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Abstract

We study the price impact of order book events - limit orders, market orders and can-
celations - using the NYSE TAQ data for 50 U.S. stocks. We show that, over short time
intervals, price changes are mainly driven by the order flow imbalance, defined as the imbal-
ance between supply and demand at the best bid and ask prices. Our study reveals a linear
relation between order flow imbalance and price changes, with a slope inversely proportional
to the market depth. These results are shown to be robust to intraday seasonality effects,
and stable across time scales and across stocks. This linear price impact model, together
with a scaling argument, implies the empirically observed “square-root” relation between the
magnitude of price moves and trading volume. However, the latter relation is found to be
noisy and less robust than the one based on order flow imbalance. We discuss a potential ap-
plication of order flow imbalance as a measure of adverse selection in limit order executions,
and demonstrate how it can be used to analyze intraday volatility dynamics.
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1 Introduction

The availability of high-frequency records of trades and quotes has stimulated an extensive
empirical and theoretical literature on the relation between order flow, liquidity and price move-
ments in order-driven markets. A particularly important issue for applications is the impact of
orders on prices: the optimal liquidation of a large block of shares, given a fixed time horizon,
crucially involves assumptions on price impact (see Bertsimas and Lo [7], Almgren and Chriss
[2], Obizhaeva and Wang [40]). Understanding price impact is also important from a theoretical
perspective, since it is a fundamental mechanism of price formation.

Various aspects of price impact have been studied in the literature but there is little agree-
ment on how to model it [8], and the only consensus seems to be the intuitive notion that
imbalance between supply and demand moves prices. Theoretical studies draw a distinction
between instantaneous price impact of orders and its decay through time, and show that the
form of instantaneous impact has important implications. Huberman and Stanzl [27] show that
there are arbitrage opportunities if the instantaneous effect of trades on prices is non-linear and
permanent. Gatheral [19] extends this analysis by showing that if the instantaneous price impact
function is non-linear, impact needs to decay in a particular way to exclude arbitrage and if it is
linear, it needs to decay exponentially. Bouchaud et al. [9] associated the decay of price impact
of trades with limit orders, arguing that there is a “delicate interplay between two opposite
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tendencies: strongly correlated market orders that lead to super-diffusion (or persistence), and
mean reverting limit orders that lead to sub-diffusion (or anti-persistence)”. This insight implies
that looking solely at trades, without including the effect of limit orders amounts to ignoring an
important part of the price formation mechanism.

However, most of the empirical literature on price impact has primarily focused on trades.
One approach is to study the impact of “parent orders” gradually executed over time using
proprietary data (see Engle et. al [14], Almgren et. al [3]). Alternatively, empirical studies on
public data [16, 18, 20, 30, 31, 48, 42, 43] have analyzed the relation between the direction and
sizes of trades and price changes and typically conclude that the instantaneous price impact
of trades is an increasing, nonlinear function of their size. This focus on trades leaves out the
information in quotes, which provide a more detailed picture of price formation [15], and raises
a natural question: is volume of trades truly the best explanatory variable for price movements
in markets where many quote events can happen between two trades?

In our view, a price impact model that encompasses limit orders, market orders and cance-
lations, and relates their impact to the concurrent market liquidity would provide a more detailed
description of price formation. Obtaining such model is also desireable from the practical point
of view because modern order execution algorithms increasingly use limit orders and incorpo-
rate market state variables in their decisions. There is also ample empirical evidence that limit
orders play an important role in determining price dynamics. Arriving limit orders significantly
reduce the impact of trades [49] and the concave shape of the price impact function changes
depending on the contemporaneous limit order arrivals [46]. The outstanding limit orders (also
known as market depth) significantly affect the impact of an individual trade ([32]), low depth is
associated with large price changes [50, 17], and depth influences the relation between trade sizes
and returns [24]. The emphasis in the aforementioned studies remains, however, on trades and
there are few empirical studies that focus on limit orders from the outset. Notable exceptions
are Engle & Lunde [15], Hautsch and Huang [25] who perform an impulse-response analysis of
limit and market orders, Hopman [26] who analyzes the impact of different order categories over
30 minute intervals and Bouchaud et al. [12] who examine the impact of market orders, limit
orders and cancelations at the level of individual events.

1.1 Summary

We conduct an empirical investigation of the instantaneous impact of order book events – market
orders, limit orders and cancelations – on equity prices. Although previous studies give a
relatively complex description of their impact, we show that their instantaneous effect on prices
may be modeled parsimoniously through a single variable, the order flow imbalance (OFI). This
variable represents the net order flow at the best bid and ask and tracks changes in the size of
the bid and ask queues by

� increasing every time the bid size increases, the ask size decreases or the bid/ask prices
increase,

� decreases every time the bid size decreases, the ask size increases or the bid/ask prices
decrease.

Interestingly, this variable treats a market sell and a cancel buy of the same size as equivalent,
since they have the same effect on the size of the best bid queue. This aggregate variable
explains mid-price changes over short time scales in a linear fashion, for a large sample of
stocks, with an average R2 of 65%. In contrast, order flows deeper in the order book do not
substantially contribute to price changes. Our model based on OFI relates prices, trades, limit
orders and cancelations in a simple way: it is linear, requires the estimation of a single price
impact coefficient and it is robust across stocks and across timescales.
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Most of variability in the instantaneous price impact, both across time and across stocks is
explained by variations in market depth. In fact, we establish an exact inverse relation between
the two variables. The coefficient of proportionality in that relation depends dramatically on
the depth definition, showing that arbitrary measures of market depth are biased proxies for
price impact and may lead to misleading conclusions on market liquidity.

The price impact coefficient exhibits substantial intraday variablility coinciding with known
intraday patterns observed in spreads, market depth and price volatility [1, 5, 35, 39]. We
explain the diurnal effects in price volatility using the volatility of order flow imbalance and
market depth, as opposed to unobservable parameters previously invoked in the literature, such
as information asymmetry [38] or informativeness of trades [21]. The strong link between price
volatility and standard deviation of OFI suggests that our price impact coefficient is a better
estimate of Kyle’s λ (a useful metric of liquidity [4, 33]) than traditional estimates based on
trades data. We also show that intraday price volatility is mainly driven by OFI and not by
trading volume. The positive correlation between price volatility and volume, widely confirmed
by empirical studies [29], can be a statistical artifact due to aggregation of data over time, and
we establish how such spurious relation can arise in our model.

The OFI variable exhibits positive autocorrelation over short time scales, which can be
exploited to improve the quality of order executions. In particular, we show that a limit order fill
is more likely to be followed with a price change in the same direction as the order flow imbalance
before that fill. For example, a limit sell order is more likely to be adversely selected when order
flow imbalance is positive. Monitoring OFI can therefore help reduce adverse selection in limit
order fills.

1.2 Outline

The article is structured as follows. In Section 2, we specify a parsimonious model that links
stock price changes, order flow imbalance and market depth and motivate it by a stylized example
of the order book. Section 3 describes our data and presents estimation results for our model.
Section 4 discusses potential applications of our results: in 4.1 we use order flow imbalance as a
measure of adverse selection in limit order executions, in 4.2 we demonstrate how diurnal effects
in depth and order flow imbalance generate intraday patterns in price impact and price volatility,
and in 4.3 we show how a spurious relation between volume and the magnitude of price moves
emerges as a statistical artifact from our simple model. Section 5 presents our conclusions.

2 Price impact model

2.1 Stylized order book

To motivate our approach we first consider a stylized example of the order book where the
instantaneous effect of order book events can be explicitly computed.

Consider an order book in which the number of shares (depth) at each price level beyond
the best bid and ask is equal to D. Order arrivals and cancelations occur only at the best bid
and ask. Moreover, when bid (or ask) size reaches D, the next passive order arrives one tick
above (or below) the best quote, initializing a new best level. Consider a time interval [tk−1, tk]
and denote by Lbk, C

b
k respectively the total size of buy orders that arrived to and canceled from

current best bid during that time interval. Also denote by M b
k the total size of marketable buy

orders that arrived to current best ask, and by P bk the bid price at time tk. The quantities
Lsk, C

s
k,M

s
k for sell orders are defined analogously and P sk is the ask price.

In this simple order book model there exists a linear relation between order flows
Lb,sk , Cb,sk ,M b,s

k and price changes ∆P b,sk = (P b,sk − P
b,s
k−1) (also illustrated on Figures 1-3):
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∆P bk = δ

⌈
Lbk − Cbk −M s

k

D

⌉
(1)

∆P sk = −δ
⌈
Lsk − Csk −M b

k

D

⌉
, (2)

where δ is the tick size1. These relations are remarkably simple - they involve no parameters, the
impact of all order book events is additive and depends only on their net imbalance. Although
all of the subsequent analysis can be carried out separately for bid and ask prices, for simplicity

we consider mid-price changes normalized by tick size Pk =
P bk+P sk

2δ :

∆Pk =
OFIk

2D
+ εk, (3)

OFIk = Lbk − Cbk −M s
k − Lsk + Csk +M b

k (4)

where OFIk is the order flow imbalance (or net order flow) and ε is the truncation error. We
can also rewrite (3) as:

∆Pk =
TIk
2D

+ ηk, (5)

TIk = M b
k −M s

k (6)

where TIk is the trade imbalance and ηk =
Lbk−C

b
k−L

s
k+Csk

2D + εk. When limit order activity

dominates, i.e. absolute values of terms |Lb,sk |, |C
b,s
k | are much larger than |M b,s

k |, the correlation
of price changes with TIk is weaker than with OFIk, because limit order submissions and
cancelations manifest as noise in (5).

1This is easily proven by induction over the number of price changes in [tk−1, tk]. The statement is clearly true
when there are no price changes or a single price change of ±δ. Since any price change of ±kδ consists of jumps
of size 1, we simply need to sum the order flow imbalances across these jumps on the right side of the equation.
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Figure 1: Market sell orders remove M s shares from the bid (gray squares represent net change
in the order book).

Figure 2: Market sell orders remove M s shares from the bid, while limit buy orders add Lb

shares to the bid.

Figure 3: Market sell orders and limit buy cancels remove M s + Cb shares from the bid, while
limit buy orders add Lb shares to the bid.
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2.2 Model specification

Actual order books have complex dynamics: arrivals and cancelations occur at all price levels, the
depth distribution across levels has non-trivial features [43, 45, 52], and hidden orders together
with data-reporting issues create additional errors [6, 22]. Motivated by the stylized order book
example we assume a noisy relation between price changes and OFI, which holds locally for
short intervals of time [tk−1,i, tk,i] ⊂ [Ti−1, Ti], where [Ti−1, Ti] are longer intervals.

