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Abstract

In this paper we entertain a method of finding the most robust moving average weighting
scheme to use for the purpose of timing the market. Robustness of a weighting scheme is
defined its ability to generate sustainable performance under all possible market scenarios
regardless of the size of the averaging window. The method is illustrated using the long-
run historical data on the Standard and Poor’s Composite stock price index. We find the
most robust moving average weighting scheme, demonstrates its advantages, and discuss
its practical implementation.
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1 Introduction

Starting from the mid 2000s, there have been an explosion in the academic literature on

technical analysis of financial markets (Park and Irwin (2007)). Since that time, market timing

with moving averages has been the subject of substantial interest on the part of academics and

investors alike.1 This interest developed because over the course of the last 15 years, especially

over the decade of 2000s, many trading rules based on moving averages outperformed the

market by a large margin.

Yet despite recent numerous academic studies, the situation with practical implementation

of market timing strategies remains rather complicated due to the following reasons. There have

been proposed many technical trading rules based on moving averages of prices calculated on a

fixed size data window. The main examples are: the momentum rule, the price-minus-moving-

average rule, the change-of-direction rule, and the double-crossover method. In addition, there

are several popular types of moving averages: simple (or equally-weighted) moving average,

linearly-weighted moving average, exponentially-weighed moving average, etc. In order to time

the market a trader needs to choose: (1) a trading rule, (2) a moving average weighting scheme,

and (3) a size of the averaging window. This choice is very complicated because there exists a

huge number of potential combinations of trading rules with moving average weighting schemes

and sizes of the averaging window.

In practice, in order to find the best combination of a trading rule with a moving aver-

age weighting scheme and a size of the averaging window, using the historical data a trader

performs the test of all possible combinations and selects the combination with the best ob-

served performance. Even though this approach to selecting the best trading combination

is termed as “data-mining”, this approach works and the only real issue with this approach

is that it systematically overestimates how well the trading combination will perform in the

future (Aronson (2006), Zakamulin (2014)).

The results of the recent study by Zakamulin (2015) allows a trader to simplify dramatically

the selection of the best combination of a trading rule with a moving average weighting scheme.

Specifically, Zakamulin (2015) revealed that the computation of all technical trading indicators

1Some examples are: Brock, Lakonishok, and LeBaron (1992), Okunev and White (2003), Moskowitz, Ooi,
and Pedersen (2012), Faber (2007), Gwilym, Clare, Seaton, and Thomas (2010), Kilgallen (2012), Clare, Seaton,
Smith, and Thomas (2013), Zakamulin (2014).
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based on moving averages of prices can equivalently be interpreted as the computation of the

moving average of price changes. The straightforward use of this result might be as follows.

Instead of testing various combinations of a trading rule with a moving average weighing

scheme and a size of the averaging window, a trader needs only to test various combinations

of a weighting scheme (used to compute the moving average of price changes) and a size of the

averaging window, and then select the combination with the best performance in a back test.

Yet, the empirical study performed in Zakamulin (2015) suggests that this approach to selecting

the best trading combination has two potentially very serious flaws. In particular, Zakamulin

(2015) found that there is no single optimal size of the averaging window. On the contrary,

there are substantial time-variations in the optimal size of the averaging window for each

weighting scheme. In addition, Zakamulin (2014) and Zakamulin (2015) demonstrated that the

performance of a market timing strategy, relative to that of its passive counterpart, is highly

uneven over time. Therefore, the issue of outliers is of concern. This is because in the presence

of outliers (extraordinary good or bad performance over a rather short historical period) the

long-run performance of a trading combination does not reflect its typical performance. As

a result of these two issues, the best performing trading combination in the past might not

perform well in the near future.

In this paper we entertain a novel approach to selecting the trading rule (specified by a

particular moving average weighting scheme) to use for the purpose of timing the market. The

motivation for this approach is twofold. First, we acknowledge that there is no single optimal

size of the averaging window. Second, we acknowledge that the performance of a trading rule

is highly uneven through time and over some relatively short particular historical episodes

the performance might be unusually far from that over the rest of the dataset. Based on

these premises, we find the most robust moving average weighting scheme. By robustness of

a weighting scheme we mean not only its robustness to outliers. Robustness of a weighting

scheme is also defined as its ability to generate sustainable performance under all possible

market scenarios regardless of the size of the averaging window. Our approach is illustrated

using the long-run historical data on the Standard and Poor’s Composite stock price index.

The rest of the paper is organized as follows. Section 2 presents the market timing rules

and moving average weighting schemes. The data for our study is presented in Section 3.

