
Delft University of Technology
Faculty of Electrical Engineering, Mathematics and Computer Science

Delft Institute of Applied Mathematics

MSc thesis Applied Mathematics

Stochastic Modeling of Order Book Dynamics

by Clemencia de Jesus Ladeira de Abreu

Delft, The Netherlands
August 24, 2010

© 2010 by Clemencia de J.L. de Abreu. All rights reserved.





MSc thesis Applied Mathematics
Delft University of Technology

�Stochastic Modeling of Order Book Dynamics�

[Abstract] In this project the order book model proposed by Cont et al. [10] is used as a starting point to model order

book dynamics. This model nicely combines three desirable properties from earlier studies: it is easy to calibrate, it

reproduces statistical properties of the order book and it allows to make analytical computations in the order book.

The model is studied, calibrated and tested on real-time data from the London Stock Exchange. Possible

improvements to the model are discussed and tested. A method to compute probabilities in the model will be

presented: recovering densities by inverting continued fraction representations of Laplace transforms. This is also

implemented and evaluated.

Supervisor

Dr. J. A. M. van der Weide

Other board of assessment members

Prof.dr.ir. M.H. Vellekoop (UVA) Prof.dr. F.M. Dekking

Prof.dr. C.W. Oosterlee Dr. G. Luculli (All Options)

August 24, 2010 Delft

© 2010 by Clemencia de J.L. de Abreu. All rights reserved.





Preface

This document presents an overview of my work at All Options in Amsterdam, where I carried out my thesis
research. All Options is an option trading company established in 1998 and is a leading liquidity provider on all
major European derivative markets. All Options' core business is trading options on listed �nancial instruments.
This project was supervised by The Derivatives Technology Foundation (TDTF). TDTF was founded in 2000,
and is sponsored by All Options. The foundation has the objective to stimulate co-operation between academics
and people who actually work with derivatives. The motivation behind being that there remains a considerable
gap between how specialists in the academic and practical worlds think and communicate. Discussions between
academics and practitioners result in projects, as for example this thesis, that are of value to all concerned.
The eventual result is relevant from an academic perspective, whilst at the same time o�ering a solution to
problems encountered in everyday practice.

After spending an In-house day at the old Amsterdam Stock Exchange where All Options is situated, I
became very motivated to do an internship at this company, and see how every day life is working as a quant
at the forefront of the �nancial markets. Therefore I decided to apply for a research project at All Options.
This report presents the results of this thesis research, and is the �nal assessment to complete the Master
Programme in Applied Mathematics at the Delft University of Technology. The goal of this project was to
develop and test a model that computes probable behavior in the order book. I accomplished to do this in
6 months, and am proud to present my results and conclusions here. This report describes every step that I
took in reaching my conclusions, and is written for people who do have a certain basis in Mathematics.
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Chapter 1

Introduction

Quantitative research on �nancial markets is not only driven by the human desire to capture the dynamics
behind the global markets. Many of the theoretical developments in mathematics have found immediate
application in �nancial markets and these markets also o�er an amazing source of detailed data that enable
to perform analysis. Here we study the dynamics of the order book, which is the smallest level of description
of �nancial markets. The study of the order book is very interesting both from an academical and a practical
point of view. It provides information about price formation dynamics, while for traders who participate in the
markets the expected merits of possible trading strategies are computed based on the dynamics of the order
book.

1.1 What is a Limit Order Book

Trading can be viewed as a search problem. Buyers and sellers need to �nd each other to establish a trade.
Buyers want to �nd sellers who are willing to trade the quantities they desire at a price which is as low as
possible. Vice versa, sellers want to �nd buyers who are willing to trade the desired quantities at a price which
is as high as possible. Stock exchanges usually organize markets so that everyone who wants to trade gathers
at the same place, so that traders can easily �nd the best prices. Once, markets were exclusively organized
on physical trading �oors. Nowadays this is done by Electronic Communication Networks (ECN's) that allow
participants to trade remotely. There are several types of participants in the markets. Traders who can estimate
prices using theoretical models buy when prices better than their estimated price are available in the market.
Their buying and selling pushes the prices in the market up and down, causing the market to re�ect their
estimated values. The whole dynamics of price movements caused by buying and selling constitutes what we
know as the �nancial markets.

Research on market dynamics traditionally focused on quote-driven markets. In a quote-driven market,
only buy and sell o�ers of centralized market makers are displayed. These market makers will post the buy
and sell price at which they are willing to trade. Even though individual orders are not seen in a quote-driven
market, the market maker will either �ll an order from its own inventory or match you with another order. An
advantage of this type of market is its liquidity, as the market makers are required to trade at their quoted
prices. The major drawback of the quote-driven market is that it does not show transparency in the market.

In recent years, quote-driven markets have lost a signi�cant share of order �ow to ECN's, or 'order driven
markets'. In such platforms, all orders are submitted to the electronic trading system, where all orders are listed
stating their size and price. This is called the limit order book and it is accessible to all market participants.
Exchanges operating in this fashion are NYSE, Euronext, Deutsche Börse, Nasdaq, the Tokyo Stock Exchange
and the London Stock Exchange. In the limit order book, all outstanding orders both of buyers and sellers
are displayed. This provides transparency in the market. The mechanical nature of order execution makes it
interesting to stochastically model order-driven markets. We will therefore only focus on this type of markets
in this study.

A participant in an order-driven market can place two basic types of orders, a limit and a market order.
A limit order is an order to trade a certain quantity of an asset at a given price. A market order is an order
to trade a certain quantity at the best price available in the limit order book. The best (lowest) available
price at which one can buy an asset is the ask price, the best (highest) price at which one can sell is called
the bid price. A market order is always executed, while a limit order either stays in the order book until it is
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1.1 What is a Limit Order Book Chapter 1. Introduction

either matched to an incoming market order, canceled or immediately matched to an outstanding order in the
book. There are several other order types which we will not take into account here. These order types can
theoretically be represented by limit and market orders.

In Figure 1.1 an example is shown of an order book for Vodafone stocks, at three consecutive time steps.
This example only shows �ve levels of the order book, for a liquid stock such as Vodafone up to 30 levels
may be available. The two columns in the middle show the available buy prices and sell prices, the two outer
columns show the corresponding quantities. In the example we see that at the second time, the ask order
at price 1.44500 disappeared so it has been canceled. At the third time the number of limit orders at price
1.45000 has decreased by 170000, which means that this number of contracts has been canceled. Imagine
that an order at the best price disappears. In such a case it can be either canceled or executed against an
incoming market order. A trader knows whether a cancellation or a trade took place from the 'Last' trade
shown in the order book.

BOOK: LSE VODE (ID: 25568)

Time: 08:00:00.691357

Last: 1.437000/0

TVol: 0

BidQty Bid Ask AskQty

3231 1.43350 1.43750 207672

646 1.43100 1.43900 232794

193672 1.42900 1.44200 7689

187377 1.42700 1.44500 1500

60 1.42250 1.44900 2000

BOOK: LSE VODE (ID: 25568)

Time: 08:00:00.691556

Last: 1.437000/0

TVol: 0

BidQty Bid Ask AskQty

3231 1.43350 1.43750 207672

646 1.43100 1.43900 232794

193672 1.42900 1.44200 7689

187377 1.42700 1.44900 2000

60 1.42250 1.45000 2433364

BOOK: LSE VODE (ID: 25568)

Time: 08:00:00.691626

Last: 1.437000/0

TVol: 0

BidQty Bid Ask AskQty

3231 1.43350 1.43750 207672

646 1.43100 1.43900 232794

193672 1.42900 1.44200 7689

187377 1.42700 1.44900 2000

60 1.42250 1.45000 2263364

Figure 1.1: Example of three consecutive snap shots of the order book for Vodafone stocks, level 5

The above order book is aggregated which means that any displayed order may consist of multiple orders
from di�erent traders at the same price. The large volumes and small di�erence between the highest bid price
and lowest ask price show that we are dealing with a liquid stock.
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Chapter 1. Introduction 1.2 Positioning of this Project

1.2 Positioning of this Project

Various studies have focused on order books so far. Some have focused on reproducing as many of the
statistical features observed in order books as possible and others have concentrated on creating a model that
is useful for analysis. Some examples on research on order books are the following.

Parlour [22], Foucault et al. [14], Rosu[24] and Biais and Weill [7] all propose equilibrium models in which
every trader explicitly takes into account that his order a�ects all future orders. In such models, the fact that
both the current state of the order book and the expected order �ow a�ect the strategies of traders results
in a theoretical equilibrium of the order book from which its dynamics can be deduced. Equilibrium models
provide insights in the price formation process, but are di�cult to estimate, and therefore di�cult to use in
applications. Examples of empirical studies of the statistical properties of the order book are Bouchaud et
al. [8], Holli�eld [15], Bovier et al. [9] and Smith et al. [26]. They have focused on average properties and
expectations of the order book without taking into account the information provided by the current order book
state. However, players in an order market can choose to submit a limit order or a market order, depending
on the current state of the limit order book. Every order will a�ect the placing of subsequent orders and
consequently its own execution probability.

Consider for example a trader who badly wants to sell a certain number of contracts. If he knows that
it is very likely for the price to go up, he might decide to submit a limit order at a slightly higher price than
the current bid, instead of immediately submitting a market order. Therefore, the motivation for modeling
order book dynamics is to use all the information provided by the current state of the order book, to predict
its short term behavior. Conditional on the current state of the order book, this short term behavior includes
for example the probability that a limit order is executed before the mid price moves. This information is
of interest for traders because it can be used in designing trading strategies. We will go deeper into this in
Chapter 5.

Figure 1.2: Schematic representation of the problem
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1.3 Outline Chapter 1. Introduction

Figure 1.2 shows a schematic representation of the problem. Studies that are focused on reproducing
the statistical features of the order book can be placed in the lower left square and correspond to the arrow
emanating from there. Studies such as equilibrium models are focused on the balance between the trading
strategy and the order book. The di�culty in modeling an order book is to create a model that both reproduces
its empirically observed statistical properties and is suitable for quantitative analysis. In this study we have
tried to combine both of these, taking the model proposed by Rama Cont et al. [10] as a starting point. Using
this model, we have attempted to go around the circle by establishing an order book model that reproduces as
many of the statistical features as possible. Using this simpli�ed representation of the reality, we will compute
probabilities in the order book. These probabilities can be used in the trading strategy that interacts with the
order book. A chosen trading strategy has again an impact on the order book, which closes the circle.

1.3 Outline

This report is organized as follows. In Chapter 2 the model for the dynamics of the order book introduced by
Cont et al. [10] will be explained and calibrated on data taken from the London Stock Exchange. Using direct
simulation, the average behavior of a simulated order book will be compared to observed average behavior in
the real order book. Based on these results, Chapter 3 proposes possible improvements to the model. These
are again used to calibrate the model and using direct simulation average properties are compared to empirical
observations. In this chapter, also a �nal order book model will be proposed.

A technique that can be used to compute probabilities in our model, based on Laplace transforms, will
be introduced in Chapter 4. This second approach has the advantage that it can compute full distributions
of random behavior in the order book. In Chapter 5 we will start by discussing interesting probabilities in
the order book. It will be shown how these probabilities can be computed based on the Laplace technique.
Implementation and results will be discussed in Chapter 6. We will conclude with remarks about the chosen
approach and recommendations for further research.

14



Chapter 2

A Stochastic Order Book Model

In this chapter a model will be established for the dynamics of the order book. We start by introducing
the model proposed by Cont et al. [10]. Reasoning that the dynamics of a limit order book resembles that
of a queuing system, it is proposed that the number of limit orders per price level should be modeled as a
time-continuous Markov process. Desirable properties of this model are that it can be easily estimated from
high-frequency data, it satis�es empirical order book features and it is analytically tractable. Later on it will
be shown that the model is in fact simple enough to use Laplace transforms to compute various probabilities,
conditional on the state of the order book.

2.1 Dynamics of the Limit Order Book

In the model proposed in [10], it is assumed that orders can be placed on a price grid {1, ..., n} that represents
the possible prices known as price ticks. As the time frame of the analysis chosen is in milliseconds or seconds,
an upper boundary n can be set so that it is highly unlikely that orders at prices higher than price n will be
placed. The number of orders at every price level in the order book is modeled by the time-continuous process

(X
(1)
t , ..., X

(n)
t )t≥0, where X

(p) < 0 means that there are |X(p)| bid orders at price p, and X(p) > 0 indicates
that there are |X(p)| ask orders at p.

The ask price, or simply the ask pA(t) is de�ned as

pA(t) = inf {p = 1, ..., n;X(p) > 0} ∧ (n+ 1), (2.1)

and the bid price or bid pB(t) is de�ned as

pB(t) = sup {p = 1, ..., n;X(p) < 0} ∨ 0. (2.2)

Note that if there is no ask price available, n+ 1 is taken as ask. If no bid price is available, we take 0 as bid.
Furthermore the mid-price pM (t) and the bid-ask spread pS(t) are de�ned as

pM (t) =
pB(t) + pA(t)

2
and pS(t) = pA(t)− pB(t). (2.3)

Example 2.1. Consider the order book snap shot:

BOOK: EXAMPLE

Time: 08:00:00.691626

BidQty Bid Ask AskQty

100 1.50 1.60 20

25 1.45 1.65 400

350 1.40 1.70 150

88 1.30 1.75 200

60 1.25 1.90 90

15



2.1 Dynamics of the Limit Order Book Chapter 2. A Stochastic Order Book Model

where the tick size is 0.05. Then the price grid is {1.25, ..., 1.90} with steps of 0.05 and the corresponding
time-continuous process for t = 0.691626 sec. is given by

Xt = (−60,−80, 0,−350,−25,−100, 0, 20, 400, 150, 200, 0, 0, 90), (2.4)

with pA = 1.60, pB = 1.50, pS = 0.10 and pM = 1.55. 3

Now assume that all incoming and outgoing orders are of size one. We can then describe the change in
the order book by in�ow of the following possible events:

� A limit buy order at price p < pA(t) decreases the quantity at price p: X
(p)
t+∆t = X

(p)
t − 1

� A limit sell order at price p > pB(t) increases the quantity at price p: X
(p)
t+∆t = X

(p)
t + 1

� A market buy order decreases the quantity at the ask price: X
(pA)
t+∆t = X

(pA)
t − 1

� A market sell order increases the quantity at the bid price: X
(pB)
t+∆t = X

(pB)
t + 1

� A cancellation of an outstanding limit buy order at price level p < pA(t) increases the quantity at p:

X
(p)
t+∆t = X

(p)
t + 1

� A cancellation of an outstanding limit sell order at price level p > pB(t) decreases the quantity at p:

X
(p)
t+∆t = X

(p)
t − 1

Note that in this model a limit buy order at price p > pA(t), or a limit sell order at p < pB(t) do not
occur because in such cases it is more convenient to place a market order. Limit buy (sell) orders only exist at
price levels lower (higher) than the most favorable opposite order, and can therefore only be canceled there.
Furthermore, orders can be changed in practice. In this model such an order change is represented by a
cancellation plus the submission of a new order.