∆Pk,i = βiOFIk,i + εk,i, (7)

In this model βi is a price impact coefficient for an i-th time interval and εk,i is a noise term
summarizing influences of other factors (e.g. deeper levels of the order book). We allow βi
and the distribution of εk,i to change with index i, because of well-known intraday seasonality
effects. Our discussion from the previous section allows us to interpret 1

2βi
as an implied order

book depth. The stylized order book model suggests that price impact coefficient is inversely
related to market depth, and we consider the following model:

βi =
c

Dλ
i

+ νi, (8)

where c, λ are constants and νi is a noise term. The stylized order book model corresponds to
c = 1

2 , λ = 1. We also consider a relation between price changes and trades:

∆Pk,i = βTi TIk,i + ηk,i, (9)

but expect it to be much noisier than (7).
The specification (7-8) may be regarded as a model of instantaneous price impact of order

book events, arriving within time interval [tk−1, tk]. An order submitted or canceled at time
τ ∈ [tk−1, tk] contributes a signed quantity eτ to supply/demand. In any given time interval,
these contributions are likely be unbalanced, leading to an order flow imbalance OFIk, which
affects supply/demand and leads to a corresponding price adjustment. If an individual order
goes in the same direction as the majority of orders (sgn(eτ ) = sgn(OFIk)), it reinforces the
concurrent order flow imbalance and can affect the price. If the order goes against the concurrent
order flow imbalance (sgn(eτ ) = −sgn(OFIk)), it is compensated by other orders and has an
instantaneous impact of zero. In our model all events (including trades) have a linear price
impact, on average equal to βi during the i-th interval. Their realized impact however depends
on the concurrent orders.

The idea that the concurrent limit order activity can make a difference in terms of trades’
impact was demonstrated in [46], where authors show that the shape of the price impact func-
tion essentially depends on the contemporaneous limit order activity. Our approach can also be
related to the model proposed in [12], where order book events have a linear impact on prices,
which depends on their signs and types2. The major difference of our model lies in the aggrega-
tion across time and events. As shown in [12], time series of individual order book events have
complicated auto- and cross-correlation structures, which typically vanish after 10 seconds. In
our data the autocorrelations at a timescale of 10 seconds are small and quickly vanish as well
(ACF plots for a representative stock are shown on Figure 4). Finally, the model used in [24]
for explaining the price impact of trades is similar to (9). Although the focus there is on trades,
authors allow the price impact coefficient to depend on contemporaneous liquidity factors and
change through time.

2Note that in our case all order book events have the same average impact, equal to βi, regardless of their type.
As shown in [12], average impacts of different event types are empirically very similar, allowing to reasonably
approximate them with a single number.
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At the same time, the linear relation (7) is different from many earlier models that consider
only the effect of transactions [18, 20, 31, 48, 42, 43]. Instead of modeling price impact of trades
as a (nonlinear) function of trade size, we show that the instantaneous price impact of a series of
events (including trades) is a linear function of their size after these events are aggregated into
a single imbalance variable. We will show that, first, the effect of trades on prices is adequately
captured by the order flow imbalance and, second, that if one leaves out all events except trades,
the relation 7 leads to an apparent concave relation between the magnitude of price changes and
trading volume.

The next section provides an overview of the estimation results for our model.

Figure 4: ACF of the mid-price changes ∆Pk,i, the order flow imbalance OFIk,i and the 5%
significance bounds for the Schlumberger stock (SLB).

3 Estimation and results

3.1 Data

Our main data set consists of one calendar month (April, 2010) of trades and quotes data for
50 stocks. The stocks were selected by a random number generator from S&P 500 constituents,
which were obtained from Compustat. The data for individual stocks was obtained from the
TAQ consolidated quotes and TAQ consolidated trades databases3.

Consolidated quotes contain best bid/ask price changes and round-lot changes in best
bid/ask sizes. Quote data entries consist of a stock ticker, a timestamp (rounded to the nearest
second), bid price and size, ask price and size and various flags including exchange flag. Consol-
idated trade entries consist of timestamps, prices, sizes and various flags. These two data sets
are often referred to as Level 1 data, as opposed to Level 2 data, which includes quote updates
deeper in the book, or information on individual orders.

At the same time TAQ data has important limitations - the timestamps are rounded to
the nearest second, and it may omit odd-lot trades and quotes. To perform several detailed
robustness checks we also use an auxilary data set consisting of NASDAQ ITCH 4.0 messages
for the same calendar month (April, 2010) for one representative stock from our main data

3The TAQ data were obtained through Wharton Research Data Services (WRDS).
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set (Schlumberger). This data is accessible through LOBSTER website4 which also provides
NASDAQ order book history for the selected stock. We used LOBSTER data for the top five
order book levels without any additional pre-processing.

The TAQ data was used to compute the National Best Bid and Offer sizes and prices
(NBBO) at each quote update. We find that the ratio between the number of NBBO quote
updates and the number of trades is roughly 40 to 1 in our data. Many empirical studies have
focused exclusively on trades rather than quotes, but the sheer difference in sizes of these data
sets suggests that more information may be conveyed by quotes than by trades. Using the
exchange flag, we also considered one exchange at a time and obtained similar empirical results.

3.2 Variables

Every observation of the bid and the ask consists of the bid price P b, the the bid queue size
qb (in number of shares), the ask price P s and size qs. We enumerate them by n and compute
differences betwen consecutive observations (P bn, q

b
n, P

s
n, q

s
n) as follows:

en = qbn1{P bn≥P bn−1} − q
b
n−11{P bn≤P bn−1} − q

s
n1{P sn≤P sn−1} + qsn−11{P sn≥P sn−1} (10)

The variables en are signed contributions of order book events to supply/demand. When a
passive buy order arrives, qb increases but P b remains the same, leading to en = qbn−qbn−1 which
is the size of that order. If qb decreases, we have en = qbn − qbn−1, representing the size of a
marketable sell order or buy order cancelation. If P b changes, then en = qbn or en = −qbn−1,
representing respectively the size of a price-improving order or the last order in the queue that
that was removed. Symmetric computations are done for the ask side.

We use two uniform time grids {T0, . . . , TI} and {t0,0, . . . , tI,K} with time steps Ti−Ti−1 =
30 minutes and tk,i − tk−1,i = ∆t = 10 seconds5. Within each long time interval [Ti−1, Ti] we
compute 180 price changes and order flow imbalances indexed by k:

∆Pk,i =
P bN(tk,i)

+ P sN(tk,i)

2δ
−
P bN(tk−1,i)

+ P sN(tk−1,i)

2δ
(11)

OFIk,i =

N(tk,i)∑
n=N(tk−1,i)+1

en, (12)

where N(tk−1,i) + 1 and N(tk,i) are the index of the first and the last order book event in the
interval [tk−1,i, tk,i]. The tick size δ is equal to 1 cent in our data. Note that in our empirical
study OFI is computed from fluctuations in best bid/ask prices and their sizes according to
(12), because data on individual orders is not available in our main dataset. If that data is
avalable, OFI can be computed according to (4). We believe that a computation based on
(4) can lead to better empirical results because aggressive order terms M b,M s will capture
information on hidden orders and unreported odd-lot sized orders within the spread, to the
extent that aggressive orders interact with hidden orders. Since TAQ data reports only round-
lot sized quote changes, we note that units of OFI are round lots (100 shares), and assume in
(12) that both sides of the market are equally affected by missing quote updates6.

We define trade imbalance during a time interval [tk−1,i, tk,i] as the difference between
volumes of buyer- and seller-initiated trades during that interval, and also define trading volume
within that time interval:

4http://lobster.wiwi.hu-berlin.de/Lobster/about/About WhatIsLOBSTER.jsp
5results for other timescales are reported in the appendix
6As we demonstrate in the appendix, neither missing odd-lot sized observations nor potential mis-sequencing

of quote updates across different exchanges during NBBO computation change our qualitative findings.
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TIk,i =

N(tk,i)∑
n=N(tk−1,i)+1

bn − sn V OLk,i =

N(tk,i)∑
n=N(tk−1,i)+1

bn + sn (13)

where bn, sn are sizes of buyer- and seller-initiated trades (in round lots) that occured at the
n-th quote (equal to zero if no trade occured at that quote). In contrast with TI, the OFI
measure computed using (12) does not hinge on trade classification, which is known to be prob-
lematic for TAQ data (see appendix for more details on matching trades with quotes and trade
classification). Whereas previous studies [11, 20, 24, 31, 42, 48] focused on trade imbalance7,
the order flow imbalance is a more general measure. It encompasses effects of all order book
events, including trades.

For each interval [Ti−1, Ti] we also estimate depth by averaging the bid/ask queue sizes
right before or right after a price change, consistently with the definition of depth in the stylized
order book model:

Di =
1

2


N(Ti)∑

n=N(Ti−1)+1

(
qbn1{P bn<P bn−1} + qbn−11{P bn>P bn−1}

)
N(Ti)∑

n=N(Ti−1)+1

1{P bn 6=P bn−1}

+

N(Ti)∑
n=N(Ti−1)+1

(
qsn1{P sn>P sn−1} + qsn−11{P sn<P sn−1}

)
N(Ti)∑

n=N(Ti−1)+1

1{P sn 6=P sn−1}



7Hopman [26] computes the supply/demand imbalance based on limit orders and trades, but not cancelations.
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3.3 Empirical findings

This section reports detailed results for a representative stock, Schlumberger (SLB) and some
average results across stocks. Detailed results for other stocks in our sample are presented in the
appendix. During the sample period the average price of Schlumberger stock was 67.94 dollars
and the average daily volume was 947.6 million shares. The daily average number of NBBO
quote updates is about 440 thousands, and the average daily number of trades is around 10
thousands. The average spread is one cent, its 95-th percentile is 2 cents and the average best
NBBO quote size is 39 round lots (3900 shares).

The model (7) is estimated by an ordinary least squares regression:

∆Pk,i = α̂i + β̂iOFIk,i + ε̂k,i, (14)

with separate half-hour subsamples indexed by i. Figure 5 presents a scatter plot of ∆Pk,i
against OFIk,i for one of such subsamples.

In general we find that β̂i is statistically significant8 in 98% of samples, and α̂i is significant
in 10% of samples, which is close to the Type-I error rate. The average t-statistics for α̂i, β̂i are
respectively -0.21 and 16.27 for SLB (cross-sectional averages are -0.02 and 12.08). To check for
higher order/nonlinear dependence we estimate an augmented regression:

∆Pk,i = α̂Qi + γ̂iOFIk,i + γ̂Qi OFIk,i|OFIk,i|+ ε̂Qk,i, (15)

The coefficients γ̂Qi have an average t-statistic of -0.32 across stocks and are statistically signif-
icant only in 17% of our samples. We reject the hypothesis of quadratic (convex or concave)
instantaneous price impact, and take this as strong evidence for a linear price impact model (7),
because other kinds of non-linear dependence would likely be picked up by this quadratic term.

Figure 5: Scatter plot of ∆Pk,i against OFIk,i for the Schlumberger stock (SLB), 04/01/2010
11:30-12:00pm.

The goodness of fit is surprising for high-frequency data, with an R2 of 76% for SLB and
65% on average across stocks9, suggesting that a one-parameter linear model (7) performs well

8Given a relatively large number of observations we use the z-test with a 95% significance level. Since regression
residuals demonstrate heteroscedasticity and autocorrelation, Newey-West standard errors are used to compute
t-statistics.

