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Historical Context of High-Frequency, Low Latency Trading 

Since the late 1980’s, electronic trading has been taking an ever increasing share 

of the global securities exchange market and providing market participants with ever 

lower trade latencies.  In 1989, the world's first high frequency trading firm, 

Automated Trade Desk was able execute orders in 1 second, faster than any human 

trader at the time, through a satellite dish bolted to the roof of the garage the firm was 

founded in (Philips 2013). A little more than a decade later, in 2000, execution speeds 

had fallen to 25 milliseconds.  By 2010, execution speeds had fallen below 1 

millisecond(Cont 2011).  Today, electronic traders hold a dominant position in the 

markets.   

An interesting result of the world’s evolution from an entirely manual market 

to electronic based market systems is that data describing supply, demand, and price 

behavior in securities markets is being increasing recorded. It is now possible to watch 

price discovery develop in real time, play it back, and analyze it from every angle.  The 

formulaic and mechanical nature of electronic trading makes statistical analysis of 

price discovery at very short time intervals possible.   

 A great deal of interest has developed around modeling imbalances in the 

market. Specifically, analysis of limit order book dynamics at short intervals has 

become a topic of interest given the availability of ever increasing granularity of data. 

Previous academic work by Lee and Ready 1991, and Benedikstdottir 2006, and 

has shown that changes in order book information can be predictive of future prices 

https://paperpile.com/c/ZJfv3U/RAs6
https://paperpile.com/c/ZJfv3U/808X


changes.  These methodologies however, are difficult or impossible to apply under 

live trading constraints.         

In 2010, Rama Cont and his coauthors proposed a stochastic model of the limit 

order book which conceptualized it as a queuing system.  This “stylized version limit 

order book” model contemplates a limit order book as a continuous-time Markov 

process in which limit orders arrive and wait in a queue until removed from the book 

by either cancellation or matched with a marketable order. The model enables an 

observer to determine the volume of limit orders at each given price level at any given 

point in time1.  Cont’s model is motivated by the desire to use information on the 

current state of the order book to analyze short term price behavior in a given 

security. 

The Cont model has a set of meaningful advantages for those attempting to 

analyze trading behavior at subsecond and submillisecond timeframes. It can be 

estimated quickly using high frequency price data, it creates a model which shares the 

same features as an empirical order book making easy for a human understand, and 

the analytical mathematics are trivial given standard computational toolsets. 

In the original 2010 paper, Cont et al. found that they were able to meaningful 

predict changes in price midpoint, execution of an order at the best bid before the 

best ask quote moves, and execution of both a buy and a sell order at the best quotes 

                                                 
1 (Cont et al. 2010) 

https://paperpile.com/c/ZJfv3U/97yc


before the price moves using a two-sided Laplace transform.  Others have also found 

the Cont model effective and have built upon it.  Lee and Kim applied the Cont 

model to Korean KOSPI 200 futures market with a slight modification and found 

modest success2. Avellaneda et al. determined that this model can be used as a 

baseline to estimate the amount of hidden liquidity in a given marketplace allowing 

trading venues to be ranked in terms of their “information content”3. 

Building upon the success of the 2010 model, in 2014 Cont et al. published a 

follow-on paper titled The Price Impact of Order Book Events which found that that Order 

Flow Imbalance (OFI) derived from the limit order book model has a statistically 

significant correlation to contemporaneous price movement at very short time 

frames4.  The purpose of this work is to build and test a predictive model based on 

Cont’s descriptive work. More specifically, if change in OFI in time interval [𝑡𝑡𝑘𝑘−1, 𝑡𝑡𝑘𝑘] 

is significantly correlated with price change within the same timeframe, does this 

correlation similarly hold true on a forward looking basis if price change is advanced 

one period in the future, [𝑡𝑡𝑘𝑘 , 𝑡𝑡𝑘𝑘+1]? 

In order to analyze and apply the Cont model it is important to first understand 

how it attempts to model the continuous process of price discovery by constructing a 

snapshot of the market state at any given moment in time, t. The snapshot framework 

                                                 
2 (Lee and Kim 2013) 
3 (Avellaneda et al. 2010) 
4 (Cont et al. 2014) 

https://paperpile.com/c/5GuU6x/XaH9
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allows computationally easy analysis of the price discovery by comparing the changes 

in the status of a limit order book from time t-1 to time t, this difference is denoted as 

𝑘𝑘.  The snapshot itself is an interplay between two opposing forces, buyers and sellers.  

Buyers are able to affect the number of best bid limit orders newly listed since the last 

period, 𝐿𝐿𝑘𝑘𝑏𝑏 , the number of best bid limit orders newly canceled since the last period, 

𝐶𝐶𝑘𝑘𝑏𝑏, as well as the number of market buy orders arriving, 𝑀𝑀𝑘𝑘
𝑏𝑏 .  Buyers also influence 

the best bid price, 𝑃𝑃𝑘𝑘𝑏𝑏.  Conversely, sellers influence the number of newly listed best 

limit ask orders 𝐿𝐿𝑘𝑘𝑠𝑠 , newly canceled best limit ask orders, 𝐶𝐶𝑘𝑘𝑠𝑠, new market orders, 𝑀𝑀𝑘𝑘
𝑠𝑠, 

and the best ask price, 𝑃𝑃𝑘𝑘𝑠𝑠.  The volume of all orders beyond the best bid/ask are 

aggregated into a single variable 𝐷𝐷. 

