Revisiting the Profitability of Market Timing with Moving Averages*

Valeriy Zakamulin ${ }^{\dagger}$

This revision: March 7, 2016

Abstract

In a recent empirical study by Glabadanidis ("Market Timing With Moving Averages" (2015), International Review of Finance, Volume 15, Number 13, Pages 387-425; the paper is also available on the SSRN and has been downloaded more than 7,500 times) the author reports striking evidence of extraordinary good performance of the moving average trading strategy. In this paper we demonstrate that "too good to be true" reported performance of the moving average strategy is due to simulating the trading with look-ahead bias. We perform the simulations without look-ahead bias and report the true performance of the moving average strategy. We find that at best the performance of the moving average strategy is only marginally better than that of the corresponding buy-and-hold strategy. In statistical terms, the performance of the moving average strategy is indistinguishable from the performance of the buy-and-hold strategy. This paper is supplied with R code that allows every interested reader to reproduce the reported results.

Key words: technical analysis, market timing, moving averages, performance evaluation

JEL classification: G11, G17.

[^0]
1 Introduction

To time the market, traders often employ moving averages of prices (10 -month simple moving average is particularly popular). A common belief is that one can identify the market trend by comparing the moving average of prices and the recent price. Specifically, the price above (below) the moving average signals the bullish (bearish) trend. Moving average trading strategies has become increasingly popular in the aftermath of the two recent stock market crashes: the Dot-Com bubble crash of 2000-01 and the Global financial crisis of 2007-08. The advantages of the moving average trading strategies are documented in a series of papers, among others by Faber (2007), Gwilym, Clare, Seaton, and Thomas (2010), Kilgallen (2012), and Moskowitz, Ooi, and Pedersen (2012). A more skeptical view on the performance of the market timing strategies is presented by Sullivan, Timmermann, and White (1999), Bauer and Dahlquist (2001), and Zakamulin (2014).

In a recent empirical study by Glabadanidis (2015) the author reports striking evidence of extraordinary good performance of the moving average trading strategies. In particular, he finds the performance of the moving average trading strategies to be much higher than the performance reported in previous studies. This is especially surprising given the fact that superior performance was generated for a very broad range of the moving averaging window lengths, ranging from 6 months to 60 months. In this paper we demonstrate that "too good to be true" reported performance of the moving average strategy is due to simulating the trading with look-ahead bias. Specifically, in our empirical study we investigate the performances of the same trading strategies using the same datasets and sample period as in Glabadanidis (2015). First of all, we replicate the empirical results in the study by Glabadanidis (2015) by simulating moving average strategies with look-ahead bias. Second, we perform the simulations without look-ahead bias and report the true performance of moving average strategies. ${ }^{1}$ We find that at best the performance of the moving average strategy is only marginally better than that of the corresponding buy-and-hold strategy. In statistical terms, the performance of the moving average strategy is indistinguishable from the performance of the corresponding buy-and-hold strategy.

[^1]
2 Data and Methodology

The data for this study are monthly value-weighted returns of sets of 10 portfolios sorted by size, book-to-market, and momentum. Additional data include monthly returns on a broad market index, the risk-free rate of return (proxied by one-month Treasury bill rate), the returns on the SMB (Small Minus Big) and HML (High Minus Low) Fama-French factors (Fama and French (1993)), and the returns on the MOM (Momentum) factor (Carhart (1997)). All data come from the data library of Kenneth French. ${ }^{2}$ The sample period starts in January 1960 and ends in December 2011.

The returns to the market timing strategy are simulated as follows. Let $\left(P_{0}, P_{1}, \ldots, P_{T}\right)$ be the observations of the monthly closing prices of a portfolio. An L-month (simple) Moving Average (MA) at month-end t is computed as

$$
M A_{t}(L)=\frac{P_{t}+P_{t-1}+\ldots+P_{t-k+1}}{L}
$$

The trading signal for month $t+1$ is generated according to the following rule

$$
\text { Signal }_{t+1}= \begin{cases}\text { Buy } & \text { if } P_{t}>M A_{t}(L) \\ \text { Sell } & \text { if } P_{t} \leq M A_{t}(L)\end{cases}
$$