9We note that OFI includes the contributions en of price-changing order book events, leading to a possible
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regardless of stock-specific features, such as average spread, depth or price level. The definition
of R2 as a percentage of explained variance has an interesting consequence in our case. Since
OFI is constructed from order book events taking place only at the best bid/ask, our results
show that activity at the top of the order book is the most important factor driving price
changes. In the appendix we confirm this by showing that order flow imbalances from deeper
order book levels only marginally contribute to short-term price dynamics. Even though large
price movements sometimes occur at this timescale, they mostly correspond to large readings
of OFI. Figure 6 confirms this by demonstrating a relatively low level of excess kurtosis in
regression residuals.

Figure 6: Distribution of excess kurtosis in the residuals ε̂k,i across stocks and time.

When the amount of passive order submissions and cancelations is much larger than the
amount of trades, the stylized order book model predicts that trade imbalance TI explains
price changes significantly worse than OFI. To empirically confirm this we estimate following
regressions using the same half-hour subsamples 10:

∆Pk,i = α̂Ti + β̂Ti TIk,i + η̂k,i (16a)

∆Pk,i = α̂Di + θ̂Oi OFIk + θ̂Ti TIk,i + ε̂Dk,i (16b)

When either OFI or TI variable is taken individually, that variable has a statistically significant
correlation with price changes. The average t-statistics of slope coefficients in simple regressions
(14, 16a) are, correspondingly 16.27 and 5.31 for SLB (cross-sectional averages are 12.08 and
5.08). The average R2 for the two regressions are 65% and 32%, respectively, confirming the
prediction that relation between price changes and trade imbalance is more noisy. When the
two variables are used in a multiple regression (16b), the dependence of price changes on trade
imbalance becomes much weaker. The average t-statistic of TI coefficient drops to 1.56 for SLB

endogeneity in the regression (14). This problem is inherent to all price impact modeling, because the explanatory
variables (events or trades) sometimes mechanically lead to price changes. To test that the high R2 in our
regressions is not due to this endogeneity, we estimated (14) on a subsample of stocks, excluding the price-
changing events from OFI. With this change the R2 declined, but remained high, in the 35%-60% region.

10These regressions contain only linear terms, because we found no evidence of non-linear price impacts in our
data (for neither OFI nor TI).
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(1.51 across stocks) and it remains statistically significant in only 47% of SLB samples (43% of
all stock samples). The dependence on OFI remains strong with an average t-statistic 13.91 for
SLB (9.53 across stocks), and the coefficient is statistically significant in almost all samples. We
conclude that OFI explains price movements better than trade imbalance, and OFI is a more
general measure of supply/demand imbalance because it adequately includes the effect of trade
imbalance.

Finally, we use time series of Di and β̂i for each stock to estimate the relation (8) with the
following two regressions:

log β̂i = ˆαL,i − λ̂ logDi + ε̂L,i (17)

β̂i = ˆαM,i +
ĉ

Dλ̂
i

+ ε̂M,i (18)

Both regressions are estimated using ordinary least squares11. For SLB we find ĉ = 0.56, λ̂ =
1.08 and an R2 of (17) is 92%. The results for all stocks are shown in Table 4. We observe
that depth significantly correlates with price impact coefficients for the vast majority of stocks,
confirming our intuition that 1

2βi
is the implied order book depth. Interestingly, estimates ĉ, λ̂

across stocks are very close to values predicted by the stylized order book model. With the
t-statistics12 in Table 4 the null hypotheses {c = 0.5} and {λ = 1} cannot be rejected for
most stocks based on conventional significance levels. The restricted model with λ = 1 also
demonstrates a good quality of fit, making this a good approximation. Figure 7 illustrates
these results with a log-log scatter plot for Di and β̂i. Some stocks (namely APOL, AZO and
CME) have poor fits in regression (17), mainly due to outliers in the dependent variable. After
removing these outliers and re-estimating the regression, the estimates ĉ, λ̂ for these stocks fell
in line with estimates for other stocks.

To assess the stability of these findings, we re-estimated (17,18) with observations pooled
across days but not across intraday time intrervals, resulting in 13 estimates ĉi, λ̂i for each stock.
Although these estimates demonstrate some diurnal variablility, they are relatively stable and
most of variability in price impact coefficients is explained by variations in depth (e.g. see Figure
9).

We repeated the analysis with different depth variables, taking Di to be equal to arithmetic
or geometric average of queue sizes over the i-th time interval. Overall, the results were the same,
except for the level of ĉ estimates, which were about 40% lower across stocks for the arithmetic
average depth, and even lower for the geometric average. The systematic difference in these
coefficients implies that taking an arbitrary measure of depth (such as arithmetic average of
queue sizes) as a proxy of price impact may lead to significant biases, i.e. one would dramatically
under- or over-estimate price impact in a given stock. Instead of looking at arbitrary depth
measures, we suggest computing price impact coefficients βi and/or implied depth 1

2βi
to precisely

characterize price sensitivity to order flow.

11We note that an estimate λ̂i is used in regression (18). This “plug-in” approach leads to potential errors
in explanatory variable, and standard errors for ĉ may be underestimated. However, the good quality of fit in
regression (17) with an average R2 of 76% indicates that λ̂i are estimated with good presicion. We believe that
errors in variable 1

Dλ̂i

are small and do not affect our results.

12Since the residuals of these regressions appear to be autocorrelated, the t-statistics are computed with Newey-
West standard errors.
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Figure 7: Log-log scatter plot of the price impact coefficient estimate β̂i against average market
depth Di for the Schlumberger stock (SLB).

4 Applications

4.1 Monitoring adverse selection

Time intervals that are involved in modern high-frequency trading applications are usually so
short that price changes are relatively infrequent events. Therefore price changes provide a very
coarse and limited description of market dynamics. However, OFI tracks best bid and ask queues
and fluctuates on a much faster timescale than prices. It incorporates information about build-
ups and depletions of order queues and it can be used to interpolate market dynamics between
price changes (see Figure 8 for example). Our results confirm that such interpolation is in fact
valid because OFI closely approximates price changes over short time intervals (e.g. results for
50 millisecond time intervals are shown in the appendix). To study one possible application of
OFI for high-frequency trading we turn to our auxilary dataset, because it contains accurate
timestamps up to a millisecond.

Given the strong link between OFI and price changes, and the positive autocorrelation
of OFI over short time intervals (see Figure 4), we propose to use it as a measure of adverse
selection in the order flow. For example, when a limit order is filled, and its execution was
preceded by positive OFI, a positive price change is more likely to happen after the limit order
execution. This is because the pre-execution positive OFI is likely to persist in the future, and
can lead to a post-execution positive price change. For a limit sell order a positive post-execution
price change implies that the order was executed at a loss, i.e. adversely selected.

To test our hypothesis, we consider all limit order executions in our auxilary dataset.
For each execution we compute the pre-execution order flow imbalance OFIprek and the post-

execution mid price change ∆P postk . The pre-execution order flow imbalance is computed from
best bid and ask quote updates with timestamps in [tk − 200, tk − 1] milliseconds, where tk is
the time of the k-th limit order execution. Similarly the post-execution price change is defined
as the difference in mid-quote prices between tk + 200 milliseconds and tk

13 . Then we consider
30-minute subsamples of data indexed by i, and estimate the following regression:

∆P postk,i = αpi + βpiOFI
pre
k,i + εpk,i, (19)

13If there are multiple quotes with timestamp tk + 200 or tk, we take the last one.
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Figure 8: Price dynamics and cumulative OFI on NASDAQ for a 1-second time interval starting
at 11:16:39.515 on 04/28/2010, Schlumberger stock (SLB).

The average R2 of these regressions across a month is 2.93%, the average t-statistic14 of βpi is
2.68 and this coefficient is significant at a 5% level in 63% of subsamples. The average βpi is
0.0105. We conclude that pre-execution OFI are positively correlated with post-execution price
changes.

We also estimated regression (19) with 50- and 100-millisecond time intervals for pre- and
post-execution variables, and obtained similar results, with stronger correlations for smaller
time intervals15. When we split OFIprek,i into multiple order flow imbalance variables over non-
overlapping subintervals of [tk − 200, tk − 1], we find that only the variable closest to tk - the
execution time - is statistically significant and positively correlated with post-execution price
change. These results suggest that limit order traders need to actively monitor order flows and
react to emerging order flow imbalances as quickly as possible to avoid being adversely selected.

4.2 Intraday volatility dynamics

The link between price impact and market depth established here has important implications
for intraday volatility. Market depth is known to follow a predictable diurnal pattern ([1], [35]),
and equation (8) implies that instantaneous price impact must also have a predictable intraday
pattern. To demonstrate it, we averaged β̂i for each stock and each intraday half-hour interval
across days, resulting in diurnal effects for that stock, normalized these effects by a grand average
β̂i for that stock and averaged normalized diurnal effects across stocks. The same procedure was
repeated for depths Di. We also re-estimated (17,18) with observations pooled across days but
not across intraday time intrervals, resulting in 13 estimates λ̂i, ĉi for each stock. The overall
average diurnal effects for these quantities are shown on Figure 9.

We found that between 9:30 and 10am the depth is two times lower than on average,
indicating that the market is relatively shallow. In a shallow market, incoming orders can easily
affect mid-prices and price impact coefficients between 9:30 and 10am are in fact two times

14Here we also use Newey-West standard errors because residuals demonstrate significant autocorrelation.
15For instance, with 50-millisecond time intervals the average t-statistic of βpi is 3.41 and this coefficient is

significant in 75% of samples. The average R2 becomes 3.32%
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Figure 9: Diurnal effects in the price impact coefficient β̂i, the average depth Di and the param-
eters ĉi, λ̂i. Most of the intraday variation in price impact coefficients comes from variations in
depth, while parameters ĉi, λ̂i are relatively more stable.

higher than on average. Moreover, price impact coefficients between 9:30 and 10am are five
times higher than between 3:30 and 4pm.