So it is assumed that the order book can be represented as a queuing system, and its dynamics is driven by
incoming limit orders, market orders, and cancellations. In the stochastic model proposed by Cont et al.[10],
the events described above are modeled with independent exponentially distributed inter-arrival times. The
resulting process X is a time-continuous Markov chain, with state space Zn and transition rates

X
(p)
t+∆t = X

(p)
t − 1 with transition rate α(p, xt) for p < pA(t),

X
(p)
t+∆t = X

(p)
t + 1 with transition rate α(p, xt) for p > pB(t),

X
(pA)
t+∆t = X

(pA)
t − 1 with transition rate β(xt),

X
(pB)
t+∆t = X

(pB)
t + 1 with transition rate β(xt),

X
(p)
t+∆t = X

(p)
t + 1 with transition rate γ(p, xt) for p < pA(t),

X
(p)
t+∆t = X

(p)
t − 1 with transition rate γ(p, xt) for p > pB(t),

where xt represents the observed order book status at time t. Market orders only arrive at the bid and ask, it
is therefore not necessary to make β dependent on the price level p.

To make sure that the Markov chain satis�es the characteristics of a limit order book, we de�ne the set of
admissible states x as A ⊂ Zn as

A := {x ∈ Zn|∃k ≤ l ∈ Z+ s.t. : x(p) ≥ 0 for p ≥ l;x(p) = 0 for k < p < l;x(p) ≤ 0 for p ≤ k}. (2.5)

The following proposition states that if the order book is initially in an admissible state, it will remain admissible
almost surely.

Proposition 2.2. If X0 ∈ A, then P (Xt ∈ A,∀t ≥ 0) = 1.

Proof. See Cont et al. [10].

Now we can model the limit order book as a Markov chain, where orders leave and arrive in the system
after independent exponentially distributed inter arrival times. The parameters β(xt), α(p, xt) and γ(p, xt)
may depend on the price level p and the prevailing con�guration of the order book xt. In the next section it
will be shown how to estimate the parameters.
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Chapter 2. A Stochastic Order Book Model 2.2 Parameter Estimation

2.2 Parameter Estimation

We will now turn our attention to the parameters in the model, about which Cont notices the following.

- It has been empirically observed by Bouchaud et al.[8] that the frequency of incoming limit orders is
higher around the bid and ask prices. Therefore, the arrival rates of limit buy orders and limit sell orders
are modeled exponentially with a rate that depends on the distance to the opposite best price (ask or
bid). In [8] it is suggested to specify

α(p, xt) := λ(i) =
k

iα
, (2.6)

where i represents the distance in ticks between p and the opposite best price (so for p on the bid side
of the order book, i is the distance between p and pA, and vice versa).

- Market buy and sell orders are assumed to arrive at independent, exponentially distributed times with
rate β(xt) = µ.

- Limit orders at a distance of i price ticks from the best opposite quote, are canceled at a rate proportional

to the number of outstanding orders x
(p)
t at price p, so

γ(p, xt) := θ(i)x
(p)
t . (2.7)

Based on this, the following is suggested in [10] for the parameters.

X
(p)
t+∆t = X

(p)
t − 1 with transition rate λ(pA(t)− p) for p < pA(t),

X
(p)
t+∆t = X

(p)
t + 1 with transition rate λ(p− pB(t)) for p > pB(t),

X
(pA)
t+∆t = X

(pA)
t − 1 with transition rate µ,

X
(pB)
t+∆t = X

(pB)
t + 1 with transition rate µ,

X
(p)
t+∆t = X

(p)
t + 1 with transition rate θ(pA(t)− p)|x(p)

t | for p < pA(t),

X
(p)
t+∆t = X

(p)
t − 1 with transition rate θ(p− pB(t))|x(p)

t | for p > pB(t),

where x
(p)
t represents the observed number of outstanding orders at price level p.

The next step is to estimate these parameters from high-frequency data. The approach described in [10] is
used here. The data we have to our disposal are from Vodafone stocks traded on the London Stock Exchange
in January 2010 (16 trading days). The data set contains continuous order book data, which means that a
snapshot of the order book is taken every time an event takes place. For Vodafone this corresponds to an
average of 4 events per second. This means that per day over 120000 order book snapshots are available. An
example of an order book snapshot with level 2 is shown in Figure 2.1. The data set used in this project has
level 10. The tick-size of Vodafone stocks is ¿0.0005.

Timestamp (in seconds): 08:00:00.691357

SizeBid1 PriceBid1 SizeAsk1 PriceAsk1 SizeBid2 PriceBid2 SizeAsk2 PriceAsk2

6025 1.4365 26827 1.437 73781 1.436 5141 1.4375

PriceLast: 1.437 SizeLast: 26827

Figure 2.1: Order book snap shot of level 2 of Vodafone stocks traded on the London Stock Exchange.

Before trading starts at the London Stock Exchange, there is a Pre-Trading period of 1.5 hour during which
participants are allowed to prepare for the opening of trading. Quotes and orders can be entered, changed
or deleted. However, information about the ask, bid and their corresponding sizes is not available. There is
also a Post Trading period during which orders may still be entered for the next trading day, but exercises
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2.2 Parameter Estimation Chapter 2. A Stochastic Order Book Model

are no longer accepted. Because no actual trades take place, we will ignore the order book snap shots of the
Pre-Trading and Post-Trading periods in our analysis.

In order to estimate the parameters in our model, we now proceed by extracting a list of events from
the data set. This means that at every time we check which event took place (limit order, market order
or cancellation), at which side of the book (bid or ask), and what the corresponding price and volume are.
Because orders are assumed to be of unit size in our model, we �rst compute the average sizes of limit orders
Sl, market orders Sm and cancellations Sc. The results for the Vodafone data are displayed in Table 2.2.

Sl Sm Sc
Average 17401 11757 15863

Table 2.1: Average sizes of limit orders, market orders and cancellations for Vodafone stocks.

Next we compute the number of times that a market order is submitted Nm, a limit order is submitted
Nl(i) or an order is canceled Nc(i) at distance i from the opposite best (see Table 2.2 and Figure 2.2).

i 1 2 3 4 5 6 7 8 9 10

Nl(i) 168434 270302 155195 97001 57428 44719 41023 21415 12672 8792
Nc(i) 252976 233402 169534 93442 54942 46192 43516 21875 13371 8062
Nm 18042

Table 2.2: Numbers of limit orders, market orders and cancellations at distance i from the opposite best price.

Figure 2.2: left: Numbers of limit orders and cancellations at distance i from the opposite best price. right:
Estimated parameters for Vodafone stocks.

Furthermore it is known that there are 8.5 trading hours per day, which corresponds to 30600 seconds. So
the total trading time of our data set is T = 489600 seconds. Because the cancellation rate is assumed to
be proportional to the number of outstanding orders at the particular price level, we need to know what the
average number of orders N(i) is at a distance of i ticks from the opposite best quote. This is what is called
the shape of the book. Because orders are assumed to be of unit size, the shape of the order book can be
computed by

N(i) =
S(i)

Sl(i)
, (2.8)

where S(i) represents the average volume at i ticks from the opposite best quote. This is obtained by
considering for every snap-shot what the volume is at distance i. Taking the average for every i over all the
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snap-shots of the entire month gives S(i). The parameters can now be estimated as follows.

λ̂(i) =
Nl(i)

T
,

µ̂ =
Nm
T

Sm
Sl
,

and θ̂(i) =
Nc(i)

TN(i)

Sc
Sl
.

This approach is analogous to the one presented by Cont. Note that we have to multiply by the ratio between
order sizes because we assumed all orders in the model to have the same (unit) size. Results of the parameter
estimation for i = 1, ..., 12 are shown at the right hand side of Figure 2.2 and in Table 2.3.

i 1 2 3 4 5 6 7 8 9 10

λ̂(i) 0.3238 0.5196 0.2983 0.1865 0.1104 0.0860 0.0789 0.0412 0.0244 0.0169

θ̂(i) 0.1108 0.0584 0.0330 0.0164 0.0088 0.0067 0.0069 0.0035 0.0023 0.0014
µ̂ 0.0234

Table 2.3: Estimated parameters for Vodafone stocks.

Instead of estimating the parameters based on the entire data set, we can also compute estimates per day.
This shows how the estimates behave from day to day and gives an idea of how sensitive the estimates are.
Computing the sample standard deviation of the estimates also allows to compute how many days of data are
required in order to reach a certain level of con�dence. In Figures 2.3-2.4 the parameters per daily data set are
shown. It follows from the �gures that the parameters vary more at the end of the month. The most extreme
parameters correspond to January 22nd, which was the expiration day that month. This is the day on which
options expire and thus market participants update and re-hedge their positions. It would therefore be a good
idea to perform a statistical analysis on the in�uence of the trading day of the month on the parameters. The
sample standard deviations corresponding to the daily estimates are displayed in Table 2.4.

Figure 2.3: Estimated µ per day.
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Figure 2.4: Estimated λ and θ per day.

i 1 2 3 4 5 6 7 8 9 10

λ̂(i) 0.0755 0.1352 0.0800 0.0593 0.0403 0.0320 0.0280 0.0121 0.0064 0.0051

θ̂(i) 0.0334 0.0189 0.0091 0.0059 0.0040 0.0039 0.0043 0.0019 0.0010 0.0006
µ̂ 0.0063

Table 2.4: Standard deviations corresponding to the estimated parameters.

The graphs in Figure 2.5 show that although the estimates may vary per day, the intensities move around
constants and have highs at the end of the month (upper graphs) and the shape of the parameter-curve as a
function of i is preserved (lower graphs). An explanation for the observed higher intensities at the end of the
month can be found in the expiry of many related contracts at the end of the month. Unwinding positions
and re-hedging portfolios results in higher volumes being traded. Note that the shape of the parameter curves
are di�erent for λ and θ. Suggestions on functions to �t the parameter curves by are made by Zovko [28] and
Bouchaud et al. [8]. In this project we will not further go into �tting parameter functions. The order book
data available for this project is of su�cient depth to estimate parameters up to 30 ticks from the opposite
best bid.
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Figure 2.5: Comparison between estimated λ and θ per day.

2.3 Direct Simulation of the Order Book

In this section we will simulate an order book as simple as possible, based on the model assumptions introduced
at the beginning of this chapter and the parameters estimated in the last section. With this simulation we
hope to gain insight into the behavior and the average properties of the order book according to our model.
Although this is not of interest to traders, it allows us to compare our model with empirically observed behavior
and thus serves as a test of the model.

In the model introduced in Chapter 2, it is assumed that six di�erent types of events � limit/market orders
and cancellations on both the bid and the ask side � arrive in the order book. Depending on the type of the
event, it may arrive at certain price levels p. The inter arrival times between two consecutive events of the
same type at p are taken to be exponentially distributed with a parameter depending on the corresponding
price level p. Arrivals of events of di�erent types are independent of each other. Recall the arrival rates

discussed in Section 2.2. Remember that the process Xt = (X
(1)
t , ..., X

(n)
t ) denotes the number of orders per

price level 0 < p ≤ n in the order book at time t, and that it is a time-continuous Markov chain. Based on
this information it is easy to simulate the behavior of a given order book over a certain number of events.
Using Markov chain Monte Carlo it is also possible to determine the average shape of the order book. This
shape was found to be universal by Bouchaud [8] after studying several liquid stocks.

To determine the average shape of a simulated order book consider the following. A Markov chain is
said to be ergodic if all states are aperiodic and positive recurrent. Ergodicity (irreducibility in some texts)
is a desirable feature for our Markov chain, since it is known that for ergodic chains a unique stationary
distribution exists. This allows to compute long-term averages in the model and compare this to observed
long-term behavior. From Cont et al. [10] we have the following proposition.

Proposition 2.3. If min1≤i≤n θ > 0, then Xt is an ergodic Markov process, and has a stationary distribution.

Proof. See Cont et al. [10]
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A stationary distribution corresponds to the normalized average shape of the order book. Now let f denote
a function on A as de�ned in (2.5). Then for Xt ∈ A the shape of the order book at time t is given by
f(Xt). Since Xt is an ergodic Markov chain, we can generate random elements from A by simulating Xt for
a long time. In the long run, the average output of the chain should follow the average shape of the book.
An average or steady-state shape of the order book therefore corresponds to the expectation of f(Xt).

E[f(X∞)] ≈ lim
T→∞

1

T

T∑
t=0

f(Xt). (2.9)

More details about Markov chain Monte Carlo can be found in Madras [20].

In order to determine an average order book shape we now proceed as follows. Generate an admissible order
book state with n price levels. By taking random samples from exponential distributions with the parameters
given in Table 2.3, we can simulate arrival times. For all prices 1 ≤ p < pA generate the arrival times and
cancellations of limit buy orders, for prices pB < p ≤ n generate the arrival and cancellation times of limit sell
orders. For the arrival of market orders only two samples need to be generated because market orders have
no price but they always in�uence the order book at price pA or pB . Now choose the smallest arrival time
out of the 2(n + pA − pB) values generated. The corresponding event is the �rst event to take place in the
order book at corresponding price level p: in the generated order book state the value at p either increases
or decreases by one. To simulate another event, repeat the same procedure again, with the new order book
as the initial book. If we repeat this simulation a large number of times, (2.9) allows us to approximate the
steady-state shape of the book by taking the mean of all obtained X(t)'s.

Figure 2.6: Simulated order book shape based on the estimated parameters, compared to the observed shape.

If we apply the described procedure to a randomly generated order book for large numbers of events
(l = 104, 105, 106), we �nd the average states of the order book displayed in Figure 2.6. From this �gure
we can conclude that the model used indeed leads to a steady-state shape of the order book corresponding
to the one observed from the order book data. The tail of the observed order book shape �uctuates heavily
and shows a relatively large discrepancy with the simulated shape. This is not so surprising if we take into
account that the arrival rates beyond 15 ticks from the opposite best are almost everywhere equal to zero. In
the most important part of the order book (around the ask and bid) however, even up to 15 ticks away from
the ask and the bid, the simulated order book approaches the observed shape very well. The hump observed
around �ve ticks from the opposite best bid corresponds to empirical data. It can be explained by the presence
of algorithmic traders in the market who, as part of their trading strategy, make small trades with a small
gain, at a high frequency. In order to win trades, they are willing to quote at slightly better prices than those
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available. Basically, the hump shows the position of the actual market, while the orders in front of it represent
the market participants such as high-frequency traders, who are seeking liquidity and are therefore willing to
take smaller margins of pro�t.