Let $\left(R_{1}, R_{2}, \ldots, R_{T}\right)$ be the monthly returns on a portfolio, and let $\left(r_{f 1}, r_{f 2}, \ldots, r_{f T}\right)$ be the monthly risk-free rates of return over the same sample period. We suppose that buying and selling stocks is costly, whereas buying and selling Treasury bills is costless. Denoting by τ the one-way transaction costs, the return to the market timing strategy over month t is given by

$$
r_{t}= \begin{cases}R_{t} & \text { if }\left(\text { Signal }_{t}=\text { Buy }\right) \text { and }\left(\text { Signal }_{t-1}=\text { Buy }\right), \\ R_{t}-\tau & \text { if }\left(\text { Signal }_{t}=\text { Buy }\right) \text { and }\left(\text { Signal }_{t-1}=\text { Sell }\right), \\ r_{f t} & \text { if }\left(\text { Signal }_{t}=\text { Sell }\right) \text { and }\left(\text { Signal }_{t-1}=\text { Sell }\right), \\ r_{f t}-\tau & \text { if }\left(\text { Signal }_{t}=\text { Sell }\right) \text { and }\left(\text { Signal }_{t-1}=\text { Buy }\right) .\end{cases}
$$

As in Glabadanidis (2015), we assume that one-way transaction costs amount to 50 basis points

[^2](0.5%), that is, $\tau=0.005$.
Similarly to Glabadanidis (2015), we measure the performance by the Sharpe ratio and alpha in the Fama-French-Carhart 4-factor model. Specifically, the Sharpe ratio of a portfolio with excess returns $r_{t}^{e}=r_{t}-r_{f t}$ is computed as (according to Sharpe (1994))
$$
S R=\frac{\mu\left(r_{t}^{e}\right)}{\sigma\left(r_{t}^{e}\right)},
$$
where $\mu\left(r_{t}^{e}\right)$ and $\sigma\left(r_{t}^{e}\right)$ denote the mean and standard deviation of $r_{i t}^{e}$ respectively.
For the Sharpe ratio of each market timing strategy (dented by $S R_{M A}$) we report the pvalue of testing the null hypothesis that it is equal to the Sharpe ratio of the corresponding buy-and-hold portfolio (denoted by $S R_{B H}$). For this purpose we apply the Jobson and Korkie (1981) test with the Memmel (2003) correction. Specifically, given $S R_{M A}, S R_{B H}$, and ρ as the estimated Sharpe ratios and correlation coefficient over a sample of size T, the test of the null hypothesis: $H_{0}: S R_{M A}=S R_{B H}$ is obtained via the test statistic
$$
z=\frac{S R_{M A}-S R_{B H}}{\sqrt{\frac{1}{T}\left[2\left(1-\rho^{2}\right)+\frac{1}{2}\left(S R_{M A}^{2}+S R_{B H}^{2}-2 \rho^{2} S R_{M A} S R_{B H}\right)\right]}},
$$
which is asymptotically distributed as a standard normal.
The alpha (α) is estimated using the following model
$$
r_{t}^{e}=\alpha+\beta_{m k t} r_{M t}^{e}+\beta_{s m b} S M B_{t}+\beta_{h m l} H M L_{t}+\beta_{m o m} M O M_{t}+\varepsilon_{t},
$$
where $r_{M t}^{e}$ denotes the excess return on the market portfolio.

3 Empirical Results

The empirical results reported in Glabadanidis (2015) can be replicated only if we, by mistake, simulate the moving average strategy with look-ahead bias. For the sake of illustration, we assume for the moment that there are no transaction costs. Under this assumption, the
simulation with look-ahead bias goes according to

$$
r_{t}= \begin{cases}R_{t} & \text { if } P_{t}>M A_{t}(L) \\ r_{f t} & \text { if } P_{t} \leq M A_{t}(L)\end{cases}
$$

In contrast, the correct simulation goes like this

$$
r_{t+1}= \begin{cases}R_{t+1} & \text { if } P_{t}>M A_{t}(L) \\ r_{f t+1} & \text { if } P_{t} \leq M A_{t}(L)\end{cases}
$$

This is because the trading signal is generated at the end of the month, not in the beginning of the month. Therefore, the trading signal at the month-end t determines the return over the subsequent month $t+1$. With look-ahead bias, the trading strategy is simulated as though the trader has a perfect foresight of the next month return on the portfolio. In real-life trading, on the other hand, the trader has no information about portfolio returns in the future.