The intraday pattern in price impact can be used to explain intraday patterns in price
volatility, observed by many studies ([1], [5], [21], [38]). Similarly to the price impact coefficient
and the market depth, we computed the intraday patterns in variances of ∆Pk,i and OFIk,i,
using our half-hour subsamples. Taking the variance on both sides in equation (7), we obtain a
link between var[∆Pk,i], var[OFIk,i] and βi:

var[∆Pk,i] = β2
i var[OFIk,i] + var[εk,i] (20)

The average variance patterns are plotted on Figure 10. Notice that price volatility has
a sharp peak near the market open, while volatility of OFI peaks near the market close. The
latter peak is offset by low price impact, which gradually declined throughout the day. For the
i-th half-hour interval, equation (20) implies that var[∆Pk,i] ≈ β̂2

i var[OFIk,i] because var[εk,i]
is relatively small, which is also demonstrated16 on Figure 10. Since the R2 in regression (14) is

high, the ratio
var[εk,i]

var[OFIk,i]
is small, and we can rewrite (20) as βi ≈

σP,i
σO,i

, where σP,i =
√
var[∆Pk,i]

and σO,i =
√
var[OFIk,i]. This bears strong resemblance to the definition of Kyle’s λ (see [33]) -

a metric that is used in the asset pricing literature to gauge liquidity risk (see [4] and references
therein). This metric is traditionally estimated as a slope βLi in regression (16a), but our
analysis suggests that βi is a better estimate. Although one could also write βLi ≈

σP,i
σT,i

, where

σT,i =
√
var[TIk,i], this would be a poorer approximation because

var[ηk,i]
var[TIk,i]

>
var[εk,i]

var[OFIk,i]
as

shown by R2 values in Table 3.
The intraday pattern in price variance was explained in an earlier study [38] using a struc-

tural model. The authors argued that price volatility is higher in the morning because of a
higher inflow of public and private information. In another study [21] the morning peak of
price volatility is explained mostly by higher intensity of public information. Both studies agree
that the impact of trades is larger in the morning. Our model contributes to this discussion
by explaining the peak of price volatility using tangible quantities, rather than unobservable
information variables. Our findings also suggest that price impact and information asymmetry

16β̂2
i var[OFIk,i] was computed from the average patterns of β̂i and var[OFIk,i]
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Figure 10: Diurnal variability in variances var[∆Pk,i], var[OFIk,i], the price impact coefficient

β̂i and the expression β2
i var[OFIk]i.

may be, in fact, two sides of the same coin. If there is more private information in the morning
than in the evening and if limit order traders are aware of this information asymmetry, their
participation will likely diminish in the morning, leading to lower depth near market open. At
the same time, low depth implies a higher price impact in our model, making the information
advantages harder to realize at the market open.

4.3 Volume and volatility

The positive correlation between magnitudes of price changes and trading volume is empirically
confirmed by many authors (see [29] for a review). Recently, trading volume became an impor-
tant metric for order execution algorithms - these algorithms often attempt to match a certain
percentage of the total traded volume to reduce the price impact. However, it remains unclear
whether trading volume truly determines the magnitude of price moves and whether it is a good
metric for price impact. Casting doubt on this assertion, it was found in [28] that the relation
between daily volatility and daily volume is essentially due to the number of trades and not the
volume per se (also see [10] for a following discussion).

We provide further evidence that volume is not a driver of price volatility, now on intraday
timescales. First, we prove that even when prices are purely driven by OFI and not by volume,
a concave relation between magnitude of price changes and transaction volume emerges as an
artifact due to aggregation of data across time. Second, we confirm that such relation exists in
the data, but it becomes statistically insignificant after accounting for magnitude of OFI.

Comparing the definitions of V OL and OFI we note that both quantities are sums of
random variables. As the aggregation time window [tk−1, tk] becomes progressively larger, the
behavior of these sums (under certain assumptions) will be governed by the Law of Large
Numbers and the Central Limit Theorem. We consider a general time interval [0, T ] and denote
by N(T ) the number of order book events during that time interval. We also denote by OFI(T )
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and V OL(T ), respectively, the order flow imbalance and the traded volume during [0, T ]. The
following proposition shows a link between OFI(T ) and V OL(T ) as T grows.

Proposition 1 Assume that

1. N(T )
T → Λ, as T →∞, where Λ is the average arrival rate of order book events.

2. {ei}i≥1 form a covariance-stationary sequence and have a linear-process representation

ei =
∞∑
j=0

ajYi−j, where Yi is a two-sided sequence of i.i.d random variables with E[Yi] = 0

and E[Y 2
i ] = 1, and aj is a sequence of constants with

∞∑
j=0

a2
j = σ2 < ∞. Moreover,

cov(e1, e1+n) ∼ cn2(H−1) as n→∞, where 0 < H < 1 is a constant that governs the decay
of the autocorrelation function.

3. {wi}i≥1, wi = bi+si are random variables with a finite mean µπ, where π is the proportion
of order book events that correspond to trades and µ is the mean trade size. E|wi|p < ∞
for some p > 1 and

∑
N≥1

1
N (E| 1

N

∑
i≤N

wi|q)r/q < ∞ for some r, q such that 0 < r ≤ q ≤ ∞

and r/q ≤ 1− 1/p.

Then
(µπ)H

σ

OFI(T )

V OLH(T )

T→∞⇒ ξ ∼ N(0, 1)

where ⇒ denotes convergence in distribution.

The proof of this Proposition is given in the appendix. If the time interval [0, T ] includes a large
enough number of order book events, Proposition 1 implies that

OFI(T ) ∼ ξ σ

(µπ)H
V OLH(T ) ' N

(
0,

σ2

(µπ)2H
V OL2H(T )

)
(21)

If the time intervals [tk−1,i, tk,i] are large enough to support this approximation then substituting
(21) in (7) yields

∆Pk,i ∼ N
(

0,
σ2β2

i

(µπ)2H
V OL2H

k,i + σi

)
where σi = var[εk,i]. Note that even if σi = 0, i.e. even if volume cannot affect price volatility
through the residual variance, Proposition 1 predicts a spurious relation between price volatility
and volume.

Interestingly, the recent theory of market microstructure invariants (see [34]) also predicts
a relation between the volatility of order flow imbalance and trading volume. In their analysis,
order flow imbalance is defined differently based on unobservable “bets”, however it is natural
to assume positive correlation between OFI and the imbalance of “bets”, since the latter reach
exchanges in form of actual orders.

We can recast this statement in a testable form for the magnitudes (absolute values) of
price changes. Assuming εk,i ≈ 0, the scaling argument in Proposition 1 together with our linear
price impact model imply that

|OFIk,i| ≈
σ

(µπ)H
V OLHk,i|ξk,i| (22)

|∆Pk,i| ≈
βiσ

(µπ)H
V OLHk,i|ξk,i| (23)

We denote by θi = βiσ
(µπ)H

and take logarithms in (23) to obtain
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log |∆Pk,i| = log θ̂i + Ĥi log V OLk,i + log |ξ̂k,i| (24)

Based on Proposition 1, we expect this relation to be indirect (i.e. come through |OFIk,i|)
and noisy. To confirm this empirically, we estimate three regressions17:

|∆Pk,i| = α̂Oi + β̂Oi |OFIk,i|+ ε̂Ok,i (25a)

|∆Pk,i| = α̂Vi + β̂Vi V OL
Ĥi
k,i + ε̂Vk,i (25b)

|∆Pk,i| = α̂Wi + φ̂Oi |OFIk,i|+ φ̂Vi V OL
Ĥi
k,i + ε̂Wk,i (25c)

These regressions are estimated for every half-hour subsample with the exponents Ĥi pre-
estimated by (24). The averages of Ĥi and their standard deviation for each stock are presented
on the left panel in Table 5. The exponent varies considerably across stocks and time, but is
generally below 1/2 in our data. The average results of regressions (25a-25c) for each stock are
presented on the middle and right panels. We observe that |OFIk,i| explains the magnitude of

price moves better than V OLĤik,i. Although both variables appear to be statistically significant
when taken individually, the t-statistics for V OLk,i drop to marginally significant levels in the
multiple regression. Thus, the dependence between absolute values of price moves and traded
volume seems to come mostly from correlation between V OLk,i and |OFIk,i|. Interestingly, the
number of trades variable (suggested in [28]) is also statistically significant on a stand-alone
basis, but becomes insignificant when added to (25c) as a third variable. Given the recent pro-
liferation of order splitting, the size of most orders is equal to one lot, so V OLk,i is almost the
same as the number of trades variable.

5 Conclusion

We have introduced order flow imbalance, a variable that cumulates the sizes of order book
events, treating the contributions of market, limit and cancel orders equally, and provided em-
pirical and theoretical evidence for a linear relation between high-frequency price changes and
order flow imbalance for individual stocks. We have shown that this linear model is robust
across stocks and timescales, and the price impact coefficient is inversely proportional to market
depth. These relations suggest that prices respond to changes in the supply and demand for
shares at the best quotes, and that the impact coefficient fluctuates with the amount of liquidity
provision, or depth, in the market. Moreover, we have demonstrated that order flow imbalance
is a more general metric of supply/demand dynamics than trade imbalance, and it can be used
to analyze intraday changes in volatility, and monitor possible adverse selection in limit order
executions. Trades seem to carry little to no information about price changes after the simulta-
neous order flow imbalance is taken into account. If trades do not help to explain price changes
after controlling for the order flow imbalance, it is highly possible that the relation between
the magnitude of price changes, or price volatility and traded volume simply captures the noisy
scaling relation between these variables.

17Here we estimate linear regressions rather than log-linear ones to directly test whether the effect of V OL is
consumed by |OFI| variable
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A Appendix: TAQ data processing

We considered only quotes with timestamps ∈ [9:30 am, 4:00 pm], positive bid/ask prices and
sizes and quote mode 6∈ {4, 7, 9, 11, 13, 14, 15, 19, 20, 27, 28}. Similarly, trades were considered
only if they had timestamps ∈ [9:30 am, 4:00 pm], positive price and size, correction indica-
tor ≤ 2 and condition 6∈ {”O”, ”Z”, ”B”, ”T”, ”L”, ”G”, ”W”, ”J”, ”K”}.

From the filtered quotes data we construct the National Best Bid and Offer (NBBO) quotes.
This is done by scanning through the filtered quotes data, while maintaining a matrix with the
best quotes for every exchange. When a new entry is read, we check the exchange flag of that
entry and update the corresponding row in the exchange matrix. Using this matrix, the NBBO
prices are computed at each entry as the highest bid and the lowest ask across all exchanges.
The NBBO sizes are simply the sums of all sizes at the NBBO bid and ask across all exchanges.
For more details on TAQ dataset we refer the reader to [22], which discusses some particularities
of that data, such as possible mis-sequencing of data across exchanges and lack of odd-lot sized
orders. With our auxilary dataset we checked that neither of these issues significantly affects
our results.

After the NBBO quotes are computed, we applied a simple quote test to the NBBO quotes
and the filtered trades data. This test matches trades with NBBO quotes and computes the
direction of matched trades. A trade is matched with a quote, if:

1. Trade is not inside the spread, i.e.

(a) Trade price ≥ NBBO ask: in this case the trade is considered to be a buy trade.

(b) Trade price ≤ NBBO bid: in this case the trade is considered to be a sell trade.

2. Trade date = quote date.

3. Trade timestamp ∈ [quote timestamp, quote timestamp + 1 second].

4. If the above conditions allow to match a trade with several quotes, it is matched with the
earliest quote.

This matching algoritm cannot identify the direction of trades occuring within the bid-ask
spread. By comparing the number of matched trades with the overall number of trades in our
sample, we found that 59-95% of trades depending on the stock cannot be matched. Although
these percentages appear to be extremely large, the volume percentage of unmatched trades is
only 10-39% depending on the stock with an average of 17% across stocks, and we believe that
omitting these trades does not affect our results. There are other routines to estimate trade
direction, including the tick test and the Lee-Ready rule [36]. Although the latter is used quite
frequently, there seems to be no compelling evidence of superiority of either of these heuristics
[41, 47]. To test the robustness of our findings to the choice of a trade direction test, we compared
our results on a subsample of stocks, applying alternatively the tick test or our quote test and
results were virtually the same.

