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Abstract

Despite the enormous current interest in market timing and a series of publications in
academic journals, there is still lack of comprehensive research on the evaluation of the
profitability of trading rules using methods that are free from the data-snooping bias. In
this paper we utilize the longest historical dataset that spans 155 years and extend previous
studies on the performance of moving average trading rules in a number of important ways.
Among other things, we investigate whether overweighting the recent prices improves the
performance of timing rules; whether there is a single optimal lookback period in each
trading rule; and how accurately the trading rules identify the bullish and bearish stock
market trends. In our study we, for the first time, use both the rolling- and expanding-
window estimation scheme in the out-of-sample tests; study the performance of trading
rules across bull and bear markets; and perform numerous robustness checks and tests
for regime shifts in the stock market dynamics. Our main results can be summarized as
follows: There is strong evidence that the stock market dynamics are changing over time.
We find no statistically significant evidence that market timing strategies outperformed the
market in the second half of our sample. Neither the shape of the weighting function nor
the type of the out-of-sample estimation scheme allows a trader to improve the performance
of timing rules. All market timing rules generate many false signals during both bullish
and bearish stock market trends, yet these rules tend to outperform the market in bear
states.
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1 Introduction

Technical analysis represents a methodology of forecasting the future price movements through

the study of past price data and uncovering some recurrent regularities, or patterns, in price

dynamics. One of the fundamental principles of technical analysis is that prices move in

trends. Analysts firmly believe that these trends can be identified in a timely manner to

generate profits and limit losses. Market timing is an active trading strategy that implements

this idea in practice. Specifically, this strategy is based on switching between the market and

the cash depending on whether the prices trend upward or downward. A moving average is

one of the oldest and most popular tools used in technical analysis for detecting a trend.

A moving average of prices is calculated using a fixed size data window that is rolled through

time. The length of this window of data, also called the lookback period or averaging period,

is the time interval over which the moving average is computed. Moving average strategies are

simple to understand because the trading signals are computed using primitive rules and the

results of market timing can be easily visualized in a compelling manner. Yet, despite a long

history, modern market timing with moving averages still remains art rather than science. This

is because there exists several popular trading rules, many types of moving averages, and lots

of possible choices for the length of the lookback period. One of the unresolved controversies

in market timing is over which combination of trading rule, moving average weighting scheme,

and the length of the lookback period produces the best performance.

Whereas technical analysis has been extensively used by traders for over a century and the

majority of active traders strongly believe in market timing, academics had long been skeptical

about the usefulness of technical analysis. The academics’ attitude towards the technical

analysis was altered by a series of papers published in prominent academic journals,1 because

the findings in these papers tend to suggest that one should not dismiss the value of technical

analysis. Recently we have witnessed a constantly increasing interest in technical analysis from

both the practitioners and academics alike (Park and Irwin (2007)). This interest developed

because over the decade of 2000s many technical trading rules outperformed the market by a

large margin. Nowadays many academics seem to have gone from one extreme to another and

1Examples are Brock, Lakonishok, and LeBaron (1992), Brown, Goetzmann, and Kumar (1998), Neely,
Weller, and Dittmar (1997), Lo, Mamaysky, and Wang (2000), Okunev and White (2003), and Moskowitz, Ooi,
and Pedersen (2012).
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believe that one can beat the market by using some technical trading rules. Numerous papers

published in academic journals2 after the global financial crisis of 2007-08 left their readers

with the impression that “market timing works”.

However, despite the enormous current interest in market timing and a series of publications

in academic journals, there is still a great shortage of comprehensive research on the evaluation

of the profitability of technical trading rules using methods that are free from the data-snooping

bias. Our goal in this paper is to fill this gap in the literature and critically re-examine the

empirical performance of moving average trading rules. Moreover, in this paper we extend

previous studies in a number of important ways.

First, in this paper we utilize a historical dataset that spans 155 years and perform the

longest out-of-sample test of a few market timing rules over the period of 145 years. It is

worth mentioning that, to the best knowledge of the author, there are only two papers to date

in which the researchers implement out-of-sample tests of profitability of some trading rules

in the stock market. Specifically, in the studies by Sullivan, Timmermann, and White (1999)

and Zakamulin (2014) the length of the out-of-sample period was 10 and 84 years respectively.

Presumable, using a much longer history can provide us with much richer information about

the performance of market timing rules.

Second, in previous studies the researchers usually selected a set of so-called “most popular

combinations” of trading rules with moving average weighting schemes (examples are Brock

et al. (1992), Brown et al. (1998), Sullivan et al. (1999), Okunev and White (2003)) without

any analysis of commonalities and differences between miscellaneous choices for trading rules

and moving average weighting schemes. However, in a recent study by Zakamulin (2015) the

author uncovers the anatomy of market timing rules with moving averages and demonstrates

that the computation of every technical trading indicator can equivalently be interpreted as

the computation of a weighted moving average of price changes. Consequently, the only real

difference, between diverse market timing rules coupled with various types of moving averages,

lies in the weighting scheme used to compute the moving average of price changes. Motivated

by this result, in sharp contrast to previous studies we select a set of rules with clearly distinct

shapes of the moving average weighting scheme. This approach to selecting the set of rules

2Examples are Faber (2007), Gwilym, Clare, Seaton, and Thomas (2010), Kilgallen (2012), Moskowitz et al.
(2012), Clare, Seaton, Smith, and Thomas (2013), Pätäri and Vilska (2014), and Glabadanidis (2015).
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allows us to test the common belief among the traders that in the computation of a moving

average one has to overweight the most recent prices because they contain more relevant

information on the future direction of the price than earlier prices (see Murphy (1999), Chapter

9, and Kirkpatrick and Dahlquist (2010), Chapter 14).

Third, there is still a major controversy among technical traders about the optimal length

of the lookback period in each trading rule. Analysis of the popular advice reveals that traders

believe that in each trading rule there exits some certain, time-invariant, length of the lookback

period that produces the best performance, but they strongly disagree on its specific length.

Even for the most popular simple moving average trading rule, the popular advice on the

length of the lookback period varies from 10 to 200 days (Kirkpatrick and Dahlquist (2010),

Chapter 14). In previous studies the researchers used several choices for the lookback period in

each tested rule. In our study we, for the first time, analyze the time variations in the length

of the optimal lookback period for each trading rule.

Forth, since we find evidence the that length of the optimal lookback period is not stable

over time, in our out-of-sample tests we, for the first time, use both the rolling- and expanding-

window estimation scheme to dynamically determine the length of the optimal lookback period.

This allows us to find out which estimation scheme produces the best performance of a market

timing strategy. It is worth noting that the expanding-window estimation scheme is used when

the parameter of estimation is supposed to be constant, whereas the rolling-window estimation

scheme is used when parameter instability is suspected.

Our fifth extension of the previous studies is motivated by the following idea. Starting

with Charles H. Dow, technical analysts believe that there are two types of primary trends

in the stock market: Bullish and Bearish. A Bull (Bear) market is defined as a period of

generally rising (declining) prices. Since a market timing rule is supposed to detect a trend

in the stock market, the Buy-Sell signals generated by a trading rule must coincide with the

Bull-Bear market states. In our study we, for the first time, measure the similarity between

the Buy-Sell trading signals and the Bull-Bear stock market states. In addition, we evaluate

the performance of market timing strategies not only over the periods that span a series of

interchanging Bull and Bear markets, but also over the Bull and Bear markets separately.

Despite the fact that over a very long horizon (which is beyond the investment horizon of

most individual investors) an active timing strategy seems to outperform the passive strategy,
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the outperformance generated by an active strategy is highly uneven over time. Therefore,

as argued by Zakamulin (2014), the traditional performance measurement, which consists in

reporting a single number for performance, is very misleading for investors with short- to

medium-term horizons. To give a broader and clearer picture of market timing performance,

we provide a detailed descriptive statistics of market timing performance over 5-year investment

horizons.

Our sixth extension of the previous studies consists in the following. Even though analyzing

the longest possible history of the empirical performance of technical trading rules allows us

to better understand its properties, it is dangerous to assume that the observed performance

over a very long run can be used as a reliable estimate of the expected performance in the

near future. This is because not only the performance of a market timing strategy is highly

uneven over a short run, but also the medium- to long-run performance of a market timing

strategy may change over time. Such a change might occur as a result of changing dynamics

of the stock market. In order to check whether we can use the observed performance over a

very long run as a reliable estimate of expected future performance, we split the whole sample

period into two sub-periods and perform a series of robustness tests and tests for regime shifts.

Specifically, we test for structural breaks in the growth rate of the stock market index and

for regime shifts in the return distribution of the stock market prices and the dynamics of the

Bull-Bear stock market cycles. In addition, we test the stability of the length of the mean

optimal lookback period in market timing rules over time. Last but not least, we compare the

performances of trading rules over the two sub-periods and check whether we have evidence

that the market timing strategies outperform the market in both sub-periods.

The rest of the paper is organized as follows. Section 2 presents the set of tested moving

average rules whereas Section 3 presents our data and tests for regime shifts between subsample

periods. In Section 4 we determine the turning points between the Bull and Bear markets,

present the descriptive statistics on the Bull and Bear markets, and test for the regime shift

in the dynamics and parameters of Bull and Bear markets. Section 5 presents our empirical

research design, whereas Section 6 present the results of our empirical tests. In Section 7 we

discuss the empirical results. The concluding remarks to our study are given in Section 8.
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2 Market Timing Rules and Moving AverageWeighting Schemes

A moving average of prices is calculated using a fixed size data “window” that is rolled through

time. The length of this window of data, also called the lookback period or averaging period,

is the time interval over which the moving average is computed. Denote by Pt the period t

closing price of a stock market index. Furthermore, denote by MAt(k) the general weighted

moving average at period-end t with k lagged prices. The general weighted moving average is

computed using the following formula:

MAt(k) =
wtPt + wt−1Pt−1 + wt−2Pt−2 + . . .+ wt−kPt−k

wt + wt−1 + wt−2 + . . .+ wt−k
=

∑k
j=0wt−jPt−j∑k

j=0wt−j

, (1)

where wt−j is the weight of price Pt−j in the computation of the weighted moving average. The

most commonly used types of moving averages are: the Simple Moving Average (SMA), the

Linear (or linearly weighted) Moving Average (LMA), and the Exponential Moving Average

(EMA). A less commonly used type of moving average is the Reverse Exponential Moving

Average (REMA). These moving averages at month-end t are computed as

SMAt(k) =
1

k + 1

k∑
j=0

Pt−j , LMAt(k) =

∑k
j=0(k − j + 1)Pt−j∑k

j=0(k − j + 1)
,

EMAt(k) =

∑k
j=0 λ

jPt−j∑k
j=0 λ

j
, REMAt(k) =

∑k
j=0 λ

k−jPt−j∑k
j=0 λ

k−j
,

(2)

where 0 < λ ≤ 1 is a decay factor.

The most popular trading rules used for timing the market are: the Momentum rule

(MOM), the Price-minus-Moving-Average rule (P-MA), the Moving-Average-Change-of-Direction

rule (∆MA), and the Double-Crossover Method (DCM). The technical trading indicators in

these rules are computed as

Momentum rule: Indicator
MOM(k)
t = Pt − Pt−k,

Price-minus-Moving-Average rule: Indicator
P-MA(k)
t = Pt −MAt(k),

Moving-Average-Change-of-Direction rule: Indicator
∆MA(k)
t = MAt(k)−MAt−1(k),

Double-Crossover Method: Indicator
DCM(s,k)
t = MAt(s)−MAt(k),

where s < k defines the size of a shorter window. In all these market timing rules, the Buy
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signal is generated when the value of a technical trading indicator is positive. Otherwise, the

Sell signal is generated.

Zakamulin (2015) demonstrates that despite being computed seemingly differently at the

first sight, all technical trading indicators presented above are computed in the same general

manner. In particular, the computation of every technical trading indicator can equivalently be

interpreted as the computation of the weighted moving average of price changes. Specifically,

every technical trading indicator can be equivalently computed using the following formula:

Indicatort =

∑k
i=1 yt−i∆Pt−i∑k

i=1 yt−i

, (3)

where ∆Pt−i = Pt−i+1 − Pt−i denotes the price change over the period from t− i to t− i+ 1,

and yt−i is the weight of ∆Pt−i in the computation of the moving average of price changes.