Using these simple observed parameters, a liner relationship between order 

flows and price change by can be developed5 (δ being an arbitrary tick size): 

∆𝑃𝑃𝑘𝑘𝑏𝑏 = 𝛿𝛿
𝐿𝐿𝑘𝑘𝑏𝑏 − 𝐶𝐶𝑘𝑘𝑏𝑏 − 𝑀𝑀𝑘𝑘

𝑠𝑠

𝐷𝐷
 

∆𝑃𝑃𝑘𝑘𝑠𝑠 = 𝛿𝛿
𝐿𝐿𝑘𝑘𝑠𝑠 − 𝐶𝐶𝑘𝑘𝑠𝑠 − 𝑀𝑀𝑘𝑘

𝑏𝑏

𝐷𝐷
 

Viewing price change as a function of the additive changes made between two 

arbitrary points in time enables the use of standard descriptive models to determine 

the correlation of order book changes and price. 

                                                 
5 (Cont et al. 2014) 
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 Building on this basic model, Cont et al. 2014 introduces the concept of an 

order flow imbalance (OFI), sometimes called the net order flow, as a possible 

predictor of price change.  Generally, an OFI is the difference between the volume of 

orders on either side of the order book and can be defined for any give 𝑘𝑘 as:  

𝑂𝑂𝑂𝑂𝑂𝑂𝑘𝑘 = 𝐿𝐿𝑘𝑘𝑏𝑏 − 𝐶𝐶𝑘𝑘𝑏𝑏 − 𝑀𝑀𝑘𝑘
𝑠𝑠 − 𝐿𝐿𝑘𝑘𝑠𝑠 − 𝐶𝐶𝑘𝑘𝑠𝑠 − 𝑀𝑀𝑘𝑘

𝑏𝑏. 

 Figures: Cont et al. 2014 



Once one has calculated OFI for any given period of time, it is then trivial to analyze 

the linear relationship between price change and OFI: 

∆𝑃𝑃𝑘𝑘,𝑖𝑖 = 𝛽𝛽𝑖𝑖𝑂𝑂𝑂𝑂𝑂𝑂𝑘𝑘,𝑖𝑖 + 𝜖𝜖𝑘𝑘,𝑖𝑖 where 

𝛽𝛽𝑖𝑖 =  
𝑐𝑐
𝐷𝐷𝑖𝑖λ

+ 𝑣𝑣𝑖𝑖 

Cont’s et al. estimated this stylized model over 1 month (April 2010) of trading for a 

panel of equities listed on the S&P500 finding that 𝛽𝛽𝑖𝑖 is statistically significant in 98% 

of cases with a surprising high average 𝑅𝑅2 value of 65%.   Results of this significance 

given such a simple model are profound and warrant further investigation. 

 The purpose of our work in this paper is to build upon Cont et al.’s results to 

build predictive model trading model and test it under realistic market conditions.  In 

support of this goal, Lime Brokerage generously provided us access to the advanced 

back testing tool, Lime Strategy Studio (Lime).  Lime is fast enough to back test full 

depth of book intraday strategies and has an integrated tick-by-tick fill simulation 

algorithm.  This provides a higher degree of verisimilitude than market simulations 

used by Cont et al. because, in their work, all trades occurred at the midpoint price 

due to the computational difficulty in estimating orders fills. Using the Lime platform, 

we are able to more closely approximate whether orders at the best bid and best ask 

are actually filled at a what price.  Additionally, the Lime system allows for the 

inclusion for transaction fees which are absent from Cont et al.’s work.    



Whereas the Cont’s estimations pegged the values of c and λ to 1
2
 and 1 

respectively, under actual trading conditions, the value of 𝛽𝛽𝑖𝑖 , the price impact 

coefficient, would likely vary from security to security due to issues like liquidity as 

well as from time period to time period due to forces like the volatility smile. Lime 

Strategy Studio allowed for the continuous estimation of c and therefore 𝛽𝛽𝑖𝑖 , thus 

decreasing the magnitude of the error term 𝜖𝜖𝑘𝑘,𝑖𝑖.  Additionally, Cont’s ∆𝑃𝑃𝑘𝑘,𝑖𝑖 

estimations were construed to be the midpoint price based on TAQ consolidated 

quotes.  Lime’s fill simulation algorithm allows for a more granular analysis by 

analyzing actual fills at the best bid/ask and using full level 2 data depth of book data.  

Finally, Cont’s use of consolidated TAQ is unrealistic. Equities in real markets are 

traded on many different exchanges which are geographically diverse.  Knowledge of 

events occurring on one exchange are not likely to propagate through all exchanges 

within the time constraints in Cont’s model.  The use of consolidated data carries the 

assumption that this market disparity does not exist. While this difference may be 

trivial for extremely high liquidity securities, live trading algorithms based on Cont’s 

work may result in losses due to slippage in the real market.   

Data 

Our data set comprised two electronically traded funds (ETF) where analyzed, 

the SPDR S&P 500 ETF Trust (ticker SPY) and PowerShares QQQ Trust (QQQ).  

These securities were chosen because their high daily trade volume and typically 



narrow bid-ask spread were likely to minimized our models error terms.  Level 2 full 

depth of book data from ARCA was acquired from OneTick which was used by the 

Lime fill simulation engine to simulate the likelihood of any given order being filled.  

We estimated our model over 3 different full months in 2012, April, June, August as 

chosen by a random number generator. 