Finally, we removed observations with high bid-ask spreads to filter out “stub quotes” and
data errors. To apply this filter coherently across stocks, we computed the 95-th percentile of bid-
ask spread distribution for each stock and removed 5% of that stock’s quotes with spreads above
that percentile. For the representative stock in our sample (SLB), the removed observations fall
mostly on the first minutes after market opening: 15.8% of them occur between 9:30 am and
9:35 am, and 42.1% of them occur between 9:30 am and 10:00 am. The average bid-ask spread
of the removed quotes is 3.44 cents with a standard deviation 11.98 cents, the average queue
size of these quotes is 11.78 round lots with a standard deviation 12.89 lots. The average time
interval between two removed quotes is 1.03 seconds with a standard deviation 41.64 seconds.
All of the results and tables in this paper are generated using the filtered data.
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B Appendix: Robustness checks

B.1 Cross-sectional evidence

Table 1. Descriptive statistics

Name Ticker Price
Daily Number of Number of Average Maximum Best quote

volume, best quote trades Spread, spread, size,
round lots updates cents cents round lots

Advanced Micro Devices AMD 9.61 20872996 417204 6687 1 1 1035
Apollo Group APOL 62.92 1949337 172942 4095 2 5 15
American Express AXP 45.21 8678723 559701 7748 1 24 79
Autozone AZO 179.03 243197 43682 1081 9 35 7
Bank of America BAC 18.43 164550168 1529395 15008 1 1 3208
Becton Dickinson BDX 78.07 1130362 61029 2968 2 5 15
Bank of New York Mellon BK 31.77 6310701 285619 5518 1 1 122
Boston Scientific BSX 7.13 25746787 309441 6768 1 1 2965
Peabody Energy corp BTU 47.14 5210642 298616 7267 1 3 29
Caterpillar CAT 67.20 6664891 392499 8224 1 2 38
Chubb CB 52.22 1951618 149010 3601 1 2 43
Carnival CCL 40.16 4275911 215427 5503 1 2 53
Cincinnati Financial CINF 29.41 688914 51373 1528 1 2 42
CME Group CME 322.83 418955 38504 1412 31 103 5
Coach COH 41.91 3126469 176795 4458 1 2 41
ConocoPhillips COP 56.09 9644544 426614 8621 1 2 84
Coventry Health Care CVH 24.16 1157022 79305 2213 1 2 38
Denbury Resources DNR 17.88 5737740 263173 4643 1 1 186
Devon Energy DVN 66.98 3260982 177006 5805 2 4 18
Equifax EFX 35.34 799505 62957 1945 1 3 39
Eaton ETN 78.53 1757136 67989 3580 2 6 13
Fiserv FISV 52.56 1038311 58304 2208 1 3 20
Hasbro HAS 39.48 1322037 86040 2672 1 2 34
HCP HCP 32.63 2872521 213045 4357 1 2 48
Starwood Hotels HOT 50.59 3164807 150252 5106 2 4 22
Kohl’s KSS 56.88 3064821 128196 4936 1 3 27
L-3 Communications LLL 94.64 670937 72818 2141 2 6 9
Lockheed Martin LMT 84.14 1416072 88254 3333 2 5 15
Macy’s M 23.40 8324639 491756 6469 1 1 176
Marriott MAR 34.45 5014098 238190 5499 1 2 65
McAfee MFE 40.04 2469324 109073 3561 1 2 40
McGraw-Hill MHP 34.90 1954576 102389 3261 1 2 42
Medco Health Solutions MHS 63.22 2798098 109382 4680 1 3 25
Merck MRK 36.03 13930842 448748 7997 1 1 231
Marathon Oil MRO 32.33 5035354 341408 5522 1 1 143
MeadWestvaco MWV 26.96 1035547 92825 2312 1 3 37
Newmont Mining NEM 53.43 5673718 435295 7717 1 2 38
Omnicom OMC 41.17 3357585 150800 4359 1 2 65
MetroPCS Communications PCS 7.53 4424560 107967 2901 1 1 523
Pultegroup PHM 11.80 6834683 262420 4604 1 1 319
PerkinElmer PKI 23.98 1268774 78114 2127 1 2 72
Ryder System R 44.01 631889 47422 2085 2 5 11
Reynolds American RAI 54.44 773387 56236 2076 1 4 22
Schlumberger SLB 67.94 9476060 440839 10286 1 2 39
Teco Energy TE 16.52 1070815 70318 1807 1 1 148
Time Warner Cable TWC 53.21 1770234 88286 3554 2 3 22
Whirlpool WHR 97.73 1424264 134152 3348 4 9 10
Windstream WIN 11.03 2508830 104887 2937 1 1 798
Watson Pharmaceuticals WPI 42.51 895967 63094 2024 1 3 29
XTO Energy XTO 48.13 7219436 612804 5040 1 7 225
Grand mean 51.75 7512376 223232 4552 2 6 227

Table 1 presents the average mid-price, daily transaction volume, daily number of best
quote updates, daily number of trades, spread and the depth at the best bid and ask for 50
randomly chosen U.S. stocks. One round lot is equal to 100 shares. All values are calculated
from the filtered data, that consists of 21 trading day during April, 2010.
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Table 2. Relation between price changes and order flow imbalance.

Ticker
Average results Hypothesis testing

α̂ t(α̂) β̂i t(β̂i) γ̂Qi t(γ̂Qi ) R2 {αi 6= 0} {βi 6= 0} {γQi 6= 0}
AMD -0.0032 -0.24 0.0008 11.10 1.4E-07 0.93 64% 0% 100% 36%
APOL 0.0038 0.13 0.0555 10.74 -2.2E-04 -2.42 63% 17% 96% 6%
AXP 0.0019 0.11 0.0082 14.12 -3.8E-06 -1.37 69% 16% 100% 8%
AZO 0.0101 0.34 0.1619 7.02 -9.3E-04 -1.40 47% 25% 99% 6%
BAC -0.0018 -0.13 0.0002 19.08 1.9E-09 -0.08 79% 3% 100% 14%
BDX -0.0008 -0.07 0.0536 10.77 -1.1E-04 -0.74 63% 12% 100% 12%
BK -0.0078 -0.26 0.0069 15.56 -4.0E-06 -0.89 74% 6% 100% 8%
BSX 0.0000 0.01 0.0003 7.55 7.8E-08 3.51 58% 3% 88% 51%
BTU 0.0048 0.15 0.0242 14.75 -3.5E-05 -2.05 72% 16% 100% 3%
CAT 0.0147 0.30 0.0194 14.80 -1.9E-05 -1.72 71% 19% 100% 5%
CB -0.0086 -0.05 0.0191 12.61 -3.5E-07 -0.04 64% 10% 100% 18%
CCL -0.0067 -0.24 0.0140 14.16 -1.2E-05 -1.03 70% 7% 100% 11%
CINF -0.0030 -0.02 0.0260 11.66 -7.0E-06 0.38 70% 4% 99% 30%
CME 0.0506 0.06 0.6262 5.46 -7.2E-03 -1.66 35% 18% 96% 7%
COH -0.0221 -0.54 0.0179 13.13 -1.7E-05 -1.18 69% 5% 100% 7%
COP -0.0008 0.10 0.0084 12.79 -5.8E-06 -1.86 68% 13% 100% 5%
CVH -0.0034 -0.07 0.0217 11.74 7.6E-06 0.37 65% 7% 99% 20%
DNR -0.0008 -0.07 0.0045 13.78 -1.3E-07 0.19 69% 5% 99% 22%
DVN 0.0112 0.20 0.0370 12.11 -1.0E-04 -2.72 65% 19% 100% 2%
EFX -0.0032 -0.06 0.0222 9.47 6.4E-05 0.87 56% 6% 99% 32%
ETN -0.0076 0.10 0.0712 11.01 -2.3E-04 -1.81 65% 17% 100% 4%
FISV -0.0002 0.10 0.0397 11.09 -2.3E-05 -0.28 63% 10% 100% 16%
HAS -0.0031 -0.01 0.0222 12.36 4.7E-06 0.28 67% 6% 100% 23%
HCP -0.0078 -0.21 0.0150 13.82 -1.4E-05 -0.63 67% 5% 100% 10%
HOT -0.0012 0.05 0.0345 12.94 -7.2E-05 -2.06 68% 14% 100% 4%
KSS -0.0030 -0.05 0.0317 14.10 -5.4E-05 -1.38 71% 13% 100% 5%
LLL 0.0160 0.42 0.1000 12.34 -3.8E-04 -1.56 67% 22% 98% 7%
LMT 0.0006 0.00 0.0520 14.14 -1.2E-04 -1.49 72% 17% 100% 4%
M -0.0010 0.07 0.0043 16.61 8.8E-08 0.15 75% 6% 100% 19%
MAR -0.0039 0.02 0.0121 15.10 -4.1E-06 -0.43 71% 10% 100% 10%
MFE 0.0087 0.22 0.0205 13.19 -3.8E-05 -0.63 68% 11% 100% 11%
MHP -0.0073 -0.18 0.0211 12.41 5.8E-06 0.18 68% 5% 99% 24%
MHS -0.0055 -0.20 0.0334 11.97 -8.3E-05 -1.64 66% 12% 100% 4%
MRK -0.0065 -0.26 0.0032 13.26 -5.4E-07 -0.61 69% 4% 100% 14%
MRO 0.0018 0.12 0.0058 14.16 -3.6E-07 0.32 69% 8% 100% 23%
MWV -0.0011 0.02 0.0205 12.55 -1.7E-05 -0.31 68% 9% 100% 17%
NEM -0.0102 -0.26 0.0170 13.90 -1.9E-05 -2.15 71% 12% 100% 5%
OMC -0.0099 -0.36 0.0144 12.40 -4.5E-06 -0.19 65% 4% 100% 20%
PCS -0.0006 -0.05 0.0015 6.52 1.8E-06 3.79 53% 2% 86% 51%
PHM 0.0006 0.02 0.0027 11.27 8.4E-07 1.20 66% 3% 99% 36%
PKI -0.0004 -0.05 0.0102 7.96 4.1E-05 2.15 53% 3% 96% 51%
R 0.0006 0.03 0.0667 10.90 3.7E-05 -0.21 63% 14% 100% 16%
RAI -0.0070 -0.10 0.0396 11.39 2.6E-05 -0.03 66% 9% 100% 19%
SLB -0.0077 -0.21 0.0198 16.27 -1.8E-05 -1.67 76% 10% 100% 2%
TE 0.0011 0.05 0.0049 7.76 1.4E-05 3.27 54% 4% 91% 55%
TWC -0.0130 -0.15 0.0384 12.24 -5.6E-05 -0.73 64% 12% 99% 9%
WHR 0.0628 0.73 0.1278 11.10 -3.3E-04 -1.44 65% 25% 100% 7%
WIN -0.0004 -0.04 0.0009 4.32 1.5E-06 3.98 44% 1% 72% 43%
WPI -0.0090 -0.27 0.0270 11.46 2.9E-05 0.26 66% 5% 99% 23%
XTO -0.0088 -0.25 0.0029 13.26 2.7E-07 0.48 65% 3% 100% 28%
Average 0.0002 -0.02 0.0398 12.08 -2.0E-04 -0.32 65% 10% 98% 17%

Table 2 presents a cross-section of results (averaged across time) for regressions:

∆Pk,i = α̂i + β̂iOFIk,i + ε̂k,i,

∆Pk,i = α̂Qi + β̂Qi OFIk,i + γ̂Qi OFIk,i|OFIk,i|+ ε̂Qk,i,

where ∆Pk,i are the 10-second mid-price changes in ticks and OFIk,i are the contemporaneous order flow imbalances.