Section 4 describes our methodology for finding a robust moving average. Section 5 presents
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the most robust moving average weighting scheme and demonstrates its advantages. Section

6 discusses the practical implementation of the most robust moving average. Finally, Section

7 concludes the paper.

2 Market Timing Rules and Moving AverageWeighting Schemes

A moving average of prices is calculated using a fixed size data “window” that is rolled through

time. Denote by Pt the period t closing price of a stock market index. Furthermore, denote

by MAt(k) the general weighted moving average at period-end t with k lagged prices. The

general weighted moving average is computed using the following formula:

MAt(k) =
wtPt + wt−1Pt−1 + wt−2Pt−2 + . . .+ wt−kPt−k

wt + wt−1 + wt−2 + . . .+ wt−k
=

∑k
j=0wt−jPt−j∑k

j=0wt−j

,

where wt−j is the weight of price Pt−j in the computation of the weighted moving aver-

age. There are many types of moving averages; the most popular ones are: equally-weighted,

linearly-weighted, and exponentially-weighted. Yet all of them are calculated using the same

general formula and the only real difference between the various types of moving averages lies

in the weighting scheme given by {wt, wt−1, . . . , wt−k}.

The most popular trading rules used for timing the market are: the momentum rule

(MOM), the price-minus-moving-average rule (P-MA), the moving-average-change-of-direction

rule (∆MA), and the double-crossover method (DCM). The technical trading indicators in these

rules are computed as

Momentum rule: Indicatort = Pt − Pt−k,

Price-minus-moving-average rule: Indicatort = Pt −MAt(k),

Moving-average-change-of-direction rule: Indicatort = MAt(k)−MAt−1(k),

Double-crossover method: Indicatort = MAt(s)−MAt(k),

where s < k defines the size of a shorter window. In all these market timing rules, the Buy

signal is generated when the value of a technical trading indicator is positive. Otherwise, the

Sell signal is generated.

Zakamulin (2015) demonstrates that despite being computed seemingly differently at the
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first sight, all technical trading indicators presented above are computed in the same general

manner. In particular, the computation of every technical trading indicator can equivalently be

interpreted as the computation of the weighted moving average of price changes. Specifically,

every technical trading indicator can be equivalently computed using the following formula:

Indicatort =

∑k
i=1 yt−i∆Pt−i∑k

i=1 yt−i

,

where ∆Pt−i = Pt−i+1 − Pt−i denotes the price change over the period from t− i to t− i+ 1,

and yt−i is the weight of the price change ∆Pt−i in the computation of the moving average

of price changes. The weights yt−i are computed using the weights {wt, wt−1, . . . , wt−k} that

specify how the moving average of prices is computed. In particular,

yt−i = f(wt, wt−1, . . . , wt−k),

where f(·) is some function specified by the underlying trading rule (Zakamulin (2015)).

Even though there are various trading rules based on moving averages of prices and various

types of moving averages, there are basically only three types of the shape of function f(·):

equal weighting of price changes (as in the MOM rule), underweighting the most old price

changes (as in the P-MA rule or in the most ∆MA rules), and underweighting both the most

recent and the most old price changes (as in the DCM). In order to generate these shapes,

we will employ three types of Exponential Moving Average (EMA) weighting schemes: convex

EMA, concave EMA, and hump-shaped EMA.

The ConVex EMA (CV-EMA) is the most common type of EMA. The value of the trading

indicator in this case is computed as

Indicatort(CV-EMA) =

∑k
i=1 λ

i−1∆Pt−i∑k
i=1 λ

i−1
,

where 0 ≤ λ ≤ 1 is a decay factor. This weighting scheme for price changes corresponds

to that in the Exponential-Moving-Average-Change-of-Direction (∆EMA) trading rule (Za-

kamulin (2015)). When λ = 1, the CV-EMA weighting scheme reduces to the simple (or

equally-weighted) moving average of price changes (the same as in the MOM rule). When

0 < λ < 1, the CV-EMA assigns greater weights to the most recent price changes. By varying

5



the value of λ, one is able to adjust the weighting to give greater or lesser weights to the most

recent price changes. When λ = 0, the CV-EMA reduces to the value of the most recent price

change. Figure 1, Panel A, illustrates the CV-EMA weighting scheme for two arbitrary values

of λ. Note that function λi−1 is a convex exponential function with respect to i.