The weights yt−i are computed using the weights {wt, wt−1, . . . , wt−k} that specify how the

moving average of prices is computed.

The result given by formula (3) suggests that the only real difference, between diverse

market timing rules coupled with various types of moving averages, lies in the weighting scheme

{yt−1, yt−2, . . . , yt−k} used to compute the moving average of price changes. Even though

there are various trading rules based on moving averages of prices and various types of moving

averages, there are basically only three types of the shape of weighting scheme that are used

in practice: equal weighting of price changes, underweighting the most old price changes, and

underweighting both the most recent and the most old price changes. In order to generate

the most typical shapes of the weighting function, we will employ four types of the weighting

scheme {yt−1, yt−2, . . . , yt−k}.

The equal weighting of price changes is used in the MOM rule and the Simple-Moving-

Average-Change-of-Direction rule (∆SMA) (Zakamulin (2015)). The value of the trading in-

dicator in these rules is computed as:

Indicator
MOM(k)
t = Indicator

∆SMA(k−1)
t =

1

k

k∑
i=1

∆Pt−i. (4)

In the Price-minus-Simple-Moving-Average rule (P-SMA) and the Linear-Moving-Average-

Change-of-Direction rule (∆LMA), the value of the trading indicator is computed using the
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linearly weighted moving average of price changes (see Zakamulin (2015)):

Indicator
P-SMA(k)
t = Indicator

∆LMA(k−1)
t =

∑k
i=1(k − i+ 1)∆Pt−i∑k

i=1(k − i+ 1)
. (5)

In the linearly weighted moving average the weights decrease in arithmetic progression. In

particular, in this weighting scheme the latest price change has weight k, the second latest

k − 1, etc. down to one. A disadvantage of the linearly weighted moving average is that

the weighting scheme is too rigid. In contrast, by varying the value of λ in the Price-minus-

Reverse-Exponential-Moving-Average (P-REMA), one is able to adjust the weighting to give

greater or lesser weight to the most recent price. The value of the trading indicator in this

case is computed as (Zakamulin (2015)):

Indicator
P-REMA(k)
t =

∑k
i=1

(
1− λk−i+1

)
∆Pt−i∑k

i=1 (1− λk−i+1)
. (6)

When λ = 0, this weighting scheme reduces to the simple moving average of price changes (as

in the MOM rule). When λ → 1, this weighting scheme reduces to the linear moving average

of price changes (Zakamulin (2015)). Thus, by varying the value of λ, one is able to adjust the

weighting to give greater or lesser weights to the most recent price changes.

The weighting scheme in the DCM has a hump-shaped form and underweights both the

most recent and the most old price changes. Specifically, in this weighting scheme the largest

weight is given to the (s+ 1)-th price change. Most often, to compute the value of the DCM,

one uses the exponential moving average in both the short and long windows. The value of

the trading indicator for the DCM in this case is computed as (Zakamulin (2015)):

Indicator
DCM(s, k)
t =

∑k
i=1

(
λi − λk+1

)
∆Pt−i

1− λk+1
−

∑s
i=1

(
λi − λs+1

)
∆Pt−i

1− λs+1
.

The value of the technical indicator for the P-REMA rule depends on the length of the

lookback period k and the value of the decay factor λ which determines the degree of over-

weighting the most recent price changes. In order to avoid over-optimization in out-of-sample

tests, we perform the optimization with respect to k only; the value of λ is held constant

through time. In this rule we use λ = 0.8 which provides the degree of overweighting the most

recent price changes somewhere in between the degrees provided by the equally weighted and
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linearly weighted schemes. The value of the technical indicator for the DCM depends on the

lengths of shorter and longer averages. Among traders, one of the most popular combination

is to use 50-day and 200-day averages in this timing rule. Therefore we fix the length of

the shorter average to be s = 2 (months), whereas the length of the longer average k > 2

is determined by the dynamic optimization procedure.3 In this rule we also use λ = 0.8 in

both shorter and longer exponential moving averages. Figure 1 illustrates the four weighting

schemes used for the computations of technical trading indicators in our study.

[Insert Figure 1 about here]

3 Data

3.1 Data Sources and Data Construction

In our empirical study we use the capital appreciation and total returns (denoted by CAP and

MKT respectively) on the Standard and Poor’s Composite stock price index, as well as the

risk-free rate of return (denoted by RF) proxied by the Treasury Bill rate. Our sample period

begins in January 1860 and ends in December 2014 (155 full years), giving a total of 1860

monthly observations. The data on the S&P Composite index comes from two sources. The

returns for the period January 1860 to December 1925 are provided by William Schwert.4 The

returns for the period January 1926 to December 2014 are computed from the closing monthly

priced of the S&P Composite index and corresponding dividend data provided by Amit Goyal.5

The Treasury Bill rate for the period January 1920 to December 2014 is also provided by Amit

Goyal. Because there was no risk-free short-term debt prior to the 1920s, we estimate it in the

same manner as in Welch and Goyal (2008) using the monthly data for the Commercial Paper

Rates for New York. These data are available for the period January 1857 to December 1971

from the National Bureau of Economic Research (NBER) Macrohistory database.6 First, we

3Since our data comes at the monthly frequency, the choice of s = 2 is equivalent to using 42-days window
in the shorter average.

4http://schwert.ssb.rochester.edu/data.htm
5http://www.hec.unil.ch/agoyal/
6http://research.stlouisfed.org/fred2/series/M13002US35620M156NNBR
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run a regression

Treasury-bill ratet = α+ β × Commercial Paper Ratet + et

over the period from January 1920 to December 1971. The estimated regression coefficients

are α = −0.00039 and β = 0.9156; the goodness of fit, as measured by the regression R-square,

amounts to 95.7%. Then the values of the Treasury Bill rate over the period January 1860 to

December 1919 are obtained using the regression above with the estimated coefficients for the

period 1920 to 1971.

3.2 Descriptive Statistics and Tests

Table 1 summarizes the descriptive statistics for the data used in our study. Since the main

goal of our empirical study is to estimate the out-of-sample performance of a few distinct

technical trading rules and investigate how robust their performance is in sub-samples of data,

the descriptive statistics are reported for the total out-of-sample period from January 1870

to December 2014 as well as for the first and second halves of the total out-of-sample period

(from January 1870 to December 1942 and from January 1942 to December 2014 respectively).

The total out-of-sample period spans 145 years, the first and the second halves span 72 and

73 years respectively. The split point between the halves is chosen to have the same numbers

of Bull and Bear markets in each half (see the subsequent section).

The results of the Shapiro-Wilk test reject the normality in all data series over the total

period as well as over each subperiod. It is worth noting that the first half of the out-of-sample

period was much more turbulent than the second one. In particular, the mean stock returns

during the first half were substantially lower than those during the second half, whereas the

volatility, as well as the kurtosis, were considerably higher. In addition, during the first half

of the out-of-sample period the stock return series exhibited a statistically significant positive

autocorrelation. Over the second half, on the other hand, the autocorrelation in stock returns

was neither economically nor statistically significant.

[Insert Table 1 about here]

To find out whether the means and standard deviations of the return series are the same
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in both sub-periods, we test the following null-hypotheses:

Equality of mean returns: H1
0 : µ1

CAP = µ2
CAP , H2

0 : µ1
MKT = µ2

MKT , H3
0 : µ1

RF = µ2
RF ,

Equality of standard deviations: H4
0 : σ1

CAP = σ2
CAP , H5

0 : σ1
MKT = σ2

MKT , H6
0 : σ1

RF = σ2
RF ,

where, for example, µ1
CAP and µ2

CAP denote the mean capital appreciation return during the

first and the second sub-period respectively, and σ1
CAP and σ2

CAP denote the standard deviation

of the capital appreciation return during the first and the second sub-period respectively. To

test the hypotheses 1-3, we perform a standard two-sample t-test for equal means. To test the

hypotheses 4-6, we perform a standard two-sample F -test for equal variances.

[Insert Table 2 about here]

Table 2 reports the results of the hypothesis tests. These results suggest that we have strong

statistical evidence that the standard deviations of all return series have changed over time. In

addition, we have evidence that the mean capital appreciation return and the mean risk-free

rate of return have changed over time (at the 6% and 1% significance levels respectively). Yet,

we cannot reject the hypothesis that the mean total market return has been stable over time.

3.3 A Structural Break Analysis

The results of the previous sub-section advocate that there are economically and statistically

significant differences in the mean capital appreciation return across the two sub-samples of

data. In this sub-section we perform a structural break analysis. Our goal is twofold. The first

goal is to verify that there is a major break in the growth rate of the stock price index. The

second goal is to find the date of the breakpoint.

Our null hypothesis is that the period t log return on the (not adjusted) stock price index, rt,

is normally distributed with constant mean µ and variance σ2. More formally, rt ∼ N
(
µ, σ2

)
.

Under this hypothesis the log of the stock price index at time t is given by the following linear

model

log (It) = log (I0) + µ t+ εt, (7)

where I0 is the index value at time 0 and εt ∼ N
(
0, σ2t

)
. Our alternative hypothesis is that
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the mean log return on the stock index varies over time. To test the null hypothesis, there are

many formal tests (see Zeileis, Kleiber, Krämer, and Hornik (2003) and references therein).

Unfortunately, the error term in regression (7) does not satisfy the standard i.i.d. assumptions

(because εt exhibits heteroskedasticity and autocorrelation) and therefore these tests are not

applicable in our case.

Our simplified alternative hypothesis is that the mean log return at time t∗ changes from

µ to µ+ δ. Under the alternative hypothesis the log of the stock price index at time t is given

by the following segmented model

log (It) = log (I0) + µ t+ δ (t− t∗)+ + εt, (8)

where (t− t∗)+ denotes the positive part of the difference (t− t∗). In this case the natural test

of the null hypothesis is

H0 : δ = 0.

We find the breakpoint t∗ using the methodology presented in Muggeo (2003). Both the

alternative models are estimated using the total sample period 1860-2014. The results of the

estimation of the two alternative models are reported in Table 3. The p-values of the estimated

coefficients are computed using the heteroskedasticity and autocorrelation consistent standard

errors. Figure 2 plots the log of the stock price index versus the fitted segmented model.

[Insert Table 3 about here]

Apparently, the we can reject the null hypothesis of constant log mean return at less than

the 1% significance level. The segmented model has a higher R-squared (98% versus 90% for

the linear model) and double as low the residual standard deviation (27% versus 62% for the

linear model). The estimated date of the breakpoint is May 1944; this date roughly coincides

with the split point between our two sub-samples of data. The 95% confidence interval for the

breakpoint date is from May 1943 to May 1945. Under the assumption of a constant mean

log returns, over the total sample period (that spans 155 years) the estimated mean log return

amounts to approximately 4% in annualized terms. However, this assumption proofs to be

wrong and a more detailed examination of the growth rate of the log of the stock price index
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suggests that around year 1944 (84 years from the start of the sample) there was a major break

in the growth rate. Specifically, prior to 1944 the estimated mean log return was about 2%,

thereafter about 7% in annualized terms.

[Insert Figure 2 about here]

4 Bull and Bear Market Cycles

4.1 The Dating Algorithm and the Results

It is an old tradition to describe cycles in stock prices as Bull and Bear markets. Yet, since there

is no generally accepted formal definition of Bull and Bear markets in the finance literature,

there is no single preferred method to identify the state of the stock market. Specifically,

the literature offers two fundamentally different types of methods to detect the turning points

between the phases of the stock market: non-parametric and parametric methods. The non-

parametric methods are based on rules whereas the parametric ones are based on models.

Among the rule-based methods, the most popular ones7 adopt, with slight modifications, the

formal dating methods used to identify turning points in the business cycle (Bry and Boschan

(1971)). This type of a particular dating algorithm is based on a complex set of rules. In

contrast, Lunde and Timmermann (2004) propose a very simple dating rule based on imposing

a minimum on the price change since the last peak or trough. Among the parametric methods,

the most prevailing one8 is based on using a regime switching model (pioneered by Hamilton

(1989)) with two or more laten states. However, a significant drawback of this approach is that

a detected turning point usually does not coincide with a historical peak or trough in stock

prices.