These regressions were estimated using 273 half-hour subsamples (indexed by i) for each stock and their outputs were

averaged across subsamples. Each subsample typically contains about 180 observations (indexed by k). The t-statistics

were computed using Newey-West standard errors. For brevity, we report the R2, the average α̂i and the average β̂i only

for the first regression (with a single OFIk,i term). There is almost no difference between averages of estimates β̂i and β̂Qi

and the R2 in two regressions. The last three columns report the percentage of samples where the coefficient(s) passed the

z-test at the 5% significance level.
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Table 3. Comparison of order flow imbalance and trade imbalance.

Ticker
Order flow imbalance Trade imbalance Both covariates

R2 t(β̂i) {βi 6= 0} F R2 t(β̂Ti ) {βTi 6= 0} F R2 t(θ̂Oi ) t(θ̂Ti ) {θOi 6= 0} {θTi 6= 0} F
AMD 64% 11.10 100% 382 39% 5.06 95% 140 67% 7.64 1.59 99% 45% 214
APOL 63% 10.74 96% 396 30% 5.04 95% 83 66% 8.95 1.58 96% 44% 211
AXP 69% 14.12 100% 449 34% 5.55 92% 101 71% 11.31 1.90 100% 55% 241
AZO 47% 7.02 99% 179 30% 4.88 96% 87 54% 5.78 2.87 98% 81% 118
BAC 79% 19.08 100% 774 45% 7.03 98% 157 80% 13.55 0.80 99% 25% 397
BDX 63% 10.77 100% 362 28% 4.85 92% 79 65% 8.90 1.53 100% 46% 195
BK 74% 15.56 100% 610 36% 5.36 93% 117 75% 11.90 0.80 100% 26% 313
BSX 58% 7.55 88% 338 31% 3.60 71% 106 62% 5.74 0.88 82% 24% 189
BTU 72% 14.75 100% 527 35% 6.03 97% 103 74% 11.96 1.63 100% 44% 277
CAT 71% 14.80 100% 498 33% 5.75 94% 94 72% 12.14 1.55 100% 46% 262
CB 64% 12.61 100% 378 33% 5.47 95% 102 66% 9.41 1.57 99% 44% 202
CCL 70% 14.16 100% 478 32% 5.31 94% 93 71% 11.44 1.17 100% 37% 247
CINF 70% 11.66 99% 552 39% 5.35 96% 141 72% 8.28 1.28 98% 40% 297
CME 35% 5.46 96% 112 24% 4.31 88% 63 44% 4.73 2.78 96% 71% 78
COH 69% 13.13 100% 457 29% 4.75 93% 80 70% 11.06 1.12 100% 31% 238
COP 68% 12.79 100% 450 35% 5.69 92% 107 70% 10.25 1.76 100% 49% 240
CVH 65% 11.74 99% 418 35% 5.05 93% 114 67% 8.43 1.35 97% 37% 222
DNR 69% 13.78 99% 471 32% 4.89 92% 101 70% 10.43 1.27 99% 37% 246
DVN 65% 12.11 100% 414 33% 5.57 95% 96 68% 9.61 2.12 98% 60% 226
EFX 56% 9.47 99% 289 31% 4.75 89% 101 60% 7.13 2.26 98% 55% 167
ETN 65% 11.01 100% 389 25% 4.43 86% 69 67% 9.85 1.47 99% 43% 209
FISV 63% 11.09 100% 380 28% 4.82 93% 79 65% 9.08 1.25 100% 38% 201
HAS 67% 12.36 100% 427 32% 5.15 95% 97 68% 9.67 1.17 100% 34% 223
HCP 67% 13.82 100% 417 31% 5.07 90% 91 68% 10.92 1.33 100% 42% 217
HOT 68% 12.94 100% 438 27% 4.75 88% 74 70% 11.00 1.48 100% 40% 231
KSS 71% 14.10 100% 525 31% 5.16 93% 91 72% 11.86 1.14 100% 37% 274
LLL 67% 12.34 98% 485 36% 6.00 95% 117 70% 9.68 2.14 98% 57% 270
LMT 72% 14.14 100% 516 35% 5.80 96% 105 73% 11.35 1.83 100% 51% 277
M 75% 16.61 100% 640 35% 5.10 93% 108 76% 12.80 1.13 100% 38% 330
MAR 71% 15.10 100% 498 34% 5.54 95% 105 72% 11.41 1.18 100% 36% 258
MFE 68% 13.19 100% 463 31% 4.82 88% 93 69% 10.27 0.89 100% 30% 239
MHP 68% 12.41 99% 489 31% 5.09 93% 96 70% 9.94 1.04 99% 33% 257
MHS 66% 11.97 100% 414 28% 4.81 89% 80 68% 10.03 1.50 99% 40% 218
MRK 69% 13.26 100% 451 31% 4.99 92% 93 70% 10.41 1.02 100% 29% 235
MRO 69% 14.16 100% 465 35% 5.38 96% 104 70% 10.67 1.12 100% 35% 241
MWV 68% 12.55 100% 452 34% 5.30 96% 102 69% 9.66 1.01 100% 33% 237
NEM 71% 13.90 100% 490 34% 5.77 92% 100 72% 11.38 1.90 100% 54% 260
OMC 65% 12.40 100% 411 30% 4.90 93% 88 67% 9.85 1.22 100% 39% 216
PCS 53% 6.52 86% 297 35% 4.08 74% 169 58% 4.47 1.43 81% 35% 195
PHM 66% 11.27 99% 416 35% 4.76 93% 115 68% 8.40 1.22 98% 38% 224
PKI 53% 7.96 96% 263 28% 3.98 82% 89 57% 6.16 1.70 93% 47% 148
R 63% 10.90 100% 352 27% 4.80 96% 71 65% 9.02 1.58 100% 44% 188
RAI 66% 11.39 100% 422 36% 5.60 98% 111 68% 8.64 1.42 100% 43% 224
SLB 76% 16.27 100% 644 32% 5.31 89% 94 77% 13.91 1.56 100% 47% 336
TE 54% 7.76 91% 301 37% 4.65 82% 175 60% 5.27 1.96 86% 45% 200
TWC 64% 12.24 99% 377 31% 5.21 86% 93 66% 9.67 1.70 99% 45% 201
WHR 65% 11.10 100% 394 29% 5.03 95% 85 67% 9.27 1.86 100% 52% 217
WIN 44% 4.32 72% 243 41% 4.74 75% 249 58% 2.60 2.55 58% 47% 206
WPI 66% 11.46 99% 437 32% 4.80 93% 100 68% 8.95 1.35 99% 46% 232
XTO 65% 13.26 100% 399 21% 3.78 78% 54 66% 11.72 1.42 100% 40% 209
Average 65% 12.08 98% 429 32% 5.08 91% 103 67% 9.53 1.51 97% 43% 231

Table 3 presents the average results of regressions:

∆Pk,i = α̂i + β̂iOFIk,i + ε̂k,i,

∆Pk,i = α̂Ti + β̂Ti TIk,i + η̂k,i,

∆Pk,i = α̂Di + θ̂Oi OFIk,i + θ̂Ti TIk,i + ε̂Dk,i,

where ∆Pk,i are the 10-second mid-price changes, OFIk,i are the contemporaneous order flow imbalances and TIk,i are the contemporaneous
trade imbalances. These regressions were estimated using 273 half-hour subsamples (indexed by i) for each stock and their outputs were
averaged across subsamples. Each subsample typically contains about 180 observations (indexed by k). The t-statistics were computed using

Newey-West standard errors. For each of three regressions, Table 3 reports the average R2, the average t-statistic of the coefficient(s), the
percentage of samples where the coefficient(s) passed the z-test at the 5% significance level and the F-statistic of the regression.
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Table 4. Relation between the price impact coefficient and market depth.

Ticker
Parameter estimates Fit measures

ĉ λ̂ t(ĉ = 0) t(ĉ = 0.5) t(λ̂ = 0) t(λ̂ = 1) R2 corr[β̂,
ˆ̂
β]2 corr[β̂,

ˆ̂
β∗]2

AMD 0.53 1.04 31.06 2.0 22.5 1.0 78% 86% 86%
APOL 0.30 0.38 4.59 -3.2 1.1 -1.8 3% 34% 35%
AXP 0.45 1.01 26.27 -3.2 45.8 0.6 90% 87% 87%
AZO 0.45 0.70 5.47 -0.7 5.2 -2.2 14% 17% 16%
BAC 0.87 1.10 31.80 13.6 19.1 1.7 80% 89% 89%
BDX 0.48 1.03 23.91 -1.2 22.2 0.6 74% 71% 71%
BK 0.47 1.04 28.28 -1.9 68.5 2.5 94% 94% 94%
BSX 0.51 1.02 15.23 0.3 24.1 0.4 73% 81% 81%
BTU 0.58 1.10 45.36 6.2 53.8 5.0 93% 90% 90%
CAT 0.48 1.01 35.12 -1.4 20.7 0.2 91% 91% 90%
CB 0.53 1.09 32.41 2.1 63.6 5.5 93% 91% 91%
CCL 0.45 1.04 35.26 -3.6 41.9 1.5 89% 86% 86%
CINF 0.43 1.03 25.48 -4.2 52.5 1.7 93% 90% 90%
CME 1.21 0.35 2.10 1.2 1.4 -2.7 1% 2% 2%
COH 0.61 1.11 15.35 2.9 44.7 4.3 81% 83% 82%
COP 0.32 0.94 13.77 -8.1 22.6 -1.6 82% 79% 79%
CVH 0.54 1.13 26.92 2.2 37.9 4.2 88% 90% 89%
DNR 0.55 1.10 40.77 3.6 44.9 3.9 92% 90% 90%
DVN 0.34 0.91 16.15 -7.8 19.3 -2.0 48% 61% 61%
EFX 0.43 1.05 19.58 -3.0 27.1 1.2 84% 80% 80%
ETN 0.64 1.11 13.55 2.9 20.8 2.1 65% 63% 63%
FISV 0.47 1.04 25.33 -1.7 34.1 1.3 85% 80% 80%
HAS 0.52 1.08 27.80 1.3 49.8 3.8 90% 86% 85%
HCP 0.37 1.00 33.13 -11.3 64.7 0.0 95% 94% 94%
HOT 0.61 1.13 28.19 5.2 37.7 4.3 87% 87% 87%
KSS 0.59 1.09 28.99 4.3 41.7 3.4 90% 85% 85%
LLL 0.57 1.02 15.30 1.9 14.5 0.3 53% 65% 65%
LMT 0.72 1.17 7.93 2.4 15.6 2.3 69% 63% 63%
M 0.52 1.06 24.92 1.0 52.1 3.0 94% 92% 92%
MAR 0.50 1.06 22.26 0.0 52.7 3.1 92% 89% 89%
MFE 0.47 1.06 22.12 -1.3 45.3 2.7 92% 89% 89%
MHP 0.45 1.02 20.58 -2.1 38.1 0.6 83% 78% 78%
MHS 0.71 1.16 19.88 5.9 39.5 5.3 88% 87% 86%
MRK 0.31 0.94 21.38 -12.8 36.3 -2.3 87% 84% 84%
MRO 0.55 1.09 28.87 2.4 51.9 4.2 94% 94% 94%
MWV 0.54 1.13 28.16 2.2 39.3 4.6 90% 87% 87%
NEM 0.51 1.07 31.09 0.4 39.3 2.6 89% 88% 88%
OMC 0.52 1.04 36.61 1.1 19.5 0.7 86% 90% 90%
PCS 0.43 1.06 22.79 -3.4 18.6 1.1 53% 83% 83%
PHM 0.62 1.10 39.56 7.7 36.6 3.3 87% 92% 92%
PKI 0.49 1.14 29.01 -0.5 34.7 4.4 80% 87% 86%
R 0.50 1.05 17.43 -0.1 15.8 0.7 58% 59% 59%
RAI 0.51 1.07 26.19 0.4 47.3 3.1 88% 79% 79%
SLB 0.56 1.08 23.39 2.5 47.6 3.6 92% 94% 93%
TE 0.35 1.10 12.12 -5.1 25.1 2.2 70% 85% 86%
TWC 0.55 1.07 22.29 1.9 18.9 1.2 73% 85% 84%
WHR 1.09 1.25 12.66 6.9 13.4 2.7 51% 54% 53%
WIN 17.21 1.80 13.95 13.5 12.2 5.4 35% 72% 74%
WPI 0.39 0.99 19.57 -5.6 32.6 -0.4 79% 77% 77%
XTO 0.97 1.19 27.70 13.46 35.64 5.77 88% 91% 90%
Grand mean 0.88 1.05 23.55 0.59 33.40 1.99 76% 79% 79%

