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The evolution of prices in financial markets results from
the interaction of buy and sell orders through a rather com-
plex dynamic process. Studies of the mechanisms involved
in trading financial assets have traditionally focused on
quote-driven markets, where a market maker or dealer cen-
tralizes buy and sell orders and provides liquidity by set-
ting bid and ask quotes. The NYSE specialist system is
an example of this mechanism. In recent years, electronic
communications networks (ECNs) such as Archipelago,
Instinet, Brut, and Tradebook have captured a large share
of the order flow by providing an alternative order-driven
trading system. These electronic platforms aggregate all
outstanding limit orders in a limit order book that is avail-
able to market participants and market orders are exe-
cuted against the best available prices. As a result of
the ECN’s popularity, established exchanges such as the
NYSE, NASDAQ, the Tokyo Stock Exchange, and the
London Stock Exchange have adopted electronic order-
driven platforms, either fully or partially through “hybrid”
systems.
The absence of a centralized market maker, the mechan-

ical nature of execution of orders and, last but not least,
the availability of data have made order-driven markets
interesting candidates for stochastic modelling. At a funda-
mental level, models of order book dynamics may provide

some insight into the interplay between order flow, liquid-
ity, and price dynamics (Bouchaud et al. 2002, Smith et al.
2003, Farmer et al. 2004, Foucault et al. 2005). At the level
of applications, such models provide a quantitative frame-
work in which investors and trading desks can optimize
trade execution strategies (Alfonsi et al. 2010, Obizhaeva
and Wang 2006). An important motivation for modelling
high-frequency dynamics of order books, is to use the infor-
mation on the current state of the order book to predict
its short-term behavior. We focus, therefore, on conditional
probabilities of events, given the state of the order book.
The dynamics of a limit order book resembles in many

aspects that of a queuing system. Limit orders wait in a
queue to be executed against market orders (or canceled).
Drawing inspiration from this analogy, we model a limit
order book as a continuous-time Markov process that tracks
the number of limit orders at each price level in the book.
The model strikes a balance between three desirable fea-
tures: it can be estimated easily using high-frequency data,
it reproduces various empirical features of order books, and
it is analytically tractable. In particular, we show that our
model is simple enough to allow the use of Laplace trans-
form techniques from the queuing literature to compute
various conditional probabilities. These include the prob-
ability of the midprice increasing in the next move, the
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probability of executing an order at the bid before the ask
quote moves, and the probability of executing both a buy
and a sell order at the best quotes before the price moves,
given the state of the order book. Although here we only
focus on these events, the methods we introduce allow one
to compute conditional probabilities involving much more
general events such as those involving latency associated
with order processing (see Remark 1). We illustrate our
techniques on a model estimated from order book data for
a stock on the Tokyo Stock Exchange.
Related literature. Various recent studies have focused

on limit order books. Given the complexity of the struc-
ture and dynamics of order books, it has been difficult
to construct models that are both statistically realistic and
amenable to rigorous quantitative analysis. Parlour (1998),
Foucault et al. (2005), and Rosu (2009) propose equilib-
rium models of limit order books. These models provide
interesting insights into the price formation process, but
contain unobservable parameters that govern agent prefer-
ences. Thus, they are difficult to estimate and use in appli-
cations. Some empirical studies on properties of limit order
books are Bouchaud et al. (2002), Farmer et al. (2004),
and Hollifield et al. (2004). These studies provide an exten-
sive list of statistical features of order book dynamics that
are challenging to incorporate in a single model. Bouchaud
et al. (2008), Smith et al. (2003), Bovier et al. (2006),
Luckock (2003), and Maslov and Mills (2001) propose
stochastic models of order book dynamics in the spirit of
the one proposed here, but focus on unconditional/steady–
state distributions of various quantities rather than the con-
ditional quantities we focus on here.
The model proposed here is admittedly simpler in struc-

ture than some others existing in the literature: It does not
incorporate strategic interaction of traders as in the game-
theoretic approaches of Parlour (1998), Foucault et al.
(2005), and Rosu (2009), nor does it account for “long
memory” features of the order flow as pointed out by
Bouchaud et al. (2002, 2008). However, contrarily to these
models, it leads to an analytically tractable framework
where parameters can be easily estimated from empirical
data and various quantities of interest may be computed
efficiently.
Outline. The paper is organized as follows. Section 1

describes a stylized model for the dynamics of a limit
order book, where the order flow is described by inde-
pendent Poisson processes. Estimation of model param-
eters from high-frequency order book time-series data is
described in §2 and illustrated using data from the Tokyo
Stock Exchange. In §3 we show how this model can be
used to compute conditional probabilities of various types
of events relevant for trade execution using Laplace trans-
form methods. Section 4 explores steady-state properties of
the model using Monte Carlo simulation, compares condi-
tional probabilities computed by simulation to those com-
puted with the Laplace transform methods presented in §3,
and analyzes a high-frequency trading strategy based on
our results in §4.3. Section 5 concludes.

1. A Continuous-Time Model for a
Stylized Limit Order Book

1.1. Limit Order Books

Consider a financial asset traded in an order-driven market.
Market participants can post two types of buy/sell orders. A
limit order is an order to trade a certain amount of a security
at a given price. Limit orders are posted to a electronic
trading system, and the state of outstanding limit orders can
be summarized by stating the quantities posted at each price
level: this is known as the limit order book. The lowest
price for which there is an outstanding limit sell order is
called the ask price and the highest buy price is called the
bid price.
A market order is an order to buy/sell a certain quantity

of the asset at the best available price in the limit order
book. When a market order arrives it is matched with the
best available price in the limit order book, and a trade
occurs. The quantities available in the limit order book are
updated accordingly.
A limit order sits in the order book until it is either exe-

cuted against a market order or it is canceled. A limit order
may be executed very quickly if it corresponds to a price
near the bid and the ask, but may take a long time if the
market price moves away from the requested price or if the
requested price is too far from the bid/ask. Alternatively, a
limit order can be canceled at any time.
We consider a market where limit orders can be placed

on a price grid �1� � � � � n� representing multiples of a price
tick. The upper boundary n is chosen large enough so that
it is highly unlikely that orders for the stock in question are
placed at prices higher than n within the time frame of our
analysis. Because the model is intended to be used on the
time scale of hours or days, this finite boundary assumption
is reasonable. We track the state of the order book with
a continuous-time process X�t� ≡ �X1�t�� � � � �Xn�t��t�0,
where �Xp�t�� is the number of outstanding limit orders at
price p, 1� p � n. If Xp�t� < 0, then there are −Xp�t� bid
orders at price p; if Xp�t� > 0, then there are Xp�t� ask
orders at price p.
The ask price pA�t� at time t is then defined by

pA�t� = inf�p = 1� � � � � n� Xp�t� > 0� ∧ �n + 1��

Similarly, the bid price pB�t� is defined by

pB�t� ≡ sup�p = 1� � � � � n� Xp�t� < 0� ∨ 0�

Notice that when there are no ask orders in the book we
force an ask price of n + 1, and when there are no bid
orders in the book we force a bid price of 0. The midprice
pM�t� and the bid-ask spread pS�t� are defined by

pM�t� ≡ pB�t� + pA�t�

2
and pS�t� ≡ pA�t� − pB�t��

Because most of the trading activity takes place in the
vicinity of the bid and ask prices, it is useful to keep track
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of the number of outstanding orders at a given distance
from the bid/ask. To this end, we define

QB
i �t� =

⎧⎨
⎩

XpA�t�−i�t� 0 < i < pA�t�

0 pA�t�� i < n�
(1)

the number of buy orders at a distance i from the ask, and

QA
i �t� =

⎧⎨
⎩

XpB�t�+i�t� 0 < i < n − pB�t�

0 n − pB�t�� i < n�
(2)

the number of sell orders at a distance i from the bid.
Although X�t� and �pA�t��pB�t��QA�t��QB�t�� contain
the same information, the second representation highlights
the shape or depth of the book relative to the best quotes.