In our study, to detect the turning points between the Bull and Bear markets, we employ the

dating algorithm proposed by Pagan and Sossounov (2003). This dating algorithm consists of

two main steps: determination of initial turning points in raw data and censoring operations. In

order to determine the initial turning points, first of all one uses a window of length τwindow = 8

months on either side of the date and identifies a peak (trough) as a point higher (lower)

7Examples are Pagan and Sossounov (2003) and Gonzalez, Powell, Shi, and Wilson (2005).
8Examples are Maheu and McCurdy (2000) and Maheu, McCurdy, and Song (2009).
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than other points in the window. Second, one enforces the alternation of turning points

by selecting highest of multiple peaks and lowest of multiple troughs. Censoring operations

require: eliminating peaks and troughs in the first and last τcensor = 6 months; eliminating

cycles that last less than τcycle = 16 months; and eliminating the phases that last less than

τphase = 4 months (unless the absolute price change in a month exceeds θ = 20%).9

[Insert Figure 3 about here]

Panels A and B in Figure 3 plot the natural log of the monthly Standard and Poor’s

Composite stock price index over the two sub-periods: 1870-1942 and 1942-2014. Shaded

areas in the figure indicate the Bear market phases. Table 4 reports the descriptive statistics

of Bull and Bear markets for the whole period and the two sub-periods. Over the total period,

there were 41 Bull markets and 40 Bear markets. Each of the two sub-periods contains 21 Bull

markets and 20 Bear markets.

[Insert Table 4 about here]

Over the whole period, the average length of a Bull market is close to 29 months, whereas

the average Bear market length is close to 15 months. It is clear that Bull markets tend to

be longer than the Bear markets and the durations of phases agree quite closely with those

reported by Pagan and Sossounov (2003) and Gonzalez et al. (2005). The average Bull market

duration exceeds the average Bear market duration by a factor of 1.9. The comparison of

the lengths of the two stock market phases in the first and the second sub-periods suggests

that over time the Bull markets tend to be longer while the Bear markets tend to be shorter.

Whereas for the first sub-period the ratio of the average Bull market length to the average Bear

market length amounts to 1.4, for the second sub-period this ratio amounts to 2.7. In other

words, this ratio has almost doubled over time. On average, the stock index price increases by

65% during a Bull market and decreases by 24% during a Bear market. Our results suggest

that over time the average amplitude of Bull markets tends to increase whereas the average

amplitude of Bear markets tends to decrease.

9Gonzalez et al. (2005) use the same algorithm with τwindow = 6, τcycle = 15, and τphase = 5. Despite the
differences, the Bull and Bear markets in the study by Gonzalez et al. (2005) largely coincide with the Bull and
Bear markets in the study by Pagan and Sossounov (2003).
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All the Bull markets exhibit positive mean return while all the Bear markets have negative

mean return. We do not observe any economically significant time-variation in the value of

mean returns during the two stock market phases across subsample periods. In addition,

somewhat surprisingly,10 the return volatility during Bull and Bear markets is economically

insignificantly different (a similar result is reported in Gonzalez et al. (2005)). This finding

implies that Bull markets differ from Bear markets mainly in terms of mean returns, not in

terms of standard deviation of returns.

4.2 Testing for a Structural Break

Our results, together with those obtained previously by Pagan and Sossounov (2003) and

Gonzalez et al. (2005), advocate that the properties of cycles in stock prices has significantly

changed over time. Yet so far we do not have any scientific evidence of the presence of structural

breaks in the parameters and dynamics of Bull-Bear cycles. Since the presence of structural

breaks is of crucial importance for the ability of a market timing strategy to outperform the

passive market strategy, in the rest of this section we analyze whether there are statistically

significant changes in the distribution parameters of Bull and Bear markets over time. Similarly

to Maheu and McCurdy (2000), we use a two-state first-order Markov switching model for

monthly returns as a parametric model that describes the dynamics of the stock market.

Mover formally, consider a two-state Markov switching model for returns where St denotes

the latent state variable at time t. The state variable can take one of two possible values: 0

(denotes the Bear market state) and 1 (denotes the Bull market state). This Markov switching

model for returns in sub-period m ∈ {1, 2} can be written as

rmt |St ∼ N
(
µm
St
,
(
σm
St

)2)
,

pmij = Pm(St = j|St−1 = i),

where i, j ∈ {0, 1}. This model assumes that the stock market returns at time t of sub-period

m are normally distributed with mean µm
0 and standard deviation σm

0 if the market is in state

0. Otherwise, in state 1, the stock market returns are normally distributed with mean µm
1 and

standard deviation σm
1 . pmij is the probability of transition from state i to state j in sub-period

10It is customary to assume that a Bear market is the low-return high-volatility state, whereas a Bull market
is the high-return low-volatility state.
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m. The transition probability matrix in sub-period m is given by

Pm =

pm00 pm01

pm10 pm11

 .

To find out whether the parameters of the Bull and Bear markets are the same in both

sub-periods, we test the following null-hypotheses:

Equality of mean returns: H1
0 : µ1

0 = µ2
0, H2

0 : µ1
1 = µ2

1,

Equality of standard deviations: H3
0 : σ1

0 = σ2
0, H4

0 : σ1
1 = σ2

1,

Equality of probability transition matrices: H5
0 : P 1 = P 2.

To test hypotheses 1-2, we perform a standard two-sample t-test for equal means. To test

hypotheses 3-4, we perform a standard two-sample F -test for equal variances.

We test the equalities of the two transition probability matrices by performing element-

by-element tests of the stability of each entry pmij . To estimate the transition probability pmij

and standard errors of estimation of pmij we use a bootstrap estimation approach proposed by

Kulperger and Rao (1989). The bootstrap approach follows these steps: First, using the origi-

nal data sequence of Bull and Bear markets, we estimate the transition probability matrix by

employing the maximum likelihood estimator. Second, we generate 100 bootstrap samples of

the data sequences following the conditional distributions of states estimated from the original

one. Third, we apply maximum likelihood estimation on each bootstrapped data sequence.

Forth, the estimated transition probability is computed as the average of all maximum likeli-

hood estimators. Finally, after computing the average, we compute the standard deviation of

our estimator and corresponding standard error of estimation. The hypothesis H
5q
0 : p1ij = p2ij ,

q ∈ {1, 2, 3, 4}, is tested assuming that errors are normally distributed.

[Insert Table 5 about here]

Table 5 reports the estimated transition probabilities of the Markov switching model for

the stock market states over two the historical sub-periods. The comparison of the values of
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transition probabilities over the two historical sub-periods also advocates that the duration of

the Bear (Bull) markets has decreased (increased) over time. Specifically, p101 = 0.057 whereas

p201 = 0.096. This says that during the first sub-period the transition probability form Bear to

Bull market has been 5.7%, whereas over the second sub-period the transition probability form

Bear to Bull market has been 9.6%. That is, the transition probability from the Bear state to

the Bull state has substantially increased over time (almost doubled). As a consequence, the

average length of Bear markets has become shorter over time. Similarly, p110 = 0.040 whereas

p210 = 0.031. This says that during the first sub-period the transition probability form Bull

to Bear market has been 4.0%, whereas over the second sub-period the transition probability

form Bull to Bear market has been 3.1%. As a result, the average duration of Bull markets

has become longer over time.

Table 6 reports the results of the hypothesis tests. These results suggest that we have strong

statistical evidence that all the transition probabilities between the states of the stock market

have changed over time (that is, we can reject the equality of the transition probability matrices

over the two sub-periods) and that the volatility of the states have changed over time as well.

Yet, we cannot reject the hypothesis that the mean stock market returns during the states have

been stable over time. Anyway, the results of our statistical tests have important implications

for the performance of the market timing strategies. There is clear scientific evidence that

the duration of the Bull markets has increased over time, whereas the duration of the Bear

markets has decreased over time. As a result, as compared with the first sub-period, over the

second sub-period the stock market has been much more often in the Bull state than in the

Bear state. Since the superior performance of a market timing strategy can appear only as the

result of switching to cash during the Bear market states, it is logical to deduce that we should

observe a substantial deterioration of the performance of market timing strategies (relative to

that of the market) over the second sub-period.

[Insert Table 6 about here]
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5 Empirical Research Design

5.1 Returns to the Market Timing Strategy

In our empirical study the main goal is to measure the out-of-sample performance of four

clearly distinct market timing rules based on moving averages. The computation of the trading

indicators for these rules is described in Section 2. The weighting schemes for these rules are

illustrated in Figure 1. In each market timing rule the generation of a trading signal is a

two-step process. At the first step, one computes the value of a technical trading indicator

using the last closing price and k lagged prices

Indicator
TR(k)
t = Eq(Pt, Pt−1, . . . , Pt−k),

where TR denotes the timing rule and Eq(·) is the equation that specifies how the technical

trading indicator is computed. At the second step, using a specific function one translates the

value of the technical indicator into the trading signal. In all market timing rules considered

in this paper the Buy signal is generated when the value of a technical trading indicator is

positive. Otherwise, the Sell signal is generated. Thus, the generation of a trading signal can

be interpreted as an application of the following (mathematical) indicator function to the value

of the technical indicator

δt+1|t = 1+

(
Indicator

TR(k)
t

)
,

where the indicator function 1+(·) is defined by

1+(x) =


1 if x > 0,

0 if x ≤ 0,

and δt+1|t ∈ {0, 1} is a trading signal for month t+1 (0 means Sell and 1 means Buy) generated

at the end of month t.

In order to assess the real-life performance of a market timing rule, we need to account for

the fact that rebalancing an active portfolio incurs transaction costs. Transaction costs in cap-

ital markets consist of the following three primary components: half-size of the quoted bid-ask

spread, brokerage fees (commissions), and market impact costs. In addition, there are various
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taxes, delay costs, opportunity costs, etc. (see, for example, Freyre-Sanders, Guobuzaite, and

Byrne (2004)). In our study we consider the average bid-ask half-spread as the only deter-

minant of the one-way transaction costs, and we neglect all other components of transaction

costs. Berkowitz, Logue, and Noser (1988), Chan and Lakonishok (1993), and Knez and Ready

(1996) estimate the average one-way transaction costs for institutional investors to be in the

range of 0.23% to 0.25%. Therefore in our study, we assume that the one-way transaction

costs in the stock market amount to 0.25%. Denoting by γ the one-way transaction costs, the

return to the market timing strategy over month t is given by

rt =



rMt if (δt|t−1 = Buy) and (δt−1|t−2 = Buy),

rMt − γ if (δt|t−1 = Buy) and (δt−1|t−2 = Sell),

rft if (δt|t−1 = Sell) and (δt−1|t−2 = Sell),

rft − γ if (δt|t−1 = Sell) and (δt−1|t−2 = Buy),

(9)

where rMt and rft are the month t returns on the stock market (including dividends) and the

risk-free asset respectively.

5.2 Out-of-Sample Testing of Trading Rules

To simulate the returns to the market timing strategy that are given by (9), for each market

timing rule we need to compute the value of the technical indicator which provides us with

Buy and Sell signals. It is crucial to observe that in order to compute the value of the technical

indicator we need to specify the length of the lookback period k. One approach to the choice of

k is to use the full historical data sample, simulate the returns to the market timing strategy for

different k, and pick up the value of k which produces the best performance. Yet this approach

is termed as “data-mining” and the performance of the best trading rule in a back test (that

is, “in-sample” performance) generally severely over-estimates the real-life performance.

It is widely believed that the out-of-sample performance of a trading strategy provides a

much more reliable estimate of it’s real-life performance than the in-sample performance (see

Sullivan et al. (1999), White (2000), and Aronson (2006)). The out-of-sample performance

measurement method is based on simulating the real-life trading where a trader has to make

a choice of what length of the lookback period k to use given the information about the past
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performances of the market timing strategy for different values of k. Specifically, the out-of-

sample testing procedure begins with splitting the full historical data sample [1, T ] into the

initial in-sample subset [1, p] and out-of-sample subset [p+1, T ], where T is the last observation

in the full sample and p denotes the splitting point. Then the best rule discovered in the mined

data (in-sample) is evaluated on the out-of-sample data.