Table 4 presents the results of regressions:

log β̂i = ˆαL,i − λ̂ logDi + ε̂L,i,

β̂i = ˆαM,i + ĉ

Dλ̂i

+ ε̂M,i,

where β̂i is the price impact coefficient for the i-th half-hour subsample and Di is the average market depth for that

subsample. These regressions were estimated for each of the 50 stocks, using 273 estimates of β̂i for that stock, obtained

from (14). The second regression uses estimates λ̂ obtained from the first regression. The t-statistics were computed using

Newey-West standard errors. The last three columns provide three alternative fit measures - the R2 of the linear regression

(17), the squared correlation between β̂i and fitted values
ˆ̂
βi = ĉ

Dλ̂i

and the squared correlation between β̂i and
ˆ̂
β∗
i = ĉ

Di
.

27



Table 5. Comparison of traded volume and order flow imbalance.

Ticker
Avg Stdev Order flow imbalance Traded volume Both covariates

Ĥ Ĥ R2 t(β̂Oi ) βOi 6= 0 F R2 t(β̂Vi ) βVi 6= 0 F R2 t(φ̂Oi ) t(φ̂Vi ) φOi 6= 0 φVi 6= 0 F
AMD 0.06 0.08 63% 11.7 100% 356 14% 4.6 87% 34 63% 10.8 1.2 99% 38% 182
APOL 0.24 0.08 53% 9.1 97% 258 25% 6.9 100% 63 57% 7.6 3.3 94% 86% 144
AXP 0.16 0.08 55% 11.3 100% 249 20% 6.8 100% 48 57% 9.7 2.9 100% 82% 133
AZO 0.43 0.22 39% 6.3 98% 131 32% 5.8 100% 93 50% 5.0 3.9 97% 98% 98
BAC 0.09 0.08 73% 17.6 100% 560 24% 6.0 89% 61 74% 15.3 1.3 97% 40% 285
BDX 0.26 0.10 55% 9.4 100% 261 27% 6.5 100% 71 58% 7.6 3.1 99% 85% 147
BK 0.11 0.07 68% 14.1 100% 437 19% 6.7 97% 46 68% 12.6 2.0 100% 58% 225
BSX -0.17 2.41 68% 10.3 100% 486 14% 3.4 97% 33 69% 10.1 0.0 99% 13% 246
BTU 0.24 0.07 58% 11.4 100% 283 23% 7.1 99% 57 60% 9.7 2.6 100% 81% 151
CAT 0.22 0.07 56% 11.0 100% 250 19% 6.3 99% 44 57% 9.7 2.3 100% 68% 131
CB 0.19 0.09 56% 11.1 100% 261 23% 6.5 99% 58 58% 9.1 2.8 100% 76% 141
CCL 0.14 0.07 60% 12.2 100% 309 19% 6.7 99% 45 62% 10.8 2.5 100% 77% 162
CINF 0.13 0.12 67% 12.0 100% 505 30% 6.2 98% 85 69% 10.3 2.1 100% 58% 268
CME 0.49 0.24 28% 4.8 98% 78 30% 5.3 100% 83 42% 3.9 4.1 94% 99% 71
COH 0.19 0.07 60% 11.3 100% 299 22% 6.5 99% 52 61% 9.8 2.4 100% 73% 157
COP 0.16 0.07 56% 10.5 100% 277 20% 6.1 97% 49 58% 9.2 2.5 100% 74% 145
CVH 0.18 0.10 62% 11.4 100% 352 27% 6.1 100% 72 64% 9.2 2.4 100% 73% 189
DNR 0.08 0.07 64% 13.4 100% 376 17% 6.4 95% 38 65% 12.0 1.9 99% 57% 193
DVN 0.26 0.07 52% 9.6 97% 236 24% 6.9 100% 59 55% 8.0 3.2 96% 85% 131
EFX 0.20 0.11 52% 9.1 100% 241 26% 5.6 99% 69 56% 7.3 2.8 99% 77% 137
ETN 0.26 0.10 55% 9.1 99% 252 27% 6.6 99% 70 58% 7.6 3.1 98% 85% 142
FISV 0.19 0.11 57% 10.1 100% 284 25% 6.0 100% 65 59% 8.3 2.4 100% 70% 153
HAS 0.20 0.09 61% 11.3 100% 328 26% 6.3 100% 67 63% 9.5 2.5 100% 76% 175
HCP 0.14 0.07 57% 11.8 100% 268 21% 7.1 99% 50 59% 10.0 2.8 100% 80% 143
HOT 0.23 0.08 57% 10.5 99% 263 24% 7.2 100% 60 60% 9.0 3.2 99% 88% 145
KSS 0.24 0.08 60% 11.6 100% 318 25% 6.8 99% 61 62% 9.8 2.6 99% 78% 169
LLL 0.33 0.12 58% 10.3 97% 323 34% 7.2 100% 101 63% 7.9 3.4 96% 92% 188
LMT 0.28 0.09 61% 11.6 100% 327 31% 7.6 100% 85 64% 9.3 3.1 100% 85% 182
M 0.11 0.07 69% 15.2 100% 463 20% 6.3 100% 46 69% 13.5 2.0 100% 63% 238
MAR 0.15 0.07 61% 13.3 100% 324 21% 7.0 99% 50 62% 11.5 2.5 100% 74% 170
MFE 0.16 0.09 60% 11.7 100% 318 24% 7.0 98% 62 62% 9.7 2.6 100% 73% 170
MHP 0.20 0.10 62% 11.6 100% 377 25% 6.1 100% 62 64% 9.7 2.0 100% 56% 199
MHS 0.23 0.08 56% 10.0 100% 258 24% 6.7 100% 58 58% 8.4 2.9 100% 80% 139
MRK 0.10 0.07 62% 12.1 100% 330 17% 5.5 99% 40 63% 10.8 1.9 100% 60% 170
MRO 0.09 0.06 61% 12.7 100% 333 16% 6.4 97% 36 63% 11.5 2.0 100% 56% 172
MWV 0.18 0.10 62% 11.3 100% 330 28% 6.9 100% 75 64% 9.2 2.6 100% 79% 180
NEM 0.20 0.07 56% 10.6 100% 253 20% 6.3 99% 47 58% 9.3 2.6 100% 79% 135
OMC 0.15 0.09 57% 11.0 100% 286 20% 6.4 98% 48 59% 9.4 2.5 100% 75% 151
PCS 0.11 0.18 62% 8.9 100% 411 18% 3.8 98% 54 63% 8.4 0.8 100% 28% 214
PHM 0.07 0.08 64% 11.5 100% 384 15% 5.4 91% 34 65% 10.7 1.2 100% 41% 195
PKI 0.11 0.11 55% 9.0 99% 266 20% 4.8 98% 47 57% 7.8 1.9 98% 55% 141
R 0.27 0.11 56% 9.8 99% 259 28% 6.3 100% 74 59% 7.9 3.1 99% 87% 147
RAI 0.25 0.10 61% 10.6 100% 334 28% 5.9 99% 73 63% 8.8 2.6 100% 75% 182
SLB 0.24 0.07 62% 12.5 99% 330 19% 5.8 97% 46 63% 11.2 1.9 99% 56% 171
TE 0.09 1.69 60% 9.6 100% 371 18% 4.5 84% 48 61% 8.7 1.3 99% 43% 196
TWC 0.25 0.10 55% 10.5 100% 253 27% 6.8 100% 73 58% 8.4 3.1 99% 83% 142
WHR 0.34 0.11 56% 9.2 99% 272 29% 6.6 100% 78 59% 7.5 3.2 98% 88% 156
WIN 0.06 0.26 48% 5.5 86% 340 10% 2.9 50% 34 49% 5.3 0.6 85% 31% 179
WPI 0.22 0.10 61% 11.0 100% 361 28% 5.9 100% 75 64% 9.0 2.4 99% 71% 196
XTO 0.08 0.06 53% 11.3 100% 238 15% 6.6 100% 32 55% 10.0 2.8 100% 82% 125
Average 0.18 0.18 58% 10.9 99% 313 23% 6.1 97% 58 61% 9.3 2.4 99% 70% 168

Table 5 presents the average results of regressions:

|∆Pk,i| = α̂Oi + β̂Oi |OFIk,i|+ ε̂Ok,i,

|∆Pk,i| = α̂Vi + β̂Vi V OL
Ĥi
k,i + ε̂Vk,i,

|∆Pk,i| = α̂Wi + φ̂Oi |OFIk,i|+ φ̂Vi V OL
Ĥi
k,i + ε̂Wk,i,

where ∆Pk,i are the 10-second mid-price changes, OFIk,i are the contemporaneous order flow imbalances and V OLk,i are

the contemporaneous trade volumes. The exponents Ĥi were estimated in each subsample beforehand using a logarithmic
regression: log |∆Pk,i| = log θ̂i+Ĥi log V OLk,i+log |ξ̂k,i|. These regressions were estimated using 273 half-hour subsamples
(indexed by i) for each stock and their outputs were averaged across subsamples. Each subsample typically contains about
180 observations (indexed by k). The t-statistics were computed using Newey-West standard errors. For each of three
regressions, Table 5 reports the average R2, the average t-statistic of the coefficient(s), the percentage of samples where the
coefficient(s) passed the z-sest at the 5% significance level and the F-statistic of the regression.
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B.2 Transaction prices

To reconcile our results with earlier studies that operate in transaction time, we repeated regres-
sions (14,16a,16b) with differences between transaction prices ∆LP

t
k = P tk − P tk−L for L trades,

instead of differences in mid-prices ∆Pk. We picked at random five stocks from our sample
(BDX, CB, MHS, PHM and PKI), and computed ∆LP

t
k for L = 2, 5, 10 trades (we avoided us-

ing L = 1 because of possible issues with trade and quote matching). Using the same inter-trade
time intervals we computed concurrent OFI and TI variables. To ensure that there is an ample
amount of data for each regression, we pooled data across days for each stock and each intraday
time interval, resulting in 13 samples for each stock over a month of data. The results averaged
across time and stocks are presented in Table 6 and closely mirror our results for mid prices.
The variable OFIk explains price changes better than TIk on stand-alone basis. Moreover, the
effect of trades on prices seems to be captured by the order flow imbalance, i.e. the variable TIk
loses its statistical significance18. when used together with OFIk in the regression. The increase
in R2 from adding TIk as an extra regressor is almost nill (0.65%, 0.18%, 0.24% for L = 1, 2, 5
respectively).