Model Specification 

Our model heavily leveraged the C++ libraries as provided in the Strategy 

Studio SDK. 𝑂𝑂𝑂𝑂𝑂𝑂𝑘𝑘,𝑖𝑖 for the time period [𝑡𝑡𝑘𝑘−1, 𝑡𝑡𝑘𝑘]  was updated every millisecond 

through the additive method illustrated above and 𝐷𝐷𝑖𝑖λ was similarly updated at ever 

millisecond tick via simple observation. A forward looking ∆𝑃𝑃𝑘𝑘,𝑖𝑖 for period [𝑡𝑡𝑘𝑘 , 𝑡𝑡𝑘𝑘+1] 

was estimated by running a linear regression of the observed OFI values and observed 

𝐷𝐷𝑖𝑖λ over a 30 minutes using the rolling window object provided by Lime.   Once the 

30-minute rolling window was filled with observations, we compared the predicted 

∆𝑃𝑃 value every millisecond against the known transaction of $.003 fee to take liquidity 

from the ARCA market6.  If the predicted price change was larger than this “take 

fee”, a market order of 100 shares was entered depending on the sign of  ∆𝑃𝑃. If price 

was predicted to rise, a market buy order was entered whereas a market sell order was 

sent if the price was predicted to fall. The market impact of our trades was accounted 

                                                 
6 Brokerage US Execution Rebate and Fee Schedule Exchange and ECNs, Effective 

May 1st, 2015, Version 150501.1 Published by Lime Brokerage 
 



for by the Lime order fill simulation engine although we do not expect our trading 

behavior to have a significant impact on market price due to the small size of our 

trade lots and the high liquidity of our target market. We also attempted to avoid any 

problems stemming from the well-known intraday volatility seasonality issues of the 

“volatility smile” by closing out all trading 30 minutes prior to the closing bell. 

Because commissions fees can vary significantly based on the average monthly 

volume of a given trader as well as the nature of the relationship between a trade and 

her brokerage, we have omitted commission fees from our model.  If our trading 

strategy has been shown to be profitable, it would have been prudent to make some 

assumptions about our hypothetical brokerage relationship and thus add in 

commission fees.  As our model was shown to not be profitable, this additional cost 

was unnecessary to include. Source code for our model has been provided in 

appendix A.      

Results 

Although daily losses were not catastrophic, never exceeding .25%, with limited 

exception, every trading day of every test produced a loss.  The OFI strategy as 

implemented also failed to beat the QQQ benchmark in monthly returns in all tests 

and only produced superior daily results in 38.1% of trading days. 

 

 Monthly Results 
 September June August  

OFI Strategy Returns -0.8% -1.5% -1.2%  



QQQ Benchmark  Returns 0.8% 5.2% 4.5% Average 
% of Days Strategy > Benchmark 42.1% 38.1% 34.8% 38.1% 

 

  



 

September 2012 
Date Start of Day Equity Day PnL Return QQQ Return 

9/4/2012 $100,000.00 -$2.80 0.00% 0.09% 
9/5/2012 $99,997.20 -$18.58 -0.02% -0.03% 
9/6/2012 $99,978.62 -$95.67 -0.10% 1.62% 
9/7/2012 $99,882.95 -$20.73 -0.02% 0.09% 

9/10/2012 $99,862.22 -$76.84 -0.08% -1.04% 
9/11/2012 $99,785.38 -$66.04 -0.07% -0.16% 
9/12/2012 $99,719.34 -$39.36 -0.04% -0.07% 
9/13/2012 $99,679.98 $16.45 0.02% 1.24% 
9/14/2012 $99,696.43 -$49.59 -0.05% 0.49% 
9/17/2012 $99,646.84 -$19.90 -0.02% 0.01% 
9/18/2012 $99,626.94 -$19.34 -0.02% 0.33% 
9/19/2012 $99,607.61 -$70.77 -0.07% 0.16% 
9/20/2012 $99,536.83 $3.71 0.00% 0.37% 
9/21/2012 $99,540.54 -$39.38 -0.04% -0.45% 
9/24/2012 $99,501.16 -$32.63 -0.03% 0.25% 
9/25/2012 $99,468.53 -$111.41 -0.11% -1.66% 
9/26/2012 $99,357.12 -$19.05 -0.02% -0.68% 
9/27/2012 $99,338.07 -$102.67 -0.10% 1.16% 
9/28/2012 $99,235.40 -$22.67 -0.02% -0.51% 

 

  



 

June 2012 
Date Start of Day Equity Day PnL Return QQQ Return 

6/1/2012 $100,000.00 -$57.51 -0.06% -0.92% 
6/4/2012 $99,942.49 -$50.94 -0.05% 0.50% 
6/5/2012 $99,891.56 -$45.26 -0.05% 0.77% 
6/6/2012 $99,846.30 -$124.05 -0.12% 1.49% 
6/7/2012 $99,722.25 -$135.60 -0.14% -1.41% 
6/8/2012 $99,586.65 -$67.57 -0.07% 1.14% 

6/11/2012 $99,519.08 -$186.79 -0.19% -2.44% 
6/12/2012 $99,332.29 -$103.08 -0.10% 0.76% 
6/13/2012 $99,229.22 -$28.77 -0.03% -0.40% 
6/14/2012 $99,200.45 -$73.79 -0.07% 0.35% 
6/15/2012 $99,126.66 -$52.88 -0.05% 0.99% 
6/18/2012 $99,073.78 -$57.80 -0.06% 1.32% 
6/19/2012 $99,015.98 -$67.00 -0.07% 0.53% 
6/20/2012 $98,948.98 -$54.57 -0.06% -0.11% 
6/21/2012 $98,894.41 -$139.22 -0.14% -2.37% 
6/22/2012 $98,755.19 -$93.87 -0.10% 0.75% 
6/25/2012 $98,661.32 -$1.50 0.00% -1.13% 
6/26/2012 $98,659.82 -$33.84 -0.03% 0.30% 
6/27/2012 $98,625.98 -$29.20 -0.03% 0.22% 
6/28/2012 $98,596.78 -$63.52 -0.06% -0.35% 
6/29/2012 $98,533.26 -$117.59 -0.12% 1.25% 

 

  



 