Table 1 reports the summary statistics and the performance of the buy-and-hold strategies (BH) and the moving average strategies MA(24) (the baseline case in Glabadanidis (2015)) and MA(10) (the standard case in the market timing literature) simulated with look-ahead bias. Figure 1 visualizes the average performance of the BH strategies and the MA strategies. The results for BH and $\mathrm{MA}(24)$ strategies in Table 1 are virtually the same as those in Glabadanidis (2015). ${ }^{3}$ And these results are really very "intriguing". Specifically, the average returns of the MA strategies are substantially higher than the average returns of the corresponding BH strategies. At the same time, the standard deviation of returns of the MA strategies is substantially lower than the standard deviation of returns of the corresponding BH strategies. As a result, the risk-return trade-off is improved substantially resulting in much higher Sharpe ratios of the MA strategies when compared to the Sharpe ratios of the BH strategies. In particular, the average Sharpe ratio of the $\mathrm{MA}(24)$ strategy is almost double as high as that of the BH strategy, whereas the average Sharpe ratio of the MA(10) strategy is almost triple as high as that of the BH strategy. The Sharpe ratios of all MA strategies are not only economically significantly higher, but also statistically significantly higher. As an extra advantage, for the

[^3]majority of portfolios, the BH strategy has a negative return skewness while the MA strategy in most cases exhibits positive skewness. This feature makes the MA strategy very attractive to investors because apparently the BH strategy has higher variation in the domains of losses, whereas the corresponding MA strategy has higher variation in the domain of gains. Last but not least, whereas the alphas of the BH strategies are virtually zero, the alphas of the MA strategies are both economically and statistically significantly positive. Specifically, the average alpha of the MA(10) strategy amounts to about 11% on the annual basis.
[Insert Table 1 about here]
[Insert Figure 1 about here]

Table 2 reports the summary statistics and the performance of the BH strategies and the moving average strategies simulated without look-ahead bias. Figure 2 visualizes the average performance of the BH strategies and the MA strategies. Apparently, the true performance of the MA strategies is not "intriguing" at all, especially when it comes to the performance of the $\mathrm{MA}(24)$ strategy. Specifically, whereas the standard deviation of returns of the MA strategies is still substantially lower than the standard deviation of returns of the respective BH strategies, the average returns of the MA strategies are also lower than the average returns of the respective BH strategies. The average Sharpe ratio of the MA(24) strategy is lower than the average Sharpe ratio of the corresponding BH strategy. The average Sharpe ratio of the MA(10) strategy is only marginally higher than the average Sharpe ratio of the BH strategy. Thus, the risk-return trade-off is slightly improved for the MA(10) strategy only. In statistical terms, the Sharpe ratios of the MA strategies are not statistically significantly different from the Sharpe ratios of the corresponding BH strategies. In addition, for the most of the MA strategies, the return skewness is more negative than the return skewness of the BH strategies. This feature makes the MA strategy less attractive to investors who have a preference for skewness. The average alpha of the MA strategies is negative because the returns to the MA strategy have a large positive loading on the Momentum factor. Yet only few alphas are statistically significantly negative.
[Insert Table 2 about here]

[Insert Figure 2 about here]

4 Conclusions

In this paper we demonstrated that the sole "driver of abnormal performance" of the moving average strategies, reported in the empirical study by Glabadanidis (2015), is look-ahead bias. We performed the correct simulation of the same strategies using the same datasets and sample period as in the study by Glabadanidis (2015). We found that at best the performance of the moving average strategy is only marginally better than that of the corresponding buy-andhold strategy in terms of the Sharpe ratio. In contrast, in terms of alpha, the performance of the moving average strategy is worse than that of the corresponding buy-and-hold strategy In statistical terms, most of the time the performance of the moving average strategy is indistinguishable from the performance of the buy-and-hold strategy. Overall, the conclusions reached in this paper agree with the conclusions in Zakamulin (2014) and Zakamulin (2015): the performance of moving average strategies is highly overstated to say the least.

References

Bauer, Richard J., J. and Dahlquist, J. R. (2001). "Market Timing and Roulette Wheels", Financial Analysts Journal, 57(1), 28-40.

Carhart, M. M. (1997). "On Persistence in Mutual Fund Performance", Journal of Finance, 52(1), 57-82.

Faber, M. T. (2007). "A Quantitative Approach to Tactical Asset Allocation", Journal of Wealth Management, 9(4), 69-79.

Fama, E. F. and French, K. R. (1993). "Common Risk Factors in the Returns on Stocks and Bonds", Journal of Financial Economics, 33(1), 3-56.

Glabadanidis, P. (2015). "Market Timing With Moving Averages", International Review of Finance, $15(3), 387-425$.