Interestingly, we found that the relation between trade price changes and OFIk (or TIk) is
sometimes concave. We estimated regressions (14) and (16a) for trade price changes ∆LP

t
k with

additional quadratic variable OFIk|OFIk| and found that average t-statistics of its coefficient
are, respectively -3.02, -4.10 and -3.85 for L = 1, 2, 5 trades. The quadratic term is significant
at 5% level in 60%, 74% and 85% of samples for respective values of L, and we did not observe
any pattern in these t-statistics, neither across stock nor across time. In the trade imbalance
regression the coefficient near quadratic variable TIk|TIk| is also significant with average t-
statistics -3.64, -5.53, -5.48 for respective lag values and it is significant in even a larger fraction
of samples.

From these results it appears that price impact is concave when prices are sampled at
trade times, but it is linear when they are sampled at regular time intervals. This effect may
be a consequence of sampling data at special times (i.e. trade times), which may introduce
systematic down biases into the dependent variable. For example, if traders submit large orders
when they expect their impact to be minimal, that would lead to a concave (sublinear) price
impact. Supporting the idea of a sampling bias, we found that when mid-price changes are
sampled at trade times, the price impact of OFIk is again concave in a substantial fraction
of our samples. We also regressed changes in last trade prices sampled regularly at a 1-minute
frequency on OFIk, and observed concave price impact once again. This may again be attributed
to a dependent variable bias - since trades are relatively infrequent, for many time intervals the
trade prices are going to be stale and trade price changes are equal to zero, while mid price
changes are not.

Table 6. Comparison of order flow imbalance and trade imbalance for transaction prices.

Lag
Order flow imbalance Trade imbalance Both covariates

R2 t(β̂i) {βi 6= 0} F R2 t(β̂Ti ) {βTi 6= 0} F R2 t(θ̂Oi ) t(θ̂Ti ) {θOi 6= 0} {θTi 6= 0} F
L = 2 trades 14% 15.03 100% 464 1% 2.97 69% 26 15% 14.19 -2.90 100% 71% 245
L = 5 trades 38% 16.68 98% 753 8% 4.79 88% 113 39% 15.13 -0.14 98% 14% 379
L = 10 trades 51% 14.85 98% 655 13% 4.85 88% 100 51% 13.21 0.70 98% 11% 329

18Here we also use Newey-West standard errors because regression residuals have statistically significant auto-
correlation
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B.3 Order flow at higher order book levels

The level of detail in our Level 2 auxilary data set allows us to analyze contributions of order
flows at different price levels to price formation and to confirm our claim that price changes are
mostly driven by activity at the top of the order book (thus Level 1 data is sufficient to study
the impact of limit orders on prices).

For example, consider the bid side of the order book with 10 shares at the top two levels.
Absent any activity on the ask side and the second bid level, an OFI of -11 shares will lead to a
bid price change of -1 tick. However, if 9 orders at the second bid level cancel before that order
flow happens, the same OFI of -11 shares will lead to a price change of -2 ticks. In other words,
if order activity up to second (third, fourth etc) level is important, tracking OFI only at the best
prices will give a flawed picture of price dynamics. To test this assertion, we compute variables
OFIm,m = 2, . . . , 5 from m-th level queue fluctuations similarly to (12) and relabel OFI1 =
OFI. Then we fit five regressions, similar to (14), where variables OFIm, m = 2, . . . , 5 are
added one at a time:

∆Pk,i = α̂Mi +
M∑
m=1

β̂m,Mi OFImk,i + ε̂Mk,i, M = 1, . . . , 5 (26)

The average results across time for a representative stock are shown on Figure 11. The average
increase in explanatory power (measured by R2) from adding OFI2 as a regressor is 6.22%, which
is quite small compared to the stand-alone R2 of 70.83% for OFI1. The effect of OFI3−OFI5 is
very small, and their coefficients appear to be only marginally significant, in contrast with those
of OFI1 and OFI2. The cross-time average of coefficients β̂1,1

i in the simple regression19 with
OFI1 is 0.0597. In the multiple regression with OFI1 and OFI2 the averages of their respective
coefficients are 0.0673 and 0.0406. We conclude that second-level activity, as summarized by
OFI2, has only a second-order influence on price changes, which are mainly driven by OFI1.
The effect of OFI3 −OFI5 is almost nill.

Figure 11: Cross-time average increase in R2 from inclusion of variables OFI2 − OFI5, and
cross-time average Newey-West t-statistics of their coefficient in the regression with all five
variables, with NASDAQ ITCH data for the Schlumberger stock (SLB).

19This coefficient is higher than the one obtained with NBBO data, because NASDAQ best quote depth is
smaller than NBBO depth
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B.4 Choice of timescale

Using the auxilary Level 2 dataset, we verify that our results are robust to potential issues
in TAQ data, namely odd-lot sized orders at the best bid and offer, and mis-sequencing in
quote data across exchanges during NBBO construction. We also compare our results across
a wide range of timescales. The auxilary data comes from a single exchange (NASDAQ), has
information on orders of all sizes and has timestamps up to a millisecond.

We estimate the regression (14) for a variety of timescales ∆t, ranging from 50 milliseconds
to 5 minutes using separate intraday subsamples as before. The size of these samples was
different in order to stabilize the number of observations per sample. More precisely, data for
the smallest timescales (50, 100 and 500 milliseconds) was separated into 1-minute instead of 30-
minute subsamples to make numerical computations feasible. Data for the largest timescales (30
seconds to 5 minutes) was pooled across days preserving separate 30-minute intraday intervals
to have a large number of observations per sample. The average R2 and Newey-West t-statistics
for OFI across time for each ∆t are presented on Figure 12.

Figure 12: Average R2 and Newey-West t-statistics for OFI coefficient across time for different
∆t, with NASDAQ ITCH data for the Schlumberger stock (SLB).

The goodness of fit is stable across ∆t, despite pronounced discreteness of data for very
short time intervals. The OFI variable is statistically significant at a 95% level20 in more than
80% of samples for ∆t below one second, 100% of samples for ∆t between one second and 2
minutes, and 92% of samples for ∆t equal 5 minutes.

Notably there are many large price changes even when we consider ∆t equal to 50 millisec-
onds, but they usually correspond to high values of OFI. This is consistent with findings in
[23], where authors describe the sporadic character of order activity in modern markets. When a
subset of traders reacts to market updates in a matter of several milliseconds, this creates short
intervals of increased activity with possibly large price changes and large OFI, and many time
intervals with no activity when both variables are equal to zero. From our findings it appears
that the simple model (7) can capture both of these regimes.

When a quadratic term γ̂Qi OFIk,i|OFIk,i| is added to the regression, the coefficient γ̂Qi is
significant in a handful of samples (10 out of 871) for ∆t bigger or equal to one second. For ∆t
under one second, the quadratic term is significant in about 16% of samples, and its contribution

20using Newey-West t-statistics
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is marginal (about 3% increase in average R2). We conclude that the relation between price
changes and OFI is linear, irrespective of a timescale.

C Appendix: Proof of Proposition 1

Proposition 1: Assume that

1. N(T )
T → Λ, as T →∞, where Λ is the average arrival rate of order book events.

2. {ei}i≥1 form a covariance-stationary sequence and have a linear-process representation

ei =
∞∑
j=0

ajYi−j, where Yi is a two-sided sequence of i.i.d random variables with E[Yi] = 0

and E[Y 2
i ] = 1, and aj is a sequence of constants with

∞∑
j=0

a2
j = σ2 < ∞. Moreover,

cov(e1, e1+n) ∼ cn2(H−1) as n→∞, where 0 < H < 1 is a constant that governs the decay
of the autocorrelation function.

3. {wi}i≥1, wi = bi+si are random variables with a finite mean µπ, where π is the proportion
of order book events that correspond to trades and µ is the mean trade size. E|wi|p < ∞
for some p > 1 and

∑
N≥1

1
N (E| 1

N

∑
i≤N

wi|q)r/q < ∞ for some r, q such that 0 < r ≤ q ≤ ∞

and r/q ≤ 1− 1/p.

Then
(µπ)H

σ

OFI(T )

V OLH(T )

T→∞⇒ ξ ∼ N(0, 1)

where ⇒ denotes convergence in distribution.

Proof: First, we note that Assumption (1) ensures N(T ) → ∞ as T → ∞. With this we can
use Assumption (3) and apply the law of large numbers for weakly dependent variables (e.g. see
Theorem 7 in [37]) to the traded volume.

V OL(T )

N(T )
=

∑N(T )
i=1 wi
N(T )

→ µπ,w.p.1, as T →∞, (27)

Second, event contributions ei have a finite variance σ2 and, using Assumption (2), we
apply a central limit theorem for strongly dependent sequences (see Chapter 4.6 in [51]):

OFI(T )

σNH(T )
≡
∑N(T )

i=1 ei
σNH(T )

⇒ ξ, as T →∞, (28)

where ξ ∼ N(0, 1) is a standard normal random variable. Although the denominator σNH(T )
is random, it goes to infinity by assumption (1) and Anscombe’s lemma ensures that we can
use such a normalization in the central limit theorem [13, Lemma 2.5.8]. Since the function
g(x) = xH , H > 0, x ≥ 0 is continuous, the convergence in (27) takes place almost-surely and
the limit in (27) is deterministic, we can combine (27) and (28) in the following way:

(µπ)H

σ

OFI(T )

V OLH(T )
≡

∑N(T )
i=1 ei

σNH(T )(∑N(T )
i=1 wi

µπ(N(T ))

)H ⇒ ξ, as T →∞ (29)

�
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