August 2012 
Date Start of Day Equity Day PnL Return QQQ Return 

8/1/2012 $100,000.00 $2.72 0.00% -0.009808429 
8/2/2012 $100,002.72 -$79.50 -0.08% 0.004368175 
8/3/2012 $99,923.23 -$240.31 -0.24% 0.003364943 
8/6/2012 $99,682.92 -$37.75 -0.04% 0.002426448 
8/7/2012 $99,645.17 -$76.00 -0.08% 0.00406749 
8/8/2012 $99,569.17 -$5.97 -0.01% 0.002105897 
8/9/2012 $99,563.21 -$16.38 -0.02% 0.003002101 

8/10/2012 $99,546.82 -$63.61 -0.06% 0.004054663 
8/13/2012 $99,483.21 -$52.10 -0.05% 0.002692998 
8/14/2012 $99,431.11 -$89.16 -0.09% -0.003418549 
8/15/2012 $99,341.95 -$11.09 -0.01% 0.003283582 
8/16/2012 $99,330.86 -$72.52 -0.07% 0.008151771 
8/17/2012 $99,258.34 -$40.00 -0.04% 0.002200381 
8/20/2012 $99,218.35 -$73.44 -0.07% 0.002197158 
8/21/2012 $99,144.91 -$85.45 -0.09% -0.006994026 
8/22/2012 $99,059.46 -$39.55 -0.04% 0.00647154 
8/23/2012 $99,019.91 -$25.21 -0.03% -0.00396243 
8/24/2012 $98,994.70 -$81.36 -0.08% 0.008417011 
8/27/2012 $98,913.34 -$55.17 -0.06% -0.002915452 
8/28/2012 $98,858.17 -$2.25 0.00% 0.000877963 
8/29/2012 $98,855.91 $6.45 0.01% -0.000146177 
8/30/2012 $98,862.36 -$19.10 -0.02% -0.005872853 
8/31/2012 $98,843.26 -$32.50 -0.03% -0.00058651 

 

Conclusions 

This specific application of Cont’s OFI model as a predictive indicator has not 

been shown to produce profitable intraday trading results.  That being said, the daily 

returns from a strategy of buying QQQ on open and selling on and the implemented 

OFI strategy are not statistically significantly different with a two-tailed P value of 

0.1957.  This strategy shows promise and further development may be warranted.     

Possible Future Research 



The results produced in this work may be improved in a variety of ways, each 

potentially warranting further research.  For example, increased estimation accuracy as 

well as increased computational efficiency may be found by estimation 𝑐𝑐 with a 

Kalman Filter rather than using the mean of a 30 minute rolling window.  There are 2 

key advantages to using Kalman Filter’s in low latency trading algorithms which this 

algorithm may benefit from.  Because a Kalman filter is only estimated from one 

previous time step, less time is spent reading and writing to memory.  This increased 

efficiency may be beneficial in a live trading situation.  Similarly, under living trading 

conditions, data points can be lost or not arrive at all.  In these instances, a Kalman 

Filter may be preferable because losing data is does not significantly impact a Kalman 

filter estimation. 

Another modification to this work may be to analyze a set of securities in 

which all trading is accomplished on a single market, for example the CME e-Mini 

contracts.  By studying a security with a single centralized market, the effects of 

latency between geographically disparate exchanges is eliminated.  Similarly, it may be 

interesting to analyze securities other than equities.  The effects of supply/demand 

imbalances may be felt differently in commodity or bond markets. 

Hidden liquidity may also significantly impact the profitability of a OFI-based 

trading algorithm.  Avellaneda, Reed, and Stoikov 2010 proposed a method of 

estimating the amount of hidden liquidity percent in a given exchange.  This 



methodology could perhaps be adapted to target only the exchanges in which the 

algorithm is likely to be profitable. 

Another interesting avenue of research was suggested to us by Rama Cont 

himself during an email exchange with the authors.  D is used in calculating the price 

impact coefficient but “in principle, one can have an asymmetric price impact, 

modeled as a piecewise linear function with different slopes for positive and negative 

imbalances. In that case you could use D_+= depth at the best bid for positive 

imbalances D_-=depth at the best ask for negative imbalance instead of averaging.”  

In his work however, the sign of the D changes “randomly with higher frequency” as 

so defining D as the average depth appears to be sufficient. 

The fees paid to take liquidity from the ARCA market may have a significant 

impact on the profitability of this algorithm. Further research on the application of 

this strategy markets where rebates is paid to take liquidity such as the NASDAQ 

BSX, Direct Edge “A”, or BATS “Y”7 may prove increase profitability.         

Finally, generally volatility in a given market may have an impact on the 

profitability of this algorithm.  Further research focused on tracking the relationship 

between VIX prices or other indicators of expected volatility may prove fruitful. 

  

                                                 
7 Ibid. 



Appendix A: Source Code 

PriceImpactStrategy.cpp 
PriceImpactStrategy.h 

#ifdef _WIN32 
    #include "stdafx.h" 
#endif 
 
#include "PriceImpactStrategy.h" 
 
#include "FillInfo.h" 
#include "AllEventMsg.h" 
#include "ExecutionTypes.h" 
#include <Utilities/Cast.h> 
#include <Utilities/utils.h> 
 
#include <math.h> 
#include <iostream> 
#include <cassert> 
#include <cstdlib> 
 
using namespace LimeBrokerage::StrategyStudio; 
using namespace LimeBrokerage::StrategyStudio::MarketModels; 
using namespace LimeBrokerage::StrategyStudio::Utilities; 
 
using namespace std; 
 