Gwilym, O., Clare, A., Seaton, J., and Thomas, S. (2010). "Price and Momentum as Robust Tactical Approaches to Global Equity Investing", Journal of Investing, 19(3), 80-91.

Jobson, J. D. and Korkie, B. M. (1981). "Performance Hypothesis Testing with the Sharpe and Treynor Measures", Journal of Finance, 36(4), 889-908.

Kilgallen, T. (2012). "Testing the Simple Moving Average across Commodities, Global Stock Indices, and Currencies", Journal of Wealth Management, 15(1), 82-100.

Memmel, C. (2003). "Performance Hypothesis Testing with the Sharpe Ratio", Finance Letters, 1, 21-23.

Moskowitz, T. J., Ooi, Y. H., and Pedersen, L. H. (2012). "Time Series Momentum", Journal of Financial Economics, 104 (2), 228-250.

Sharpe, W. F. (1994). "The Sharpe Ratio", Journal of Portfolio Management, 21(1), 49-58.
Sullivan, R., Timmermann, A., and White, H. (1999). "Data-Snooping, Technical Trading Rule Performance, and the Bootstrap", Journal of Finance, 54 (5), 1647-1691.

Zakamulin, V. (2014). "The Real-Life Performance of Market Timing with Moving Average and Time-Series Momentum Rules", Journal of Asset Management, 15 (4), 261-278.

Zakamulin, V. (2015). "A Comprehensive Look at the Empirical Performance of Moving Average Trading Strategies", Working paper, University of Agder.

Figure 1: Average Sharpe ratio (left panel) and average alpha (right panel) of the returns to the buy-and-hold portfolios (BH) and the returns to the moving average strategies MA(24) and MA(10) simulated with look-ahead bias. The sample period covers January 1960 to December 2011. A one-way transaction cost of 0.5% has been imposed in the computation of the MA returns. Alpha is estimated using the Fama-French-Carhart 4-factor model.

Figure 2: Average Sharpe ratio (left panel) and average alpha (right panel) of the returns to the buy-and-hold portfolios (BH) and the returns to the moving average strategies MA(24) and MA(10) simulated without look-ahead bias. The sample period covers January 1960 to December 2011. A one-way transaction cost of 0.5% has been imposed in the computation of the MA returns. Alpha is estimated using the Fama-French-Carhart 4 -factor model.

		BH Portfolios		
			σ	s

へ

ヘーOーのーかみo

ーサーかのヘペーか $\dot{\sim} \dot{\sim} \dot{\sim} \dot{\sim}$

No

ée ée ícée é
$\stackrel{\infty}{\infty}$
$\stackrel{\sim}{\sim}$
Panel A：Size－sorted portfolios
？

O

气

サートローみのமツの

o $\dot{0} \dot{0} \dot{0} \dot{0} 0 \dot{0}$

 OOOOOOOOO

©ion

 ${\underset{\sim}{3}}_{\substack{3}}$	

Table 1：Summary statistics for the respective buy－and－hold（BH）portfolio returns and the moving average（MA）strategy portfolio returns with the length of the moving average window of 24 and 10 months（these strategies are denoted by MA（24）and MA（10）respectively）．The returns to the moving averages strategies are simulated with look－ahead bias．The sample period covers January 1960 to December 2011．A one－way transaction cost of 0.5% has been imposed in the computation of the MA returns．μ is the annualized average return，σ is the annualized standard deviation of returns，s is the skewness，$S R$ is the annualized Sharpe ratio，α is the alpha in the Fama－French－Carhart 4 －factor model，and p－val is the p－value．μ, σ ，and α are reported in percentages．For the Sharpe ratio of the MA strategy，we test the hypothesis $H_{0}: S R_{M A}=S R_{B H}$ ．For each alpha，we test the hypothesis $H_{0}: \alpha=0$ ． Bold text indicate values that are statistically significant at the 5% level．