The ConCave EMA (CC-EMA) also underweights the most old price changes. The value

of the trading indicator in this case is computed as

Indicatort(CC-EMA) =

∑k
i=1

(
1− λk−i+1

)
∆Pt−i∑k

i=1 (1− λk−i+1)
.

This weighting scheme for price changes corresponds to that in the Price-minus-Reverse-

Exponential-Moving-Average (P-REMA) trading rule (Zakamulin (2015)). In contrast to the

CV-EMA weighting scheme where the degree of underweighting decreases as the lag of the

price change increases, in the CC-EMA weighting scheme the degree of underweighting in-

creases as the lag of the price change increases. When λ = 0, the weighting scheme reduces

to the simple moving average of price changes (as in MOM rule). When λ → 1, the CC-EMA

reduces to the linear moving average of price changes (see the Appendix for a proof). It is

worth noting that the use of the linear moving average of price changes corresponds to the use

of the most popular Price-minus-Simple-Moving-Average (P-SMA) trading rule (Zakamulin

(2015)). Figure 1, Panel B, illustrates the CC-EMA weighting scheme for two arbitrary values

of λ. Observe that function 1− λk−i is a concave exponential function with respect to i.

The Hump-Shaped EMA (HS-EMA) underweights both the most recent and the most old

price changes. The use of the HS-EMA weighting scheme for price changes corresponds to the

use of the popular DCM trading rule based on EMA in both short and long moving averages.

Zakamulin (2015) demonstrates that the value of the trading indicator for the DCM in this

case can equivalently be computed as

Indicatort(HS-EMA) =

∑k
i=1

(
λi − λk+1

)
∆Pt−i

1− λk+1
−
∑s

i=1

(
λi − λs+1

)
∆Pt−i

1− λs+1
.

There is an uncertainly about the proper choice of the size of the shorter window s. Since

the most popular combination in practice is to use a 200-day long window and a 50-day short

window, we set s = 1
4k for all values of k. Figure 1, Panel C, illustrates the HS-EMA weighting
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scheme for two arbitrary values of λ.

For some fixed number of price change lags k, the shape of each moving average weighting

scheme depends on the value of the decay factor λ. In order to generates many different shapes

of the weighting function f(·), in each trading rule we vary the value of λ ∈ {0.00, 0.99} with

a step of ∆λ = 0.01. As a result, for each type of the EMA we get 100 different shapes. Since

we have three different types of the EMA, the total number of generated shapes amounts to

300.

3 Data

We use the same dataset as that in the study by Zakamulin (2015). This dataset comes at the

monthly frequency and consists of the capital appreciation and total returns on the Standard

and Poor’s Composite stock price index, as well as the risk-free rate of return proxied by the

Treasury Bill rate. The sample period begins in January 1857, ends in December 2014, and

covers 158 full years (1896 monthly observations). The data on the S&P Composite index

comes from two sources. The returns for the period January 1857 to December 1925 are

provided by William Schwert.2 The returns for the period January 1926 to December 2014

are computed from the closing monthly priced of the S&P Composite index and corresponding

dividend data provided by Amit Goyal.3 The Treasury Bill rate for the period January 1920 to

December 2014 is also provided by Amit Goyal. The Treasury Bill rate for the period January

1857 to December 1919 is estimated using the monthly data for the Commercial Paper Rates

for New York. The method of estimation is described in all details in Welch and Goyal (2008).

4 The Methodology for Finding a Robust Moving Average

We say that a moving average weighting scheme is robust if it is able to generate sustain-

able performance under all possible market scenarios regardless of the size of the averaging

window. Consequently, in order to find a robust weighting scheme, we need to evaluate the

performances of all different trading rules (where each rule is specified by a particular shape of

the weighting function), using all feasible sizes of the averaging window, and over all possible

2http://schwert.ssb.rochester.edu/data.htm
3http://www.hec.unil.ch/agoyal/
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Figure 1: The types of the moving average weighting schemes used in our study. Panel A
illustrates the convex exponential moving average weighting scheme. Panel B illustrates the
concave exponential moving average weighting scheme. Panel C illustrates the hump-shaped
exponential moving average weighting scheme. λ denotes the decay factor. In all illustrations
the number of price changes k = 18. Lag denotes the weight of the lag ∆Pt−i, where Lag0
denotes the most recent price change ∆Pt−1 and Lag17 denotes the most oldest price change
∆Pt−18.
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market scenarios. Then we need to compare the performances and select a trading rule with

the most stable performance.