PriceImpact::PriceImpact(StrategyID strategyID, const std::string& 
strategyName, const std::string& groupName): 
    Strategy(strategyID, strategyName, groupName), 
    m_instrument_order_id_map(), 
    m_aggressiveness(0), 
    m_position_size(100), 
    m_debug_on(false), 
    m_rolling_window_double(180.0), 
    m_rollingWindow(180), 
    m_time_before_close(30), 
    m_nearing_close_time(false), 
    m_debug_event_count(0) 
{ 
    //this->set_enabled_pre_open_data_flag(true); 
    //this->set_enabled_pre_open_trade_flag(true); 
    //this->set_enabled_post_close_data_flag(true); 
    //this->set_enabled_post_close_trade_flag(true); 
} 
 
PriceImpact::~PriceImpact() 
{ 
} 
 
void PriceImpact::OnResetStrategyState() 
{ 
    m_rollingWindow.clear(); 
    m_nearing_close_time = false; 
} 
 



void PriceImpact::DefineStrategyParams() 
{ 
    logger().LogToClient(LOGLEVEL_DEBUG, "Defining Strategy Params"); 
     
    CreateStrategyParamArgs arg1("aggressiveness", 
STRATEGY_PARAM_TYPE_RUNTIME, VALUE_TYPE_DOUBLE, m_aggressiveness); 
    params().CreateParam(arg1); 
 
    CreateStrategyParamArgs arg2("position_size", 
STRATEGY_PARAM_TYPE_RUNTIME, VALUE_TYPE_INT, m_position_size); 
    params().CreateParam(arg2); 
 
    CreateStrategyParamArgs arg3("rolling_window_size", 
STRATEGY_PARAM_TYPE_STARTUP, VALUE_TYPE_DOUBLE, m_rolling_window_double); 
    params().CreateParam(arg3); 
     
    CreateStrategyParamArgs arg4("time_before_close", 
STRATEGY_PARAM_TYPE_STARTUP, VALUE_TYPE_INT, m_time_before_close); 
    params().CreateParam(arg4); 
     
    CreateStrategyParamArgs arg5("debug", STRATEGY_PARAM_TYPE_RUNTIME, 
VALUE_TYPE_BOOL, m_debug_on); 
    params().CreateParam(arg5); 
} 
 
void PriceImpact::DefineStrategyCommands() 
{ 
    logger().LogToClient(LOGLEVEL_DEBUG, "Defining Strategy Commands"); 
     
    StrategyCommand command1(1, "Reprice Existing Orders"); 
    commands().AddCommand(command1); 
 
    StrategyCommand command2(2, "Cancel All Orders"); 
    commands().AddCommand(command2); 
} 
 
void PriceImpact::RegisterForStrategyEvents(StrategyEventRegister* 
eventRegister, DateType currDate) 
{    
    logger().LogToClient(LOGLEVEL_DEBUG, "Registering for events"); 
      
    for (SymbolSetConstIter it = symbols_begin(); it != symbols_end(); ++it) 
{ 
        eventRegister->RegisterForBars(*it, BAR_TYPE_TIME, 10); 
        eventRegister->RegisterForMarketData(*it); 
    } 
     
    eventRegister->RegisterForSingleScheduledEvent("NearingClose", 
USEquityCloseUTCTime(currDate) - 
boost::posix_time::minutes(m_time_before_close), true); 
     
    m_nearing_close_time = false; 
} 
 
void PriceImpact::OnBar(const BarEventMsg& msg) 
{ 
    if (m_debug_on) { 



        ostringstream str; 
        str << msg.instrument().symbol() << ": " << msg.bar(); 
        logger().LogToClient(LOGLEVEL_DEBUG, str.str().c_str()); 
    } 
     
    if(msg.bar().close() < .01) return; 
     
    const MarketModels::IAggrOrderBook* order_book; 
    const SymbolTag strSymbol = msg.instrument().symbol(); 
    const MarketModels::Instrument* m_instrument = &msg.instrument(); 
    double c = 0; 
    double c_avg = 0; 
    double beta_i = 0; 
    double delta_p = 0; 
     
    order_book = &msg.instrument().aggregate_order_book(); 
     
    OFI ofi = OFI(order_book); 
         
    LogBarEvent(strSymbol, ofi, portfolio().position(m_instrument), 
msg.bar().volume()); 
     
    if (msg.bar().volume() == 0 || ofi.Result() == 0) 
        return; 
 
    c = msg.bar().volume() / ofi.Result(); 
    m_rollingWindow.push_back(c); 
    
    // only process when we have a complete rolling window 
    if (!m_rollingWindow.full()) 
        return; 
     
    logger().LogToClient(LOGLEVEL_DEBUG, "Rolling Window Fully Initialized"); 
     
    c_avg = m_rollingWindow.Mean(); 
     
    beta_i = c_avg / msg.bar().volume();  
     
    delta_p = beta_i * ofi.Result(); 
     
    ostringstream str7; 
    str7 << strSymbol << " Delta P: " << delta_p; 
    logger().LogToClient(LOGLEVEL_DEBUG, str7.str().c_str()); 
     
     
         
    /*if (side == BUY && portfolio().position(m_instrument) < 
m_position_size) 
        SendBuyOrder(m_instrument, m_position_size); 
    else if (side == SELL && portfolio().position(m_instrument) >= 
m_position_size) 
        SendSellOrder(m_instrument, m_position_size);*/ 
         
    if (m_nearing_close_time) { 
        logger().LogToClient(LOGLEVEL_DEBUG, "Nearing close time: closing 
positions if exist"); 
        if (portfolio().position(m_instrument) >= m_position_size) 



            SendSellOrder(m_instrument, m_position_size); 
        return; 
    } 
 
    if (delta_p > 0) 
        SendBuyOrder(m_instrument, m_position_size); 
    else if (delta_p < 0) 
        SendSellOrder(m_instrument, m_position_size); 
 