The out-of-sample performance can be evaluated with either a rolling- or expanding-window

estimation scheme. A common belief among traders is that, regardless of the choice of historical

period, the same specific value of k is optimal for using in a given technical indicator. For

example, the majority of traders believe that in the P-SMA trading rule the optimal value of

k equals to 10. If the length of the optimal lookback period is constant through time, then it

is natural to use the expanding-window estimation scheme to determine the value of k. Out-

of-sample simulation of a market timing strategy using an expanding-window estimation of k

is performed as follows. The in-sample period of [1, t], t ∈ [p, T − 1], is used to complete the

procedure of selecting the best trading rule given some optimization criterion O(r1, r2, . . . , rt)

defined over the returns to the market timing strategy up to month t.11 Formally, in our study

the choice of the optimal k∗t is given by

k∗t = arg max
k∈[kmin,kmax]

O(r1, r2, . . . , rt),

where kmin and kmax are the minimum and maximum values for k. Subsequently, the trading

signal for month t+1 is determined using the lookback period of length k∗t . Then the in-sample

period is expanded by one month, and the best trading rule selection procedure is performed

once again using the new in-sample period of [1, t+1] to determine the trading signal for month

t + 2. This procedure is repeated, by pushing the endpoint of the in-sample period ahead by

one month with each iteration of this process, until the trading signal for the last month T is

determined.

The rolling-window estimation scheme is used when parameter instability is suspected.

That is, when the length of the optimal lookback period varies through time. In the rolling-

window estimation scheme the choice of k is done using the most recent n observations. In

11We follow closely the methodology employed by Lukac, Brorsen, and Irwin (1988), Lukac and Brorsen
(1990), and Zakamulin (2014) among others. Note that this methodology has a dynamic aspect, in which the
trading rule is being modified over time as the market evolves.
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this case the choice of the optimal k∗t is given by

k∗t = arg max
k∈[kmin,kmax]

O(rt−n+1, rt−n+2, . . . , rt).

We set the value of kmin to be the minimum possible length (measured in the number

of lagged prices) of the lookback period for a given trading rule. For the Double Crossover

Method kmin = 3, for all other rules kmin = 1. To select the appropriate value for kmax, we

studied the most popular recommendations of technical analysts for the choice of the optimal

lookback period. In practice, the recommended value for the length k virtually never exceeds

12 months. To be on the safe side, in our empirical study we set kmax = 24.

Despite many advantages of the out-of-sample performance measurement method, it has

one unresolved deficiency that may seriously corrupt the estimation of the real-life performance

of a market timing strategy. The primary concern is that no guidance exists on how to choose

the split point between the in-sample and out-of-sample subsets. One possible approach is to

choose the initial in-sample segment with a minimum length and use the remaining part of

the sample for the out-of-sample test (see Marcellino, Stock, and Watson (2006) and Pesaran,

Pick, and Timmermann (2011)). Another potential approach is to do the opposite and reserve

a small fraction of the sample for the out-of-sample period (as in Sullivan et al. (1999)).

Alternatively, the split point can be selected to lie somewhere in the middle of the sample.

In any case, according to conventional wisdom, the out-of-sample performance of a trading

strategy provides an unbiased estimate of its real-life performance.

Yet recently, the conventional wisdom about the unbiased nature of traditional out-of-

sample testing has been challenged. In the context of out-of-sample forecast evaluation, Rossi

and Inoue (2012) and Hansen and Timmermann (2013) report that the results of out-of-sample

forecast tests depend significantly on how the sample split point is determined. Zakamulin

(2014) also demonstrates that the out-of-sample performance of market timing strategies de-

pends critically on the choice of a split point. The primary argument (put forward in the

paper by Zakamulin (2014)), for why the choice of split point sometimes dramatically affects

the out-of-sample performance of the market timing strategy, lies in the fact that the perfor-

mance of market timing strategies is highly non-uniform. Generally, a market timing strategy

under-performs the passive strategy during Bull markets and shows a superior performance
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during Bear markets. According to our results reported in Section 4, the mean Bull market

duration exceeds the mean Bear market duration by a factor of 1.4-2.7, depending on the

historical sub-period. As a result, one has to expect that over short-term horizons a market

timing strategy under-performs the market most of the time, but occasionally it delivers an

extraordinary outperformance. In addition, a Bull market might last for more than 6 years

whereas a subsequent Bear market might last only a few months. As a result, a rather short

out-of-sample period may contain basically only Bull markets and the results of out-of-sample

testing may lead to an erroneous conclusion that market timing does not work at all (as in

the tests performed by Sullivan et al. (1999)). Therefore, as argued in Zakamulin (2014), in

the out-of-sample testing one has to choose the initial in-sample segment to have a minimum

length. Another potential reason that may seriously distort the estimate for the real-life per-

formance of market timing is the presence of structural breaks in the dynamics and parameters

of Bull-Bear market cycles.

Motivated by the discussion above, we estimate the out-of-sample performance of market

timing strategies over the total historical sample and two sub-samples, and choose the length

of the initial in-sample period to be 10 years. Specifically, for the total sample that spans

the period from January 1860 to December 2014, the first 10 years are reserved as the initial

in-sample period, and, consequently, the total out-of-sample period is from January 1870 to

December 2014 which spans 145 years. In addition, we measure the out-of-sample performance

in the two sub-samples of data: January 1860-December 1942 and January 1932-December

2014. In each sub-sample, the first 10 years are again used as the initial in-sample period. As

the result, the two out-of-sample sub-periods are: January 1870-December 1942 and January

1942-December 2014. Both of these sub-periods contain the same number of Bull and Bear

phases and we know that the stock market dynamics is different in these sub-periods. Therefore

we expect different performance of market timings strategies in these sub-periods.

5.3 Choice of Performance Measure

There is an uncertainty about what optimization criterion to use in the determination of the

best trading rule using the past data. To limit the choice of optimization criteria, we consider

an investor who decides whether to follow the passive buy-and-hold strategy or to follow the

active market timing strategy. Since the two strategies are supposed to be mutually exclusive, it
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is natural to employ a reward-to-total-risk performance measure as the optimization criterion.

That is, our investor chooses the value of k which maximizes some portfolio performance

measure in a back test, that is, using the past (in-sample) data.

The most widely recognized reward-to-risk measure is the Sharpe ratio. Thus, the Sharpe

ratio represents the natural optimization criterion to find the best trading rule. The Sharpe

ratio uses the mean excess returns as a measure of reward, and the standard deviation of excess

returns as a measure of risk. Specifically, the Sharpe ratio of trading strategy i with excess

returns reit = rit − rft is computed as (according to Sharpe (1994))

SRi =
µ(rei )

σ(rei )
,

where µ(rei ) and σ(rei ) denote the mean and standard deviation of reit respectively.

For the Sharpe ratio of each market timing strategy we report the p-value of testing the null

hypothesis that it is equal to the Sharpe ratio of the market portfolio (denoted by SRM ). For

this purpose we apply the Jobson and Korkie (1981) test with the Memmel (2003) correction.

Specifically, given SRi, SRM , and ρ as the estimated Sharpe ratios and correlation coefficient

over a sample of size T , the test of the null hypothesis: H0 : SRi = SRM is obtained via the

test statistic

z =
SRi − SRM√

1
T

[
2(1− ρ2) + 1

2(SR
2
i + SR2

M − 2ρ2SRiSRM )
] ,

which is asymptotically distributed as a standard normal.

As with any reward-to-risk ratio, the use of the Sharpe ratio has some inconveniences.

In particular, its value is difficult to interpret, and to decide whether the timing strategy

outperforms the market, one also needs to compute the Sharpe ratio of the market portfolio

and compare one to the other. To facilitate performance measurement with the Sharpe ratio,

we closely follow the method presented by Modigliani and Modigliani (1997) and employ in

addition (to the Sharpe ratio) the M2 measure (Modigliani-Modigliani measure or Modigliani-

squared measure). The idea is to mix the active portfolio with a position in the risk-free asset

so that the adjusted portfolio has the same (average) risk as the passive market. The returns

to the adjusted portfolio are

r∗it = a(rit − rft) + rft,
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where a is the proportion invested in the active portfolio. When a > 1 (a < 1), it means that

the adjusted portfolio represents a levered (unlevered) version of the original portfolio. The

value of a that equates the risk of the adjusted portfolio with the risk of the market portfolio

is

a =
σ(reM )

σ(rei )
.

In a similar manner to Bodie, Kane, and Marcus (2007), we compute the M2 measure as the

difference between the return to the adjusted portfolio and the return to the market portfolio.

As the result, the expression for M2 measure is given by

M2
i = µ(r∗ei )− µ(reM ) = (SRi − SRM )× σ(reM ).

Note that this M2 measure produces the same ranking of risky portfolios as the Sharpe ra-

tio, but it has the significant advantage of being in units of percent return, which makes it

dramatically more intuitive to interpret. Specifically, this measure tells us by how much, in

basis points, portfolio i outperformed (if M2
i > 0) or underperformed (if M2

i < 0) the market

portfolio on a risk-adjusted basis.

Because the Sharpe ratio is often criticized on the grounds that the standard deviation

appears to be an inadequate measure of risk, as a robustness test, we also used the Sortino

ratio (due to Sortino and Price (1994)) and a few other popular reward-to-risk ratios as the

optimization criterion instead of the Sharpe ratio. The results of these tests showed that

regardless of the reward-to-risk ratio used, the comparative performance of the active market

timing strategy and the passive market strategy remains virtually the same.

5.4 Measuring the Similarity Between the Bull-Bear Markets and Buy-Sell

Trading Signals

How good are the market timing rules in detecting the Bull and Bear stock market phases? To

find this out, we measure the similarity between the Bull-Bear market states (given by St) and

Buy-Sell trading signals (given by δt) using the Simple Matching Coefficient (SMC). In addition,

using the Jaccard Similarity Coefficient (JSC, due to Jaccard (1901)), we measure the similarity

between the Bull market states and the Buy trading signals and the similarity between the Bear
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market states and the Sell trading signals. The computation of these similarity coefficients is

described below.

We remind the reader that both St and δt, t ∈ [1, T ], can either be 0 or 1. First of all, we

compute the following quantities:

M00 = the number of instances where St = 0 and δt = 0,

M01 = the number of instances where St = 0 and δt = 1,

M10 = the number of instances where St = 1 and δt = 0,

M11 = the number of instances where St = 1 and δt = 1.

In our study t denotes a month’s number. Therefore M00 and M11 can be interpreted as the

number of months with correct Sell and Buy signals respectively. In contrast, M01 and M10

can be interpreted as the number of months with false Buy and Sell signals respectively. For

any t, each instance must fall into one of these four categories, meaning that

M00 +M01 +M10 +M11 = T.

The Simple Matching Coefficient is computed as the number of months with correct Buy

and Sell trading signals divided by the total number of months

SMC =
M00 +M11

M00 +M01 +M10 +M11
.

The Jaccard Similarity Coefficient between the Bull market states and the Buy trading

signals is computed as the number of months with correct Buy signals divided by the aggregate

number of months with correct Buy signals and all incorrect trading signals

JSC(Bull, Buy) =
M11

M01 +M10 +M11
.

The computation of the Jaccard Similarity Coefficient between the Bear market states and the

Sell trading signals goes along the similar lines

JSC(Bear, Sell) =
M00

M00 +M01 +M10
.
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The value of each similarity coefficient is constrained to lie within the range [0, 1]. For

example,

0 ≤ SMC ≤ 1,

where the case SMC = 1 indicates a perfect match between the Bull-Bear markets states and

the Buy-Sell trading signals. Therefore the closer a similarity coefficient to unity, the better a

market timing rule identifies the stock market phases.

A passive buy-and-hold strategy can be considered as a strategy that generates δt = 1 for

all t ∈ [1, T ]. Therefore for the passive strategy M00 = 0 and consequently

JSC(Bull, Buy) = SMC, JSC(Bear, Sell) = 0.

6 Empirical Results

6.1 Time-Variations in the Length of the Optimal Lookback Period

As it was mentioned earlier, in the literature on market timing one usually supposes that there

is some specific length of the lookback period, k, which is optimal for using in a given technical

indicator. Yet there is a major controversy among technical analysts about the optimal value

of k. For instance, for the P-SMA rule the recommended value of k varies from 10 to 200 days

(see Brock et al. (1992), Sullivan et al. (1999), Okunev and White (2003), and Kirkpatrick

and Dahlquist (2010), Chapter 14). This common belief, that the optimal lookback period

is constant, justifies the use of the expanding-window estimation scheme in the out-of-sample

simulation of the trading strategy. And that is why the rolling-window estimation scheme

is practically never used. The goal of this section is to check whether this common belief is

fallacious or not.