1.2. Dynamics of the Order Book

Let us now describe how the limit order book is updated by
the inflow of new orders. For a state x ∈�n and 1� p � n,
define

xp±1 ≡ x ± �0� � � � �1� � � � �0��

where the 1 in the vector on the right-hand side is in the
pth component. Assuming that all orders are of unit size (in
empirical examples we will take this unit to be the average
size of limit orders observed for the asset),

• a limit buy order at price level p < pA�t� increases the
quantity at level p� x → xp−1

• a limit sell order at price level p > pB�t� increases the
quantity at level p� x → xp+1

• a market buy order decreases the quantity at the ask
price: x → xpA�t�−1

• a market sell order decreases the quantity at the bid
price: x → xpB�t�+1

• a cancellation of an oustanding limit buy order at price
level p < pA�t� decreases the quantity at level p� x → xp+1

• a cancellation of an oustanding limit sell order at price
level p > pB�t� decreases the quantity at level p� x → xp−1

The evolution of the order book is thus driven by the
incoming flow of market orders, limit orders, and cancella-
tions at each price level, each of which can be represented
as a counting process. It is empirically observed (Bouchaud
et al. 2002) that incoming orders arrive more frequently
in the vicinity of the current bid/ask price and the rate
of arrival of these orders depends on the distance to the
bid/ask.
To capture these empirical features in a model that is

analytically tractable and allows computation of quantities
of interest in applications, most notably conditional prob-
abilities of various events, we propose a stochastic model
where the events outlined above are modelled using inde-
pendent Poisson processes. More precisely, we assume that,
for i � 1,

• Limit buy (respectively sell) orders arrive at a dis-
tance of i ticks from the opposite best quote at independent,
exponential times with rate 	�i�,

• Market buy (respectively sell) orders arrive at inde-
pendent, exponential times with rate 
,

• Cancellations of limit orders at a distance of i ticks
from the opposite best quote occur at a rate proportional
to the number of outstanding orders: If the number of out-
standing orders at that level is x, then the cancellation rate
is ��i�x. This assumption can be understood as follows: if
we have a batch of x outstanding orders, each of which
can be canceled at an exponential time with parameter ��i�,
then the overall cancellation rate for the batch is ��i�x.

• The above events are mutually independent.
Order arrival rates depend on the distance to the bid/ask

with most orders being placed close to the current price. We
model the arrival rate as a function 	� �1� � � � � n� → �0���
of the distance to the bid/ask. Empirical studies (Zovko and
Farmer 2002 or Bouchaud et al. 2002) suggest a power law,

	�i� = k

i
�

as a plausible specification.
Given the above assumptions, X is a continuous-time

Markov chain with state space �n and transition rates
given by:

x → xp−1 with rate 	�pA�t� − p� for p < pA�t��

x → xp+1 with rate 	�p − pB�t�� for p > pB�t��

x → xpB�t�+1 with rate 
�

x → xpA�t�−1 with rate 
�

x → xp+1 with rate ��pA�t� − p��xp� for p < pA�t��

x → xp−1 with rate ��p − pB�t���xp� for p > pB�t��

In practice, the ask price is always greater than the bid
price. We say a state is admissible if it fulfills this
requirement:

�≡ �x ∈�n � ∃k� l ∈� s.t. 1� k � l � n�xp � 0 for p � l�

xp = 0 for k � p � l� xp � 0 for p � k�� (3)

If the initial state of the book is admissible, it remains
admissible with probability one:

Proposition 1. If X�0� ∈ �, then � �X�t� ∈ ��
∀t � 0� = 1.

Proof. It is easily verified that � is stable under each
of the six transitions defined above, which leads to our
assertion. �

Proposition 2. If � ≡ min1�i�n ��i� > 0, then X is an
ergodic Markov process. In particular, X has a proper sta-
tionary distribution.
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Proof. Let N ≡ �N �t�� t � 0�, where N�t� ≡∑n
p=1 �Xp�t��,

and let �N be a birth-death process with birth rate given
by 	 ≡ 2

∑n
p=1 	�p� and death rate in state i, 
i ≡ 2
 + i�.

Notice that N increases by one at a rate bounded from
above by 	 and decreases by one at a rate bounded from
below by 
i ≡ 2
 + i� when in state i. Thus, for all
t � 0, N is stochastically bounded by �N . For k � 1, let T k

0

and T k
−0 denote the duration of the kth visit to 0 and the

duration between the �k − 1�th and kth visit to 0 of pro-
cess N , respectively. Define random variables �T k

0 and �T k
−0,

k � 1, for process �N similarly. Then the point process with
interarrival times T 1

−0� T 1
0 � T 2

−0� T 2
0 � � � � and the point process

with interarrival times �T 1
−0� �T 1

0 � �T 2
−0� �T 2

0 � � � � are alternating
renewal processes. By Theorem VI.1.2 of Asmussen (2003)
and the fact that N is stochastically dominated by �N , we
then have for each k � 1,

Ɛ�T k
0 �

Ɛ�T k
0 � + Ɛ�T k

−0�
= lim

t→�� �N �t� = 0�

� lim
t→�� � �N�t� = 0� = Ɛ� �T k

0 �

Ɛ� �T k
0 � + Ɛ� �T k

−0�
� (4)

Notice that in state 0 both N and �N have birth rate 	. Thus,

Ɛ�T k
0 � = Ɛ� �T k

0 � = 1
	

� (5)

Combining (4) and (5) gives us

Ɛ�T k
−0�� Ɛ� �T k

−0�� (6)

To show �N is ergodic, notice the inequalities

�∑
i=1

	i


1 · · ·
i

<
�∑

i=1

1
i!
(

	

�

)i

= e	/� − 1< �� (7)

and

�∑
i=1


1 ···
i

	i
>

M∑
i=1


1 ···
i

	i
+

�∑
i=M+1

(
2
+M�

	

)i

=�� (8)

for M > 0 chosen large enough so that 2
+M� > 	. There-
fore, by Corollary 2.5 of Asmussen (2003), �N is ergodic
so that Ɛ� �T k

−0� < �. Combining this with the bound (6) and
the fact that for each t � 0 X�t� = �0� � � � �0� if and only if
N�t� = 0 shows that X is positive recurrent. Because X is
clearly also irreducible, it follows that X is ergodic. �

The ergodicity of X is a desirable feature of theoretical
interest: it allows comparison of time averages of various
quantities in simulations (average shape of the order book,
average price impact, etc.) to unconditional expectations of
these quantities computed in the model. The steady-state
behavior of X will be further discussed in §4.1. We note,
however, that our results involving conditional probabilities
in §3 and applications discussed in §4.3 do not rely on this
ergodicity result.