    //AdjustPortfolio(&msg.instrument(), m_position_size * side); 
     
} 
 
void PriceImpact::OnDepth(const MarketDepthEventMsg& msg) 
{ 
    logger().LogToClient(LOGLEVEL_DEBUG, "On Depth order book message 
arrived"); 
     
    ostringstream str; 
    str << msg.instrument().symbol() << ": " << msg.name(); 
    logger().LogToClient(LOGLEVEL_DEBUG, str.str().c_str()); 
} 
 
void PriceImpact::OnOrderUpdate(const OrderUpdateEventMsg& msg)   
{ 
    logger().LogToClient(LOGLEVEL_DEBUG, "On order update received"); 
    logger().Log(LOGLEVEL_INFO, "On order update received"); 
     
    if(msg.completes_order()) 
  m_instrument_order_id_map[msg.order().instrument()] = 0; 
} 
 
void PriceImpact::OnScheduledEvent(const ScheduledEventMsg& msg) 
{ 
    if (msg.scheduled_event_name() == "NearingClose") { 
        m_nearing_close_time = true; 
    } 
} 
 
void PriceImpact::AdjustPortfolio(const Instrument* instrument, int 
desired_position) 
{ 
    logger().LogToClient(LOGLEVEL_DEBUG, "Adjusting Portfolio"); 
         
    int trade_size = desired_position - portfolio().position(instrument); 
 
    if (trade_size != 0) { 
        OrderID order_id = m_instrument_order_id_map[instrument]; 
        //if we're not working an order for the instrument already, place a 
new order 
        if (order_id == 0) { 
            SendOrder(instrument, trade_size); 
        } else {   
      //otherwise find the order and cancel it if we're now 
trying to trade in the other direction 
            const Order* order = orders().find_working(order_id); 



            if(order && ((IsBuySide(order->order_side()) && trade_size < 0) 
||  
               ((IsSellSide(order->order_side()) && 
trade_size > 0)))) { 
                trade_actions()->SendCancelOrder(order_id); 
                //we're avoiding sending out a new order for the other side 
immediately to simplify the logic to the case where we're only tracking one 
order per instrument at any given time 
            } 
        } 
    } 
    else { 
        logger().LogToClient(LOGLEVEL_DEBUG, "Trade Size Zero: No trade 
made"); 
    } 
} 
 
void PriceImpact::SendOrder(const Instrument* instrument, int trade_size) 
{ 
    logger().LogToClient(LOGLEVEL_DEBUG, "Sending order"); 
     
    if(instrument->top_quote().ask()<.01 ||  
        instrument->top_quote().bid()<.01 ||  
        !instrument->top_quote().ask_side().IsValid() ||  
        !instrument->top_quote().ask_side().IsValid()) { 
        std::stringstream ss; 
         
        ss  << "Sending buy order for " << instrument->symbol() << " at price 
" << instrument->top_quote().ask()  
            << " and quantity " << trade_size <<" with missing quote data"; 
                
        logger().LogToClient(LOGLEVEL_DEBUG, ss.str()); 
        return; 
     } 
 
    double price = trade_size > 0 ? instrument->top_quote().bid() + 
m_aggressiveness : instrument->top_quote().ask() - m_aggressiveness; 
 
    OrderParams params(*instrument,  
        abs(trade_size), 
        price,  
        (instrument->type() == INSTRUMENT_TYPE_EQUITY) ? 
MARKET_CENTER_ID_NASDAQ : ((instrument->type() == INSTRUMENT_TYPE_OPTION) ? 
MARKET_CENTER_ID_CBOE_OPTIONS : MARKET_CENTER_ID_CME_GLOBEX), 
        (trade_size>0) ? ORDER_SIDE_BUY : ORDER_SIDE_SELL, 
        ORDER_TIF_DAY, 
        ORDER_TYPE_LIMIT); 
 
    if (trade_actions()->SendNewOrder(params) == 
TRADE_ACTION_RESULT_SUCCESSFUL) { 
        m_instrument_order_id_map[instrument] = params.order_id; 
    } 
} 
 
void PriceImpact::SendBuyOrder(const Instrument* instrument, int unitsNeeded) 
{ 
    logger().LogToClient(LOGLEVEL_DEBUG, "Sending Buy order"); 



    OrderParams params(*instrument,  
        unitsNeeded, 
        (instrument->top_quote().ask() != 0) ? instrument->top_quote().ask() 
: instrument->last_trade().price(),  
        (instrument->type() == INSTRUMENT_TYPE_EQUITY) ? 
MARKET_CENTER_ID_NASDAQ : ((instrument->type() == INSTRUMENT_TYPE_OPTION) ? 
MARKET_CENTER_ID_CBOE_OPTIONS : MARKET_CENTER_ID_CME_GLOBEX), 
        ORDER_SIDE_BUY, 
        ORDER_TIF_DAY, 
        ORDER_TYPE_MARKET); 
 
    trade_actions()->SendNewOrder(params); 
} 
     
void PriceImpact::SendSellOrder(const Instrument* instrument, int 
unitsNeeded) 
{ 
    logger().LogToClient(LOGLEVEL_DEBUG, "Sending sell order"); 
    OrderParams params(*instrument,  
        unitsNeeded, 
        (instrument->top_quote().bid() != 0) ? instrument->top_quote().bid() 
: instrument->last_trade().price(),  
        (instrument->type() == INSTRUMENT_TYPE_EQUITY) ? 
MARKET_CENTER_ID_NASDAQ : ((instrument->type() == INSTRUMENT_TYPE_OPTION) ? 
MARKET_CENTER_ID_CBOE_OPTIONS : MARKET_CENTER_ID_CME_GLOBEX), 
        ORDER_SIDE_SELL, 
        ORDER_TIF_DAY, 
        ORDER_TYPE_MARKET); 
 