Another property that is interesting to compare is the volatility of the mid-price. De�ne the realized
volatility of the mid-price over a day by

V (pM ) =
1

T

√√√√ n∑
i=1

(
log

(
PM (ti+1)

PM (ti)

))2

, (2.10)

where n is the number of snap-shots during the day, pM (ti) is the mid-price corresponding to the ith snap-shot
and T is the total trading time in seconds (= 30600 per day). In Table 2.5 you can see the volatility per day
in our data set and the corresponding number of events n in the order book observed during that trading day.

After repeatedly simulating a model order book, we �nd a volatility of 0.5247 ± 0.0759 with probability
95%. The corresponding average number of events per trading day is 208303. This is almost twice as much
as observed in the real data. An additional idea would be to compute the total intensity of event arrivals from
the parameters, and compare this to an observed order book. It is also interesting to see that in the observed
order book an average of around 6000 trades per day is reached, while in our simulation this is around 1000.
This leads us to conclude that these parameters do not approximate the dynamics of the order book well
enough.

date 4-Jan 5-Jan 6-Jan 8-Jan 11-Jan 12-Jan 13-Jan 14-Jan
Vobs(pM ) 0.7799 0.3036 0.3805 0.2282 0.3137 0.2203 0.3429 0.4354

n 98135 92911 107119 116697 95332 109248 76197 99944

date 15-Jan 18-Jan 19-Jan 20-Jan 21-Jan 22-Jan 25-Jan 26-Jan
Vobs(pM ) 0.4237 0.2251 0.2117 0.1544 0.3533 0.1912 0.1605 0.2082

n 114154 70676 113791 141484 144459 179684 135421 150811

Table 2.5: Observed volatility of the mid-price compared to number of order book events per day.
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Chapter 3

Discussion of the Order Book Model

Although the model introduced in the last chapter gives an almost perfect approximation of the order book
shape, several points of doubt were formulated by traders. In this chapter we will discuss these and some
possibilities to change the model and the parameters presented so far. We will follow Cont in assuming that the
number of orders at any price level follows a birth-death process, because it enables us to analytically compute
probabilities in the order book. Other small changes to the model and its parameters will be proposed and
tested by direct simulation, similar as we did in last chapter.

3.1 Points of Improvement

First of all let's take a close look at the left hand side of Figure 2.2. It shows the number of limit orders
and cancellations versus the distance to the opposite best quote. It seems that the number of cancellations
at i = 1 is excessively high. Remember that in Cont's model it was assumed that limit buy orders arrive at
price levels p < pA and limit sell orders arrive at price levels p > pB with rate α(p, xt). In reality however,
limit orders may arrive at any price level. This has to do with the fact that di�erent market participants have
di�erent speeds of trading. It might therefore happen that the best price in the market moves between the
moments of submission and actual arrival in the market of a certain order. Limit orders arriving at better
price levels than the opposite best are not displayed in the book but immediately executed against the best
available price. Taking this into account, it results that a part of the observed 'cancellations' at i = 1 are in
reality limit orders at i = 0. Figure 3.1 shows that this way of interpreting the observed order book is more as
one would expect.

Figure 3.1: Numbers of limit orders and cancellations at distance i from the opposite best price.
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As a result, de�ne the transition rates in the order book process X as

X
(p)
t+∆t = X

(p)
t − 1 with transition rate α(p, xt) for p ≤ pA(t), (3.1)

X
(p)
t+∆t = X

(p)
t + 1 with transition rate α(p, xt) for p ≥ pB(t), (3.2)

X
(pA)
t+∆t = X

(pA)
t − 1 with transition rate β(xt), (3.3)

X
(pB)
t+∆t = X

(pB)
t + 1 with transition rate β(xt), (3.4)

X
(p)
t+∆t = X

(p)
t + 1 with transition rate γ(p, xt) for p < pA(t), (3.5)

X
(p)
t+∆t = X

(p)
t − 1 with transition rate γ(p, xt) for p > pB(t), (3.6)

where xt represents the observed order book status at time t.
Second, consider the assumption of all orders having size one. This has been one of the points questioned

by traders. Obviously, orders have very di�erent sizes. An idea would therefore be to let the order size follow
a certain distribution as was done by Bouchaud in [8]. According to Cont et al. however, the distribution of
the size of incoming orders plays a minor role except in the far tail of the average order book. They thus claim
that direct simulation of an order book with random order sizes gives similar results as taking orders to have
constant size in the model. Based on this we keep the assumption of order sizes being one for now.

The third thing we will discuss here is the symmetry of the model. From the arrival rates formulated in
Section 2.2 it is clear that the order book in our model is assumed to be symmetric. Except for the cancellation
rates that depend on the volume at i, all the rates in the order book just depend on i and not on the side
(ask or bid) of the book. Bouchaud [8] and Biais [6] observed that the average shape of the order book is
symmetrical. It makes sense to let the parameters be equal for both sides of the book, else a directional trend
in the price moves would result in the model. Intuitively however, one would expect the shape of the order
book at every time t to be of more in�uence on the arrivals of new orders. The following examples clarify this
statement.

Example 3.1. Consider the order book displayed at the left hand side.

BidQty Bid Ask AskQty | BidQty Bid Ask AskQty

5 1.50 1.55 1000 | 1000 1.50 1.55 1000

1000 1.43 1.56 1000 | 1000 1.49 1.56 1000

1000 1.42 1.57 1000 | 1000 1.48 1.57 1000

1000 1.41 1.58 1000 | 1000 1.47 1.58 1000

The best bid in this example has a relative small size, while there seems to be a 'gap' between the best bid
and the second bid. This means that the bid side of the order book has a very irregular shape. According to
Conts model, the arrival rates at price levels between £1.01− £1.50 in this example are equal to the arrival
rates in the book at the right hand side. In reality however, one would expect the arrival rate of orders just
above £1.03 to be higher in the order book at the left hand side.3

One could derive from this example that once the order book shows an irregular shape, it has a high
probability of returning to its average shape. This mean reverting behavior of the order book is also indicated
by traders. To make the intensity of limit order arrivals mean reverting, we can make it depend on the distance
between the current order book shape and the average order book shape for every i. We therefore propose to

de�ne α(p, xt) = λ(pA(t) − p)
(

1 + ρ(x̄i − x(p)
t )
)
, where x̄i is the observed average number of quotes at i,

x
(p)
t is the observed number of quotes at price level p at time t, and the parameter ρ gives the strength of the

mean-reversion.

Example 3.2. Consider another extreme order book (left hand side).

BidQty Bid Ask AskQty | BidQty Bid Ask AskQty

1000000 5.50 5.55 1000 | 1000 5.50 5.55 1000

150 5.49 5.56 1000 | 150 5.49 5.56 1000

1200 5.48 5.57 1000 | 1200 5.48 5.57 1000

700 5.47 5.58 1000 | 700 5.47 5.58 1000
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Imagine that the huge order at the bid just arrived. According to the model of Cont, the orders at prices
below £5.50 are canceled at equal rates in both the left and the right hand side order book. In reality one
would expect the orders below the huge order to be canceled at a higher rate. 3

This example leads to the idea of making the cancellation rate proportional to not only the number of
quotes at the corresponding price level, but also the sum of the numbers of quotes at better price levels. This
brings us to the following order book model.

Limit buy orders arrive at p ≤ pA(t) with rate λ(pA(t)− p)
(

1 + ρ(x̄i − x(p)
t )
)
, (3.7)

Limit sell orders arrive at p ≥ pB(t) with rate λ(p− pB(t))
(

1 + ρ(x̄i − x(p)
t )
)
, (3.8)

Market buy orders arrive with rate µ, (3.9)

Market sell orders arrive with rate µ, (3.10)

Limit buy orders are canceled at p < pA(t) with rate θ(pA(t)− p)
pA∑
k=p

x
(k)
t , (3.11)

Limit sell orders are canceled at p > pB(t) with rate θ(p− pB(t))

p∑
k=pB

x
(k)
t , (3.12)

where x
(k)
t represents the observed number of orders at price level k at time t and x̄i corresponds to the

average number of orders observed at i ticks from the opposite best order. The number x̄i must be estimated
from data.

3.2 Test Results

In this section it will be tested whether the proposed changes in the model give a better approximation of
the average behavior of the order book. Direct simulation will be used to test the in�uence on the average
behavior. Again we start by computing the average sizes of limit orders, market orders and cancellations (Table
3.1), and the number of times that market orders, limit orders and cancellations arrive at distance i from the
opposite best quote (Table 3.2). This time we take into account that limit orders may also arrive at pB and
pA, in which case the limit order has the same in�uence on the order book as a market order. Furthermore,

the time of the data set still is T = 489600 sec, and also the shape of the order book N(i) = S(i)
Sl(i)

will be

used again.

Sl Sm Sc
Average 16822 14363 16463

Table 3.1: Average sizes of limit orders, market orders and cancellations for Vodafone stocks.

i 0 1 2 3 4 5 6 7 8 9

Nl(i) 57513 198153 243539 149533 96137 57381 44330 40798 21325 12898
Nc(i) 0 188483 225860 168617 93131 54823 46119 43489 21861 13354
Nm 39192

Table 3.2: Numbers of limit orders, market orders and cancellations at distance i from the opposite best price.

Estimating the parameters in the same way as in Section 2.2 but now based on the information in Tables
3.1 and 3.2, we �nd the results shown in Table 3.3 and Figure 3.2.

Figure 3.3 shows the results for the simulated average shape of the order book using direct simulation.
After repeatedly simulating we �nd 95%-con�dence interval for the realized volatility of the mid-price per day
of 0.8076 ± 0.1085. An average number of 217423 events per day were simulated. Althought the shape of
the order book is equally good approximated by the model of Cont, this order book change will be adopted.
The reason for this being that the assumption that limit orders cannot arrive at the best price is wrong. Next
to that, the proposed change does not make the model any more complicated.
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Figure 3.2: Estimated parameters corresponding to (3.1-3.6).

i 0 1 2 3 4 5 6 7 8 9

λ̂(i) 0.1175 0.4047 0.4974 0.3054 0.1964 0.1172 0.0905 0.0833 0.0436 0.0263

θ̂(i) 0 0.0935 0.0586 0.0376 0.0177 0.0095 0.0077 0.0074 0.0039 0.0025
µ̂ 0.0683

Table 3.3: Estimated parameters for Vodafone stocks corresponding to (3.1-3.6).

Secondly, the cancellation parameter will be re-estimated to satisfy γ(p, xt) = θ(pA(t) − p)
∑pA
k=p xk(t).

Therefore we now divide by the cumulative sum of the average number of quotes at i ticks from the opposite
best price. The parameter θ can thus be estimated by

θ̂(i) =
Nc(i)

T
∑i
k=1N(k)

Sc
Sl
. (3.13)

The results of this estimation are in Table 3.4 and Figure 3.4.

i 0 1 2 3 4 5 6 7 8 9

λ̂(i) 0.1175 0.4047 0.4974 0.3054 0.1964 0.1172 0.0905 0.0833 0.0436 0.0263

θ̂(i) 0 0.0935 0.0385 0.0163 0.0060 0.0026 0.0017 0.0013 0.0006 0.0003
µ̂ 0.0683

Table 3.4: Estimated parameters for Vodafone stocks corresponding to (3.13).

Using direct simulation we �nd the 95%-con�dence interval 0.8195 ± 0.0998 for the realized volatility of
the mid-price per day, and an average of 218988 events per trading day The average order book shape is
displayed in Figure 3.5. This parameter estimation does not give a better approximation of the order book
shape nor the volatility.

Thirdly we will check what the in�uence of the proposed arrival rate of limit orders is on the model. The
parameter λ can again be estimated by

λ̂(i) =
Nl(i)

T
, (3.14)

Note that the term
(

1 + ρ(x̄i − x(p)
t )
)
does not appear in the estimation of λ because its average equals one

at every i. We can therefore use the parameters from Table 3.3. For the simulation we use ρ = 1/x̄i. By
direct simulation, the 95%-con�dence interval 0.1110 ± 0.0189 is found, and an average of y events in the
order book per day. The shape of the order book is shown in Figure 3.6. Altought the volatility gives a much
better approximation to the observed volatility, the shape of the order book is worse than in the previous
simulations.
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Figure 3.3: Order book shape by direct simulation, corresponding to (3.1-3.6).

Figure 3.4: Estimated parameters corresponding to (3.13).

The last model to test is the one including all the three changes mentioned in this section. The parameters
are equal to those shown in Table 3.4. Simulating gives the average shape shown in Figure 3.7. A 95%-
con�dence interval for the realized volatility of the mid-price is given by 0.1370± 0.0288, with an average of
312547 simulated events per trading day. The simulated volatility is closer to the observed volatility. However,
at the most important points (i = 1, ..., 5), the simulated shape does not give a better approximation of the
observed shape than the �rst two simulations.
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Figure 3.5: Order book shape by direct simulation, corresponding to (3.13).

Figure 3.6: Order book shape by direct simulation, using (3.14).

3.3 Final Order Book Model

This section gives an overview of the model that will be used for our further analysis, and study some of its
properties. The model is based on the following assumptions about the order book.

� The order book consists of a �nite number of price levels,

� All order are of size one,

� The order book can be represented as a queuing system,
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Figure 3.7: Order book shape by direct simulation, corresponding to (3.7-3.12).

� The order book dynamics is driven by market orders, limit orders and cancellations, and

� All events have independent exponentially distributed inter arrival times.

These assumptions are also made by Cont et al. [10]. In Section 3.2 we have seen that the proposed changes
to the parameter estimation do not improve the performance of the model signi�cantly. We will therefore stick
to the parameter estimation proposed by Cont. The assumption about limit orders arriving at the ask and bid
will be adopted because it corresponds to reality. The arrival rates of events in the �nal order book model are
therefore modeled by

Limit buy orders arrive at p ≤ pA(t) with rate λ(pA(t)− p), (3.15)

Limit sell orders arrive at p ≥ pB(t) with rate λ(p− pB(t)), (3.16)

Market buy orders arrive with rate µ, (3.17)

Market sell orders arrive with rate µ, (3.18)

Limit buy orders are canceled at p < pA(t) with rate θ(pA(t)− p)|xk(t)|, (3.19)

Limit sell orders are canceled at p > pB(t) with rate θ(p− pB(t))|xk(t)|, (3.20)

where xk(t) represents the observed number of orders at price level k at time t.
Note that this way of estimating the parameters does not take trends in the order book into account, such

as recurring orders. Recurring orders appear often and are caused by quoting obligations that apply on some
market participants or iceberg orders. This will be discussed in Chapter 7.