Every market timing rule prescribes investing in the stocks (that is, the market) when a

Buy signal is generated and moving to cash when a Sell signal is generated. Thus, the time t

return to a market timing strategy is given by

rt = δt|t−1rMt +
(
1− δt|t−1

)
rft,

where rMt and rft are the month t returns on the stock market (including dividends) and the

risk-free asset respectively, and δt|t−1 ∈ {0, 1} is a trading signal for month t (0 means Sell and

1 means Buy) generated at the end of month t− 1.

By performance we mean a risk-adjusted performance. Our main measure of performance

is the Sharpe ratio which is a reward-to-total-risk performance measure. We compute the

Sharpe ratio using the methodology presented in Sharpe (1994). Specifically, the computation

of the Sharpe ratio starts with computing the excess returns, Rt = rt − rft. Then the Sharpe

ratio is computed as the ratio of the mean excess returns to the standard deviation of excess

returns. Because the Sharpe ratio is often criticized on the grounds that the standard deviation

appears to be an inadequate measure of risk, we also use the Sortino ratio (due to Sortino and

Price (1994)) as an alternative performance measure.

In practice, the most typical recommended size of the averaging window amounts to 10-12

months (see, among others, Brock et al. (1992), Faber (2007), Moskowitz et al. (2012), and

Clare et al. (2013)). However, as demonstrated in Zakamulin (2015), there are large time-

variations in the optimal size of the averaging window for each trading rule (in a back test over

a rolling horizon of 20 years). Therefore, we require that a robust moving average weighting

scheme must generate a sustainable performance over a broader manifold of horizons, from 4

to 18 months. That is, to find a robust moving average we vary k ∈ [4, 18]. Note that the

number of alternative sizes of the averaging window amounts to m = 15.

Technical analysis is based on a firm belief that there are recurrent regularities, or patterns,

in the stock price dynamics. In other words, “history repeats itself”. Based on the paradigm

of historic recurrence, we expect that in the subsequent future time period the stock price

dynamics (one possible market scenario) will represent a repetition of already observed stock
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price dynamics over a past period of the same length.4 The problem is that we do not know

what part of the history will repeat in the nearest future. Therefore we want that a robust

moving average weighting scheme generates a sustainable performance over all possible histor-

ical realizations of the stock price dynamics. We follow the most natural and straightforward

idea and split the total sample of historical data into n smaller blocks of data. These blocks

of historical data are considered as possible variants of the future stock price dynamics.

We need to make a choice of a suitable block length that should preferably include at least

one bear market. Our choice is to use the block length l = 120 months (10 years) and is partly

motivated by the results reported by Lunde and Timmermann (2003). In particular, these

authors studied the durations of bull and bear markets using virtually the same dataset as

ours. The bull and bear markets are determined as a filter rule θ1/θ2 where θ1 is a percentage

defining the threshold of the movements in stock prices that trigger a switch from a bear to a

bull market, and θ2 is the percentage for shifts from a bull to a bear market. Using a 15/15

filter rule, Lunde and Timmermann find that the mean durations of the bull and bear markets

are 24.5 and 7.7 months respectively. Therefore with the block length of 10 years we are

almost guaranteed to cover a few alternating bull and bear markets. To increase the number

of blocks of data and to decrease the performance dependence on the choice of the split points

between the blocks of data, we use 10-year blocks with a 5-year overlap between the blocks.

Specifically, the first block of data covers the 10-year period from January 1860 to December

1869; the second block of data covers the 10-year period from January 1865 to December 1874;

etc. As a result of this partition, the number of 10-year blocks amounts to n = 30.

The choice of the most robust moving average weighting scheme is made using the following

method. We fix the size of the averaging window and simulate all trading strategies over the

total sample. Each trading strategy is specified by a particular shape of the moving average

weighting scheme. Subsequently, we measure and record the performance of every moving

average weighting scheme over each block of data. In each block of data, we then rank the

performances of all alternative moving average weighting schemes. In particular, the weighting

scheme with the best performance in a block of data is assigned rank 1 (highest), the one with

4It is worth noting that very popular nowadays block-bootstrap methods of resampling the historical data
are based on the same historic recurrence paradigm. Specifically, block-bootstrap is a non-parametric method
of simulating alternative historical realizations of the underlying data series that are supposed to preserve all
relevant statistical properties of the original data series. In this method the simulated data series are generated
using blocks of historical data. For a review of bootstrapping methods, see Berkowitz and Kilian (2000).
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the next best performance is assigned rank 2, and then down to rank 300 (lowest). After that,

we change the size of the averaging window, k, and repeat the procedure all over again. In

the end, each moving average weighting scheme receives n × k = 30 × 15 = 450 ranks; each

of these ranks is associated with the weighting scheme’s performance for some specific block

of data and some specific size of the averaging window. Finally we compute the median rank

for each moving average weighting scheme. We assume that the most robust moving average

weighting scheme has the highest median rank. That is, the most robust moving average

weighting scheme is that one that has the highest median performance rank across different

historical sub-periods and different sizes of the averaging window. Note that since we use the

median rank instead of the average rank, and since we use ranks instead of performances, we

avoid the outliers issue (when an extraordinary good performance in some specific historical

period influences the overall performance).