    trade_actions()->SendNewOrder(params); 
} 
 
void PriceImpact::RepriceAll() 
{ 
    logger().LogToClient(LOGLEVEL_DEBUG, "Repricing All Command"); 
    
    for (IOrderTracker::WorkingOrdersConstIter ordit = 
orders().working_orders_begin(); ordit != orders().working_orders_end(); 
++ordit) { 
        Reprice(*ordit); 
    } 
} 
 
void PriceImpact::Reprice(Order* order) 
{ 
    OrderParams params = order->params(); 
    params.price = (order->order_side() == ORDER_SIDE_BUY) ? order-
>instrument()->top_quote().bid() + m_aggressiveness : order->instrument()-
>top_quote().ask() - m_aggressiveness; 
    trade_actions()->SendCancelReplaceOrder(order->order_id(), params); 
} 
 
void PriceImpact::OnStrategyCommand(const StrategyCommandEventMsg& msg) 
{ 
    switch (msg.command_id()) { 
        case 1: 
            RepriceAll(); 



            break; 
        case 2: 
            trade_actions()->SendCancelAll(); 
            break; 
        default: 
            logger().LogToClient(LOGLEVEL_DEBUG, "Unknown strategy command 
received"); 
            break; 
    } 
} 
 
void PriceImpact::OnParamChanged(StrategyParam& param) 
{     
    if (param.param_name() == "aggressiveness") {                          
        if (!param.Get(&m_aggressiveness)) 
            throw StrategyStudioException("Could not get m_aggressiveness"); 
    } else if (param.param_name() == "position_size") { 
        if (!param.Get(&m_position_size)) 
            throw StrategyStudioException("Could not get position size"); 
    } else if (param.param_name() == "m_rollingWindow") { 
        if (!param.Get(&m_rolling_window_double)) { 
            throw StrategyStudioException("Could not get 
rolling_window_size"); 
        } else  
            m_rollingWindow = Analytics::ScalarRollingWindow<double> 
(m_rolling_window_double); 
    } else if (param.param_name() == "time_before_close") { 
        if (!param.Get(&m_time_before_close)) 
            throw StrategyStudioException("Could not get time_before_close"); 
    } else if (param.param_name() == "debug") { 
        if (!param.Get(&m_debug_on)) 
            throw StrategyStudioException("Could not get trade size"); 
    }  
} 
 
void PriceImpact::LogBarEvent(const SymbolTag symbol, const OFI ofi, const 
int position, const int volume) 
{ 
    ostringstream str1; 
    str1 << symbol << " Bid Size: " << ofi.BidSize(); 
    logger().LogToClient(LOGLEVEL_DEBUG, str1.str().c_str()); 
     
    ostringstream str2; 
    str2 << symbol << " Ask Size: " << ofi.AskSize(); 
    logger().LogToClient(LOGLEVEL_DEBUG, str2.str().c_str()); 
     
    ostringstream str3; 
    str3 << symbol << " OFI: " << ofi.Result(); 
    logger().LogToClient(LOGLEVEL_DEBUG, str3.str().c_str()); 
 
    ostringstream str4; 
    str4 << symbol << " Portfolio: " << position; 
    logger().LogToClient(LOGLEVEL_DEBUG, str4.str().c_str()); 
     
    ostringstream str5; 
    str5 << symbol << " Trade Side: " << ofi.TradeSide(); 
    logger().LogToClient(LOGLEVEL_DEBUG, str5.str().c_str()); 



     
    ostringstream str6; 
    str6 << symbol << " Volume: " << volume; 
    logger().LogToClient(LOGLEVEL_DEBUG, str6.str().c_str()); 
} 
 
  



PriceImpactStrategy.h 
  
 
#pragma once 
 
#ifndef _STRATEGY_STUDIO_LIB_EXAMPLES_SIMPLE_MOMENTUM_STRATEGY_H_ 
#define _STRATEGY_STUDIO_LIB_EXAMPLES_SIMPLE_MOMENTUM_STRATEGY_H_ 
 
#ifdef _WIN32 
    #define _STRATEGY_EXPORTS __declspec(dllexport) 
#else 
    #ifndef _STRATEGY_EXPORTS 
    #define _STRATEGY_EXPORTS 
    #endif 
#endif 
 
#include <Strategy.h> 
#include <Analytics/ScalarRollingWindow.h> 
#include <Analytics/InhomogeneousOperators.h> 
#include <Analytics/IncrementalEstimation.h> 
#include <MarketModels/Instrument.h> 
#include <Utilities/ParseConfig.h> 
 
#include <vector> 
#include <map> 
#include <iostream> 
 
using namespace LimeBrokerage::StrategyStudio; 
 
enum DesiredPosition { 
    BUY=1, 
    SELL=-1, 
    UNKNOWN=0 
}; 
 
class BetaI { 
public: 
 
    BetaI(); 
}; 
 
class OFI { 
public: 
     
    OFI(const MarketModels::IAggrOrderBook* order_book) : 
m_bid_size(order_book->TotalBidSize()), m_ask_size(order_book-
>TotalAskSize()) {} 
    int BidSize() const {return m_bid_size;} 
    int AskSize() const {return m_ask_size;} 
    int Result() const {return (m_bid_size - m_ask_size)/2;} 
     
    DesiredPosition TradeSide() const 
    { 
        if(m_bid_size > m_ask_size) 
            return BUY; 
        else 
            return SELL; 



    } 
     
private: 
    int m_bid_size; 
    int m_ask_size; 
     