For the chosen model, the estimated parameters are given by Table 3.2. To get an idea of the sensitivity
of this parameter estimation we repeat the estimation per trading day. The resulting parameters are shown in
Figures 3.8 - 3.9. As in Section 2.2, an in�uence of the particular trading day of the month can be observed.
As mentioned before, it would therefore be interesting to perform statistical analysis on the in�uence of a
monthly trend on the parameters. A data set over several months is necessary for that. Unfortunately, this
is not available for this project. The sample standard deviations in Table 3.5 give a quanti�cation of the
sensitivity of the estimation, and show that the sensitivity of the estimates is almost equal to the sensitivity
of the estimates in Chapter 2 (see Table 2.4).

The graphs in Figure 3.10 show the relative behavior of the estimates per day. It is clear that the intensities
�uctuates around parallel lines and have higher values at the end of the month. Furthermore, the shape of
the parameter curves is similar for every trading day.

Simulating 1000 trading days we �nd the 95%-con�dence interval for the volatility of the mid-price 0.1386±
0.0056. This is not in correspondence with the observed values in Table 2.5. Estimating volatility from high-
frequency data is a familiar problem in �nance. For frequencies per minute or higher, noise results to be a
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Figure 3.8: Estimated µ per day.

Figure 3.9: Estimated λ and θ per day.

dominant consideration. Research on this topic is done by Ait-Sahalia [4]. In our simulation, an average of
216095 events took place per simulated trading day, with an average of 5359 trades. Although the simulated
number of events is much higher than in the observed order book, the more important number of trades is
well approximated by the simulation.
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i 0 1 2 3 4 5 6 7 8 9

λ̂(i) 0.0260 0.0908 0.1264 0.0799 0.0609 0.0437 0.0313 0.0283 0.0122 0.0064

θ̂(i) − 0.0270 0.0194 0.0096 0.0062 0.0042 0.0041 0.0046 0.0020 0.0011
µ̂ 0.0197

Table 3.5: Standard deviations corresponding to the estimated parameters.

Figure 3.10: Comparison between estimated λ and µ per day.

Another interesting idea is to compute a 95%-con�dence interval for the shape of the order book as a
function of i. To do so, it is necesary to compute the the standard deviation of the number of orders at every
i. Computing the average number of orders at distance i from the opposite best bid, and the corresponding
95% upper and lower boundaries per day, we �nd the results shown in Figure 3.11. It is obvious that the shape
of the order book is not stable at all. Since the parameters in the model depend on the shape of the order
book, it would make sense to use this con�dence interval to e.g. decide when to re-estimate the parameters.
The results from Figure 3.11 however show that implementing this idea is not that straightforward. Therefore
the possibility of implementing this idea needs to be further explored. It should be noted that the average
orderbook shapes on January 18th and January 20th are very uncommon compared to the rest of the month. A
close look at the data does not show anything unexpected however. Comparing the average observed standard
deviation of the number of orders at i ticks from the opposite best quote to the simulated one, we �nd the
results in Table 3.6. The results are reasonably close to the observed values.

i 0 1 2 3 4 5 6 7 8 9
average observed stdev 3.37 5.54 5.07 6.15 7.10 8.51 8.71 9.12 8.96 9.04

simulated stdev 1.98 3.18 4.22 5.52 6.77 8.41 10.74 13.24 15.59 17.68

Table 3.6: Standard deviations of the number of orders at i from the opposite best, observed vs. simulated.
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Figure 3.11: Average order book shape and corresponding 95%-con�dence interval per day. The red dotted
line represents the upper boundary of the interval, the green dotted line represents the lower boundary of the
interval.
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Computing Probabilities
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Chapter 4

Approximating Laplace Transforms

As noted before, the most important motivation for modeling order book dynamics, is to use all the information
provided by the current limit order book to predict its short-term behavior, such as the probabilities of the
mid-price moving up or down, or execution of an order before the bid and ask prices move, etc. In this chapter
we show how the model introduced in Chapter 2 allows to analytically compute these conditional probabilities
using Laplace transforms. We will start by introducing the concept of continued fractions, which will be used
to construct the Laplace transform.

4.1 Basic Concepts of Continued Fractions

To understand the concept of a continued fraction we draw the analogy with more familiar sequences that have
in common with the continued fraction that each element can iteratively be computed from its predecessor.
Similarly to the sequence {σn} of partial sums,

σn :=

n∑
k=1

ak = σn−1 + an, (4.1)

and the sequence {pn} of partial products,

pn :=

n∏
k=1

ak = pn−1 · an, (4.2)

let {fn} be the sequence

fn :=
a1

b1 +
a2

b2 +
a3

b3+. . .
+an.

(4.3)

If we assume that an 6= 0 for all n and allow fn =∞, then {fn} is well de�ned in Ĉ := C ∪ {∞}. As is the
case for sums and products, an in�nite continuation of this process is also de�ned here, the continued fraction:

f :=

∞

K
n=1

an
bn

=
a1

b1 +
a2

b2 +
a3

. . .

(4.4)

For simplicity (4.4) it is also often written as

f :=

∞

K
n=1

an
bn

=
a1

b1+

a2

b2+

a3

b3+
· · · . (4.5)
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Now note the common pattern in the �rst two sequences above: the partial sequence {Φn} can be
constructed by function composition. By applying a function on Φn−1 we can iteratively �nd its successive
element Φn = Φn−1 ◦ φn = φ1 ◦ φ2 ◦ · · · ◦ φn. For partial sums φn simply is a summation and for products it
obviously is a product. Also for continued fractions such a function exists and is given by

sn(ω) :=
ak

bk + ω
, (4.6)

so that

Sn(ω) = s1 ◦ s2 ◦ · · · ◦ sn(ω) =
a1

b1+

a2

b2+
...

an

bn + ω
(4.7)

represents fn in (4.3). This leads to the following de�nition.

De�nition 4.1. A continued fraction

b0 +

∞

K
n=1

an
bn

is an ordered pair (({an}, {bn}), {Sn}), given by

Sn(ω) = b0 +
a1

b1+

a2

b2+
...

an

bn + ω
, (4.8)

where {an} and {bn} are sequences of complex numbers with an 6= 0 for all n.

Sn is called the nth-approximant, and if limn→∞ Sn = S exists, the Continued Fraction is said to converge
and S is called its value. More about convergence of continued fractions can be found in Jacobsen [16] and
Lorentzen and Waadeland [19]. An important result is the following lemma, taken from [19]. It shows that
there is a recursion to calculate successive approximants of a continued fraction.

Lemma 4.2. Let the nth-approximant Sn be given by (4.8). Then

Sn(ω) =
An−1ω +An
Bn−1ω +Bn

for n = 1, 2, ..., (4.9)

where
An = bnAn−1 + anAn−2, Bn = bnBn−1 + anBn−2,

with initial values A−1 = 1, A0 = b0, B−1 = 0 and B0 = 1.

Proof. see Lorentzen and Waadeland [19]

Using continued fractions, rational approximations of irrational numbers can be constructed. To give an
idea of how this works, consider the continuous fraction expansion of π as an example.

Example 4.3. We try to �nd a representation of π of the form b0 +
a1

b1+

a2

b2+

a3

b3+
... Since we know that

π > 3, we start with b0 = bπc = 3 and set a1 = 1.

π := 3 +
1

b1 + x

From this it follows that
1

π − 3
:= b1 + x ≈ 7.0625.

Again we take the largest integer that is smaller than the term on the right-hand side to estimate b1 =⌊
1

π−3

⌋
= 7, and get

π := 3 +
1

7+

a2

b2 + x
.

If we continue like this, we �nd the continued fraction

π := 3 +
1

7+

1

15+

1

1+

1

929+

1

1+

1

1+

1

1+

1

2+
...,

that converges to π. 3
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Obviously, the sequence {bn} in the π-example does not show any pattern. If we repeated this same
example for

√
2, we would �nd two constant sequences an = 1 and bn = 2 for all n ≥ 0. Once we have

found sequences {an} and {bn}, we can recursively calculate the approximants Sn by using Lemma 4.2. An
expansion similar to the one for irrational numbers can be used to approximate functions. When doing this,
it is always important to verify whether the continued fraction indeed converges to the function it is trying
to approximate. Continued fraction function expansions are less known than power series expansions, but
have grown in popularity because they are easy to program, they have good convergence properties, and their
convergence is often easy to accelerate. Much has been written about the convergence of continued fractions.
Therefore we refer to [16], pp. 201-245 in [5] and pp. 59-60 in [19] here.

Many continued fraction expansions of useful functions are of the form

b0 +

∞

K
n=1

anz

1
= b0 +

a1z

1+

a2z

1+

a3z

1+
...; b0 ≥ 0, an > 0 for all n. (4.10)

Continued fractions of this special type are called Stieltjes continued fractions, or in brief S-fractions. They are
known for having nice convergence properties. For more about S-fractions and their convergence properties
we refer to Lorentzen and Waadeland [19].

4.2 Laplace Transforms via Continued Fractions

Let f : R→ R be a pdf of a non-negative random variable X. Then the (one-sided) Laplace transform of the
random variable X is given by

f̂(τ) =

∫ ∞
0

e−τtf(t)dt, for τ ∈ C. (4.11)

If f̂(τ) is available, the pdf f(t) can be recovered from its Laplace transform by using the inverse Laplace
transform

f(t) =
1

2πi

∫ γ+i∞

γ−i∞
etτ f̂(τ)dτ, (4.12)

for some γ ∈ R for which
∫∞
−∞ |f̂(γ + iω)|dω < ∞. So if we can �nd Laplace transforms for the order

book probabilities, theseprobabilities conditional on the current order book state can be computed directly.
Unfortunately, Laplace transform values are often unavailable. Abate and Whitt show in [2] that it is possible
to �nd S-fraction representations for Laplace transforms of completely monotone pdf's (see next section). We
will �rst start by showing how Laplace transforms and S-fractions are related.

Recall that the nth moment of a pdf f is given by

mn(f) =

∫ ∞
0

tnf(t)dt for n = 0, 1, 2, .... (4.13)

Using the Maclaurin expansion of e−τt we can rewrite (4.11)

f̂(τ) =

∫ ∞
0

e−τtf(t)dt =

∫ ∞
0

( ∞∑
n=0

(−τt)n

n!

)
f(t)dt. (4.14)

If we write out the summation and take all the terms that do not depend on t out of the integral, by dominated
convergence we �nd the following expression for the Laplace transform in terms of the moment-generating
function (4.13).

f̂(τ) =

∞∑
n=0

cnτ
n where cn = (−1)n

mn(f)

n!
, (4.15)

which means that f̂(τ) −
∑N
n=0 cnτ

n = O(τN+1) as τ → 0. However, in general we cannot conclude that
(4.15) converges.
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This is connected to the so-called Stieltjes moment problem: For a given sequence {mn}∞n=0 of real
numbers, �nd a distribution function f(t) on [0,∞) that satis�es (4.13). In his famous paper published in
1894 [27], Stieltjes showed the following.

� A solution f(t) to the moment problem for {mn} exists if and only if, the series (4.15) at τ = 0
corresponds to a continued fraction of the form

∞

K
n=1

anτ
−1

1
, an > 0,

which is exactly an S-fraction and is known to converge under minor conditions.

� A solution f(t) to the moment problem for {mn} is unique if and only if the corresponding S-fraction
converges for τ > 0.

This tells us that if (4.15) can be written as an S-fraction, a solution f exists and moreover, if this S-
fraction converges then the pdf f is unique. A property of the pdf to ensure that the S-fraction actually
converges is complete monotonicity. A function f on [0,∞) is said to be completely monotone if it satis�es

(−1)nf (n)(t) ≥ 0 for all t, n ≥ 0. (4.16)

Keilson [18] shows that the family of completely monotone pdf's is closed under mixtures. So if a solution f
exists and is completely monotone, then the corresponding S-fraction converges and according to Stieltjes f
is unique.

4.3 First Passage Times in Birth-Death Processes

Now we know that the pdf f can be recovered by inverting its Laplace transform, and we have seen under
which conditions a Laplace transform can be represented by an S-fraction. In a birth-death process the passage
time to a neighboring state is exponentially distributed, so the probability density function corresponding to
the transition from any state to another is completely monotone. Therefore, existence of an S-fraction
representation of the Laplace transform implies that a unique density function f exists. Here we will show
how to derive an S-fraction representation of the �rst passage time pdf in a birth-death process.

Consider a birth-death process with λi and θi birth and death rates in state i. Let Tθ and Tλ be independent
exponentially distributed with parameters θi and λi. Now assume that we are in state i and we are interested
in �nding the Laplace transform of the �rst passage time to state i− 1,

f̂i(τ) = E[e−τti,i−1 ], (4.17)

where ti,i−1 represents the �rst passage time from i to i − 1. Given that we are in state i, two events can
occur: if Tλ < Tθ we go up to state i + 1, if Tθ < Tλ we go immediately to state i − 1. Therefore we have
that {

ti,i−1 = Tλ + ti+1,i−1 if min(Tλ, Tθ) = Tλ, and
ti,i−1 = Tθ if min(Tλ, Tθ) = Tθ.

Rewriting the Laplace transform (4.17) gives

f̂i(τ) = E[e−τ(Tλ+ti+1,i−1)1{Tλ<Tθ}] + E[e−τTθ1{Tθ<Tλ}] (4.18)

First consider the �rst expectation. Because of the independence between arrival times in a the birth-death
process we can write the �rst expectation as

E[e−τ(Tλ+ti+1,i−1)1{Tλ<Tθ}] = E[e−τTλ1{Tλ<Tθ}]E[e−τti+1,i ]︸ ︷︷ ︸
=f̂i+1(τ)

E[e−τti,i−1 ]︸ ︷︷ ︸
=f̂i(τ)

=

∫ ∞
0

∫ ∞
0

e−τtfTλ,Tθ (t, u)1{t<u}dtdu f̂i+1(τ)f̂i(τ).
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Because of independence we can also write fTλ,Tθ (t, u) = fTλ(t)fTθ (u) = λie
−λitθie

−θiu. Using this, the
integral term becomes∫ ∞

0

∫ ∞
0

e−τtλie
−λitθie

−θiu1{t<u}dtdu =

∫ ∞
0

λie
−(τ+λi)t

[∫ ∞
t

θie
−θiudu

]
dt

=

∫ ∞
0

λie
−(τ+λi)te−θitdt

=

∫ ∞
0

λie
−(τ+λi+θi)tdt

=
λi

τ + λi + θi
.

