

of coordinates. This sheds light on empirical results for the average market impact for the New

York Stock Exchange (17).

If we fit a function of the formφ(ω) = Kωβ to the market impact curve, we getβ =

0.26±0.02 for buy orders andβ = 0.23±0.02 for sell orders, as shown in Fig. 4. The functional

form of the market impact we observe here is not in agreement with a recent theory by Gabaix

et al. (18), which predictsβ = 0.5. There is an interesting underlying debate: Their theory

follows traditional thinking in economics, and postulates that agents optimize their behavior to

maximize profits, while the theory we test here assumes that they behave randomly, and that

the form of the average market impact function is dictated by the statistical mechanics of price

formation.

The market impact function is closely related to the more familiar notions of supply and

demand. At any instant in time the stored queue of sell limit orders reveals the quantity available

for sale at each price, thus showing the supply, and the stored buy orders similarly show the

revealed demand. The price shift caused by a market order of a given size depends on the stored

supply or demand through a moment expansion (5). Thus, the collapse of the market impact

function reflects a corresponding property of supply and demand. Normally one would assume

that supply and demand are functions of human production and desire; in this case, their form

is dictated by the dynamical interaction of order accumulation, removal by market orders and

cancellation, and price diffusion.

These results have several practical implications. For market practitioners, understanding
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the spread and the market impact function is very useful for estimating transaction costs and for

developing algorithms that minimize their effect. And for regulators they suggest that it may be

possible to make prices less volatile and lower transaction costs by creating incentives for limit

orders and disincentives for market orders.

The model we test here was constructed before looking at the data (4,5), and was designed

to be as simple as possible for analytic analysis. A more realistic (but necessarily more compli-

cated) model would more closely mimic the properties of real order flows, which are strongly

correlated, and would hopefully be able to capture even more features of the data, such as the

power law tails of prices. Nonetheless, as we have shown above, this simple model does a

remarkable job of explaining important fundamental properties of markets, such as transaction

costs, price diffusion and supply and demand. The model captures the statistical mechanics of

the market quite well, and in particular, the way order placement and price formation interact

to alter the accumulation of stored supply and demand. For the phenomena studied here this

appears to be the dominant effect. We do not mean to claim that market participants are unin-

telligent: Indeed, one of the virtues of this model is that it provides a benchmark to separate

properties that are driven by the statistical mechanics of the market institution from those that

are driven by conditional strategic behaviour. It is surprising that such a simple model can ex-

plain so much about a system as complex as a market, and shed light on century-old questions

about the rate of price diffusion and the form of supply and demand
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Figure 1: A random process model of the double continuous auction. Stored limit orders are
shown stacked along the price axis, with sell orders (supply) stacked above the axis at higher
prices and buy orders (demand) stacked below the axis at lower prices. New sell limit orders
are visualized as randomly falling down, and new buy orders as randomly “falling up”. New
sell orders can be placed anywhere above the best buying price, and new buy orders anywhere
below the best selling price. Limit orders can be removed spontaneously (e.g. because the agent
changes her mind or the order expires) or they can be removed by market orders of the opposite
type. This can result in changes in the best prices, which in turn alters the boundaries of the
order placement process. It is this feedback between order placement and price formation that
makes this model interesting, and its predictions non-trivial.
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Figure 2: Regressions of predicted values based on order flow parameters vs. actual values for
the spread (a) and price diffusion rate (b). The dots show the average predicted and actual value
for each stock averaged over the full 21 month time period. The solid line is a regression; the
dashed line is the diagonal, representing the model’s prediction without any adjustment of slope
or intercept.
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Figure 3: The average market impact as a function of the mean order size. In (a) the price dif-
ferences and order sizes for each transaction are normalized by the nondimensional coordinates
dictated by the model, computed on a daily basis. Most of the stock collapse extremely well
onto a single curve; there are a few that deviate, but the deviations are sufficiently small that
given the long-memory nature of the data, it is difficult to determine whether these deviations
are statistically significant (19). This means that we understand the behavior of the market im-
pact, which is closely related to supply and demand, by a simple transformation of coordinates.
In (b), for comparison we plot the order size in units of British pounds against the average
logarithmic price shift. Other alternative normalizations show similarly large deviations (19).
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Figure 4: The average market impact vs. order size plotted on log-log scale. The upper left and
right panels show buy and sell orders in nondimensional coordinates; the fitted line has slope
β = 0.26± 0.02 for buy orders andβ = 0.23± 0.02 for sell orders (19). In contrast, the lower
panels shows the same thing in dimensional units, using British pounds to measure order size.
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