Portfolio	BH Portfolios						MA(24) Portfolios							MA(10) Portfolios						
	μ	σ	s	SR	α	p-val	μ	σ	s	SR	p-val	α	p-val	μ	σ	s	SR	p-val	α	p-val
Panel A: Size-sorted portfolios																				
Low	13.5	22.4	-0.13	0.37	-0.78	(0.40)	11.3	17.8	-0.25	0.35	(0.75)	-3.07	(0.05)	13.6	16.4	-0.20	0.52	(0.20)	0.67	(0.68)
2	12.9	22.3	-0.22	0.35	-1.19	(0.03)	10.7	18.1	-0.35	0.31	(0.63)	-3.24	(0.02)	11.1	16.3	-0.40	0.37	(0.97)	-2.19	(0.15)
3	13.6	21.3	-0.40	0.40	0.03	(0.95)	10.6	17.4	-0.56	0.32	(0.34)	-2.87	(0.04)	10.3	16.0	-0.71	0.33	(0.33)	-2.54	(0.08)
4	12.9	20.5	-0.46	0.38	-0.48	(0.34)	10.2	16.3	-0.53	0.31	(0.45)	-2.79	(0.04)	10.4	14.9	-0.72	0.36	(0.69)	-1.85	(0.19)
5	13.3	19.8	-0.47	0.41	0.45	(0.39)	10.6	15.9	-0.74	0.35	(0.46)	-2.29	(0.07)	10.8	14.6	-0.76	0.39	(0.68)	-1.34	(0.33)
6	12.4	18.6	-0.49	0.39	0.14	(0.82)	10.3	14.9	-0.69	0.35	(0.63)	-1.94	(0.12)	10.9	13.6	-0.77	0.43	(0.92)	-0.43	(0.74)
7	12.5	18.3	-0.45	0.40	0.41	(0.47)	11.1	14.5	-0.58	0.41	(0.90)	-0.85	(0.48)	10.8	13.2	-0.66	0.43	(0.97)	-0.30	(0.82)
8	11.8	17.8	-0.42	0.38	0.25	(0.65)	10.0	14.0	-0.50	0.35	(0.72)	-1.69	(0.15)	10.0	13.0	-0.59	0.38	(0.75)	-0.82	(0.52)
9	11.2	16.3	-0.39	0.37	0.22	(0.67)	9.6	12.8	-0.48	0.35	(0.84)	-1.28	(0.24)	9.2	12.1	-0.71	0.34	(0.57)	-1.23	(0.28)
High	9.5	15.0	-0.31	0.29	0.52	(0.03)	8.8	12.0	-0.34	0.30	(0.87)	-0.55	(0.59)	9.9	11.0	-0.43	0.44	(0.26)	0.61	(0.56)
Panel B: Book-to-market-sorted portfolios																				
Low	9.0	18.1	-0.18	0.21	1.62	(0.02)	8.6	13.9	-0.29	0.25	(0.73)	-0.41	(0.74)	9.5	12.7	-0.31	0.35	(0.30)	0.92	(0.47)
2	10.4	16.6	-0.43	0.32	1.06	(0.12)	9.0	13.5	-0.51	0.29	(0.75)	-0.63	(0.60)	8.0	12.4	-0.75	0.24	(0.26)	-1.26	(0.32)
3	10.9	16.2	-0.46	0.36	0.80	(0.28)	9.2	13.2	-0.67	0.31	(0.61)	-0.61	(0.62)	8.6	12.2	-1.07	0.29	(0.32)	-1.27	(0.32)
4	10.7	16.7	-0.44	0.34	-0.65	(0.43)	9.4	13.4	-0.47	0.32	(0.86)	-1.04	(0.41)	9.4	12.3	-0.59	0.36	(0.85)	-0.80	(0.53)
5	10.6	15.7	-0.40	0.35	-0.95	(0.26)	9.6	12.7	-0.62	0.36	(0.96)	-1.38	(0.27)	9.6	12.0	-0.70	0.38	(0.94)	-1.09	(0.39)
6	11.7	15.8	-0.40	0.41	0.00	(1.00)	9.7	12.9	-0.54	0.36	(0.52)	-1.03	(0.39)	10.2	11.8	-0.65	0.44	(0.92)	-0.41	(0.74)
7	12.4	15.6	-0.09	0.47	-0.13	(0.87)	11.5	12.8	-0.13	0.50	(0.73)	-0.03	(0.98)	11.6	11.6	-0.06	0.56	(0.51)	0.51	(0.67)
8	13.0	16.0	-0.44	0.49	-0.61	(0.35)	11.3	13.1	-0.24	0.47	(0.81)	-1.05	(0.36)	10.8	11.8	-0.42	0.49	(0.75)	-1.06	(0.37)
9	13.9	16.9	-0.29	0.52	0.02	(0.98)	11.7	13.8	-0.40	0.48	(0.61)	-1.22	(0.32)	10.8	12.8	-0.45	0.44	(0.30)	-1.48	(0.25)
High	15.2	20.6	0.08	0.49	-0.73	(0.50)	13.9	15.9	-0.15	0.55	(0.53)	-0.68	(0.66)	11.6	14.2	-0.62	0.46	(0.65)	-1.05	(0.50)
Panel C: Momentum-sorted portfolios																				
Low	1.3	28.0	0.66	-0.14	-2.80	(0.04)	1.8	13.1	-0.51	-0.26	(0.42)	-7.02	(0.00)	5.1	14.1	0.46	0.00	(0.40)	-1.95	(0.28)
2	7.8	21.9	0.25	0.12	2.52	(0.00)	6.2	14.0	0.05	0.08	(0.72)	-0.24	(0.88)	7.9	12.5	-0.01	0.23	(0.47)	1.37	(0.37)
3	9.4	18.8	0.32	0.23	3.12	(0.00)	8.7	12.1	0.29	0.29	(0.57)	0.60	(0.66)	8.7	11.8	-0.13	0.31	(0.61)	1.45	(0.29)
4	10.0	16.9	-0.11	0.29	2.21	(0.01)	8.3	12.1	-0.14	0.27	(0.85)	0.09	(0.94)	8.1	11.4	-0.34	0.27	(0.74)	0.46	(0.72)
5	9.0	15.7	-0.25	0.24	-0.27	(0.73)	5.8	12.0	-0.67	0.06	(0.05)	-3.19	(0.01)	7.4	11.2	-0.74	0.21	(0.45)	-1.44	(0.23)
6	10.1	15.9	-0.36	0.31	-0.16	(0.85)	8.6	12.7	-0.53	0.27	(0.62)	-1.84	(0.13)	8.8	11.8	-0.66	0.32	(0.79)	-1.31	(0.28)
7	10.4	15.4	-0.47	0.34	-0.81	(0.33)	8.9	13.1	-0.61	0.28	(0.45)	-2.27	(0.06)	8.0	12.0	-0.89	0.25	(0.14)	-3.07	(0.01)
8	12.4	15.8	-0.29	0.46	-0.35	(0.64)	11.1	13.7	-0.32	0.44	(0.75)	-0.89	(0.43)	10.7	12.4	-0.46	0.46	(0.68)	-0.82	(0.49)
9	13.2	17.0	-0.51	0.47	-0.92	(0.24)	12.3	15.0	-0.47	0.48	(0.94)	-0.46	(0.71)	10.9	14.0	-0.67	0.42	(0.29)	-1.98	(0.12)
High	17.5	21.8	-0.39	0.57	0.98	(0.30)	15.5	20.0	-0.38	0.52	(0.42)	0.30	(0.84)	16.1	17.8	-0.36	0.62	(0.83)	1.11	(0.46)