2. Parameter Estimation

2.1. Description of the Data Set

Our data consist of time-stamped sequences of trades (mar-
ket orders) and quotes (prices and quantities of outstanding
limit orders) for the five best price levels on each side of the
order book, for stocks traded on the Tokyo stock exchange
over a period of 125 days (Aug.–Dec. 2006). This data set,
referred to as Level II order book data, provides a more
detailed view of price dynamics than the trade and quotes
(TAQ) data often used for high-frequency data analysis,
which consist of prices and sizes of trades (market orders)
and time-stamped updates in the price and size of the bid
and ask quotes.
In Table 1, we display a sample of three consecutive

trades for Sky Perfect Communications. Each row provides
the time, size, and price of a market order. We also display
a sample of Level II bid-side quotes. Each row displays the
five bid prices (pb1, pb2, pb3, pb4, pb5), as well as the
quantity of shares bid at these respective prices (qb1, qb2,
qb3, qb4, qb5).

2.2. Estimation Procedure

Recall that in our stylized model we assume orders to be
of “unit” size. In the data set, we first compute the average
sizes of market orders Sm, limit orders Sl, and canceled
orders Sc and choose the size unit to be the average size
of a limit order Sl. The limit order arrival rate function for
1� i � 5 can be estimated by

	̂�i� = Nl�i�

T∗
�

where Nl�i� is the total number of limit orders that arrived
at a distance i from the opposite best quote, and T∗ is
the total trading time in the sample (in minutes). Nl�i� is
obtained by enumerating the number of times that a quote
increases in size at a distance of 1� i � 5 ticks from the
opposite best quote. We then extrapolate by fitting a power
law function of the form

	̂�i� = k

i

(suggested by Zovko and Farmer 2002 or Bouchaud et al.
2002). The power law parameters k and  are obtained by
a least-squares fit

min
k�

5∑
i=1

(
	̂�i� − k

i

)2

�

Estimated arrival rates at distances 0 � i � 10 from the
opposite best quote are displayed in Figure 1(a).
The arrival rate of market orders is then estimated by


̂ = Nm

T∗

Sm

Sl

�
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Table 1. A sample of three trades and five quotes for Sky Perfect Communications.

Time Price Size

9:11:01 74�300 1
9:11:04 74�600 2
9:11:19 74�400 1

Time pb1 pb2 pb3 pb4 pb5 qb1 qb2 qb3 qb4 qb5

9:11:01 74�300 74�200 74�000 73�900 73�800 12 13 1 52 11
9:11:03 74�400 74�300 74�200 74�000 73�900 20 12 13 1 52
9:11:04 74�400 74�300 74�200 74�000 73�900 21 11 13 1 52
9:11:05 74�400 74�300 74�200 74�000 73�900 34 4 13 1 52
9:11:19 74�400 74�300 74�200 74�000 73�900 33 4 13 1 52

where T∗ is the total trading time in the sample (in minutes)
and Nm is the number of market orders. Note that we ignore
market orders that do not affect the best quotes, as is the
case when a market order is matched by a hidden order.
Because the cancellation rate in our model is propor-

tional to the number of orders at a particular price level,

Figure 1. The arrival rates as a function of the distance
from the opposite quote.
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in order to estimate the cancellation rates we first need to
estimate the steady-state shape of the order book Qi, which
is the average number of orders at a distance of i ticks from
the opposite best quote, for 1� i � 5. If M is the number
of quote rows and SB

i �j� the number of shares bid at a dis-
tance of i ticks from the ask on the jth row, for 1� j �M ,
we have

QB
i = 1

Sl

1
M

M∑
j=1

SB
i �j��

The vector QA
i is obtained analogously, and Qi is the aver-

age of QA
i and QB

i .
An estimator for the cancellation rate function is then

given by

�̂�i� = Nc�i�

TQi

Sc

Sl

for i � 5 and

�̂�i� = �̂�5� for i > 5�

(9)

where Nc�i� is obtained by counting the number of times
that a quote decreases in size at a distance of 1� i � 5
ticks from the opposite best quote, excluding decreases
due to market orders. The fitted values are displayed in
Figure 1(b).
Estimated parameter values for Sky Perfect Communica-

tions are given in Table 2.

3. Laplace Transform Methods for
Computing Conditional Probabilities

As noted above, an important motivation for modelling
high-frequency dynamics of order books is to use the infor-
mation provided by the limit order book for predicting

Table 2. Estimated parameters: Sky Per-
fect Communications.

i

1 2 3 4 5

	̂�i� 1�85 1�51 1�09 0�88 0�77
�̂�i� 0�71 0�81 0�68 0�56 0�47


̂ 0�94
k 1�92
 0�52
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short-term behavior of various quantities that are useful in
trade execution and algorithmic trading, for instance, the
probability of the midprice moving up versus down, the
probability of executing a limit order at the bid before
the ask quote moves, and the probability of executing both
a buy and a sell order at the best quotes before the price
moves. These quantities can be expressed in terms of con-
ditional probabilities of events, given the state of the order
book. In this section we show that the model proposed
in §1 allows such conditional probabilities to be analyt-
ically computed using Laplace methods. After presenting
some background on Laplace transforms in §3.1, we give
various examples of these computations. The probability of
an increase in the midprice is discussed in §3.2, the prob-
ability that a limit order executes before the price moves
is discussed in §3.3, and the probability of executing both
a buy and a sell limit order before the price moves is
discussed in §3.4. Laplace transform methods allow effi-
cient computation of these quantities, bypassing the need
for Monte Carlo simulation.