Combining these results we �nd for the �rst expectation of (4.18) that

E[e−τ(Tλ+ti+1,i−1)1{Tλ<Tθ}] =
λi

τ + λi + θi
f̂i+1(τ)f̂i(τ). (4.19)

The second expectation in (4.18) can be computed in a similar way:

E[e−τTθ1{Tθ<Tλ}] =

∫ ∞
0

∫ ∞
0

e−τufTλ,Tθ (t, u)1{u<t}dudt

=

∫ ∞
0

∫ ∞
0

e−τuλie
−λitθie

−θiu1{u<t}dudt

=

∫ ∞
0

θie
−(τ+θi)u

[∫ ∞
u

λie
−λitdt

]
du

=

∫ ∞
0

θie
−(τ+θi+λi)udu

=
θi

τ + θi + λi

Inserting all these results into equation (4.18) we �nd the following expression for the Laplace transform
of the �rst passage time pdf,

f̂i(τ) =
λi

τ + λi + θi
f̂i+1(τ)f̂i(τ) +

θi
τ + θi + λi

.

This can be written as

f̂i(τ)

(
1− λif̂i+1(τ)

τ + λi + θi

)
=

θi
τ + θi + λi

,

from which we obtain

f̂i(τ) =
θi

τ + λi + θi − λif̂i+1(τ)
. (4.20)

Writing out the iteration in (4.20) we �nd the following continued fraction representation for the Laplace
transform.

f̂i(τ) =
θi

τ + λi + θi −
λiθi+1

τ + λi+1 + θi+1 −
λi+1θi+2

τ + λi+2 + θi+2 −
. . . .

Multiplying by −λi−1

−λi−1
and using De�nition 4.8, this continued fraction can be written as

f̂i(τ) =
−1

λi−1

∞

K
k=i

−λk−1θk
λk + θk + τ

, (4.21)

41



4.3 First Passage Times in Birth-Death Processes Chapter 4. Approximating Laplace Transforms

which has the form of a so called real Jacobi fraction or J-fraction. On pp. 166-167 of Baker and Graves-Morris
[5] it is shown that J-fractions of the form

J(τ) =

∞

K
n=1

−kn
ln + τ

(4.22)

have an equivalent S-fraction representation. The S-fraction equivalent to (4.22) is

1

τ

a1

1+

∞

K
n=2

anτ
−1

1
=

∞

K
n=1

anτ
−1

1
, (4.23)

where {an} satis�es

a1 = k1, a2 = l1, a2m+1 =
km+1

a2m
, and a2m+2 =

lm+1

a2m+1
, (4.24)

for m = 1, 2, 3, .... It can therefore be concluded that the Laplace transform of a �rst passage-time pdf in a
birth-death process (4.21) has an S-fraction representation

f̂i(τ) =
−1

λi−1

∞

K
k=i

akτ
−1

1
, (4.25)

with

a1 = λi−1θi, a2 = λi + θi, a2m+1 =
λmθm+1

a2m
, and a2m+2 =

λm+1 + θm+1

a2m+1
, (4.26)

for m = 1, 2, 3, .... From Stieltjes' results it now follows that a unique density function fi for the �rst-passage
time from state i to i− 1 can be recovered from f̂i, where f̂i is iteratively given by the birth and death rates
of the process. From (4.25) it follows that the �rst-passage time from some state b of the process to state a
is given by

f̂b,a(τ) = f̂a+1(τ) · · · f̂b(τ) =
−1

λa

∞

K
k=a+1

akτ
−1

1
· · · −1

λb−1

∞

K
k=b

akτ
−1

1

=

b∏
i=a+1

(
−1

λi−1

∞

K
k=i

akτ
−1

1

)
, (4.27)

with ak given by (4.26). This result will be used in the next two chapters. Note that the Markov chain
assumption also enables us to compute probabilities of interest using a transition matrix as for example in
Section 4.4 of Ross [23]. However, the approach presented in this chapter has the advantage that it can
compute full distributions of random variables fast.
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Chapter 5

Probabilities in the Order Book

In this chapter we will apply the results from Chapter 4 to compute probabilities in our order book model that
are of interest for traders. We will start by discussing some probabilities and how knowledge about them can
in�uence a traders' strategy. The information presented in Section 5.1 is gained from discussions with traders
and other people involved in trading. The choices are based on what practitioners actually are interested in.

5.1 Probabilities of In�uence on Trading Decisions

As mentioned in the introduction, the motivation for modeling order book dynamics is to use all the information
provided by the current state of the order book, to say something about its short-time behavior. Knowing that
every change in the order book will a�ect the future events in the order book, a trader can decide to submit or
cancel orders conditioned on the current order book. The current state of the order book allows to compute
how probable following states are to occur. We would like to emphasize once more that we are considering
statistical probabilities on a very short-time scale only, without predicting general market movements.

Imagine a trader who in order to hedge his position needs to buy a certain number of contracts. The
contracts are 'valued' by the market at the mid-price pM . The trader is willing to buy the contracts at a
relative high price by submitting a market order. By submitting a market order a trader basically 'pays' for the
certainty of having the order executed. The 'price' he pays is what we call the margin, which is the di�erence
between the price at which the trade is executed and the mid-price. So the margin payed by our trader if he
submits a market buy order is equal to pA − pM , his counterparty wins this margin. Now suppose that the
trader knows that the mid-price is very likely to decrease. It would then be wise to, instead of a market buy
order, submit a limit buy order at a slightly higher price than the current bid. Because the mid-price is likely
to decrease, it is likely that the limit buy order is hit (by an incoming market sell order). The trader than pays
less for the contracts and even 'wins margin'. Therefore it is useful to know the probabilities of the mid-price
increasing or decreasing. In Section 5.2 it is shown how to compute an expression for these probabilities.

Relevant in the situation above is also the probability that a limit order that is submitted at the bid (ask)
is executed before the mid-price moves. Suppose that the trader from our example, in order to get a better
price, submits an order at the current bid. Then his bid has to line up and thus lies last in queue at pB . It
is relevant to know the execution probability before the mid-price moves because it gives an indication of the
expected gain of the order and helps quantifying the choice between placing a limit order and placing a market
order. In Section 5.3 it is shown how the results from Chapter 4 enable us to compute this probability.

The trader can also decide to place his buy order at a price level above the current bid. Then this price
level is the new bid, and the order of our trader is the �rst in queue at the bid. Note that the place in queue
is considered because orders are executed according to a price/time priority rule: the �rst order in queue at
a certain price is the �rst one to go out. Proposition 5.4 presented in Section 5.3 allows us to compute the
execution probability of hypothetically submitted orders at any price level pB < p < pA, conditional on the
current con�guration of the order book. This enables us to compute the expected gain of orders at any of
these price levels: submitting a bid order at a higher price will give less margin but has a higher probability of
being executed. Choosing the price level with the highest expected gain gives the optimal price to submit an
order.
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Another probability interesting to traders that we can compute is the probability that both the bid and
ask are executed before the mid-price moves. This is referred to as 'making the spread'. If the probability of
making the spread is high, than a trader can submit an ask and a bid simultaneously. If both are executed
before the mid-price moves, than the strategy has paid of the spread pS = pA−pB . This is called a statistical
arbitrage opportunity.

A di�erent way of making the spread is to submit orders just above the bid and under the ask, such that
you are the �rst order to be executed when a market order arrives. Note that the smaller the spread between
the submitted bid and ask, the higher the probability of success, but smaller the gain of the trade would
be. Also combinations of these two approaches are possible. In Section 5.4 only the �rst two approaches are
treated. Expressions to calculate success probabilities of other approaches can be computed in a similar way.

Note that computing the aforementioned probabilities does not mean that it is possible to make free money.
Strategies based on these probabilities may often result in losses, especially if we take the costs of trading into
account. The idea of this research however is, to optimize the 'win'-rate such that the gains compensate for the
costs of the lost bets. Take for example the strategy of making the spread. Because successful implementation
of this strategy pays out the spread, it makes little sense to apply it on liquid stocks, where the spread is very
small (smaller than the costs of the trade). Therefore, this strategy is only relevant for stocks with a relatively
large bid-ask spread. But even if the spread is large, implementation of this strategy might result in losses:
while successful implementation pays out the spread, a move of the market in a certain direction may result
in a loss n times the spread. In order to break even, one loss then has to be countervailed by n successes.
Therefore, to make such a strategy a winning strategy, it is important to perform order book analysis, such as
in this project.

Note that liquidity is a very relative concept which is in�uenced by the bid-ask spread, the available bid
and ask sizes and the traded volume. For the probability of making the spread it was mentioned that the stock
should be 'relatively illiquid' by which we mean that the spread has to be reasonably large. However, in order
to make the spread making strategy successful the stock in question needs to be actively traded. A better
formulation would therefore be 'a liquid stock (in terms of turnover) with a high volatility (large spread)'. For
now we won't quantify such expressions, this will become relevant when implementing the theory presented
here in certain trading strategies.

A last probability that will be computed in this chapter is the probability of reaching the stop loss. When
a trader goes long or short stocks, a 'stop loss order' can be submitted simultaneously. This is an order that
is not visible in the market, but is converted into a market order if it is triggered by the market. The stop
loss order is triggered by the market when the mid-price moves such that the (long or short) position of the
trader hits a certain level of loss. This level of loss is speci�ed by the trader depending on his strategy and the
composition of his book. Knowing the probability that the stop loss is reached helps in designing strategies.

RV corresponding event

X0 con�guration of the order book at the initial time
T �rst time at which the mid-price moves

TA �rst-passage time to zero of number of orders at the ask
TB �rst-passage time to zero of number of orders at the bid
MA �rst arrival time of an ask order in the spread
MB �rst arrival time of a bid order in the spread
EA execution time of the �rst order in line at the ask
EB execution time of the �rst order in line at the bid
IA �rst-passage time to zero of number of orders that were initially at the ask
IB �rst-passage time to zero of number of orders that were initially at the bid

NCA one order at the ask will never be canceled
NCB one order at the bid will never be canceled

Table 5.1: Overview de�ned Random Variables
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5.2 Move of the Mid-Price

Recall from section 4.3 that the Laplace transform of the �rst-passage time from state b to state a in a
birth-death process with birth rates λi and death rates θi is given by

f̂a,b(τ) =

b∏
i=a+1

(
−1

λi−1

∞

K
k=i

−λk−1θk
λk + θk + τ

)
. (5.1)

We will use this to compute the probabilities discussed in Section 5.1, conditional on the current order book.
The �rst probability we will consider is the probability that the mid-price increases at its next move.

There are two di�erent events that can make the mid-price move:

� The number of orders at pA or pB passes to zero, or

� a limit order arrives between pA and pB , given that the spread pS > 1.

If we let the initial state of the order book be X0 = (X
(1)
0 , X

(2)
0 , ..., X

(n)
0 ), and de�ne the �rst time at

which the mid-price moves as
T := inf{t ≥ 0, pM (t) 6= pM (0)}. (5.2)

Then the probability that the mid-price goes up at its next move can be written as

P (pM (T ) > pM (0)|X(pA)
0 = a,X

(pB)
0 = b, pS(0) = S), (5.3)

with a and b the numbers of orders at the best bid and best ask. Recall that in our model the number of
orders at the best ask and best bid follow a birth-death process with rates as in Figure 5.1.
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Figure 5.1: Transition rates for pA and pB .

Note that these transition rates are valid because i does not change! Using these rates, it follows from
(5.1) that the Laplace transform of the �rst passage time of the number of orders at p = pA, pB from j to
zero is given by

f̂Sj (τ) =

j∏
i=1

(
−1

λ(S)

∞

K
k=i

−λ(S)(µ+ θ(S)|k|)
λ(S) + µ+ θ(S)|k|+ τ

)
. (5.4)

For the density of arrival times of orders in the spread consider the following. We assumed in our model
that, at any price level, the inter-arrival times between limit orders is exponentially distributed with parameter
λ(i). It is easy to see that the inter-arrival time of orders at any price level p in the spread pS = S is
exponentially distributed with parameter

Λ(S) =

S−1∑
i=1

λ(i). (5.5)

Now let TA and TB denote the respective passage times to zero of the number of orders at the ask and the
bid, and let MA and MB denote the �rst times that an ask order resp. bid order arrives in the spread. Then
TA and TB are independent and are distributed corresponding to the inverse Laplace transforms of (5.4),
TA ∼ fSa (t), TB ∼ fSb (t), and MA and MB are independent and exponentially distributed with parameter
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Λ(S) as in (5.5). Remember that in our model, all possible events Yi are modeled with independent inter-
arrival times. It is known that for a sequence of mutually independent random variables (Y1, Y2, Y3, ...), also
the sequence (Y1 + Y2, Y3, ...) is mutually independent. The �rst passage time of the number of orders at
the ask or at the bid is the sum of independent inter-arrival times. Therefore, we can conclude that also
TA, TB ,MA andMB are independent. An overview of all random variables used in this chapter can be found
in Table 5.1.

First consider the situation where the spread pS := S = 1. Then probability (5.3) can be written as

P (pM (T ) > pM (0)|X0, S = 1) = P (TA < TB |X0, S = 1) = P (TA − TB < 0|X0, S = 1). (5.6)

We can obtain the Laplace transform of the conditional probability density as follows (leaving the condition
out of the notation).

f̂TA−TB (τ) =

∫ ∞
0

e−τtfTA−TB (t)dt

=

∫ ∞
0

e−τt
∫ ∞

0

fSa (u)fSb (u− t)du dt,

where we have used the independence of TA and TB to write the density of the di�erence between variables
as the cross-correlation of their densitities. Now use Fubini's theorem and the substitution v = u− t to write

f̂TA−TB (τ) =

∫ ∞
0

fSa (u)

(∫ ∞
0

e−τtfSb (u− t)dt
)
du

=

∫ ∞
0

e−τufSa (u)

(∫ ∞
0

eτvfSb (v)dv

)
du

= f̂Sb (−τ)

∫ ∞
0

e−τufSa (u)du = f̂Sa (τ)f̂Sb (−τ).

The Laplace transform of the cdf FTA−TB (t) then satis�es

F̂TA−TB (τ) =
1

τ
f̂TA−TB (τ) =

1

τ
f̂Sa (τ)f̂Sb (−τ). (5.7)

We can now �nd the probability that the mid-price increases when it moves, given that S = 1 by evaluating
the inverse Laplace transform of (5.7) at zero, with f̂Sj (τ) given by (5.4) with S = 1.

Now allow the spread to be pS := S > 1. Then the conditional probability that the mid-price increases
can be interpreted as: the probability that either the number of orders at the ask goes to zero or a bid order
arrives in the spread, before the number of orders at the bid goes to zero or an ask order arrives in the spread.
Thus probability (5.3) can now be written as

P (pM (T ) > pM (0)|X0, S > 1) = P (TA ∧MB − TB ∧MA < 0|X0, S > 1). (5.8)

We now need to �nd the Laplace transform of the joint density of the �rst passage times to zero and arrival
of limit orders in the spread. A useful lemma is the following.