[^4]
[^0]: ${ }^{*}$ The author is grateful to Steen Koekebakker for his comments and to Geirmund Glendrange and Sondre Tveiten for double-checking the author's results. The usual disclaimer applies.
 ${ }^{\dagger}$ a.k.a. Valeri Zakamouline, School of Business and Law, University of Agder, Service Box 422, 4604 Kristiansand, Norway, Tel.: (+47) 381410 39, E-mail: Valeri.Zakamouline@uia.no

[^1]: ${ }^{1}$ The interested readers can reproduce the results reported in this paper by downloading the R code of the program that simulates the trading, with and without look-ahead bias, and the relevant Ken French's data from the author's web-site vzakamulin. weebly.com.

[^2]: ${ }^{2}$ http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html

[^3]: ${ }^{3}$ Very small differences can be attributed to the fact that Kenneth French revises periodically his datasets because of the revisions in the data series provided by the Center for Research in Security Prices (CRSP).

[^4]: Table 2: Summary statistics for the respective buy-and-hold (BH) portfolio returns and the moving average (MA) strategy portfolio returns with the length of the moving average window of 24 and 10 months (these strategies are denoted by MA(24) and MA(10) respectively). The returns to the moving averages strategies are simulated without look-ahead bias. The sample period covers January 1960 to December 2011. A one-way transaction cost of 0.5% has been imposed in the computation of the MA returns. μ is the annualized average return, σ is the annualized standard deviation of returns, s is the skewness, $S R$ is the annualized Sharpe ratio, α is the alpha in the Fama-French-Carhart 4 -factor model, and p-val is the p-value. μ, σ, and α are reported in percentages. For the Sharpe ratio of the MA strategy, we test the hypothesis $H_{0}: S R_{M A}=S R_{B H}$. For each alpha, we test the hypothesis $H_{0}: \alpha=0$. Bold text indicate values that are statistically significant at the 5% level.