5 Empirical Results

Rank Weighting scheme Decay, λ

1 CV-EMA 0.87
2 CV-EMA 0.88
3 CV-EMA 0.89
4 CV-EMA 0.90
5 CC-EMA 0.99
6 CC-EMA 0.73
7 CV-EMA 0.86
8 CV-EMA 0.91
9 CC-EMA 0.79
10 CV-EMA 0.85

Table 1: Top 10 most robust moving average weighting schemes out of total 300 tested. CV-
EMA denotes the convex exponential moving average weighting scheme where the weight of
∆Pt−i is given by λi−1. CC-EMA denotes the concave exponential moving average weighting
scheme where the weight of ∆Pt−i is given by 1− λk−i+1.

Table 1 reports the top 10 most robust moving average weighting schemes in our study.

7 out of 10 top most robust weighting schemes belong to the family of the CV-EMA where

the decay factor λ ∈ [0.85, 0.91] with a step of 0.01. The most robust weighting scheme is the

CV-EMA with λ = 0.87. The other 3 out of 10 top most robust weighting schemes belong to

the family of the CC-EMA where the decay factor λ ∈ {0.99, 0.73, 0.79}. It is worth noting
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that the use of the CC-EMA weighting scheme for price changes with λ = 0.99 is virtually

identical to the use of the most popular among practitioners P-SMA trading rule.5 Thus, the

P-SMA rule employs a robust moving average which belongs to the top 5 most robust moving

average weighting schemes in our study.

The most robust weighting scheme in our study is also “robust” with respect to the perfor-

mance measure used, the segmentation of the total historical sample into blocks of data, and

the amount of transaction costs. Specifically, we used the Sortino ratio instead of the Sharpe

ratio and obtained the same results. We also tried different segmentations of blocks of data:

used 5- and 10-year non-overlapping blocks, used 5-year blocks with 2- and 3-year overlap. We

varied the amount of one-way proportional transaction costs in the range 0.0-0.5%. In each

case we arrived to the same most robust moving average weighting scheme.

In order to demonstrate the advantages of the robust moving average, we compare its

performance with that of 4 benchmarks. The first benchmark is the passive buy-and-hold

strategy. The other 3 benchmarks are the active trading strategies that use the MOM rule,

the P-SMA rule, and the DCM. Table 2 reports the annualized Sharpe ratios of the passive

market and active trading strategies versus the size of the moving average window. The active

strategies are simulated over the period from January 1860 to December 2014. The size of the

averaging window is varied from 4 months to 18 months.

Our first observation is that the trading rule with the (most) robust moving average showed

the best performance only for 4 out of 15 alternative sizes of the averaging window. The P-

SMA rule scored the best for 6 out of 15 sizes of the averaging window. However, the robust

moving average generates the best median and mean performances.6

Our second observation is that the MOM rule generates a good performance only when

the size of the averaging window is relatively short. Specifically, when k ∈ [4, 5] the MOM

rule generates the best performance; when k ∈ [6, 10] the performance of the MOM rule is

rather good. However, when the size of the averaging window increases beyond 10 months, the

performance of the MOM rule starts to deteriorate. In contrast, the performance of the robust

moving average and the P-SMA rule remains stable when the size of the averaging window

5In the Appendix we prove that, when λ → 1, the CC-EMA weighting scheme reduces to the linear moving
average.