Lemma 5.1. Let the random variable X ∼ fa,b(t) denote the �rst passage time from b to a and let Y be
an exponentially distributed random variable with parameter Λ that is independent of X. Then the Laplace
transform of the density of X ∧ Y is given by

τ

Λ + τ
f̂a,b(τ + Λ) +

Λ

Λ + τ
, (5.9)

with f̂a,b as in (5.1).

Proof. Because of the independence between X and Y and because Y is exponentially distributed, we can
write the cdf of X ∧ Y as

P (X ∧ Y < t) = 1− P (X ∧ Y > t) = 1− P (X > t)P (Y > t) = 1− (1− Fa,b(t))e−Λt,
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where Fa,b(t) denotes the cdf of X. Taking the derivative we �nd the pdf

fX∧Y (t) = fa,b(t)e
−Λt + Λ(1− Fa,b(t))e−Λt, for t ≥ 0.

The Laplace transform can now be calculated as follows

f̂X∧Y (τ) =

∫ ∞
0

e−τtfX∧Y (t)dt =

∫ ∞
0

e−τtfa,b(t)e
−Λtdt+

∫ ∞
0

Λ(1− Fa,b(t))e−Λtdt

= f̂a,b(Λ + τ) + Λ

{
−1

Λ + τ
(1− Fa,b(t))e−t(Λ+τ)|∞t=0 −

∫ ∞
0

1

Λ + τ
fa,b(t)e

−t(Λ+τ)dt

}
= f̂a,b(Λ + τ) + Λ

{
1

Λ + τ
− 1

Λ + τ

∫ ∞
0

fa,b(t)e
−t(Λ+τ)dt

}
= f̂a,b(Λ + τ) +

Λ

Λ + τ

(
1− f̂a,b(Λ + τ)

)
=

τ

Λ + τ
f̂a,b(Λ + τ) +

Λ

Λ + τ
. (5.10)

Following the same procedure as we did for S = 1 and using Lemma 5.1, we can �nd an expression for
the Laplace transform of the conditional distribution of TA ∧MB − TB ∧MA.

Proposition 5.2. The conditional probability that the mid-price increases at its next move (5.8), is given by
the inverse Laplace transform of

F̂Sa,b(τ) =
1

τ

(
τ

Λ(S) + τ
f̂Sa (Λ(S) + τ) +

Λ(S)

Λ(S) + τ

)(
−τ

Λ(S)− τ
f̂Sb (Λ(S)− τ) +

Λ(S)

Λ(S)− τ

)
, (5.11)

evaluated at 0, where Λ(S) =
∑S−1
i=1 λ(i) , a is the number of orders at the ask, b the number of orders at

the bid and f̂Sj (τ) is given by (5.4) for j = a, b.

Proof. Similar to the case where S = 1, we can express the Laplace transform of the distribution of TA ∧
MB − TB ∧MA as

f̂TA∧MB−TB∧MA(τ) = f̂TA∧MB (τ)f̂TB∧MA(−τ). (5.12)

If we now apply Lemma 5.1 on both Laplace transforms, we �nd that (5.12) equals(
τ

Λ + τ
f̂Sa (Λ + τ) +

Λ

Λ + τ

)(
−τ

Λ− τ
f̂Sb (Λ− τ) +

Λ

Λ− τ

)
. (5.13)

According to (5.7) the Laplace transform F̂Sa,b(τ) for S > 1 then satis�es (5.11). If we now evaluate (5.11)
for S = 1, we �nd the same result as in (5.7).

Obviously, the probability that the mid-price decreases at its next move, is equal to one minus the probability
from Proposition 5.2. The results in this section correspond to Cont et al.'s �ndings.

5.3 Probability of Order Execution

We will derive the Laplace transform of the conditional probability that the order placed last in queue at the
bid or ask is executed before the mid-price moves. Because we assumed the parameters for the bid and ask to
be symmetric, the Laplace transform is similar for both sides. We will perform our analysis based on the ask
side, a similar result holds for the bid side.

As in Section 5.2, let X0 be the known initial order book state with X
(pA)
0 = a, X

(pB)
0 = b and pS(0) = S,

and let T be the �rst time at which the mid-price moves (5.2). Let IA be the time at which all the orders that
were initially at the ask are executed, given that the last order in queue at the ask is not canceled. Let NCA

denote the event that the last order initially in line at the ask is never canceled (see Table 5.1). Note that we
are only interested in the orders that are initially at the ask because all orders that are submitted at the ask
after the initial time stand in queue behind our order. The last order in the queue is the order submitted by
our trader at time 0. We can therefore condition on NCA. The probability of our interest can be written as

P (IA < T |X0, NC
A) = P (IA − T < 0|X0, NC

A). (5.14)
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Given that the mid-price does not move and the last order in the initial queue is not canceled, the number
of orders initially at the ask follows a pure death process with death-rate µ + θ(S)|x(pA) − 1|. Recall that
the cancellation rate is proportional to the number of orders at the particular price level. In this case, the
condition implies that there is one order that will never be canceled. For this reason, the cancellation rate is
taken proportional to the number of orders minus one. The Laplace transform of IA then is

ĝSa (τ) =

a∏
j=1

µ+ θ(S)|j − 1|
µ+ θ(S)|j − 1|+ τ

. (5.15)

This leads to the following proposition.

Proposition 5.3. The conditional probability that the last order initially in queue at the ask is executed before
the mid-price moves, given that it is not canceled (5.14), is given by the inverse Laplace transform of

F̂Sa (τ) =
1

τ
ĝSa (τ)

(
−τ

2Λ(S)− τ
f̂Sb (2Λ(S)− τ) +

2Λ(S)

2Λ(S)− τ

)
(5.16)

evaluated at 0, where Λ(S) =
∑S−1
i=1 λ(i), ĝSa (τ) is given by (5.15) and f̂Sb (τ) is given by (5.4).

Proof. The �rst time at which the mid-price changes corresponds to the minimum of TB , MA and MB

de�ned in last section. Because IA and TB ∧MA ∧MB are independent, we may write

f̂IA−TB∧MA∧MB (τ) = f̂IA(τ)f̂TB∧MA∧MB (−τ). (5.17)

Since MA ∧MB ∼ exp(2Λ(S)), and TB ∼ fSb (t), we can use Lemma 5.1 to �nd the Laplace transform of
the conditional pdf:

f̂IA f̂TB∧MA∧MB (−τ) = ĝSa (τ)

(
−τ

2Λ(S)− τ
f̂Sb (2Λ(S)− τ) +

2Λ(S)

2Λ(S)− τ

)
. (5.18)

If we take S = 1 equation (5.16) becomes 1
τ ĝ

S
a (τ)f̂Sb (−τ) which indeed corresponds with f̂IA−TB (τ).

A similar expression can be found for the equivalent probability at the bid side. The results presented so
far correspond to the ones presented by Cont.

In addition to Cont's work, we will consider the probability that the �rst limit order in queue at the ask is
executed before the mid-price moves. This applies to the situation as described in Section 5.1, where a trader
decides to submit a limit order at a better price than the current ask or bid. Again, let X0 be the known

initial order book state with X
(pA)
0 = a, X

(pB)
0 = b and pS(0) = S, and let T be the �rst time at which the

mid-price moves (5.2). Let EA be the time at which the �rst order in queue at the ask is executed. We can
write the probability of our interest as

P (EA < T |X0, NC
A) = P (EA − T < 0|X0, NC

A). (5.19)

Given that the �rst order in queue at the ask is not canceled, it follows a pure death process with death-rate
µ. Therefore the Laplace transform of EA is

ĝa(τ) =
µ

µ+ τ
. (5.20)

This leads to the following proposition.

Proposition 5.4. The conditional probability that the �rst order at the ask is executed before the mid-price
moves, given that it is not canceled (5.19), is given by the inverse Laplace transform of

F̂Sa,b(τ) =
1

τ
ĝa(τ)

(
−τ

2Λ(S)− τ
f̂Sb (2Λ(S)− τ) +

2Λ(S)

2Λ(S)− τ

)
(5.21)

evaluated at 0, where Λ(S) =
∑S−1
i=1 λ(i), ĝa(τ) is given by (5.20) and f̂Sj (τ) is given by (5.4).

Proof. The proof is similar to the proof of Proposition 5.3

Again a similar expression can be derived for the bid side.
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5.4 Probability of Making the Spread

We will now compute the probability of 'making the spread' by submitting a buy order and a sell order at the
current ask and bid, given that these orders are not canceled. Recall thatMA andMB are the times at which
an ask resp. bid arrives in the spread and IA is the time at which all orders that were initially at the ask are
executed. In addition, let IB be the time at which all orders that were initially at the bid are executed, given
that the last in queue is not canceled, and let NCB denote the event that there is an order initially at the bid
that is never canceled. IA and IB are independent. The conditional probability of our interest then is

P (max{IA, IB} < T |X0, NC
A, NCB). (5.22)

One might think that because we assumed that there are orders at the bid and ask that are never canceled,the
�rst time T at which the mid-price moves now corresponds to the �rst time at which an order arrives in the
spread:

T = min{MA,MB}.

In that case, inserting T and separating the cases that either MA < MB or MB < MA, we could write
Probability (5.22) as

P (max{IA, IB} < min{MA,MB}|X0, NC
A, NCB)

= P (max{IA, IB} < MA,MA < MB) + P (max{IA, IB} < MB ,MB < MA),

= P (IA < MA, IB < MA,MA < MB) + P (IA < MB , IB < MB ,MB < MA). (5.23)

Following the same approach as in the preceeding sections, this would lead to an expression for the Laplace
transform of the probability that is much simpeler than the one presented by Cont et al. [10]. The di�culty
here however is that the mid-price does move. We are considering the probability that the number of orders
at both the ask and the bid go to zero, before the mid-price moves. However, at the time that the �rst of
both queues reaches zero the mid-price actually changes. It seems therefore impossible to �nd an easier result
than the one presented by Cont et al. for which we refer to Proposition 6 of [10].

5.5 Probability of Reaching the Stop Loss

The probability of reaching the stop loss corresponds to the probability of the mid-price moving away a certain
number of ticks. A move of n ticks from the mid-price can be reached by di�erent combinations of events.
In Section 5.2 we have already computed the conditional probability that the mid-price increases or decreases
one tick at its next move. First consider the probability that the mid-price decreases one tick at its �rst move,
conditional on the initial order book state X0:

p = P (pM (t1) < pM (t0)|X0), (5.24)

where t1 is the �rst time that the mid-price moves and t0 the initial time. This probability can be computed
using Proposition 5.2. The probability that the mid-price decreases by two at its next two moves, can be
written as

P (pM (t1) < pM (t0)|X0)P (pM (t2) < pM (t1)|X1), (5.25)

where tn with n = 1, 2, 3, ... represents the nth time that the mid-price moves andXn represents the state of the
order book after the nth mid-price move. Both probabilities in (5.25) can be computed using Proposition 5.2.
However, the parameters in the second probability depend on a future (unknown) order book state. Conditional
on the initial order book state X0 and assuming that the �rst mid-price move was the �rst event that took
place in the order book, this unknown order book state has at least two possible con�gurations: cancellation
of the bid or submission of a cheaper ask with respect to X0. The number of possible con�gurations can be
much bigger because e.g. an ask can be submitted on any price level between the bid and ask. Therefore,
considering the probability of decreasing n ticks within n mid-price moves already gives over 2n−1 possible
order books that we have to account for. If we also include the possibilities of the mid-price decreasing n
ticks in any number of price moves, we get a huge number of possible combinations. We therefore choose to
calculate the parameters based on the initial book, and use the same parameters after every step. This means
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that we assume the initial order book con�guration to be a reasonable estimate for the expected con�guration
of the order book and that

p = P (pM (tn) < pM (tn−1)|Xn−1) (5.26)

for any n = 1, 2, 3, .... Using this approach, the probability that the mid-price decreases k ticks can be
approximated by

∞∑
n=k+2j

(
n

(n− k)/2

)
(1− p)(n+k)/2p(n−k)/2. (5.27)

where p is given by one minus the Laplace transform of (5.11) evaluated at zero.

To show this, let tn for n = k+ 2j and with j = 1, 2, 3, ... denote the times at which the mid-price moves,
and let t0 be the initial time. Note that a decrease of k ticks here is only possible if n− k is even. At every
time tn, the probability p that the mid-price decreases at its next move, is assumed to be given by one minus
the inverse Laplace transform of (5.11) in Proposition 5.2, with S = pS(t0). Using this probability p allows us
to derive a density function for the probability that the mid-price decreases k ticks in n mid-price moves. The
n price moves follow a Binomial distribution with parameters (n, p). Therefore the probability of the mid-price
decreasing k ticks in n price-moves can be written as

P (pM (tn) = pM (t0)− k) =

(
n

(n− k)/2

)
(1− p)(n+k)/2p(n−k)/2. (5.28)

Summing (5.28) over all possible numbers of price moves n gives the desired result.
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Chapter 6

Implementation

In Chapter 5 we have proposed expressions to compute several probabilities conditional on the current state of
the order book. All these expressions are in the form of a Laplace transform whose inverse has to be evaluated
at zero to �nd the corresponding probability. These Laplace transforms are again given as a function of the
Laplace transform of the �rst passage time of the number of orders from a to zero. In Chapter 4 we have
seen that this second Laplace transform can be written as a continued fraction. In order to compute the
probabilities of our interest we therefore need to compute continued fractions and invert Laplace transforms.
Implementation and results will be discussed in this chapter.

6.1 Computing Continued Fractions

Recall the Laplace transform of the �rst probability discussed in Chapter 5: the conditional probability that the
mid-price increases at its next move. This probability will be used here to illustrate how the theory presented
in Chapters 4 and 5 can be used to numerically compute probabilities in the order book.