3.1. Laplace Transforms and First-Passage
Times of Birth-Death Processes

We first recall some basic facts about two-sided Laplace
transforms and discuss the computation of Laplace trans-
forms for first-passage times of birth-death processes
(Abate and Whitt 1999). Given a function f � � → �, its
two-sided Laplace transform is given by

f̂ �s� =
∫ �

−�
e−stf �t�dt�

where s is a complex numbers. When f is the probabil-
ity density function (pdf) of some random variable X, we
also say that f̂ is the two-sided Laplace transform of the
random variable X. We work with two-sided Laplace trans-
forms here because for our purposes the function f will
usually correspond to the pdf of a random variable with
both positive and negative support. From now on, we drop
the prefix “two-sided” when referring to two-sided Laplace
transforms. When we say conditional Laplace transform of
the random variable X conditional on the event A, we mean
the Laplace transform of the conditional pdf of X given A.
Recall that if X and Y are independent random variables
with well-defined Laplace transforms, then

f̂X+Y �s�=Ɛ�e−s�X+Y ��=Ɛ�e−sX�Ɛ�e−sY �= f̂X�s�f̂Y �s�� (10)

If for some � ∈ � we have
∫ �

−� �f̂ �� + i���d� < � and
f �t� is continuous at t, then the inverse transform is given
by the Bromwich contour integral

f �t� = 1
2�i

∫ �+i�

�−i�
ets f̂ �s�ds� (11)

The continued fraction associated with a sequence
�an� n� 1� of partial numerators and �bn� n� 1� of partial

denominators, which are complex numbers with an = 0 for
all n� 1, is the sequence �wn� n� 1�, where

wn = t1�t2�···�tn�0�� n�1� tk�u�= ak

bk +u
� k�1�

and � denotes the composition operator. If w ≡ limn→� wn,
then the continued fraction is said to be convergent and the
limit w is said to be the value of the continued fraction
(Abate and Whitt 1999). In this case, we write

w ≡ ��
n=1

an

bn

�

Consider now a birth-death process with constant birth rate
	 and death rates 
i in state i � 1, and let �b denote the
first-passage time of this process to 0 given that it begins
in state b. Next, notice that we can write �B as the sum

�b = �b�b−1 + �b−1� b−2 + · · · + �1�0�

where �i� i−1 denotes the first-passage time of the birth-
death process from the state i to the state i − 1, for
i = 1� � � � � b, and all terms on the right-hand side are
independent. If f̂b denotes the Laplace transform of �b

and f̂i� i−1 denotes the Laplace transform of �i� i−1 for i =
1� � � � � b, then we have by (10),

f̂b�s� =
b∏

i=1

f̂i� i−1�s�� (12)

Therefore, in order to compute f̂b, it suffices to compute
the simpler Laplace transforms f̂i� i−1, for i = 1� � � � � b. By
Equation (4.9) of Abate and Whitt (1999), we see that the
Laplace transform of f̂i� i−1 is given by

f̂i� i−1�s� = − 1
	

��
k=i

−	
k

	 + 
k + s
� (13)

The computation there is based on a recursive relation-
ship between the f̂i� i−1, i = 1� � � � � b, which is derived by
considering the first transition of the birth-death process.
Combining (12) and (13), we obtain

f̂b�s� =
(

− 1
	

)b( b∏
i=1

��
k=i

−	
k

	 + 
k + s

)
� (14)

We will use this result in all our computations below.

3.2. Direction of Price Moves

We now compute the probability that the midprice increases
at its next move. The first move in the midprice occurs at
the first-passage time of the bid or ask queue to zero or, if
the bid/ask spread is greater than one, the first time a limit
order arrives inside the spread. Throughout this section,
let XA ≡ XpA�·��·� and XB ≡ �XpB�·��·��. Furthermore, let
WB ≡ �WB�t�� t � 0� (WA ≡ �WA�t�� t � 0�), where WB�t�
(WA�t�) denotes the number of orders remaining at the bid
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(ask) at time t of the initial XB�0� (XA�0�) orders and let
�B (�A) be the first-passage time of WB (WA) to 0. Further-
more, let T be the time of the first change in midprice:

T ≡ inf�t � 0� pM�t� = pM�0���

Given an initial configuration of the book, the probability
that the next change in midprice is an increase can then be
written as

� �pM�T �>pM�0� �XA�0�=a�XB�0�=b�pS�0�=S�� (15)

where S > 0. For ease of notation, we will omit the condi-
tion in (15) in all proofs below.
The idea for computing (15) is to use a coupling

argument.

Lemma 3. Let pS�0� = S. Then
1. There exist independent birth-death processes

�XA and �XB with constant birth rates 	�S� and death
rates 
 + i��S�, i � 1, such that for all 0 � t � T ,
�XA�t� = XA�t�, and �XB�t� = XB�t�.
2. There exist independent pure death processes

�WA and �WB with death rate 
 + i��S� in state i � 1, such
that for all 0� t � T , �WA�t� = WA�t� and �WB�t� = WB�t�.
Furthermore, �WA is independent of �XB, �WB is independent
of �XA, �WA � �XA, and �WB � �XB.

Proof. We prove Part 1. Part 2 can be proven analogously.
X is a continuous-time Markov chain, with transition rates
given by (1.2). For 0� t � T , pA�t� = pA�0� and pB�t� =
pB�0�, so substituting in (1.2) yields that XA�t� and XB�t�
have the following (identical) transition rates for 0� t � T

n → n + 1 with rate 	�S� (16)

n → n − 1 with rate 
 + n��S�� (17)

Define �XA and �XB such that
• �XA�t� = XA�t� and �XB�t� = XB�t� for t � T and
• �XA�t�� �XB�t�� t � T follow independent birth-death

processes with rates given by (16) and (17).
The above remarks show that in fact � �XA�t��t�0 (respec-
tively � �XB�t��t�0) has the same law as a birth-death
process with rates (16)–(17). To show that �XA and
�XB are independent, we note that because the tran-
sition rates of XA (respectively XB) do not depend
on �Xp�t��p = pA�0�� (respectively �Xp�t��p = pB�0��)
for 0 � t � T , we have, in particular, conditional
independence of XA�t� and XB�t� given X�0� and
�t � T �. �

Henceforth, we let �A and �B denote the first-passage
times of �XA and �XB to 0, respectively. The conditional
probability (15) can then be computed as follows:

Proposition 4 (Probability of Increase in Midprice).

Let f̂ S
j be given by

f̂ S
j �s�=

(
− 1

	�S�

)j( b∏
i=1

��
k=i

−	�S��
+k��S��

	�S�+
+k��S�+s

)
� (18)

for j � 1, and let �S ≡ ∑S−1
i=1 	�i�. Then (15) is given by

the inverse Laplace transform of

�F S
a�b�s� = 1

s

(
f̂ S

a ��S + s� + �S

�S + s
�1− f̂ S

a ��S + s��

)

·
(

f̂ S
b ��S − s� + �S

�S − s
�1− f̂ S

b ��S − s��

)
� (19)

evaluated at 0. When S = 1, (19) reduces to

�F 1
a�b�s� = 1

s
f̂ 1

a �s�f̂ 1
b �−s�� (20)

Proof. We will first focus on the special case when S = 1
and then extend the analysis to the case S > 1, using
Lemma 5 below. Construct the independent birth-death pro-
cesses �XA and �XB as in Lemma 3. When S = 1, the price
changes for the first time exactly when one of the two pro-
cesses �XA and �XB reaches the state 0 for the first time.
Thus, given our initial conditions, the distribution of T
is given by the minimum of the independent first-passage
times �A and �B. Furthermore, the quantity (15) is given
by � ��A < �B�. By (14), the conditional Laplace trans-
form of �A − �B given the initial conditions is given by
f̂ 1

a �s�f̂ 1
b �−s� so that the conditional Laplace transform of

the cumulative distribution function (cdf) of �A − �B is
given by (20). Thus, our desired probability is given by the
inverse Laplace transform of (20) evaluated at 0.
We now move on to the case where S > 1. Let �i