In order to find out how stable the length of the optimal lookback period is for each

trading rule, we use a long rolling window of n months. For each specific window [t, t+ n], for

t ∈ [1, T − n], we find the value of k which maximizes the in-sample performance of a trading

rule. Specifically, the optimal k∗t is given by

k∗t = arg max
k∈[kmin,kmax]

SR(rt, rt+1, . . . , rt+n),
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where SR(·) is the Sharpe ratio computed using the returns rt, rt+1, . . . , rt+n to a trading

strategy under investigation. Then we report the descriptive statistics of k∗t for each trading

rule used in our empirical study.

We need to choose a suitable period length, n, that covers a series of alternating Bull and

Bear markets. Our choice is n = 120 (10 years) and is motivated by the results reported in

Section 4. In particular, in that section we studied the durations of Bull and Bear markets

in our sample and found that the mean durations of the Bull and Bear markets are 29.3 and

15.5 months respectively, with the longest Bull and Bear market durations of about 6.5 and

3.5 years respectively. Therefore with the lookback period of 10 years we are guaranteed to

cover at least one stock market cycle.

[Insert Figure 4 about here]

The results of our investigation are visualized in Figure 4 and the descriptive statistics

of the optimal lookback period (which is the number of lagged monthly prices) for different

technical trading rules are reported in Table 7. Specifically, Table 7 reports the descriptive

statistics of the lengths of the optimal lookback periods for our total historical sample and

the two sub-samples. We remind the reader that our total sample is from January 1860 to

December 2014 and covers the period of 155 years (1860 months). With a 10-year window, it

includes 1741 different values for the optimal k∗t , where the first value is for the period from

January 1860 to December 1869, the second value is for the period from February 1860 to

January 1870, etc.

[Insert Table 7 about here]

Apparently, the results suggest that for each technical trading rule there is no single optimal

lookback period. On the contrary, the results indicate that there are substantial time-variations

in the length of the optimal lookback period. For example, for the most popular P-SMA rule

the optimal lookback period varies from 1 to 23 months. Nevertheless, over the total historical

sample, the mean value of the optimal lookback period for this rule amounts to 9.7 months

which is very close to the most often recommended value of 10 months (200 days). In contrast,

in our study the mean value of the optimal lookback period for the MOM rule is 8.1 months

27



which is substantially lower than the most often recommended value of 12 months (Moskowitz

et al. (2012)). The comparison of the mean lengths of the optimal lookback periods for the first

sub-sample versus those for the second sub-sample reveals that for the majority of trading rules

the mean length of the optimal lookback period has decreased notably. This result probably

comes as no surprise because in Section 4 we found evidence of the presence of a structural

break in the parameters and dynamics of Bull-Bear cycles. Specifically, we found that the

stock market has been much less volatile in the second half of our sample, with longer Bull

markets and shorter Bear markets as compared with those in the first half. We conjecture

that the length of the optimal lookback period depends on the volatility of the stock market:

when the volatility is low (high) it is optimal to decrease (increase) the length of the lookback

period used to compute the moving average.12

We perform a formal statistical test of the equality of the mean lengths of the optimal

lookback periods over the two historical sub-samples. For this purpose, we assume that the

optimal lookback period over the horizon of 10 years follows the auto-regressive process of

order one:

kt = c+ φkt−1 + εt.

The coefficients c and φ of this process can be estimated using OLS. The mean value and

variance of kt can be computed as

E[kt] =
c

1− φ
, V ar[kt] =

V ar[εt]

1− φ2
.

After the computation of the mean values and variances of kt over the two historical sub-

periods, we perform a standard t-test of the null-hypothesis H0 : E[k1t ] = E[k2t ], where E[k1t ]

and E[k2t ] are the mean values of the optimal lookback period over the first and the second

sub-sample respectively. The results of this test are reported in Table 8 and allows us to reject

the null hypothesis for 3 out of 4 trading rules. Specifically, only for the DCM rule we cannot

reject the hypothesis on the stability of the mean length of the optimal lookback period.

[Insert Table 8 about here]

12A similar idea is presented by Kaufman (1995) who proposed using an Adaptive Moving Average in trading
rules. This adaptive moving average automatically adjusts the length of the lookback period to the changes in
stock market volatility.
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The results reported in this section have two important implications. First of all, these

results challenge the common belief on the constancy of the length of the optimal lookback

period. As an immediate consequence, these results advocate that the trading strategy, simu-

lated with the rolling-window estimation of the optimal lookback period, might produce better

performance than that with the expanding-window estimation. Secondly, these results propose

a simple explanation for the existing big diversity of the popular recommendations concern-

ing the choice of the optimal lookback period. Specifically, different recommendations for the

length of the lookback period might appear as the results of finding the best trading rule in

the back-test using different historical periods.

6.2 Results of Performance Measurement in Out-of-Sample Tests

We perform the simulation of the returns to the market timing rules using both expanding- and

rolling-window estimation schemes to dynamically determine the lookback period length that

gives the best performance in a back test. In the rolling-window estimation scheme the length

of the window is chosen to be 10 years. However, it is worth noting that, in principle, the

performance of the market timing rule implemented with a rolling-window estimation scheme

depends on the length of the rolling window. As a matter of fact, we tested different lengths

of the rolling window (in the interval n ∈ [2, 20] years) and our experiments showed that the

performance of a market timing strategy varies insignificantly as long as the length of the

rolling window exceeds 5 years. That is, our experiments indicated that decreasing the length

of a rolling window to a period shorter than 5 years usually substantially deteriorates the

performance of a market timing strategy.13

6.2.1 Performance over Bull and Bear Markets

We start presenting the results on the performance of trading strategies over Bull and Bear

markets separately. For each trading rule we simulate real-life technical trading using both the

rolling- and expanding-window estimation schemes and compute the descriptive statistics and

performances of the passive market strategy and each active trading strategy over Bull and

Bear markets. Tables 9 and 10 report the descriptive statistics and performances. Specifically,

13It is easy to understand why the length of the rolling window cannot be less than 4-5 years. In case the
length of the rolling window is rather short, it may contain only a single stock market phase (Bull or Bear). As
a result, the trading rule cannot be optimized to detect the changes between the phases of the stock market.
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these tables report the mean returns, standard deviations, and Sharpe ratios of the passive

strategy and each active trading strategy over Bull and Bear markets. The results are reported

for the whole sample period and the two sub-periods. In addition, in these tables we report

the p-values of testing the following three hypotheses H0 : µi = µM , H0 : σi = σM , and

H0 : SRi = SRM where µi, σi, and SRi are the mean returns, volatility, and the Sharpe ratio

of strategy i; µM , σM , and SRM are the mean returns, volatility, and the Sharpe ratio of the

passive market portfolio.

[Insert Table 9 about here]

[Insert Table 10 about here]

The results presented in these two tables can be summarised as follows. Regardless of the

choice of the estimation scheme and historical sub-period, over either Bull or Bear markets the

mean returns and standard deviations of virtually all market timing strategies are statistically

significantly different from those of the passive market strategy. Specifically, over both Bull

and Bear markets the standard deviation of returns of market timing strategies is less than

the standard deviation of returns of the market portfolio. Over the whole sample period,

as compared with the volatility of the market portfolio, the average volatility of the market

timing strategies is reduced by 27% (44%) over the Bull (Bear) markets. Over the Bull (Bear)

markets the mean returns of market timing strategies are below (above) the mean returns of

the market portfolio. Even though the Sharpe ratios of market timing strategies are virtually

never statistically significantly different from those of the passive market strategy, our results

suggest that, on average, the market timing strategies underperform the passive strategy in

Bull states and outperform the passive strategy in Bear states of the market. It is worth

noting that in Bear states the mean returns of market timing strategies are negative. That is,

on average, technical traders also lose money in Bear markets; yet their losses are less than

those of the market portfolio.
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6.2.2 Similarity between the Bull-Bear states and Buy-Sell trading signals

In order to explain the results presented in Tables 9 and 10 and gain additional insights into

the nature of market timing strategies, Tables 11 and 12 report the number of trading signals

generated by each active trading rule and different similarity coefficients. The results on the

number of generated trading signals show that this number is from 2 to 3 times higher than the

number of stock market phases. For example, over the total sample period there were 41 Bull

markets. Over the same period, the popular P-SMA rule generated 123 (98) Buy signals when

implemented with the rolling (expanding) window estimation scheme. Apparently, market

timing strategies generate many false signals. In addition, these results suggest that a trading

rule implemented with a rolling-window estimation scheme generates more trading signals than

the same trading rule implemented with an expanding-window estimation scheme. Regardless

of the choice of estimation scheme, the number of trading signals is highest for the MOM rule

and lowest for the DCM rule.

[Insert Table 11 about here]

[Insert Table 12 about here]

When it comes to the similarity coefficients, over the whole sample period the average

(among all trading rules) JSC(Bull,Buy) amounts to 64% and the average JSC(Bear,Sell)

is 42%. These numbers suggest that the market timing rules identify more accurately the

Bull market states than the Bear market states. Since these numbers are substantially below

100%, we can again conclude that the trading rules generate many false signals. During

Bull market states, false Sell signals deteriorate the performance of market timing strategies

relative to the performance of the passive market portfolio. In contrast, during Bear market

states, correct Sell signals improve the performance of market timing strategies relative to

the performance of the passive market portfolio. The negative mean returns to the market

timing strategies during Bear market states can be explained by the fact that the average

JSC(Bear,Sell) is rather low. As compared with the first sub-period, during the second sub-

period the average JSC(Bull,Buy) is higher whereas the average JSC(Bear,Sell) is lower. This
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observation suggests that the accuracy of detecting the stock market state is proportional to

the average state duration. Specifically, the longer the average duration of a stock market

state, the better the accuracy of detecting the state.

The results on the simple matching coefficients, reported in Table 12, suggest that the

overall accuracy of trading rules in detecting the stock market states varies insignificantly

between different rules and is only marginally better than the overall accuracy of the passive

market strategy (assuming that the latter always generates a Buy trading signal). Over the

whole sample period, the accuracy of the passive market strategy was 74%,14 whereas the

percentage of correct trading signals generated by different trading rules was only from 1% to

3% higher than that of the passive market strategy. As compared with the first sub-period,

during the second sub-period the average percentage of correct trading signals generated by

trading rules is higher, whereas the improvement in the accuracy, relative to that of the passive

market strategy, is lower.

6.2.3 Overall Performance

In this subsection we present the results on the overall performance of trading strategies, that is,

the performance over Bull and Bear markets simultaneously. Table 13 reports the descriptive

statistics and performances of the active trading rules and the passive market portfolio as

well. Specifically, this table reports the means, standard deviations, skewness, minimum,

and maximum of monthly returns. In addition, this table reports the Sharpe ratio of each

strategy. For each market timing strategy we test the hypothesis that its Sharpe ratio is equal

to the Sharpe ratio of the passive market strategy. Specifically, we test H0 : SRi = SRM . The

descriptive statistics is reported for the whole out-of-sample period and for the two sub-periods.

[Insert Table 13 about here]

Judging by the Sharpe ratios, every market timing strategy outperforms the passive market

strategy on the risk-adjusted basis. This observation applies equally to the performances over

the whole period and the two sub-periods. Over the whole period, only two trading strategies

exhibit performances that are statistically significantly different (at the 5% level) from that of

14This number also tells us that over the total sample period the market was in Bull state 74% of time.
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the passive market portfolio. These strategies are based on the MOM rule and the P-REMA

rule. Both the trading rules outperform the market when they are simulated with the rolling-

window estimation scheme. Over the first sub-period, only the performance of the MOM rule

is statistically significantly different from that of the passive market strategy. Even though

the Sharpe ratios of the other rules are from 25% to 70% higher than that of the passive

market strategy, we cannot reject the hypotheses (at conventional statistical levels) that they

are equal to the Sharpe ratio of the market portfolio. Despite the fact that the two sub-

periods have the same number of Bull and Bear markets, in the second sub-period the stock

market has been much more often in the Bull state. Therefore as expected, over the second

sub-period the market timing strategies outperformed the passive strategy to a much lesser

extent. Specifically, over this sub-period the performance of market timing strategies is neither

economically nor statistically significantly different from that of the passive market strategy.