Probability Corresponding Laplace transform

mid-price increase: F̂Sa,b(τ) = 1
τ

(
τ

Λ(S)+τ f̂
S
a (Λ(S) + τ) + Λ(S)

Λ(S)+τ

)(
−τ

Λ(S)−τ f̂
S
b (Λ(S)− τ) + Λ(S)

Λ(S)−τ

)
Table 6.1: Probability and corresponding Laplace transform

In the Laplace transform in Table 6.1, τ is the variable and Λ(S) is a constant that depends on the order
book con�guration and thus is given in the condition. In order to compute the probability of the mid-price
increasing, the Laplace transform f̂Sj (τ) needs to be computed. The inverse Laplace transform of f̂Sj (τ)
corresponds to the �rst passage time of the number of orders at pA or at pB from j to zero. In Section 4.3
this was found to satisfy

f̂Sj (τ) =

j∏
i=1

(
−1

λ(S)

∞

K
k=i

−λ(S)(µ+ kθ(S))

λ(S) + µ+ kθ(S) + τ

)
. (6.1)

The continuous fraction in the product is a Jacobi fraction of the form (4.22). Following Section 4.3 this
continued fraction is equivalent to the S-fraction

∞

K
k=i

aks
−1

1
=

ai
τ+

ai+1

1+

ai+2

τ+

ai+3

1+
· · · , (6.2)

where ak satis�es

ai = λ(S)(µ+ iθ(S)), ai+1 = λ(S) + µ+ iθ(S),

ai+2n =
λ(S)(µ+ (n+ i)θ(S))

ai+2n−1
, and a2n+i+1 =

λ(S) + µ+ (n+ i)θ(S)

a2n+i
,
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for n = 1, 2, 3, .... Direct expressions for ai+2n and a2n+i+1 are easily derived and satisfy (6.5)-(6.6). The
S-fraction in (6.1) can then be written as

∞

K
k=i

ak
bk
, (6.3)

with

ai = λ(S)(µ+ iθ(S)), ai+1 = λ(S) + µ+ iθ(S), (6.4)

ai+2n =

n∏
k=1

λ(S)(µ+ (i+ k)θ(S))

λ(S) + µ+ (i+ k − 1)θ(S)
, (6.5)

a2n+i+1 = (λ(S) + µ+ iθ(S))

n∏
k=1

λ(S) + µ+ (i+ k)θ(S)

λ(S)(µ+ (i+ k)θ(S))
, (6.6)

bi+2(n−1) = τ, and bi+2n−1 = 1.

This result enables us to compute approximants of the continued fraction in (6.1), and thus compute f̂Sj (τ),
by using Lemma 4.2. A Matlab implementation of this algorithm is included in the appendix. The program
output is tested to be equal to the iterative results of computing (6.1). Only 7 approximants are needed in this
algorithm to compute the continued fraction in (6.1) up to four digits accuracy. Note that the other Laplace
transforms that we have introduced in Chapter 5, such as ĝSa (τ) given by (5.15), can be computed directly
from the order book state on which we condition.

6.2 Numerical Inversion of Laplace Transforms

The next step in computing the conditional probabilities from Chapter 5, is recovering the cdf from the
corresponding Laplace transform by computing its inverse Laplace transform

f(t) =
1

2πi

∫ γ+i∞

γ−i∞
etτ f̂(τ)dτ. (6.7)

Di�erent numerical methods are available to compute the complicated Bromwich contour integral in (6.7). In
[3] Abate and Whitt an inversion method is presented that is based on the idea of using two very di�erent
methods so that they can serve as a check for each other. This idea was �rst introduced by Davies and Martin
[11]. The two methods used are easy to understand and shortly described below.

Post-Widder method :

According to the Post-Widder theorem [13], f(t) can be expressed as the point-wise
limit of

fn(t) =
(−1)n

n!

(
n+ 1

t

)n+1

f̂ (n)

(
n+ 1

t

)
as n→∞, where f̂ (n) is the nth derivative of the Laplace transform of f . Following
the steps in Jagerman [17] using the Cauchy contour integral, we obtain the integral

fn(t) =
n+ 1

t

1

2πrn

∫ 2π

0

f̂

(
n+ 1

t
(1− retu)

)
e−tnudu.

The integral is �nite, and using the trapezoidal rule with step size π/n gives the
approximation

fn(t) =
n+ 1

2tnrn

{
f̂

(
(n+ 1)(1− r)

t

)
+ (−1)nf̂

(
(n+ 1)(1 + r)

t

)
+2

n−1∑
k=1

(−1)k<{f̂}
(
n+ 1

t
(1− reπik/n)

)}
.

The error bound can be shown to satisfy |f(t)| ≤ r2n. For exact derivations see
[3] and [17].
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Euler method :

The Bromwich integral (6.7) can be rewritten as

f(t) =
2eat

π

∫ ∞
0

<{f̂(a+ iu)} cosut du,

where i =
√
−1. Using the trapezoidal rule with step size h gives

f(t) ≈ fh(t) =
heat

π
<{f̂(a)}+

2heat

π

∞∑
k=1

<{f̂(a+ ikh)} cos(kht),

and with h = π/2t and a = A/2t we get

fh(t) =
eA/2

2t
<{f̂

(
A

2t

)
}+

eA/2

t

∞∑
k=1

(−1)k<{f̂
(
A+ 2kπi

2t

)
}. (6.8)

It can be shown that when f(t) is a cumulative distribution function, for small e−A

the error is approximately bounded by e−A. To accelerate the numerical calculation
of (6.8) with the in�nite sum, it is suggested in [25] to use Euler summation. This
method can be described as the average of the last m partial sums, weighted by a
Bin(1/2,m) distribution. The numerical approximation to (6.8) then becomes

E(m,n, t) =

m∑
k=0

(
m

k

)
2−msn+k(t), (6.9)

where sn is the nth partial sum

sn(t) =
eA/2

2t
<{f̂

(
A

2t

)
}+

eA/2

t

n∑
k=1

(−1)k<{f̂
(
A+ 2kπi

2t

)
}.

Typically, m = 11 and n = 15 are taken, increasing n as necessary. For the precise
derivation of this expression we refer to Dubner and Abate [12].

In both methods there is a di�erent step for which there is no error bound available. Therefore, the given
error bounds of both methods serve as a check for each other. This method is specially useful in the case
where f(t) is a cdf, because the fact that |f(t)| ≤ 1 for all t can be used in the error analysis. Another
feature of this algorithm is that it is intended for computing f(t) at single values of t. Since the probabilities
presented in Chapter 5 involve evaluating the inverse of a Laplace transform of a cdf at zero, this method is
suitable for the problem. In Cont et al. this method was used to compute probabilities in the order book.
Further discussion of the method can be found in [1] and [3].
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For this project we choose to not implement the method used by Cont et al., but instead use another
interesting method. This method is also based on the relation between a Laplace transform and its Fourier-
cosine expansion as presented by Abate and Dubner [12], but is an analogue of the COS method for inverting
Fourier transforms presented by Fang and Oosterlee in [21]. They apply the COS method on option pricing,
and show that its convergence rate is exponential. A requirement for this method to perform well for Laplace
transforms is that the pdf that is to be recovered is su�ciently smooth. A description of how to use this
method to �nd a cdf from its Laplace transform is given below.

To apply this method, it is necessary to have an expression for the Laplace transform of the pdf. In the
case of our problem, all the probabilities are given in terms of the Laplace transform of the cdf. Thanks to
(5.7) the corresponding pdf expression is easily obtained. The COS method was implemented in order to
obtain the results in the next section. The corresponding Matlab code can be found in the appendix. The
Symbolic Mathematics Toolbox from Matlab was used for this. It should be noted that this method has not
been tested on precision and convergence speed so far. A �rst step in a follow up study would be to test the
performance of inversion methods and explore available alternatives to numerically invert Laplace transforms.

COS method :

As seen in the Euler method, rewriting the Bromwich integral in (6.7) by use of
the trapezoidal rule gives

f(t) ≈ fh(t) =
heγt

π
<{f̂(γ)}+

2heγt

π

∞∑
k=1

<{f̂(γ + ikh)} cos(kht).

A requirement for the COS method to be successful is that the in�nite integral in
(6.7) can be truncated such that

f̂1(τ) =

∫ b

a

eiτtf(t)dt ≈
∫ ∞

0

eiτtf(t)dt = f̂(τ). (6.10)

If we now choose a and b such that (6.10) is satis�ed and substitute h = π/(b−a)
and γ = 0, we �nd

fh(t) =
1

b− a
<{f̂(0)}+

2

b− a

∞∑
k=1

<{f̂
(
ikπ

b− a

)
} cos(kπ

t− a
b− a

). (6.11)

Truncating the in�nite sum as well, we �nd the following numerical approximation
of f at t.

fh(t) =
1

b− a
<{f̂(0)}+

2

b− a

N−1∑
k=1

<{f̂
(
ikπ

b− a

)
} cos(kπ

t− a
b− a

).

This corresponds to the method presented in [21]. In order to use this method to
recover a cdf from its inverse, we compute the value of fh(t) for a range of t, and
take the cumulative sum. The approximation for the cdf then becomes

Fh(t) =

M−1∑
j=0

(
1

b− a
<{f̂(0)}+

2

b− a

N−1∑
k=1

<{f̂
(
ikπ

b− a

)
} cos(kπ

j dt

b− a
)

)
,

(6.12)
where dt = (b − a)/M and M is the chosen number of discretization steps. The
resulting error consists of the truncation of the in�nite sum in (6.11), the truncation
error in the in�nite integral (6.10), and the truncation of the integral over the pdf
that is used to obtain the approximation of the cdf (6.12). For error analysis we
would like to refer to [12] and [21].
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6.3 Results

In Chapter 3 we have compared the average behavior of a simulated order book to the average behavior of an
observed order book. Although this is not of interest in practice, this showed that the model gives a reasonable
approximation of the average behavior. In order to asses the performance of its short-term prediction, we will
compare the probability that the number of orders at distance i from the opposite best quote increases to
probabilities that are empirically observed in the Vodafone data.

Let Qi(tm) be the number of orders at a particular price level at distance i from the opposite best quote
at time tm, and de�ne the probability that this number increases by one at its next change as

P (Qi(tm+1) = n+ 1|Qi(tm) = n) =

{
λ(S)

λ(S)+µ+nθ(S)+λ(0) , i = S,
λ(i)

λ(i)+nθ(i) , i > S,
(6.13)

where tm+1 represents the next time at which the number of orders at distance i changes. The expressions
on the right hand side can be understood intuitively as follows. For a price level p at distance i > S two types
of events can occur: arrivals of limit orders and cancellations of existing orders. An increase of the number
of orders at p takes place with rate λ(i), and a decrease with rate nθ(i). The probability that a limit order
arrives �rst therefore is λ(i)/λ(i) + nθ(i).

Figure 6.1: Probability of increase of the number of orders at distance i from the opposite best quote, as a
function of the number of orders n, with spread S = 1.

Figures 6.1 - 6.3 show the results for spreads S = 1, 2, 3, at di�erent distances i from the opposite best
quote. The results are obtained by, for every spread S = 1, 2, 3 and for price levels at i ticks from the bid,
counting the percentage of times that the number of orders in queue increased, depending on the queue sizes.
This same approach was used in [10], our results however are less good than the ones presented by Cont et al.
[10]. Although the shapes of the observed probabilities are similar to the ones obtained from the model, there
seems to be a parallel shift. An interesting observation is that the observed probabilities at queue size 0 is less
than one everywhere. Given that there are 0 orders in queue, the cancellation rate should be zero because it
is proportional to the number of orders. The probability of the number of orders increasing then equals one.
The observed probabilities however are di�erent. An explanation for this can be found in the assumption of all
orders being unit size. Because of this assumption, a small number of orders in the order book is interpreted
as zero. However, cancellations can still be observed at the corresponding price level. This result indicates
that the parameter estimation based on the assumption of all orders having size one does not give a good
description of the short-term dynamics of the order book.
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Figure 6.2: Probability of increase of the number of orders at distance i from the opposite best quote, as a
function of the number of orders n, with spread S = 2.

Figure 6.3: Probability of increase of the number of orders at distance i from the opposite best quote, as a
function of the number of orders n, with spread S = 3.

Next we will compute the probability that the mid-price increases at its next move, conditional on the
state of the order book. For this we use Proposition 5.2 and implementation of the COS-method explained in
the last section. Note that it is not possible to back-test the order book model proposed here, because every
action suggested by it has an in�uence on the order book, and thus changes the order book. Table 6.2 shows
the results for the probability of the mid-price increasing. The initial order book con�guration on which we
condition is given by the numbers of orders at the ask a, the number of orders at the bid b, and the spread
S = 1. The upper table shows the probabilities that are empirically observed in the Vodafone data. Using
direct simulation, the same probabilities in the model and their corresponding 95%-con�dence interval were
computed. The results are shown in the table in the middle. Finally, the same probabilities were computed
using the Laplace method. The corresponding results are shown in the bottom table.
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a = 1 a = 2 a = 3 a = 4 a = 5
b = 1 0.503 0.377 0.273 0.215 0.167
b = 2 0.625 0.482 0.388 0.334 0.270
b = 3 0.700 0.584 0.486 0.422 0.345
b = 4 0.761 0.647 0.561 0.491 0.402
b = 5 0.780 0.694 0.607 0.546 0.443

a = 1 a = 2 a = 3 a = 4 a = 5
b = 1 0.501± 0.003 0.338± 0.003 0.270± 0.003 0.231± 0.003 0.203± 0.003
b = 2 0.661± 0.003 0.500± 0.003 0.417± 0.003 0.359± 0.003 0.325± 0.003
b = 3 0.732± 0.003 0.588± 0.003 0.502± 0.003 0.442± 0.003 0.403± 0.003
b = 4 0.769± 0.003 0.638± 0.003 0.558± 0.003 0.499± 0.003 0.459± 0.003
b = 5 0.796± 0.003 0.676± 0.003 0.597± 0.003 0.541± 0.003 0.501± 0.003

a = 1 a = 2 a = 3 a = 4 a = 5
b = 1 0.516 0.386 0.297 0.225 0.235
b = 2 0.616 0.458 0.441 0.365 0.307
b = 3 0.679 0.550 0.506 0.415 0.370
b = 4 0.704 0.665 0.623 0.455 0.403
b = 5 0.652 0.509 0.670 0.631 0.061

Table 6.2: Probability of the mid-price increasing at its next move conditional on a orders at the ask, b orders
at the bid and spread S = 1. top: empirical frequencies observed in data, middle: direct simulation results,
bottom: Laplace transform results.

Unlike the results presented in [10], the results in the upper two tables show that only a few of the
empirically observed probabilities lay in the 95%-con�dence interval simulated by the model. This means that
the probability of the mid-price increasing is generally not captured well enough by the model. Therefore, the
model as proposed here cannot be used in trading yet. It should �rst be adapted to give good approximations
of short-term probabilities. In the next chapter, ideas for possible improvements of the model will be treated.

Given that the results from both the direct simulation and the Laplace method are based on the same
model, we use the results in the middle table as a test for the numerical inversion method. The results at the
bottom of Table 6.2 however do not really correspond to the ones obtained by direct simulation. Since the
approximation of the S-fraction is found to be accurate, this result shows that also the numerical method to
invert Laplace transforms needs to be improved. Further study of numerical inversion of Laplace transforms
is out of the scope of this project. The Matlab code used for the results in the last table can be found in the
appendix.
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Chapter 7

Conclusion and Recommendations

7.1 Summary

In the �rst part of this project we researched the world of trading and limit order books. The behavior of
limit order books was studied based on real market data, information from traders and observations from
the trading �oor. Next to that, the stochastic model for the dynamics of the limit order book proposed by
Cont et al. [10] was studied. This model was calibrated to high-frequency data taken from the London Stock
Exchange. We have compared the average behavior of a simulated order book to empirically observed average
behavior using direct simulation. Several changes to the model and its parameter estimation were proposed
and tested thoroughly. The di�erent estimation approaches were used to calibrate the model and the resulting
simulated order books were again compared to average properties of the order book data. Finally, a slightly
adapted version of Conts' model was chosen. This model reasonably approximates the average shape of the
order book and the variance of this shape.