A denote
the first time an ask order arrives i ticks away from the
bid and �i

B denote the first time a bid order arrives i ticks
away from the ask, for i = 1� � � � � S − 1. The time of the
first change in midprice is now given by

T = �A ∧ �B ∧min��i
A��i

B� i = 1� � � � � S − 1��

Notice that �XA and �XB are independent of the mutually
independent arrival times �i

A, �i
B, for i = 1� � � � � S−1. Also,

notice that �i
A and �i

B are exponentially distributed with
rates 	�i� for i = 1� � � � � S −1. The first change in midprice
is an increase if there is an arrival of a limit bid order
within S − 1 ticks of the best ask or �XA hits zero, before
there is an arrival of a limit ask order within S − 1 ticks of
the best bid or �XB hits zero. Thus, the quantity (15) can be
written as

� ��A ∧ �1
B ∧ · · · ∧ �S−1

B < �B ∧ �1
A ∧ · · · ∧ �S−1

A �

= � ��A ∧ ��
B < �B ∧ ��

A �� (21)

where ��
A and ��

B are independent exponential random vari-
ables, both with rate �S . To compute (21), we first need
to compute the conditional Laplace transform of the mini-
mum �B ∧ ��

A . This is given in Lemma 5, substituting ��
A

for Z. The conditional Laplace transform of the random
variable �B ∧ ��

A − �A ∧ ��
B can then be computed using

(10), and the probability (15) can be computed by inverting
the conditional Laplace transform of the cdf of this random
variable and evaluating at 0 as in the case S = 1. �
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Lemma 5. Let Z be an exponentially distributed random
variable with parameter �. Then the Laplace transform of
the random variable �B ∧ Z is given by

f̂ 1
b �� + s� + �

� + s
�1− f̂ 1

b �� + s���

where f̂ 1
b is given in (18).

Proof. We first compute the density f�B∧Z of the random
variable �B ∧ Z in terms of the density fb of the random
variable �B. Because Z is exponential with rate �, we have
for all t � 0,

� ��B ∧ Z < t� = 1−� ��B > t�� �Z > t�

= 1− �1− F�B
�t��e−�t�

Taking derivatives with respect to t gives

f�B∧Z�t� = f 1
b �t�e−�t + ��1− F 1

b �t��e−�t� (22)

for t � 0, where F 1
b �t� (f 1

b �t�) is the cdf (pdf) of �B. Also,
f�B∧Z�t� = 0 for t < 0. The Laplace transform of �B ∧ Z is
thus given by

f̂�B∧Z�s�=
∫ �

−�
e−stf�B∧��

B
�t�dt

=
∫ �

0
e−st�f 1

b �t�e−�t +��1−F 1
b �t��e−�t�ds

=
∫ �

0
e−t�s+��f 1

b �t�dt+�
∫ �

0
�1−F 1

b �t��e−t�s+�� dt

= f̂ 1
b �s+��+ �

�+s
�1− f̂ 1

b �s+����

where the last equality follows from integration by
parts. �

Proposition 4 yields a numerical procedure for comput-
ing the probability that the next change in the midprice will
be an increase. We discuss implementation of the procedure
in §4.2.2.

3.3. Executing an Order Before
the Mid-Price Moves

A trader that submits a limit order at a given time obtains
a better price than a trader that submits a market order at
that same time, but faces the risk of nonexecution and the
“winner’s curse.” Whereas a market order executes with
certainty, a limit order stays in the order book until either
a matching order is entered or the order is canceled. The
probability that a limit order is executed before the price
moves is therefore useful in quantifying the choice between
placing a limit order and placing a market order. We now
compute the probability that an order placed at the bid price
is executed before any movement in the midprice, given
that the order is not canceled. Our result holds for initial
spread S ≡ pS�0�� 1, but we remark that in the case where

S = 1 the probability we are interested in is equal to the
probability that the order is executed before the midprice
moves away from the desired price, given that the order is
not canceled. Although we focus here on an order placed
at the bid price, because our model is symmetric in bids
and asks, our result also holds for orders placed at the ask
price.
We introduce some new notation that we will use in this

subsection as well as the next. Let NCb (NCa) denote the
event that an order that never gets canceled is placed at
the bid (ask) at time 0. Then, the probability that an order
placed at the bid is executed before the midprice moves is
given by

� ��B < T � XB�0� = b�XA�0� = a�pS�0� = S�NCb�� (23)

Proposition 6 (Probability of Order Execution

Before Midprice Moves). Define f̂ S
a �s� as in (18), let ĝS

j

be given by

ĝS
j �s� =

j∏
i=1


 + ��S��i − 1�

 + ��S��i − 1� + s

� (24)

for j � 1, and let �S ≡ ∑S−1
i=1 	�i�. Then the quantity (23)

is given by the inverse Laplace transform of

�F S
a�b�s� = 1

s
ĝS

b �s�

(
f̂ S

b �2�S − s�

+ 2�S

2�S − s
�1− f̂ S

b �2�S − s��

)
� (25)

evaluated at 0. When S = 1, (25) reduces to

�F 1
a�b�s� = 1

s
ĝ1

b�s�f̂
1
a �−s�� (26)

Proof. Construct �XA and �WB using Lemma 3. Let us first
consider the case S = 1. Let T ′ ≡ �B ∧ T denote the first
time when either the process �WB hits 0 or the midprice
changes. Conditional on an infinitely patient order being
placed at the bid price at time 0, T ′ is the first time when
either that order gets executed or the midprice changes.
Notice that conditional on our initial conditions, �B is given
by a sum of b independent exponentially distributed ran-
dom variables with parameters 
 + �i − 1���1�, for i =
1� � � � � b, and independent of �XA. Thus, the conditional
Laplace transform of �B given our initial conditions is given
by (24). Because in the case S = 1 the midprice can change
before time �B if and only if �A < �B, the quantity (23)
can be written simply as � ��B < �A�. Using (10) with the
conditional Laplace transforms of �B and �A, given in (24)
and (18), respectively, we obtain (26).
This analysis can be extended to the case where S > 1

just as in the proof of Proposition 4. When S > 1, our
desired quantity can be written as � ��B < �A ∧ ��

B ∧ ��
A �.