Here the Sharpe ratios of all the timing rules are only from 7% to 14% higher than that of the

passive market strategy.

Our results on the performance of trading rules over Bull and Bear markets indicated

that the market timing strategies underperform the market in Bull states and outperform the

market in Bear states. Since over a sequence of interchanging Bull and Bear markets the active

trading strategies tend to outperform the passive market portfolio, our results suggest that on

average the out-performance in Bear states is greater than under-performance in Bull states.

We remind the reader that our trading rules are chosen to have four distinct shapes of

the weighting scheme used for the computations of moving averages. Specifically, the MOM

rule employs equal weighting of price changes, whereas both the P-REMA rule and P-SMA

rule overweight the most recent price changes. The P-SMA rule employs the linear weighting

of price changes and overweights the most recent price changes to a greater degree than the

P-REMA rule. The weighting scheme in the DCM rule underweights both the most recent

and the most old price changes. The comparison of the performances of different trading rules

suggests that, contrary to the common belief, neither over-weighting nor under-weighting the

recent price changes improves the performance of a market timing strategy based on moving

averages. In particular, over the second sub-period, all trading rules generated virtually the

same performance. Over the first sub-period, we find that the MOM rule produced the best

performance in out-of-sample tests.
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Our results on the length of the optimal lookback period revealed that it varies substantially

over time and motivated us to consider the rolling-window estimation scheme as a potentially

better alternative to the commonly used expanding-window estimation scheme. However, the

comparison of the performances of trading rules implemented with two alternative estimation

schemes suggests that the choice of the estimation scheme has only marginal impact on the

performance. Only for the MOM rule over the first sub-period there is an economically sig-

nificant difference in the Sharpe ratios of the trading strategies implemented with rolling- and

expanding window estimation schemes. Yet even this difference is not statistically significant.15

Therefore our results do not allow us to conclude which estimation scheme should be preferred

in practice.

The comparison of the descriptive statistics of the returns to market timing strategies

reveals the following. All market timing strategies are virtually equally risky (judging by the

values of the standard deviation of monthly returns). We observe a significant risk reduction as

compared to the riskiness of the passive market portfolio. However, the reduction of risk is not

surprising because virtually in any market timing strategy about 1/3 of the time the money are

held in cash. The mean returns to market timing strategies are also below the mean returns to

the market portfolio. Yet for the majority of timing rules the decrease in mean (excess) returns

is lesser than the decrease in risk. This property improves the risk-adjusted performance of a

market timing strategy as compared with that of the passive market portfolio. The comparison

of the maximum and minimum monthly returns to the market portfolio and those to the

market timing strategies reveals an interesting observation. Specifically, whereas the minimum

monthly returns are virtually the same, the passive market portfolio has as a rule much higher

maximum monthly returns. This observation suggests that the majority of market timing

rules lets the “big downward mover” months pass through, but plainly misses the “big upward

mover” months. This is because the market timing rules detect the change in the stock market

phase with some delay (which on average amounts to 3-4 months). The existence of a delay in

the identification of a stock market state has another important implication for the performance

of market timing rules during Bull markets. In particular, the first 6 months of Bull markets

exhibit significantly higher returns than do the remaining months of Bull markets (this is

reported by Maheu and McCurdy (2000) and Gonzalez et al. (2005)). Therefore technical

15In order to save the space, the result of this test is not reported.
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traders usually miss high returns generated at the beginning of Bull markets. In contrast,

there is no significant difference in returns between the first 6 months and the remaining

months of Bear markets (Gonzalez et al. (2005)).

6.2.4 Performance Over Short- to Medium-Term Horizons

In this subsection we provide an alternative presentation of the performance of market timing

strategies. This alternative presentation is suggested by Zakamulin (2014) and motivated as

follows. The traditional performance measurement uses a single number (for example, the

value of a Sharpe ratio) for performance that is estimated usually over a very long out-of-

sample period (which is beyond the investment horizon of most individual investors). Such

a number is very misleading for investors with short- and medium-term investment horizons.

This is because a single number for performance creates a wrong impression that performance

is time-invariant, whereas in reality it varies dramatically over time. Not only the relative

performance of market timing rules varies over the stock market phases, but also there is a

big variation in the outperformance during the Bear stock markets. Therefore, it is impossible

to provide an accurate picture of market timing performance without taking into account the

time-varying nature of performance. With this fact in mind, instead of providing a single

number for the performance of a market timing strategy over a very long historical period, we

measure the performance over shorter 5-year disjoint periods, and then provide the descriptive

statistics of the historical performance over these 5-year periods.

Because our primer interest is to find out whether a market timing strategy can beat

the market, we always need to compare the performance of a market timing strategy with

that of the market. To simplify the performance comparison in this case, we employ the

Modigliani-Modigliani measure. To illustrate the fact that the market timing performance is

very uneven over time, Figure 5 plots the annualized M2 performance measure computed over

disjoint intervals of 5 years. The first period is from January 1870 to December 1874, the

second period is from January 1875 to December 1879, etc. Then we plot the value of M2

measure versus the historical period. The plots in this figure clearly indicate that the superior

outperformance of market timing was generated mainly over relatively few particular historical

episodes. Specifically, they are the severe Bear markets of the decades of 1870s, 1900s, 1930s,

1970s, and finally 2000s. Many market timing rules consistently under-performed the market
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over the course of several decades. For example, the most popular P-SMA rule under-performed

the market over the period from early 1930s to late 1960s, and then over the period from late

1970s to the beginning of 2000s.

[Insert Figure 5 about here]

The alternative presentation of the performance of the market timing rules is reported

in Table 14. In particular, this table reports the descriptive statistics of the annualized M2

performance measure over the investment horizon of 5 years. First of all, the table reports the

mean value of M2, which reflects the average performance of a market timing strategy over

a 5-year horizon. In addition to the mean, the table reports the standard deviation, which

reflects the variability of M2, as well as the minimum and maximum values, which define the

range of possible values for M2. The table also reports the median value of M2. The median

divides the range of M2 in the middle and has 50% of the data below it. Thus, the probability

that the performance of a market timing strategy over a 5-year horizon will be below the

median equals 50%. Finally, this table reports the probability that a market timing strategy

outperforms the passive strategy over a 5-year investment horizon.

[Insert Table 14 about here]

First, we interpret the descriptive statistics for the performance of market timing strategies

over the whole sample period. Over this period, the majority of timing strategies exhibit a

positive mean value for M2 over a 5-year horizon. In other words, the majority of market

timing rules outperform the market on average. Yet only the MOM rule has a positive median

value for M2. This means that only the MOM rule outperforms the market more than 50% of

time over a 5-year horizon. For all other trading rules the probability of outperformance is less

than 50%. For all trading rules the median performance is below the mean performance. When

the mean is larger than the median, the probability distribution of M2 is positively skewed.

This suggests that on average the out-performance is greater than under-performance. Such

an observation is confirmed by comparing the minimum and the maximum values for M2.

Specifically, on average the maximum values are substantially larger than the absolute values

of the minima. The variability of the performance of the MOM rule is the largest one. However,
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this is because the MOM rule showed an extraordinary good outperformance over the period

January 1930 to December 1934. As a matter of fact, the value of the performance measure for

this particular historical period, in statistical terms, should be considered as an outlier because

this value is very distant from the other values for the performance measure.

The comparison of the descriptive statistics for the performance of market timing strategies

over the two sub-period reveals that the performance has deteriorated over time. Specifically,

the mean and median values of M2 for all trading rules are substantially lower for the second

sub-period as compared with the first sub-period. This result is in agreement with the result

on the performance measurement presented in the preceding subsection. Whereas over the first

sub-period the outperformance probability is equal or above 50% for the majority of market

timing rules, over the second sub-period the outperformance probability is below 50% for all the

rules. It is interesting to observe the following. Over the second sub-period the Sharpe ratios

of all the trading rules are virtually equal (see Panel C in Table 13) which may suggest that the

choice of the trading rule is irrelevant. However, the mean values of M2 and probabilities of

outperformance (see Panel C in Table 14) reveal that according to these statistics the P-REMA

rule should be preferred by medium-term investors. In particular, the P-REMA rule delivers

notable higher values of M2 and outperformance probability than the rest of the rules.

7 Discussion

In our study we utilized the longest historical dataset and extended previous studies on the

performance of moving average trading rules in a number of ways. Yet while long history

provides us with rich information about the past performance of market timing rules, the

availability of long-term data is both a blessing and a curse. This is because in order to use the

observed performance over a very long-term as a reliable estimate of the expected performance

in the future, we need to make sure that the stock market dynamics both in the distant and

near past were the same. However, the results from our numerous robustness tests revealed

evidence of regime shifts in the stock market dynamics. All but one robustness tests were

performed by splitting the whole very long-term sample into two virtually equal long-term

sub-samples (with the same number of Bull and Bear market phases in each sub-sample) and

comparing the results from the two sub-samples. Under the assumption of no regime shifts, we
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expect to obtain similar results in both sub-samples. Yet we found that the results for the first

sub-sample were in sharp contrast with those in the second sub-sample. We also performed a

formal test for the presence of a single structural break in the growth rate of the stock price

index. We found statistically significant evidence of a structural break that occurred around

1944, practically in the middle of our total out-of-sample period. Specifically, starting from

around 1944 the growth rate of the stock price index has more than doubled.

Most importantly, in our study we found evidence that the average Bull (Bear) market

duration has increased (decreased) over time. As compared with the first sub-sample, over

the second sub-sample the ratio of the average Bull market length to the average Bear market

length has almost doubled. Since the benefits of moving average trading strategies come from

timely identification of Bear market states and moving to cash, it is only logical to conclude that

the potential advantage of market timing strategies over the passive strategy has diminished

dramatically over time. Using our total historical sample we did find evidence that moving

average rules significantly outperformed the market. However, this evidence comes mainly

from the superior performance of market timing rules over the first half of our total sample.

In contrast, over the second half of our total sample, even though both halves have exactly the

same number of Bull and Bear market phases, we did not find statistically significant evidence

of outperformance.

The evidence of regime shifts in the properties of cycles in stock prices is of paramount

importance when it comes to the market timing issue. This evidence has two important impli-

cations. First, the fact that the stock market dynamics is subject to changes advocates that

the observed past performance of trading rules is a poor estimate of the rules’ expected future

performance. Second, as applied to our question of investigation, the observed performance of

trading rules over the first half of our sample has little or no relevance to the rules’ expected

performance in the future. Under the assumption that the stock market dynamics is changing

very slowly over time, the observed performance of trading rules in the second half of our

sample provides a more reliable estimate of the rules’ expected future performance.

In our tests we selected the set of market timing rules with a few distinct shapes of the

moving average weighting function. This allowed us to see whether the empirical performance

of moving average rules depends on the weighting scheme. The common belief among the

traders is that a moving average weighting scheme that overweights the most recent prices
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performs better than the moving average weighting scheme with equal weighting of prices. As

the result, the P-SMA rule is much more popular among traders than the MOM rule. The other

most popular rule among the traders is the DCM rule whose weighting function underweights

both the most recent and the most distant prices. Many traders believe that this rule performs

the best because it smoothes the noise in the most recent prices. However, we found no support

for these common beliefs. On the contrary, over the first half of the total sample our results

suggested that equal weighting of prices (as in the MOM rule) was the most optimal weighting

scheme to use in market timing. In addition, over this half the DCM rule showed the worst

performance. Over the second half of our sample, on the other hand, there was virtually no

difference in the performances of trading rules with various weighting schemes.

We did not find the support for another common belief that there is some specific optimal

lookback period in each trading rule. On the contrary, our results revealed that there are

substantial time variations in the length of the optimal lookback period for each trading rule.

For the majority of rules we found evidence that over the second half of our sample the mean

length of the optimal lookback period was shorter than over the first half. The evidence of time

variations in the length of the optimal lookback period motivated us to use, in out-of-sample

tests, the rolling-window estimation scheme as a potentially better method to find the optimal

lookback period than the commonly used expanding-window estimation scheme. However, we

did not find statistically significant evidence that some specific estimation scheme produces

better performance than the other one. Yet we found indications that in the MOM and

P-REMA rules the rolling-window estimation scheme produces marginally better performance

than the expanding-window estimation scheme. For the other two rules, P-SMA and DCM, the

evidence was inconclusive. One potential disadvantage of the rolling-window estimation scheme

is that it produces a larger number of trading signals than the expanding-window estimation

scheme. Therefore the expanding-window estimation scheme might be advantageous when the

transaction costs are large.