In the second part of this project, the analytical tools were presented that allow to compute short-term
probabilities in the model order book. Although these tools were also used by Cont et al., they were not
presented as such. Therefore, a literature study on Continuous Fractions and their use in Laplace transforms
was done. Using the Laplace transform methods that were brie�y explained by Cont, we showed how to
compute short-term probabilities in the order book. We expanded the set of probabilities that were computed
by Cont and added extended proofs. Finally, we explained how the Laplace method introduced in Chapter 5
can be implemented in order to compute the probabilities. Therefore it is necessary to compute a continuous
fraction as well as to invert a Laplace transform. For this second task, a new method was proposed and
implemented. Finally, some results were computed and discussed.

7.2 Recommendations for Further Research

In this section, possible improvements to the model will be discussed, as well as issues that need to be explored
before the model can be used. We will start by pointing out how the performance of the model could be
improved based on the assumptions and the parameter estimation.

As mentioned before, the assumption of all orders having size one was one of the points questioned by
traders. This assumption was taken from [10] because it was claimed that the order-size distribution plays
a minor role in the average order book. In Section 6.3 however we found that this assumption leads to a
discrepancy between the simulated and the observed order book when it comes to short term probabilities.
We therefore recommend to include a size-distribution in the model. For this, the work of Bouchaud [8] can
serve as an example.

The parameter estimation o�ers several possibilities to improve the model. First of all, in Chapter 3
we already mentioned that the proposed parameter estimation does not take trends like e.g recurring orders
into account. In reality however, recurring orders such as ice bergs form a signi�cant part of the incoming
order �ow. Ice bergs are huge orders that are divided into smaller orders of equal size, and are subsequently
submitted to the order book. It is therefore recommended to explore how the parameters can be adapted in
order to account for such orders. One could for example think about increasing the arrival rate at a certain

59



7.2 Recommendations for Further Research Chapter 7. Conclusion and Recommendations

price level after observing subsequent limit order arrivals at a certain level. What sort of recurring behavior
needs to be included in the order book should be discussed with traders.

Next to that, we have seen that although the parameter estimations can be quite di�erent from day-to-day,
the parameter curves have a similar shape. At the end of the month the parameters seem to have higher values.
Mondays are e.g. generally more quiet than Fridays, and the highest turn over is almost always reached on the
expiry day, which is the third Friday of the month. It is therefore recommended to perform a statistical analysis
on the in�uence of the particular trading day of the month on the parameters. A data set over several months
is necessary. Another interesting idea is to estimate the parameters based on only data at certain frequencies.
Because many players in the markets can only submit orders at a certain frequency due to limitations of their
machines, estimating the parameters based on certain frequencies might give interesting results.

Once a satisfactory estimation method for the parameters is found, the stability of the parameters should
be explored. What is important to determine is what the required length of the data set is in order to obtain
stable estimates. Also, a measure indicating that the parameters should be re-estimated should be determined.
Furthermore, Figure 3.11 showed that the shape of the order book can vary heavily from day to day, not to
mention from event to event. Therefore, the mean reverting behavior of the order book shape that was pointed
out by traders is not included in this model. This could however be a consideration for future research.

The next recommendations apply to the second part of this report. First of all it is clear that a the Laplace
inversion method should be studied more carefully. The method presented in Section 6.2 could be improved,
however more recent developments might o�er better solutions. This was outside the scope of this project
and can be an important part of a follow up research. Also, the computation of Stieltjes-fractions and should
be further explored.

After completing this, the loop introduced in Figure 1.2 should be closed. In order to do so, it should be
studied how knowledge about short-term price moves would exactly in�uence trader's strategies, and which
precise information is valuable for traders. For this, close collaboration with trading is required. This very
much depends on the strategy and its interplay with the computed probabilities. An example of this is to
compute probabilities in two order books simultaneously, based on the correlation between both. The move
of the mid-price in one order book then in�uences the probability of the mid-price increasing in the other.

The last step in closing the loop is to include the own impact in the model. Although the arrival rates of
events in the model order book already include the current order book state, and thus the impact of the last
event, this is still a di�culty. The model assumes that the statistical short-term behavior of the order book is
not a�ected by a market participant who starts implementing a certain trading strategy based on this model.
If the short-term behavior were to change, the parameters should be re-estimated. Because of the own impact
on the order book, it is not possible to back-test this model and �nd out what the own impact is without
risking losses. It is therefore recommended to carefully develop a method to test the model and apply it for a
small portfolio to determine its own impact.

Research on order books so far has mainly focused on algorithmic trading or algo trading. Algo trading
means trading by computer programs that follow a certain trading strategy and react upon events in the
market. Algo trading is very fast and therefore probabilities on very-short terms are mainly of use in this type
of trading. However, also for market participants who trade by manually adapting their parameters to follow
the market this model can be useful. In order to decide when the model can be applied, it is necessary to
determine how volatile a stock should be for the model to give good results, and for which daily turn over. So
a quanti�cation of the required liquidity is needed before this model can be apply.

Algo trading is now estimated to cover over 50% of the transactions in the US and over 30% of the
transactions in Europe for stocks. As the global �nancial markets continue to set record volumes and average
trade sizes continue to decline signi�cantly, algorithmic trading is expected to grow even more in the nearby
future. It is therefore of great importance for trading �rms and other institutions participating in the �nancial
markets to understand the driving dynamics of order books.
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7.3 Conclusion

From the results presented in Chapter 3 it is clear that the proposed order book model does not exactly
approximate the long-term behavior of the order book in terms of numbers of events and trades per day. Also
the short-term probabilities were not accurately approximated as shown in Section 6.3. It is not the purpose
of Applied Mathematicians to make a 100% �tting model of reality. Next to the fact that it is almost always
impossible to track all the parameters that in�uence a certain system, an increasing number of parameters
also increases the complexity of the model. Therefore, mathematical modeling is a trade-o� between reality
and functionality. What we mean by this is that an inaccurate approximation of some properties by a model
is not necessarily a problem, as soon as the model does appropriately capture the properties of interest.

Obviously, the power of the model presented here lies in the fact that it is both easy to calibrate and
analytically tractable. Its analytical tractability is solely based on the assumption that the number of orders
at any price level follows a birth-death process. This o�ers room for improvement of the performance of
the model without losing its nice analytical properties, by changing the other assumptions or the parameter
estimation. Some ideas for this were explained in the last section. Therefore, although it may not be true,
this assumption is very functional. The purpose of modeling order book dynamics in this case is to compute
short-term probabilities, conditional on the current order book. If it would however result from future research
that it is not possible to improve the approximation of short-term probabilities that we actually want to use
this model for, it would be unwise to use this model for trading.
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Appendix

Matlab Code: Computing Continued Fractions

function K = cont_fraction(x,S,s)

%%% compute 10th approximant

%%% passage time from x to x-1 orders

A0 = 1;

A1 = 0;

B0 = 0;

B1 = 1;

for n=1:10

A = vpa(b(x+n-1,x,s))*A1 + a(x+n-1,x,S)*A0;

B = vpa(b(x+n-1,x,s))*B1 + a(x+n-1,x,S)*B0;

approximant = (A1*(s)+A)/(B1*(s)+B);

A0 = A1; A1 = A; B0 = B1; B1 = B; n = n+1;

end;

K = approximant;

function a = a(n,x,S)

n = n-x;

if n==0

prod = lambda(S)*(mu(1)+x*theta(S));

elseif n==1

prod = lambda(S)+mu(1)+x*theta(S);

elseif mod(n,2) == 0% even

n = n/2;

prod = 1;

for k=1:n

prod = prod*(lambda(S)*(mu(1)+(x+k)*theta(S)))/...

(lambda(S)+mu(1)+(x+k-1)*theta(S));

end;

else % odd

n = (n-1)/2;

prod = lambda(S)+mu(1)+x*theta(S);

for k=1:n

prod = prod * (lambda(S)+mu(1)+(x+k)*theta(S))/...

(lambda(S)*(mu(1)+(x+k)*theta(S)));

end;

end;

a = prod;

function b = b(n,x,s)

n = n-x;

if mod(n,2) == 0 % even

prod = (s);
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else % odd

prod = 1;

end;

b = prod;

Matlab Code: Inverting Laplace Transforms

%%% Compute probability of mid-price increasing

%%% by inverting Laplace transforms

%%% for a,b=1:5

for a = 1:5

for b=1:5

syms tau

S = 1;

L = sum(lambda(1:S));

N = 100; % # truncation steps infinite sum

tb = 5; % truncation bound integral

ta = -5; % truncation bound integral

f = [];

dt = 0.01;

fa = 1;

for i=1:a % compute first passage time to zero at ask

K1 = cont_fraction(i,S,tau+L);

fa = fa*-1/lambda(S)*K1;

end;

fb = 1;

for j=1:b % compute first pasage time to zero at bid

K2 = cont_fraction(j,S,L-tau);

fb = fb*-1/lambda(S)*K2;

end;

f_hat = ((tau/(tau+L))*fa + (L/(L+tau)))*(-tau/(L-tau)*fb + (L/(L-tau))); % LT of pdf

tau = 0;

f_hat0 = subs(f_hat);

k = [1:N-1];

tau = sqrt(-1)*k*pi/(tb-ta);

t = [ta:dt:tb];

for i=1:(tb-ta)/dt+1

f(i) = 1*dt/(tb-ta)*real(f_hat0) + 2*dt/(tb-ta)*sum(real(subs(f_hat)).*cos(k*pi*(t(i))));

end;

F = cumsum(f);

F((tb-ta)/(2*dt)+1)

end;

end;

64



Bibliography

[1] J. Abate and W. Whitt, The Fourier-series method for inverting transforms of probability distribu-
tions, Queueing Systems, 10 (1992), pp. 5�88.

[2] , Computing Laplace transforms for numerical inversion via continued fractions, INFORMS Journal
on Computing, Vol.11 No.4 (1999), pp. 394�405.

[3] , Numerical inversion of Laplace transforms of probability distributions, INFORMS Journal on Com-
puting, Vol.11 No.4 (1999), pp. 394�405.

[4] Y. Ait-Sahalia, P. A. Mykland, and L. Zhang, Ultra high frequency volatility estimation with
dependent micro-structure noise, Deutsche Bundesbank, Research Centre - Discussion Paper Series 1:
Economic Studies, Vol.30 (2005).

[5] G. Baker and P. Graves-Morris, Encyclopedia of Mathematics and its Applications: Padé Ap-
proximants, 2nd Edition, Cambridge University Press, 1996.

[6] B. Biais, P. Hilton, and C. Spatt, An empirical analysis of the limit order book and the order �ow
in the Paris Bourse, Journal of Finance, Vol.50 (1995), p. 1655.

[7] B. Biais and P.-O. Weill, Liquidity shocks and order book dynamics, Toulouse School of Eco-
nomics/University of California Los Angeles and NBER, (2009).

[8] J.-P. Bouchaud, M. Mézard, and M. Potters, Statistical properties of stock order books: Em-
pirical results and models, Quantitative Finance, Vol.2 (2002), pp. 251�256.

[9] A. Bovier, J. �erný, and O. Hryniv, The opinion game: Stock price evolution from microscopic
market modeling, International Journal of Theoretical and Applied Finance, Vol.9 (2006), pp. 91�111.

[10] R. Cont, S. Stoikov, and R. Talreja, A stochastic model for order book dynamics, IEOR Dept,
Columbia University, New York, (2008).

[11] B. Davies and B. L. Martin, Numerical inversion of Laplace transforms: A critical evaluation and
review of methods, Journal of Computational Physics, 33 (1970), pp. 1�32.

[12] H. Dubner and J. Abate, Numerical inversion of Laplace transforms by relating them to the �nite
Fourier cosine transform, JACM, 15 (1968), pp. 115�123.

[13] W. Feller, An Introduction to Probability Theory and its Applications, Vol.II, 2nd edition, Wiley, New
York, 1971.

[14] T. Foucault, O. Kadan, and E. Kandel, Limit order book as a market for liquidity, Review of
Financial Studies, Vol.18 No.4 (2001), pp. 1171�1217.

[15] B. Hollifield, R. A. Miller, and P. Sandas, An empirical analysis of limit order markets, Review
of Economic Studies, Vol.71 No.4 (2004), pp. 1027�1063.

[16] L. Jacobsen, General convergence of continued fractions, Transactions of the American Mathematical
Society, Vol.294 No.2 (1986), pp. 477�485.

[17] D. L. Jagerman, An inversion technique for the Laplace transform, Bell System Technical Journal, 61
(1982), pp. 1995�2002.

65



BIBLIOGRAPHY BIBLIOGRAPHY

[18] J. Keilson, Markov Chain Models � Rarity and Exponentiality, Springer-Verlag, 1979.

[19] L. Lorentzen and H. Waadeland, Continued Fractions, second edition, Vol 1: Convergence Theory,
Atlantis Studies in Mathematics for Engineering and Science, 2008.

[20] N. Madras, Fields Institute Monographs: Lectures on Monte Carlo Methods, American Mathematical
Society, Providence, Rhode Island, 2002.

[21] C. Oosterlee and F. Fang, A novel pricing method for European options based on Fourier-cosine
series expansions, Munich Personal RePEc Archive, 9319 (2008).

[22] C. A. Parlour, Price dynamics in limit order markets, Review of Financial Studies, Vol.11 No.4 (1998),
pp. 789�816.

[23] S. M. Ross, Stochastic Processes, second edition, Wiley, 1996.

[24] I. Rosu, A dynamic model of the limit order book, Review of Financial Studies, Vol.22 No.11 (2009),
pp. 4601�4641.

[25] R. M. Simon, M. Stroot, and G. H. Weiss, Numerical inversion of Laplace transforms with
application to percentage labeled experiments, Journal of Biomedical Informatics, 6 (1972), pp. 596�607.

[26] E. Smith, J. D. Farmer, L. Gillemot, and S. Krishnamurthy, Statistical theory of of the
continuous double action, Quantitative Finance, Vol.3 No.6 (2003), pp. 481�514.

[27] T. Stieltjes, Recherches sur les fractions continues, Annales de la Faculté des Sciences de Toulouse,
(1894).

[28] I. Zovko and J. Farmer, The power of patience; a behavioral regularity in limit order placement,
Quantitative Finance, 2 (2002), pp. 387�392.

66