Because the conditional distribution of ��
B ∧ ��

A is expo-
nential with parameter 2�S , Lemma 5 then yields the
result. �
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3.4. Making the Spread

We now compute the probability that two orders, one
placed at the bid price and one placed at the ask price, are
both executed before the midprice moves, given that the
orders are not canceled. If the probability of executing both
a buy and a sell limit order before the price moves is high,
a statistical arbitrage strategy can be designed by submit-
ting limit orders at the bid and the ask and wait for both
orders to execute. If both orders execute before the price
moves, the strategy has paid off the bid-ask spread: we
refer to this situation as “making the spread.” Otherwise,
losses may be minimized by submitting a market order and
losing the bid-ask spread. We restrict attention to the case
where the initial spread is one tick: S = 1. The probability
of making the spread can be expressed as

� �max��A� �B� < T � XB�0� = b�XA�0� = a�

pS�0� = 1�NCa�NCb�� (27)

The following result allows one to compute this probability
using Laplace transform methods:

Proposition 7. The probability (27) of making the spread
is given by ha�b + hb�a, where

ha�b =
�∑

i=0

a∑
j=1

� ��j < �i�
∫ �

0
PX
0� i�t�P

W
a� j �t�g

1
b�t�dt� (28)

where

PX
0� i�t� ≡ e−	X�t�	X�t�i

i! � 	X�t� ≡ 	

�
�1− e−�t�� (29)

PW
a� j�t� ≡ �eQW

a t�a� j ≡
( �∑

k=0

tk

k! �Q
W
a �k

)
a� j

� (30)

QW
a ≡

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 · · · 0


 −
 0 · · · 0

0 
 + � −
 − � · · · 0

���
���

� � �
� � �

���

0 0 · · · 
 + �a − 1�� −
 − �a − 1��

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

�

(31)

and g1
b is the inverse Laplace transform of ĝ1

b , which is
given in (24).

Proof. Because S = 1, T =min��A��B�, and the quantity
(27) can be written as

� �max��B� �A� <min��B��A��� (32)

Construct �XA, �XB, �WA, and �WB using Lemma 3. Let T ′ =
max��A� �B� ∧ T denote the first time when either both
of the processes �WA and �WB have hit 0, or the midprice
has changed. Conditional on infinitely patient orders being

placed at the best bid and ask prices at time 0, T ′ is the first
time when either both the orders get executed or the mid-
price changes. Furthermore, by Lemma 3, �WA and �WB are
independent pure death processes with death rate 
+ i��1�
in state i � 1, and �WA�t�� �XA�t� and �WB�t�� �XB�t�. This
implies that �A and �B are independent of each other and
�A and �B are independent of each other with �A � �A and
�B � �B. Using these properties, we obtain

� �max��B� �A� <min��B��A��

= � ��B < �A� �A < �B�

= � ��B < �A� �A < �B� �B < �A�

+� ��B < �A� �A < �B� �A < �B�

= � ��A < �B� �B < �A� +� ��B < �A� �A < �B�

= ha�b + hb�a� (33)

where we define ha�b ≡ � ��B < �A < �B�, the probability
that the order placed at the bid is executed before the order
placed at the ask, and the order at the ask is executed before
the bid quote disappears. We now focus on computing ha�b.
Conditioning on the value of �B gives

ha�b =
∫ �

0
� ��B < �A < �B � �B = t�g1

b�t�dt� (34)

Focusing on the first factor in the integrand in (34) and
conditioning on the values of �XB�t� and �WA�t� gives us

� ��B < �A < �B � �B = t�

=
�∑

i=0

a∑
j=0

� ��B < �A < �B � �B = t� �XB�t� = i� �WA�t� = j�

·� � �XB�t� = i� �WA�t� = j � �B = t�� (35)

The first conditional probability on the right hand of (35)
can now be simplified as follows. For i = 0 or j = 0 it is
simply 0. For i� j � 1, under the condition of the probabil-
ity, at time t there are j orders in the ask queue that have
been placed before time 0 that have yet to be executed,
and there are a total of i orders in the bid queue. Thus, the
probability of interest is simply the probability that the j
ask orders get executed before the number of orders in the
bid queue hits 0. Thus,

� ��B < �A < �B � �B = t� �XB�t� = i� �WA�t� = j�

= � ��j < �i�� (36)

Furthermore, the second probability on the right-hand side
of (35) can be written as

� � �XB�t� = i� �WA�t� = j � �B = t�

= � � �XB�t� = i � �B = t�� � �WA�t� = j � �B = t�

= � � �XB�t� = i � �B = t�� � �WA�t� = j�� (37)
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Combining Equations (33)–(35) and using Tonelli’s theo-
rem to interchange the integral and the summation gives us

ha�b =
�∑

i=0

a∑
j=1

� ��j < �i�
∫ �

0
� � �XB�t� = i � �B = t�

·� � �WA�t� = j�g1
b�t�dt�

The quantity � � �XB�t� = i � �B = t� can be computed
using an analogy with the M/M/� queue. The number
of orders in the bid queue at the time when the bid order
placed at time 0 has executed is simply the number of cus-
tomers at time t in an initially empty M/M/� queue with
arrival rate 	 and service rate �, which has a Poisson dis-
tribution with mean given by 	X�t� in (29). This leads to
the expression for PX

0� i�t� in (29).
The quantity � � �WA�t� = j� is the probability that a pure

death process with death rate 
+ �k−1���1� in state k � 1
is in state j at time t, given that it begins in state a. The
infinitesimal generator of this pure death process is given
by (31). Thus, by Corollary II.3.5 of Asmussen (2003),
� � �WA�t� = j� is given by (30). �

Remark 1. We note here that the probabilities computed
in this section can also be computed using transition matri-
ces of appropriately defined transient discrete-time Markov
chains. In general, for a continuous-time Markov chain the
probability of hitting state i before state j can be deter-
mined by constructing a corresponding embedded discrete-
time Markov chain with states i and j absorbing states
and computing the fundamental matrices of this Markov
chain (see, for example, §4.4 of Ross 1996). However, our
Laplace transform approach has the advantage of comput-
ing full distributions of random variables such as �A, �B,
�A, and �B. This could be used, for example, to compute
probabilities such as � ��A + � < �B�, for � > 0, which are
useful when latency in order processing is an issue.

4. Numerical Results
Our stochastic model allows one to compute various quan-
tities of interest both by simulating the evolution of the
order book and by using the Laplace transform methods
presented in §3, based on parameters 
, 	, and � esti-
mated from the order flow. In this section we compute these
quantities—for example, of Sky Perfect Communications—
and compare them to empirically observed values in order
to assess the precision of the description provided by our
model.
In §4.1, we compare empirically observed long-term

behavior (e.g., unconditional properties) of the order book
to simulations of the fitted model. Although these quantities
may not be particularly important for traders who are inter-
ested in trading in a short time scale, they indicate how well
the model reproduces the average properties of the order
book. In §4.2, we compare conditional probabilities of var-
ious events in our model to frequencies of the events in the
data. We also compare results using the Laplace transform
methods developed in §3 to our simulation results.

4.1. Long-Term Behavior

Recent empirical studies on order books (Bouchaud et al.
2002, 2008) have focused mainly on average properties
of the order book, which in our context correspond to
unconditional expectations of quantities under the station-
ary measure of X: the steady-state shape of the book and
the volatility of the midprice. The ergodicity of the Markov
chain X, shown in Proposition 2, implies that such expec-
tations E�f �X��� can be computed in the model by simu-
lating the order book over a large horizon T and averaging
f �X�t�� over the simulated path:

1
T

∫ T

0
f �X�t��dt → E�f �X��� a.s. as T → ��

4.1.1. Steady-State Shape of the Book. We simulate
the order book over a long horizon (n = 106 events) and
observe the mean number of orders Qi at distances 1 �

i � 30 ticks from the opposite best quote. The results are
displayed in Figure 2. The steady-state profile of the order
book describes the average market impact of trades (Farmer
et al. 2004, Bouchaud et al. 2008). Figure 2 shows that
the average profile of the order book displays a hump (in
this case, at two ticks from the bid/ask), as observed in
empirical studies (Bouchaud et al. 2008). Note that this
hump feature does not result from any fine-tuning of model
parameters or additional ingredients such as correlation
between order flow and past price moves.