In our study we examined the performance of market timing rules over Bull and Bear

markets separately. In addition, we studied the similarity between the Bull-Bear market states

and the Buy-Sell trading signals generated by different rules. We found that all trading rules

generate lots of false signals during both Bull and Bear markets. As a result, over Bull markets

the performance of market timing rules was worse than that of the passive strategy. Despite
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the presence of false Buy signals during Bear markets, the market timing rules outperformed

the market in Bear states. We found that the overall accuracy of trading rules in detecting the

stock market states varies insignificantly between different rules and is only marginally better

than the overall accuracy of the passive market strategy (assuming that the latter always

generates a Buy trading signal). Over the whole sample, the overall accuracy (percentage of

correctly classified stock market states) of market timing rules was about 75%. In other words,

the market timings rules produced correct trading signals about 3/4 of time.

We also studied the performance of market timing rules over short- to medium-term hori-

zons. We found that the outperformance generated by market timing rules is highly uneven

over time. Our visual inspection of the historical performance over shorter horizons suggested

that, over the whole sample, the superior outperformance of market timing rules was gener-

ated mainly over relatively few particular historical episodes: the severe Bear markets of the

decades of 1870s, 1900s, 1930s, 1970s, and 2000s. Our analysis revealed that the median out-

performance for the majority of rules was positive during the first half of our sample, whereas

over the second half the median outperformance was negative for all the rules. If we use the

historical outperformance during the second half of the sample as a reliable estimate of the

expected future outperformance, this result tells us that the probability that a market timing

rule will outperform the market over a short- to medium-term horizon is below 50%.

8 Concluding Remarks

In this paper we used the longest historical dataset, comprehensively re-examined the empirical

performance of a few distinct market timing rules, and extended the previous studies in a

number of ways. Our main results are as follows. We discovered strong evidence that the

stock market dynamics are changing over time. Specifically, our findings revealed that over the

second half of our sample the stock market was less volatile, the stock prices grew with a rate

that was more than double as much as that over the first half, and the ratio of the average

Bull market length to the average Bear market length was almost double as much as that

over the fist half. We found evidence that over the total sample the moving average strategies

outperformed the market. However, over the second half of our total sample, even though both

halves were chosen to have exactly the same number of Bull and Bear market phases, we did
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not find statistically significant evidence of outperformance. Contrary to the common belief,

our results indicated that there is no single optimal lookback period in each trading rule, as

well as we found no support for the common belief that over-weighting the recent prices allows

one to improve the performance of a market timing rule. Whereas we found some indications

that over very long-term horizons the market timing strategy tends to outperform the market,

over more realistic short- to medium-term horizons the market timing strategy is more likely

to underperform the market than to outperform.

Thereby our findings cast doubts that market timing strategies can consistently beat the

market. Therefore our findings are in sharp contrast with the findings reported in the ma-

jority of previous studies where the authors document that “market timing works”. However,

it is important to emphasize that our findings do not indicate that previous studies were im-

plemented with some errors. In fact, we can easily reconcile our findings with prior studies.

Already Zakamulin (2014) pointed to the following features of the market timing strategies:

the outperformance delivered by market timing strategies is highly uneven over time; most of

the outperformance is generated mainly over relatively few particular historical episodes; and,

as the immediate consequence from these two features, the outcome of both in- and out-of-

sample tests of profitability depends crucially on the choice of the historical sample period. If

one chooses the sample period to be, for instance, either 1900-2010, 1970-2010, or 1990-2010,

and simulates, for example, the SMA(10) strategy, then one comes to conclusion that market

timing works. Yet strictly speaking, such a result tells us that a market timing strategy outper-

formed the market in some particular historical period in the past. The question of paramount

importance is whether such a result represents a typical performance of the SMA(10) strat-

egy, and whether the performance in this specific historical period can be used as a realiable

estimate of the expected future performance.

Based on the findings revealed by our study, we can argue that the most relevant sample

period for an empirical study on the profitability of trading rules is the whole post World War

II period, as we found that prior to this period the stock market dynamics were significantly

different. By starting the sample period from 1970, one excludes from the study a long period

of 25 years where market timing strategies underperformed the market. Finally, by choosing

a period that starts not long before the Dot-Com bubble crush and ends not long after the

Global Financial Crisis, one captures the most successful period for market timing strategies
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where all of them delivered extraordinary good outperformance.

Concluding this paper, we would like to mention that the results of our empirical study,

as the results of every empirical study, are, in principle, data-set specific and data-frequency

specific. The data-frequency issue seems to be the least of these two concerns. In particular,

Clare et al. (2013) find that there are no advantages in trading daily rather than monthly.

That is, the performance of market timing rules virtually does not depend on the choice of

the data frequency. In contrast, Zakamulin (2014) documents that the advantages of market

timing rules depend on the choice of the underlying passive index. Specifically, the advantages

of market timing are more apparent when the passive index is the S&P 500 and are less obvious

when the passive index is the Dow Jones Industrial Average.
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Figure 1: Weights of monthly price changes used for the computations of the technical trading
indicators with k = 10. MOM denotes the Momentum rule. P-REMA denotes the Price-
Minus-Reverse-Exponential-Moving-Average rule (with λ = 0.8). P-SMA denotes the Price-
Minus-Simple-Moving-Average rule. DCM denotes the Double Crossover Method (based on
using two exponential moving averages with λ = 0.8 and s = 2). Lag(i−1) denotes the weight
of the lag ∆Pt−i, where Lag0 denotes the most recent price change ∆Pt−1 and Lag9 denotes
the most oldest price change ∆Pt−10.
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Figure 2: The log of the stock price index over 1860-2014 (gray line) versus the fitted segmented
model (black line) given by log (It) = log (I0)+µ t+ δ (t− t∗)++ εt, where t

∗ is the breakpoint
date, µ is the growth rate before the breakpoint, and µ + δ is the growth rate after the
breakpoint. The estimated date of the breakpoint is May 1944.
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Figure 3: Bull and Bear markets over the two historical sub-periods: 1870-1942 and 1942-2014.
Shaded areas indicate the Bear market phases.
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Figure 4: The optimal lookback period, measured in months, for different technical trading
rules over a rolling window of 10 years. The first reported value for the optimal lookback period
in the graphs is for the period from January 1860 to December 1869. MOM denotes the
Momentum rule. P-REMA denotes the Price-Minus-Reverse-Exponential-Moving-Average
rule (with λ = 0.8). P-SMA denotes the Price-Minus-Simple-Moving-Average rule. DCM
denotes the Double Crossover Method (based on using two exponential moving averages with
λ = 0.8).
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Figure 5: Annualized M2 performance measure computed over disjoint intervals of 5-years. For
each trading rule and estimation scheme we simulate real-life technical trading and compute
the out-of-sample performance of market timing strategies over 5-year periods. The first period
is from January 1870 to December 1874, the second period is from January 1875 to December
1879, etc. Then we plot the value of M2 measure versus the historical period. The values
of M2 are reported in percents. MOM denotes the Momentum rule. P-REMA denotes
the Price-Minus-Reverse-Exponential-Moving-Average rule (with λ = 0.8). P-SMA denotes
the Price-Minus-Simple-Moving-Average rule. DCM denotes the Double Crossover Method
(based on using two exponential moving averages with λ = 0.8).
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1870-2014 1870-1942 1942-2014
Statistics

CAP MKT RF CAP MKT RF CAP MKT RF
Mean, % 0.49 0.85 0.31 0.27 0.70 0.29 0.71 1.01 0.33
Std. deviation, % 4.99 4.99 0.21 5.69 5.70 0.15 4.15 4.16 0.26
Skewness 0.23 0.28 1.03 0.52 0.57 0.19 -0.43 -0.43 0.94
Kurtosis 8.64 8.88 2.48 9.48 9.72 2.03 1.55 1.57 1.06
Shapiro-Wilk 0.93 0.93 0.93 0.90 0.90 0.93 0.98 0.98 0.93

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.00)
AC1 0.08 0.08 0.98 0.10 0.10 0.96 0.03 0.04 0.99

(0.00) (0.00) (0.00) (0.00) (0.00) (0.00) (0.31) (0.28) (0.00)

Table 1: Descriptive statistics of data used in the study. CAP, MKT, and RF denote the
capital appreciation return, the total market return, and the risk-free rate of return respec-
tively. Means and standard deviation are annualized and reported in percents. Shapiro-Wilk
denotes the value of the test statistics in the Shapiro-Wilk normality test. The p-values of the
normality test are reported in brackets below the test statistics. AC1 denotes the first-order
autocorrelation. For each AC1 we test the hypothesis H0 : AC1 = 0. The p-values are reported
in brackets below the values of autocorrelation. Bold text indicates values that are statistically
significant at the 5% level.

Hypothesis p-value

H1
0 : µ1

CAP = µ2
CAP 0.06

H2
0 : µ1

MKT = µ2
MKT 0.19

H3
0 : µ1

RF = µ2
RF 0.00

H4
0 : σ1

CAP = σ2
CAP 0.00

H5
0 : σ1

MKT = σ2
MKT 0.00

H6
0 : σ1

RF = σ2
RF 0.00

Table 2: Results of the hypothesis testing on the stability of the means and standard deviations
ofCAP,MKT, andRF which denote the capital appreciation return, the total market return,
and the risk-free rate of return respectively. For example, the null hypothesis H1

0 : µ1
CAP =

µ2
CAP is that the mean capital appreciation return during the first sub-period, µ1

CAP , is equal
to the mean capital appreciation return during the second sub-period, µ2

CAP . Similarly, the
null hypothesis H4

0 : σ1
CAP = σ2

CAP is that the volatility of the capital appreciation return
during the first sub-period, σ1

CAP , is equal to the volatility of the capital appreciation return
during the second sub-period, σ2

CAP .
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Linear model Segmented model

(Intercept) -5.96e-01 2.89e-01
(0.00) (0.00)

µ 3.45e-03 1.63e-03
(0.00) (0.00)

δ 4.21e-03
(0.00)

R2 0.90 0.98
adj. R2 0.90 0.98
Residual st. dev. 0.62 0.27

Table 3: Results of the estimation of the two alternative models using the total sample period
1860-2014. The linear model is given by log (It) = log (I0) + µ t + εt. The segmented model
is given by log (It) = log (I0) + µ t + δ (t− t∗)+ + εt. The p-values of the estimated coeffi-
cients are given in brackets. These p-values are computed using the heteroskedasticity and
autocorrelation consistent standard errors. The estimated breakpoint date is May 1944.

1870-2014 1870-1942 1942-2014
Statistics

Bull Bear Bull Bear Bull Bear

Number of phases 41 40 21 20 21 20
Minimum duration 6 3 9 5 6 3
Average duration 29.3 15.5 25.7 18.9 32.0 12.2
Median duration 28.0 14.0 25.0 15.0 32.0 11.5
Maximum duration 76 44 75 44 76 25
Average amplitude, % 65.19 -24.44 60.74 -29.05 66.90 -19.84
Average cum. return, % 75.12 -22.64 72.32 -25.82 75.27 -19.46
Mean monthly return, % 2.00 -1.46 2.15 -1.40 1.88 -1.54
Standard deviation, % 4.65 4.86 5.51 5.29 3.81 4.09

Table 4: Descriptive statistics of Bull and Bear markets. Duration is measured in the number
of months. Amplitudes are defined as % changes in the stock index prices (not adjusted
for dividends). Cumulative returns, mean monthly return and the standard deviations are
computed using the total return (adjusted for dividends).