6In Table 2, due to rounding the value of a Sharpe ratio to a number with 2 digits after the decimal delimiter,
sometimes we do not see the difference in performances. Yet the bold text indicates the trading rule with the
best performance.
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Window, Weighting scheme
months Market Robust MOM P-SMA DCM

4 0.38 0.47 0.50 0.44 0.44
5 0.38 0.55 0.57 0.51 0.48
6 0.38 0.48 0.49 0.50 0.52
7 0.38 0.55 0.53 0.52 0.49
8 0.38 0.54 0.50 0.52 0.48
9 0.38 0.55 0.50 0.54 0.49
10 0.38 0.53 0.55 0.54 0.48
11 0.38 0.54 0.49 0.56 0.50
12 0.38 0.53 0.48 0.53 0.51
13 0.38 0.53 0.45 0.53 0.52
14 0.38 0.51 0.43 0.54 0.50
15 0.38 0.50 0.44 0.54 0.49
16 0.38 0.53 0.41 0.54 0.50
17 0.38 0.52 0.38 0.52 0.49
18 0.38 0.55 0.38 0.50 0.48

Median 0.38 0.53 0.49 0.53 0.49
Mean 0.38 0.53 0.47 0.52 0.49

Table 2: Annualized Sharpe ratios of the passive market and active trading strategies versus
the size of the moving average window. Market denotes the passive market strategy. Ro-
bust denotes the CV-EMA weighting scheme with λ = 0.87. MOM denotes the momentum
rule. P-SMA denotes the price-minus-simple-moving-average rule. DCM denotes the double-
crossover method where the moving averages in both the short and long window are computed
using the CV-EMA with λ = 0.9. The active strategies are simulated over the period from
January 1860 to December 2014. For each size of the averaging window, bold text indicates
the weighting scheme with the best performance.
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Figure 2: The shape of the robust moving average weighting scheme versus the shape of the
weighting scheme in the P-SMA trading rule. Panel A illustrates the shapes when the size of
the averaging window amounts to k = 4 months. Panel B illustrates the shapes when the size
of the averaging window amounts to k = 12 months. Lag denotes the weight of the lag ∆Pt−i,
where Lag0 denotes the most recent price change ∆Pt−1.

increases. All this suggests that indeed, as many analysts argue, the most recent stock prices

(or price changes) contain more relevant information on the future direction of the stock price

than earlier stock prices. We conjecture that there are probably substantial time-variations in

the optimal size of the moving averaging window and the optimal weighting scheme. It is quite

probable that the MOM rule allows a trader to generate the best performance when the trader

knows the optimal size of the averaging window. But because there is a big uncertainly about

the optimal window size, underweighting the most old prices makes the moving average to be

robust. That is, underweighting the most old prices allows the weighting scheme to generate

sustainable performance even if the size of the averaging window is way above the optimal

size. In principle, either in the robust moving average or in the P-SMA rule we can extend the

size of averaging window beyond 18 months without any noticeable performance deterioration,

because the weights of the old prices diminish quite fast and approach zero as the size of the

averaging window increases.

It is worth emphasizing that the shape of the robust moving average weighting scheme

differs from the shape of the weighting scheme in the P-SMA trading rule mainly when the

size of the averaging window is short. Figure 2 illustrates the shape of the robust moving

average weighting scheme versus the shape of the weighting scheme in the P-SMA trading

rule for two different sizes of the averaging window, 4 and 12 months. When the size of the

averaging window is 12 months, there are only marginal differences between the two weighting
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schemes. In contrast, when the size of the averaging window is 4 months, the shape of the

robust weighting scheme is somewhere in between the shapes of the weighting schemes in the

MOM and P-SMA rules. That is, when the size of the averaging window is rather short, the

robust weighting scheme underweights older price changes to a lesser degree as compared with

that in the P-SMA rule.

To further demonstrate the advantages of the robust moving average, Table 3 reports

the rank of the robust moving average weighting scheme together with the ranks of the 3

active benchmark strategies for each 10-year period out of 30 overlapping periods. The active

benchmark strategies are the same as above: the MOM rule (given by the CC-EMA with

λ = 0.00), the P-SMA rule (proxied by the CC-EMA with λ = 0.99), and the DCM (given

by the HS-EMA with λ = 0.90). We remind the reader that in our study there are totally

300 alternative weighting schemes. As a result, the rank of a weighting scheme can be any

integer number from 1 to 300. To compute the ranks in this table, we use the size of the

averaging window of 10 months. It is worth noting that with this window size the best overall

performance, among 4 competing moving averages (see Table 2), is generated by the MOM

rule; the second best by the P-SMA rule; the robust moving average scores 3rd; the DCM has

the worst performance. However, the robust weighting scheme has the highest median rank

and the second highest mean rank. Even though the MOM rule generates the best performance

over the total historical sample, its median rank over all sub-periods, and especially the mean

rank, is noticeable below those of the robust moving average. Specifically, the mean rank

of the MOM rule is higher than its median rank. This tells us that the distribution of the

performances of the MOM rule over sub-periods is right-skewed. Apparently, the superior

performance of the MOM rule tends to be generated mainly over a few historical sub-periods.