4.1.2. Volatility. Define the realized volatility of the
asset over a day by

RVn =
√

n∑
i=1

(
log

(
Pi+1

Pi

))2

� (38)

Figure 2. Simulation of the steady-state profile of the
order book: Sky Perfect Communications.
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where n is the number of quotes in the day and the prices Pi

represent the midprice of the stock, for i = 1� � � � � n. In
the first day of the sample, we compute a realized volatil-
ity of 0�0219 after a total of 370 trades. After repeat-
edly simulating our model for 370 trades, we obtained a
95% confidence interval for realized volatility of 0�0228±
0�0003. Interestingly, this estimator yields the correct order
of magnitude for realized volatility based solely on inten-
sity parameters for the order flow �	�
���.

4.2. Conditional Distributions

As discussed in the introduction, conditional distributions
are the main quantities of interest for applications in high-
frequency trading. A good description of conditional dis-
tributions of variables characterizing the order book gives
one the ability to predict their behavior in the short term,
which is of obvious interest in optimal trade execution and
the design of trading strategies.

4.2.1. One-Step Transition Probabilities. In order to
assess the model’s usefulness for short-term prediction of
order book behavior, we compare one-step transition prob-
abilities implied by our model to corresponding empirical
frequencies. In particular, we consider the probability that
the number of orders at a given price level increases given
that it changes.
Define Tm as the time of the mth event in the order book:

T0 = 0� Tm+1 ≡ inf�t � Tm � X�t� = X�Tm��� (39)

The probability that the number of orders at a distance i
from the opposite best quote moves from n to n + 1 at the
next change is given by

Pi�n� ≡ � �QA
i �Tm+1� = n + 1 � QA

i �Tm� = n�QA
i �Tm+1� = n�

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

	�1�
	�1� + 
 + n��1�

� i = 1�

	�i�

	�i� + n��i�
� i > 1�

(40)

To see how the above expression arises, consider the case
i = 1. The next change in QA

1 is an increase if an arrival
of a limit order at price QA

1 occurs before any of the limit
orders at QA

1 cancel or a market buy order occurs. However,
because an arrival of a limit order at price QA

1 occurs with
rate 	�1� and a cancellation or market buy order occurs
at rate 
 + n��1�, the probability that an arrival of a limit
order occurs first is given by 	�1�/�	�1� + 
 + n��1��.
Denoting empirical quantities with a hat, e.g., �QB

i �t� is
the empirically observed number of bid orders at a distance
of i units from the ask price at time t, an estimator for the
above probability is given by

�Pi�n� ≡
�Bup + Âup

�Bchange + Âchange

�

where

�Bup = ��m � �QB
i � �Tm� = n� �QB

i � �Tm+1� > n���
Âup = ��m � �QA

i � �Tm� = n� �QA
i � �Tm+1� > n���

�Bchange = ��m � �QB
i � �Tm� = n� �QB

i � �Tm+1� = n��� and

Âchange = ��m � �QA
i � �Tm� = n� �QA

i � �Tm+1� = n���

In Figure 3, Pi�n� and �Pi�n� for 1� i � 5 are shown for Sky
Perfect Communications. We see that these probabilities are
reasonably close in most cases, indicating that the transition
probabilities of the order book are well described by the
model.

4.2.2. Direction of Price Moves. This subsection and
the next two are devoted to the computation of condi-
tional probabilities using the Laplace transform methods
described in §3. These computations require the numerical
inversion of Laplace transforms. The inversions are per-
formed by shifting the random variable X under study by
a constant c such that � �X + c � 0� ≈ 1, then inverting
the corresponding one-sided Laplace transform using the
methods proposed in Abate and Whitt (1992, 1995). When
computing the probability of an increase in midprice, one
can find a good shift c by using the fact that when a = b
the probability of an increase in midprice is 0.5. This shift
c should also serve well for cases where a = b.
Table 3 compares the empirical frequencies of an

increase in midprice to model-implied probabilities, given
an initial configuration of b orders at the bid price, a
orders at the ask price, and a spread of 1, for various
values of a and b. We computed these quantities using
Monte Carlo simulation (using 30,000 replications) and the
Laplace transform methods described in §3. The simula-
tion results, reported as 95% confidence intervals, agree
with the Laplace transform computations and show that the
probability of an increase in the midprice is well captured
by the model.

4.2.3. Executing an Order Before the Midprice
Moves. Table 4 gives probabilities computed using both
simulation and our Laplace transform method for executing
a bid order before a change in midprice for various val-
ues of a and b and for S = 1. Because our data set does
not allow us to track specific orders, empirical values for
these quantities, as well as the quantities in §4.2.4, are not
obtainable.

4.2.4. Making the Spread. Table 5 gives probabilities
computed using both simulation and our Laplace transform
method for executing both a bid and an ask order at the best
quotes before the midprice changes. One interesting obser-
vation here is that for a fixed value of a, as b is increased,
the probability of making the spread is not monotone. Thus,
for a fixed number of orders at the ask price the probability
of making the spread is maximized for a nontrivial optimal
number of orders at the bid price.
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Figure 3. Probability of an increase in the number of orders at distance i from the opposite best quote in the next
change, for i = 1� � � � �5.
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4.3. An Application to High-Frequency Trading

The conditional probabilities described in the above section
may be used as a building block to construct systematic
trading strategies. Such strategies fall into the realm of sta-
tistical arbitrage because they do not guarantee a profit, but
lead to trades with positive expected returns and bounded
losses. As a final exercise, we provide the reader with one
such example based on our results in §3.2 on the proba-
bility that the midprice increases, conditional on the con-
figuration of the book. In particular, using Equation (19),
we can compute the probability that the midprice increases
given that the spread is S = 2, the number of orders at the
bid is XB�0� = b = 3, and the number of orders at the ask
XA�0� = a = 1. A simple application of our Laplace trans-
form results, with our estimated parameters for Sky Perfect
Communications given in Table 2, yields a probability 0�62
of the midprice increasing. We use this as the basis for the
following strategy, which we test in simulation:
Entering the position. If the spread is S = 1, the

number of orders at the bid is XB�0� � 3, the num-
ber of orders at the ask is XA�0� = 1 and the num-
ber of orders at the second-best ask is XpA�0�+1�0� � 1,
then submit a market buy order. Right after this trade, if
XpA�0�+1�0� = 1, the new configuration of the order book
will have XB�0+� = XB�0�� 3, XA�0+� = XpA�0�+1�0� = 1,

and the spread will be S = 2. In this scenario, the
probability of the midprice increasing is now 0�62, as
stated above, and we have entered the position at the
current midprice. Thus, we are in a good position to
make a profit. In the case where XpA�0�+1�0� = 0, the
order was bought at a price XA�0�, which is strictly
lower than the new midprice �XB�0+� + XA�0+��/2 �

�XA�0� − 1+ XA�0� + 2�/2 = XA�0� + 1
2 . In order for the

trade to be welldefined, we must define an exit strategy.
Exiting the position. We submit a market sell order at

the first time � such that either
1. pB��� > pA�0�, in which case we are selling at a price

that is strictly greater than our buying price, or
2. pB��� = pB�0� and XB��� = 1, which results in a loss

of one tick.
The probability of success of this round-trip transaction
need not be recomputed in real time: if an “offline” com-
putation (for example, using Laplace transform methods
described in §3) indicates that the probability in (19) is
large, this suggests that this strategy would perform well.
Comparing this probability across different stocks may be
a good indicator of the profitability of this strategy.
After running our simulation for 15,788 trades, roughly

the equivalent of 30 days of trading, our algorithm does a
total of 2,376 round-trip trades, and we display the P&L
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Table 3. Probability of an increase in mid-price: empirical frequencies (top), sim-
ulation results (95% confidence intervals, middle), and Laplace transform
method results (bottom).

a

b 1 2 3 4 5

1 0�512 0�304 0�263 0�242 0�226
2 0�691 0�502 0�444 0�376 0�359
3 0�757 0�601 0�533 0�472 0�409
4 0�806 0�672 0�580 0�529 0�484
5 0�822 0�731 0�640 0�714 0�606

a

b 1 2 3 4 5

1 0.499± 0.006 0.333± 0.005 0.258± 0.005 0.213± 0.005 0.187± 0.005
2 0.663± 0.005 0.495± 0.006 0.411± 0.006 0.346± 0.005 0.307± 0.005
3 0.743± 0.006 0.589± 0.006 0.506± 0.006 0.434± 0.006 0.389± 0.006
4 0.788± 0.005 0.652± 0.006 0.564± 0.006 0.503± 0.006 0.452± 0.006
5 0.811± 0.004 0.693± 0.005 0.615± 0.006 0.547± 0.006 0.504± 0.006

a

b 1 2 3 4 5

1 0�500 0�336 0�259 0�216 0�188
2 0�664 0�500 0�407 0�348 0�307
3 0�741 0�593 0�500 0�437 0�391
4 0�784 0�652 0�563 0�500 0�452
5 0�812 0�693 0�609 0�548 0�500

distribution in Figure 4. Note that the computed proba-
bility of 0.62 is not directly linked to the probability of
the trade being successful, which may only be computed
through simulation. Indeed, the probability of success of
each round-trip transaction is less than 0.5, although the
average profit of each trade was 0�068 ticks, or 6�8 yen.
The analysis of the above trading strategy does not take into

Table 4. Probability of executing a bid order before a change in midprice: simulation
results (95% confidence intervals, top) and Laplace transform method results
(bottom).

a

b 1 2 3 4 5

1 0.498± 0.004 0.642± 0.004 0.709± 0.004 0.748± 0.004 0.779 ± 0.004
2 0.299± 0.004 0.451± 0.004 0.536± 0.004 0.592± 0.004 0.632 ± 0.004
3 0.204± 0.004 0.335± 0.004 0.422± 0.004 0.484± 0.004 0.532 ± 0.004
4 0.152± 0.003 0.264± 0.004 0.344± 0.004 0.403± 0.004 0.450 ± 0.004
5 0.117± 0.003 0.213± 0.004 0.291± 0.004 0.342± 0.004 0.394 ± 0.004

a

b 1 2 3 4 5

1 0�497 0�641 0�709 0�749 0�776
2 0�302 0�449 0�535 0�591 0�631
3 0�206 0�336 0�422 0�483 0�528
4 0�152 0�263 0�344 0�404 0�452
5 0�118 0�213 0�287 0�346 0�393

account transaction costs, but these can easily be included
in the analysis.

5. Conclusion
We have proposed a stylized stochastic model describ-
ing the dynamics of a limit order book, where the
occurrences of market events—market orders, limit orders
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Table 5. Probability of making the spread: simulation results (95% confidence inter-
vals, top) and Laplace transform method results (bottom).

a

b 1 2 3 4 5

1 0.268± 0.004 0.306± 0.004 0.312± 0.004 0.301± 0.004 0.286 ± 0.004
2 0.306± 0.004 0.384± 0.004 0.406± 0.004 0.411± 0.004 0.401 ± 0.004
3 0.312± 0.004 0.406± 0.004 0.441± 0.004 0.455± 0.004 0.456 ± 0.004
4 0.301± 0.004 0.411± 0.004 0.455± 0.004 0.473± 0.004 0.485 ± 0.004
5 0.286± 0.004 0.401± 0.004 0.456± 0.004 0.485± 0.004 0.491 ± 0.004

a

b 1 2 3 4 5

1 0�266 0�308 0�309 0�300 0�288
2 0�308 0�386 0�406 0�406 0�400
3 0�309 0�406 0�441 0�452 0�452
4 0�300 0�406 0�452 0�471 0�479
5 0�288 0�400 0�452 0�479 0�491

and cancellations—are governed by independent Poisson
processes.
The formulation of the model, which can be viewed as

a queuing system, is entirely based on observable quan-
tities so that its parameters can be easily estimated from
observations of events in an actual order book. The model
is simple enough to allow semianalytical computation of
various conditional probabilities of order book events via
Laplace transform methods, yet rich enough to adequately
capture the short-term behavior of the order book: condi-
tional distributions of various quantities of interest show
good agreement with the corresponding empirical distri-
butions for parameters estimated from data sets from the
Tokyo Stock Exchange. The ability of our model to com-
pute conditional distributions is useful for short-term pre-
diction and design of automated trading strategies. Finally,
simulation results illustrate that our model also yields real-
istic features for long-term (steady-state) average behavior
of the order book profile and of price volatility.
One by-product of this study is to show how far

a stochastic model can go in reproducing the dynamic
properties of a limit order book without resorting to

Figure 4. Probability distribution of P&L per round-
trip trade, in ticks.
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detailed behavioral assumptions about market participants
or introducing unobservable parameters describing agent
preferences, as in the market microstructure literature.
This model can be extended in various ways to take

into account a richer set of empirically observed properties
(Bouchaud et al. 2008). Correlation of the order flow with
recent price behavior can be modeled by introducing state-
dependent intensities of order arrivals. The heterogeneity
of order sizes, which appears to be an important ingredi-
ent in actual order book dynamics, can be incorporated by
making order sizes independent and identically distributed
random variables. Both of these features would conserve
the Markovian nature of the process. A more realistic distri-
bution of interevent times may also be introduced by mod-
elling the event arrivals via renewal processes. It remains
to be seen whether the analytical tractability of the model
can be preserved when such generalities are introduced.
We look forward to exploring some of these extensions in
future work.
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