1870-1942 1942-2014
Bear Bull Bear Bull

Bear 0.943 0.057 0.904 0.096
Bull 0.040 0.960 0.031 0.969

Table 5: The estimated transition probabilities of the two-states Markov switching model
for the stock market returns over two historical sub-periods: 1870-1942 and 1942-2014. The
transition probabilities between the states pij = P (St = j|St−1 = i), where St denotes the
latent state variable at time t.
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Hypothesis p-value

H1
0 : µ1

0 = µ2
0 0.72

H2
0 : µ1

1 = µ2
1 0.34

H3
0 : σ1

0 = σ2
0 0.00

H4
0 : σ1

1 = σ2
1 0.00

H51
0 : p100 = p200 0.00

H52
0 : p101 = p201 0.00

H53
0 : p110 = p210 0.00

H54
0 : p111 = p211 0.00

Table 6: Results of the hypothesis testing on the stability of the parameters of the two-states
Markov switching model for the stock market returns rt over the two sub-periods. The model

for returns is given by rmt |St ∼ N
(
µm
St
,
(
σm
St

)2)
, where St denotes the latent state variable at

time t (0-Bear state, 1-Bull state) and m ∈ {1, 2} denotes the number of a sub-period. This
model assumes that the stock market returns at time t of sub-periodm are normally distributed
with mean µm

0 and standard deviation σm
0 if the market is in state 0. Otherwise, in state 1, the

stock market returns are normally distributed with mean µm
1 and standard deviation σm

1 . The
transition probabilities between the states pmij = Pm(St = j|St−1 = i), i, j ∈ {0, 1}, denote the

probability of transition from state i to state j in sub-period m. For example, p101 denotes the
transition probability from state 0 to state 1 over the first sub-period.
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MOM P-REMA P-SMA DCM

Panel A : Period 1870-2014

Mean 8.1 8.8 9.7 9.7
Median 6 8 10 10
Minimum 1 1 1 3
Maximum 24 23 23 22

Panel B : Period 1870-1942

Mean 8.7 9.6 10.3 9.6
Median 10 10 10 8
Minimum 3 1 1 3
Maximum 20 23 23 21

Panel C : Period 1942-2014

Mean 7.4 7.8 9.0 9.8
Median 4 7 8 10
Minimum 1 1 1 3
Maximum 24 23 23 22

Table 7: Descriptive statistics of the optimal lookback period (the number of lagged monthly
prices) for different technical trading rules over a rolling window of 10 years. MOM denotes the
Momentum rule. P-REMA denotes the Price-Minus-Reverse-Exponential-Moving-Average
rule (with λ = 0.8). P-SMA denotes the Price-Minus-Simple-Moving-Average rule. DCM
denotes the Double Crossover Method (based on using two exponential moving averages with
λ = 0.8).

MOM P-REMA P-SMA DCM

Mean optimal lookback period over 1870-1942 8.15 9.52 10.30 9.61
Mean optimal lookback period over 1942-2014 7.42 7.80 9.09 9.89
P-value of testing the equlity of means 0.01 0.00 0.00 0.26

Table 8: Mean optimal lookback periods over each of the two historical sub-samples (1870-1942
and 1942-2014) and the results of testing the null hypothesis of the equality of means. MOM
denotes the Momentum rule. The optimal lookback period kt is assumed to follow the process
kt = c+φkt−1+εt. P-REMA denotes the Price-Minus-Reverse-Exponential-Moving-Average
rule (with λ = 0.8). P-SMA denotes the Price-Minus-Simple-Moving-Average rule. DCM
denotes the Double Crossover Method (based on using two exponential moving averages with
λ = 0.8).
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MOM P-REMA P-SMA DCM
Period Statistics

Buy Sell Buy Sell Buy Sell Buy Sell

Panel A : Rolling-window estimation scheme

Number of signals 121 121 108 108 123 123 101 101
1870-2014

Jaccard Similarity Coef. 0.63 0.42 0.64 0.43 0.64 0.43 0.64 0.43

Number of signals 58 58 58 58 65 65 54 54
1870-1942

Jaccard Similarity Coef. 0.55 0.45 0.54 0.46 0.54 0.44 0.56 0.46

Number of signals 64 64 51 51 59 59 48 48
1942-2014

Jaccard Similarity Coef. 0.70 0.37 0.73 0.39 0.73 0.41 0.71 0.39

Panel B : Expanding-window estimation scheme

Number of signals 119 119 91 91 98 98 83 83
1870-2014

Jaccard Similarity Coef. 0.62 0.41 0.64 0.43 0.66 0.45 0.64 0.44

Number of signals 64 64 55 55 58 58 47 47
1870-1942

Jaccard Similarity Coef. 0.52 0.42 0.55 0.46 0.57 0.48 0.56 0.47

Number of signals 56 56 37 37 41 41 37 37
1942-2014

Jaccard Similarity Coef. 0.71 0.40 0.71 0.38 0.73 0.41 0.71 0.39

Table 11: Number of trading signals and Jaccard similarity coefficients. For each trading
rule and estimation scheme we simulate real-life technical trading and compute the number
of trading signals generated by each active trading strategy. In addition, we compute the
Jaccard similarity coefficients between the Bull market states and Buy signals (JSC(Bull,Buy)
in columns Buy) and between the Bear market states and Sell signals (JSC(Bear,Sell) in
columns Sell). MOM denotes the Momentum rule. P-REMA denotes the Price-Minus-
Reverse-Exponential-Moving-Average rule (with λ = 0.8). P-SMA denotes the Price-Minus-
Simple-Moving-Average rule. DCM denotes the Double Crossover Method (based on using
two exponential moving averages with λ = 0.8).

Period MKT MOM P-REMA P-SMA DCM

Panel A : Rolling-window estimation scheme

1870-2014 0.67 0.71 0.72 0.71 0.72
1870-1942 0.59 0.67 0.67 0.66 0.68
1942-2014 0.74 0.74 0.77 0.77 0.75

Panel B : Expanding-window estimation scheme

1870-2014 0.67 0.70 0.72 0.73 0.72
1870-1942 0.59 0.64 0.68 0.69 0.68
1942-2014 0.74 0.76 0.76 0.77 0.76

Table 12: Simple matching coefficients between the Bull-Bear market states and generated
Buy-Sell trading signals. MKT denotes the passive market strategy. MOM denotes the
Momentum rule. P-REMA denotes the Price-Minus-Reverse-Exponential-Moving-Average
rule (with λ = 0.8). P-SMA denotes the Price-Minus-Simple-Moving-Average rule. DCM
denotes the Double Crossover Method (based on using two exponential moving averages with
λ = 0.8). It is assumed that the passive market strategy generates a Buy signal for all months.
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MOM P-REMA P-SMA DCM
MKT

Rol Exp Rol Exp Rol Exp Rol Exp

Panel A : Period 1870-2014

Mean 0.85 0.84 0.78 0.80 0.79 0.75 0.79 0.74 0.76
Std. dev. 4.99 3.40 3.39 3.21 3.23 3.25 3.29 3.28 3.28
Skewness 0.28 0.79 0.68 -0.14 -0.45 -0.40 -0.50 -0.54 -0.51
Minimum -29.43 -23.51 -23.51 -21.54 -23.51 -23.51 -23.51 -23.51 -23.76
Maximum 42.91 42.66 42.66 16.09 16.09 16.09 16.09 13.46 16.09
Sharpe ratio 0.37 0.54 0.48 0.53 0.51 0.47 0.51 0.46 0.47

(0.01) (0.11) (0.03) (0.06) (0.18) (0.06) (0.24) (0.16)

Panel B : Period 1870-1942

Mean 0.70 0.77 0.65 0.68 0.65 0.61 0.64 0.59 0.60
Std. dev. 5.70 3.60 3.59 3.19 3.29 3.32 3.39 3.38 3.37
Skewness 0.57 1.63 1.49 0.24 -0.45 -0.33 -0.54 -0.62 -0.55
Minimum -29.43 -23.51 -23.51 -19.66 -23.51 -23.51 -23.51 -23.51 -23.76
Maximum 42.91 42.66 42.66 16.09 16.09 16.09 16.09 13.33 16.09
Sharpe ratio 0.25 0.46 0.35 0.42 0.39 0.34 0.36 0.31 0.32

(0.04) (0.34) (0.12) (0.22) (0.41) (0.30) (0.57) (0.52)

Panel C : Period 1942-2014

Mean 1.01 0.91 0.89 0.93 0.87 0.90 0.87 0.90 0.91
Std. dev. 4.16 3.17 3.13 3.22 3.06 3.16 3.06 3.16 3.17
Skewness -0.43 -0.42 -0.43 -0.49 -0.57 -0.46 -0.57 -0.42 -0.35
Minimum -21.54 -21.54 -21.54 -21.54 -21.54 -21.54 -21.54 -21.54 -21.54
Maximum 16.78 13.21 13.21 13.46 12.17 13.46 12.17 13.46 13.46
Sharpe ratio 0.56 0.63 0.62 0.64 0.60 0.62 0.60 0.62 0.63

(0.40) (0.49) (0.34) (0.61) (0.48) (0.65) (0.47) (0.40)

Table 13: Descriptive statistics and performances of the trading strategies. For each trading
rule and estimation scheme we simulate real-life technical trading and compute the descriptive
statistics of the passive market strategy and each active trading strategy. The descriptive
statistics is for monthly returns, means and standard deviation are reported in percentages.
The Sharpe ratios are annualized; the p-values of testing the null hypothesis H0 : SRi = SRM ,
where SRi is the Sharpe ratio of trading strategy i and SRM is the Sharpe ratio of the market,
are reported in brackets. The bold text indicates values that are statistically significant at the
5% level. MKT denotes the passive market strategy. MOM denotes the Momentum rule. P-
REMA denotes the Price-Minus-Reverse-Exponential-Moving-Average rule (with λ = 0.8).
P-SMA denotes the Price-Minus-Simple-Moving-Average rule. DCM denotes the Double
Crossover Method (based on using two exponential moving averages with λ = 0.8). Rol and
Exp denote the rolling- and expanding-window estimation schemes respectively.
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MOM P-REMA P-SMA DCM
Rol Exp Rol Exp Rol Exp Rol Exp

Panel A : Period 1870-2014

Minimum -8.38 -5.91 -6.83 -5.25 -7.38 -8.08 -17.43 -6.46
Median 0.31 0.63 0.00 -0.66 -0.61 -0.43 -1.01 -1.76
Mean 1.95 0.83 1.24 0.74 0.13 0.75 -0.26 0.24
Maximum 28.88 20.98 15.43 11.55 13.11 14.21 10.30 12.86
Std. Deviation 6.83 5.80 4.70 4.32 4.35 5.25 5.85 4.76
Outperf. Prob. 0.55 0.55 0.48 0.45 0.41 0.41 0.45 0.38

Panel B : Period 1870-1939

Minimum -2.63 -5.91 -3.72 -4.93 -4.67 -8.08 -17.43 -6.46
Median 2.70 0.96 0.23 1.11 -0.02 0.15 0.98 -1.42
Mean 4.19 1.62 1.64 1.22 0.23 0.81 -0.32 0.40
Maximum 28.88 20.98 15.43 6.21 4.89 8.25 10.30 7.23
Std. Deviation 8.02 6.78 5.15 3.66 3.37 4.47 6.81 4.59
Outperf. Prob. 0.71 0.64 0.50 0.57 0.50 0.50 0.57 0.43

Panel C : Period 1940-2014

Minimum -8.38 -11.26 -6.83 -7.68 -7.38 -8.58 -5.87 -6.90
Median -0.80 -1.88 0.00 -0.23 -1.18 -1.09 -1.84 -1.84
Mean -0.13 -1.05 0.88 1.30 0.04 0.06 -0.21 0.46
Maximum 10.52 9.24 9.50 15.95 13.11 8.11 9.50 18.16
Std. Deviation 4.89 5.63 4.39 7.50 5.23 4.79 5.04 6.52
Outperf. Prob. 0.40 0.27 0.47 0.47 0.33 0.47 0.33 0.33

Table 14: Descriptive statistics of the annualized M2 performance measure which tells us how
much a market timing strategy outperforms the passive strategy on a risk adjusted basis. For
each trading rule and estimation scheme we simulate real-life technical trading and compute
the descriptive statistics of M2 measure over 5-year non-overlapping periods. The values of
all descriptive statistics are reported in percents. Outperf. Prob. denotes the historical
probability of outperformance. MOM denotes the Momentum rule. P-REMA denotes the
Price-Minus-Reverse-Exponential-Moving-Average rule (with λ = 0.8). P-SMA denotes the
Price-Minus-Simple-Moving-Average rule. DCM denotes the Double Crossover Method (based
on using two exponential moving averages with λ = 0.8). Rol and Exp denote the rolling-
and expanding-window estimation schemes respectively.
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