In contrast, for the robust moving average the mean rank is virtually identical to the median

rank. This tells us that the distribution of the performances of the robust moving average over

sub-periods is symmetrical. Finally, we observe that out of 4 competing rules, the P-SMA rule

most often outperforms the other rules in sub-periods. Specifically, it is the best performing

rule in 11 out of 30 sub-periods. Besides, the P-SMA rule has the highest mean rank. Yet, the

robust moving average has the highest median rank over all sub-periods.
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Weighting scheme
Period Robust MOM P-SMA DCM

1860 - 1869 206 164 76 30
1865 - 1874 169 5 290 285
1870 - 1879 137 5 228 271
1875 - 1884 112 102 114 143
1880 - 1889 51 109 127 103
1885 - 1894 113 108 172 36
1890 - 1899 198 62 216 152
1895 - 1904 133 164 77 278
1900 - 1909 91 218 129 100
1905 - 1914 125 108 253 114
1910 - 1919 160 221 156 209
1915 - 1924 3 124 25 193
1920 - 1929 2 107 63 229
1925 - 1934 93 27 130 255
1930 - 1939 116 26 109 246
1935 - 1944 273 199 62 127
1940 - 1949 286 171 150 296
1945 - 1954 61 126 5 143
1950 - 1959 19 181 1 101
1955 - 1964 58 249 7 210
1960 - 1969 124 212 119 268
1965 - 1974 108 88 46 168
1970 - 1979 92 206 38 12
1975 - 1984 158 256 41 3
1980 - 1989 79 189 42 145
1985 - 1994 2 64 152 127
1990 - 1999 90 14 186 97
1995 - 2004 112 63 116 125
2000 - 2009 14 111 18 154
2005 - 2014 103 237 63 121

Median 110 117.5 111.5 144
Mean 109.6 130.5 107.0 158.0

Table 3: Ranks of the four alternative trading rules over 10-year historical periods with 5-year
overlap. The total number of tested rules amounts to 300. As a result, the rank of a trading
rule can take any integer number from 1 to 300. The trading rules are ranked according to
their performance; the best performing rule is assigned the 1st rank, the worst performing
rule is assigned the 300th rank. In all trading rules the size of averaging window amounts
to k = 10 months. Robust denotes the CV-EMA weighting scheme with λ = 0.87. MOM
denotes the momentum rule. P-SMA denotes the price-minus-simple-moving-average rule.
DCM denotes the double-crossover method where the moving averages in both the short and
long window are computed using the CV-EMA with λ = 0.9. For each sub-period, bold text
indicates the weighting scheme with the highest rank (i.e., best performance) among the 4
alternative weighting schemes.
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6 Practical Implementation of the Robust Moving Average

To implement the trading with the robust moving average, the trader can use any available

trading software that is able to compute the exponential moving average (EMA) of prices over

a fixed size data window. The formula for the computation of the EMA at month-end t with

k lagged prices is given by

EMAt(k) =
Pt + λPt−1 + λ2Pt−2 + . . .+ λkPt−k

1 + λ+ λ2 + . . .+ λk
=

∑k
j=0 λ

jPt−j∑k
j=0 λ

j
.

The trading signal is computed as the exponential-moving-average-change-of-direction rule

with k − 1 lagged prices:

Indicatort(∆EMA) = EMAt(k − 1)− EMAt−1(k − 1) =

∑k−1
j=0 λ

jPt−j∑k−1
j=0 λ

j
−
∑k−1

j=0 λ
jPt−1−j∑k−1

j=0 λ
j

=

∑k−1
j=0 λ

j (Pt−j − Pt−1−j)∑k−1
j=0 λ

j
=

∑k
i=1 λ

i−1∆Pt−i∑k
i=1 λ

i−1
,

where i = j+1. Consequently, to compute the trading signal of the most robust moving average

using the averaging window of, say, 10 months, the trader needs to compute the change in the

value of the rolling EMA(9). Specifically, this rolling EMA is computed using the last price and

k = 9 lagged prices. The application of the EMA(9) to the S&P 500 index and the resulting

trading signal, over the period from January 1995 to December 2014, is illustrated in Figure

3.

In principle, when the size of the averaging window, k, is rather large such that λk ≈ 0,

then the trading signal of the robust moving average can also be computed using the price-

minus-exponential-moving-average (P-EMA) rule. In particular, Zakamulin (2015) shows that

the trading signal for this rule can equivalently be computed as:

Indicatort(P-EMA) =

∑k
i=1

(
λi−1 − λk

)
∆Pt−i∑k

i=1 (λ
i−1 − λk)

.