}; 
 
class PriceImpact : public Strategy { 
public: 
    PriceImpact(StrategyID strategyID, const std::string& strategyName, const 
std::string& groupName); 
    ~PriceImpact(); 
 
public: /* from IEventCallback */ 
 
    /** 
     * This event triggers whenever trade message arrives from a market data 
source. 
     */  
    virtual void OnTrade(const TradeDataEventMsg& msg){} 
 
    /** 
     * This event triggers whenever aggregate volume at best price changes, 
based  
     * on the best available source of liquidity information for the 
instrument. 
     * 
     * If the quote datasource only provides ticks that change the NBBO, top 
quote will be set to NBBO 
     */  
    virtual void OnTopQuote(const QuoteEventMsg& msg){}     
     
    /** 
     * This event triggers whenever a new quote for a market center arrives 
from a consolidate or direct quote feed, 
     * or when the market center's best price from a depth of book feed 
changes. 
     * 
     * User can check if quote is from consolidated or direct, or derived 
from a depth feed. This will not fire if 
     * the data source only provides quotes that affect the official NBBO, as 
this is not enough information to accurately 
     * mantain the state of each market center's quote. 
     */  
    virtual void OnQuote(const QuoteEventMsg& msg){} 
     
    /** 
     * This event triggers whenever a order book message arrives. This will 
be the first thing that 
     * triggers if an order book entry impacts the exchange's DirectQuote or 
Strategy Studio's TopQuote calculation. 
     */  
    //virtual void OnDepth(const MarketDepthEventMsg& msg){} 
    virtual void OnDepth(const MarketDepthEventMsg& msg); 
     
    /** 



     * This event contains timed events requested by the strategy  
     */  
    virtual void OnScheduledEvent(const ScheduledEventMsg& msg); 
 
    /** 
     * This event triggers whenever a Bar interval completes for an 
instrument 
     */  
    virtual void OnBar(const BarEventMsg& msg); 
 
    /** 
     * This event contains alerts about the state of the market 
     */ 
    virtual void OnMarketState(const MarketStateEventMsg& msg){}; 
 
    /** 
     * This event triggers whenever new information arrives about a 
strategy's orders 
     */  
    virtual void OnOrderUpdate(const OrderUpdateEventMsg& msg); 
 
    /** 
     * This event contains strategy control commands arriving from the 
Strategy Studio client application (eg Strategy Manager) 
     */  
    virtual void OnStrategyControl(const StrategyStateControlEventMsg& msg){} 
 
    /** 
     *  Perform additional reset for strategy state  
     */ 
    void OnResetStrategyState(); 
 
    /** 
     * This event contains alerts about the status of a market data source 
     */  
    void OnDataSubscription(const DataSubscriptionEventMsg& msg){} 
 
    /** 
     * This event triggers whenever a custom strategy command is sent from 
the client 
     */  
    void OnStrategyCommand(const StrategyCommandEventMsg& msg); 
 
    /** 
     * Notifies strategy for every succesfull change in the value of a 
strategy parameter. 
     * 
     * Will be called any time a new parameter value passes validation, 
including during strategy initialization when default parameter values 
     * are set in the call to CreateParam and when any persisted values are 
loaded. Will also trigger after OnResetStrategyState 
     * to remind the strategy of the current parameter values. 
     */  
    void OnParamChanged(StrategyParam& param); 
 
private: // Helper functions specific to this strategy 
    void AdjustPortfolio(const Instrument* instrument, int desired_position); 



    void SendOrder(const Instrument* instrument, int trade_size); 
    void RepriceAll(); 
    void Reprice(Order* order); 
     
    void SendBuyOrder(const Instrument* instrument, int unitsNeeded); 
    void SendSellOrder(const Instrument* instrument, int unitsNeeded); 
     
    void LogBarEvent(const SymbolTag symbol, const OFI ofi, const int 
position, const int volume); 
 
private: /* from Strategy */ 
     
    virtual void RegisterForStrategyEvents(StrategyEventRegister* 
eventRegister, DateType currDate);  
     
    /** 
     * Define any params for use by the strategy  
     */      
    virtual void DefineStrategyParams(); 
 
    /** 
     * Define any strategy commands for use by the strategy 
     */  
    virtual void DefineStrategyCommands(); 
 
private: 
    boost::unordered_map<const Instrument*, OrderID> 
m_instrument_order_id_map; 
    double m_max_notional; 
    double m_aggressiveness; 
    Analytics::ScalarRollingWindow<double> m_rollingWindow; 
    double m_rolling_window_double; 
    int m_position_size; 
    int m_time_before_close; 
    bool m_nearing_close_time; 
    bool m_debug_on; 
    int m_debug_event_count; 
 
}; 
 
extern "C" { 
 
    _STRATEGY_EXPORTS const char* GetType() 
    { 
        return "PriceImpact"; 
    } 
 
    _STRATEGY_EXPORTS IStrategy* CreateStrategy(const char* strategyType,  
                                   unsigned strategyID,  
                                   const char* strategyName, 
                                   const char* groupName) 
    { 
        if (strcmp(strategyType,GetType()) == 0) { 
            return *(new PriceImpact(strategyID, strategyName, groupName)); 
        } else { 
            return NULL; 
        } 



    } 
 
     // must match an existing user within the system  
    _STRATEGY_EXPORTS const char* GetAuthor() 
    { 
        return "rjessen"; 
    } 
 
    // must match an existing trading group within the system  
    _STRATEGY_EXPORTS const char* GetAuthorGroup() 
    { 
        return "QTS"; 
    } 
 
    // used to ensure the strategy was built against a version of the SDK 
compatible with the server version 
    _STRATEGY_EXPORTS const char* GetReleaseVersion() 
    { 
        return Strategy::release_version(); 
    } 
} 
 
#endif 
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