When λk ≈ 0, this trading signal reduces to that of the convex EMA weighting scheme for

price changes.

When it comes to the choice of the size of the averaging window, according to our results
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Figure 3: The application of the EMA(9) to the S&P 500 index and the resulting trading signal
over the period from January 1995 to December 2014.

the robust moving average delivers a rather stable performance when the size of the window

is greater than 4 months. The robust moving average shows the best performance (relative to

its benchmarks) when the size of the averaging window k ∈ [7, 9] months. For shorter windows

(k < 7), one can probably consider implementing the equally-weighted moving average instead

of the robust moving average. For longer windows (k > 10), one can safely use the linear

moving average (the standard P-SMA rule).

7 Conclusions

Resent research on the performance of market timing strategies based on moving averages

of prices has revealed the following two important features. First, there are substantial time-

variations in the optimal moving average weighting scheme and the optimal size of the averaging

window. As an immediate result, there is no particular moving average weighting scheme

coupled with some particular size of the averaging window that produces the best performance

under all market scenarios. Second, the performance of the market timing strategy is highly

uneven over time; the long-run performance is often substantially influenced by untypical
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performance over some relatively short historical episode(s). Both of these features significantly

complicate the choice of a reliable market timing strategy.

In this paper we proposed and implemented the novel method of selection the moving

average weighting scheme to use for the purpose of timing the market. The criterion of selection

is to choose the most robust moving average. Robustness of a moving average is defined as its

insensitivity to outliers and its ability to generate sustainable performance under all possible

market scenarios regardless of the size of the averaging window. We performed a search over

300 different shapes of the weighting scheme using 15 feasible sizes of the averaging window

and many alternative segmentations of the historical stock price data. Our results suggest

that the convex exponential moving average with the decay factor of 0.87 (for monthly data)

represents the most robust weighting scheme. We also found that the popular price-minus-

simple-moving-average trading rule belongs to the top 5 most robust moving averages in our

study.

One of the main implications of our study is that, in order to be robust, the weighting

scheme has to overweight the most recent price changes. But it is not because the last price

change is more important than the next to last price change. It is because the price changes

in some distant past are not important at all. Therefore it would be probably more correct to

say instead “the weighting scheme has to underweight the most old price changes”. It is quite

possible that equal weighting of price changes over some time-varying window size produces

the best performance. But because a trader never knows the current optimal window size,

underweighting the older price changes reduces the performance dependence on the size of the

averaging window.

Appendix

In this technical appendix we prove that the concave EMA weighting scheme, given by

Indicator(CC-EMA)t =

∑k
i=1

(
1− λk−i+1

)
∆Pt−i∑k

i=1 (1− λk−i+1)
,

reduces to the linear moving average weighting scheme when λ → 1.

The first step in the proof is to derive the approximate expression for λk−i+1 when λ → 1.
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We introduce h = 1− λ. Therefore

lim
λ→1

λk−i+1 = lim
h→0

(1− h)k−i+1.

We approximate the value of (1− h)k−i+1 using a one-term Taylor series expansion:

(1− h)k−i+1 ≈ 1− (k − i+ 1)h .

As a result, when h is rather small, the weight of ∆Pt−i can be approximated by

1− λk−i+1 ≈ (k − i+ 1)h .

The second and final step in the proof is to set this weight into the original formula for the

concave EMA and obtain the following approximation for a rather small h:

∑k
i=1

(
1− λk−i+1

)
∆Pt−i∑k

i=1 (1− λk−i+1)
≈
∑k

i=1(k − i+ 1)h∆Pt−i∑k
i=1(k − i+ 1)h

.

Observe that the fraction on the right-hand-side of the approximation does not depend on

the value of h because it is a common factor for both the numerator and denominator of the

fraction. Therefore in the limit the concave EMA weighting scheme converges to

lim
λ→1

(∑k
i=1

(
1− λk−i+1

)
∆Pt−i∑k

i=1 (1− λk−i+1)

)
=

∑k
i=1(k − i+ 1)∆Pt−i∑k

i=1(k − i+ 1)

=
k∆Pt−1 + (k − 1)∆Pt−2 + (k − 2)∆Pt−3 + . . .+ 2∆Pt−k+1 +∆Pt−k

k + (k − 1) + (k − 2) + . . .+ 2 + 1
,

which is an easily recognizable linear moving average of price changes.
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