
Aalto University

School of Science

Degree Programme in Computer Science and Engineering

Klaus Nyg̊ard

Single page architecture as basis for
web applications

Master’s Thesis
Espoo, June 6, 2015

Supervisor: Professor Petri Vuorimaa
Advisor: D.Sc. (Tech.) Jari Kleimola

Abbreviations and Acronyms

AMD Asynchronous Module Definition
AJAX Asynchronous JavaScript and XML
API Application Programming Interface
CDN Content Delivery Network
CORS Cross-Origin Resource Sharing
CPU Central Processing Unit
CSS Cascading Style Sheet
CSS3 Third revision of CSS
DOM Document Object Model
GPS Global Positioning System
HTML Hypertext Markup Language
HTML5 Fifth revision of HTML
HTTP Hypertext Transfer Protocol
HTTPS Hypertext Transfer Protocol Secure
IDE Integrated Development Environment
IP Internet Protocol
JS JavaScript
JSON JavaScript Object Notation
MathML Mathematical Markup Language
MVC Model-View-Controller
MVP Model-View-Presentation
MVVM Model-View-ViewModel
OpenGL ES Open Graphics Library for Embedded Systems
REST Representational State Transfer
UDP User Datagram Protocol
UI User Interface
URI Uniform Resource Identifier
SDK Software Development Kit
SaaS Software as a Service
SOAP Simple Object Access Protocol

iv

SVG Scalable Vector Graphics
TCP Transmission Control Protocol
UDP User Datagram Protocol
UI User Interface
W3C World Wide Web Consortium
WHATWG Web Hypertext Application Technology Working

Group
WebGL Web Graphics Library
WebRTC Web Real-Time Communication
WLAN Wireless Local Area Network
WWW World Wide Web
XHR XMLHttpRequest
XML eXtensible Markup Language

v

Contents

Abbreviations and Acronyms iv

1 Introduction 1
1.1 Objectives and research questions 2
1.2 Structure of the Thesis . 2

2 Web as an Application Platform 4
2.1 Architecture of Web Applications 4

2.1.1 Presentation tier . 6
2.1.2 Business logic tier . 6
2.1.3 Data tier . 7

2.2 Challenges . 7
2.3 Advantages . 11

3 Overview of Web Technologies 13
3.1 HTML5 . 13

3.1.1 Elements and semantics 14
3.1.2 Media support . 15
3.1.3 Canvas . 15
3.1.4 Drag-and-drop . 16
3.1.5 Web Messaging . 16
3.1.6 Browser history management 16
3.1.7 Offline Web Applications 16

3.2 Cascading Style Sheets . 17
3.3 JavaScript . 18
3.4 Related specifications . 20

3.4.1 Web Storage . 20
3.4.2 WebSockets . 20
3.4.3 Web Real-Time Communication 22
3.4.4 Touch Events . 23
3.4.5 Web Workers . 23

vi

3.4.6 Service Workers . 23
3.4.7 Server-Sent Events . 24
3.4.8 Cross-Origin Resource Sharing 24
3.4.9 File API . 24
3.4.10 Geolocation . 25
3.4.11 Scalable Vector Graphics 25
3.4.12 Web Audio . 25
3.4.13 WebGL . 26

4 Single Page Architecture 27
4.1 Key Concepts and Components 27

4.1.1 AJAX . 27
4.1.2 REST . 29
4.1.3 Separation of Concerns 31
4.1.4 Data binding . 32
4.1.5 Routing . 33

4.2 Overview of Popular Frameworks 34
4.2.1 AngularJS . 36
4.2.2 Backbone . 37
4.2.3 React . 38
4.2.4 EmberJS . 39

5 Implementations with AngularJS 41
5.1 Specifications . 41
5.2 System Architecture . 43
5.3 Development tools . 44
5.4 Libraries . 45
5.5 Technologies . 46
5.6 Application structure . 47
5.7 User Interfaces . 51

6 Discussion 58
6.1 Development and distribution 58
6.2 Performance . 59
6.3 User Experience . 60
6.4 Summary . 60
6.5 Future Work . 63

7 Conclusions 65

vii

Chapter 1

Introduction

Since its birth in 1990, the World Wide Web has served as an universal plat-
form to serve content to all parts of the world. HTML (Hypertext Markup
Language) was designed to be the standard document format for the web,
which it still is. However, along with the breakthrough of smartphones, the
web has been disrupted by the rise of new marketplaces, such as Apple App
Store and Google Play. The physical Internet has taken a major role not only
in serving information via web, but also working as a layer for transporting
data to and between applications that are not in web.

Applications that are built for specific platforms or operating systems
by specific tools, are called native applications. Such applications are often
distributed in the Internet via dedicated marketplaces or web sites. Due to
the popularity of the web, native applications are more and more rivalled
by web applications. Previously the web applications were not considered
an alternative to the native applications — mostly due to their inferior per-
formance and dependency on an Internet connection. Nevertheless, as the
Internet connection speeds are less and less a restrictive constraint for web
applications, and advanced web technologies like HTML5, CSS3 (Cascad-
ing Style Sheet, version 3), AJAX (Asynchronous JavaScript and XML) and
WebSockets have emerged, web applications have potential to replace a great
proportion of the native applications.

The distinction of a “native” and a “web” application can be unclear.
In this thesis, by native applications I mean applications that are not run
in a web browser but as individually packaged containers, often identified
as ”traditional applications”. By web applications I mean applications that
are run in a web browser environment and are built with web technologies,
primarily with HTML, CSS and JavaScript. What might be confusing, how-
ever, is that web applications can also be packaged as native applications.
Such applications are often referred to as hybrid applications and besides

1

CHAPTER 1. INTRODUCTION 2

being distributed like native applications, they can utilize the native APIs
(Application Programming Interface) of the operating system they are run
on. Contrary to web applications such applications have the benefit of using
many of the features that modern devices offer that web browsers do not,
such as accelerometer, flash light or access to native features like notifications
that are used in many modern mobile operating systems.

1.1 Objectives and research questions

The primary objective of this thesis is to evaluate the web as a platform for
applications rather than as a traditional document platform. Also, being a
requirement for modern web applications, the suitability and challenges of
the single page architecture will be assessed.

We know that HTML was designed document-based web in mind, render-
ing certain problems in creating application-style web pages. In this thesis,
I examine what these problems are and what practical means there are to
overcome them.

1. What are the main challenges and advantages of building and distribut-
ing web applications?

2. How does single page architecture solve or relate to these challenges
and advantages?

3. What practical means do we have to build single page applications?

This thesis provides a comprehensive overview of current state of web
technologies, such as HTML5, CSS3 and JavaScript. I evaluate the suitabil-
ity of those technologies for building applications that might replace native
applications. Also, I examine concepts and techniques that are not commonly
utilized in traditional web sites but solve relevant problems in applications.

One of the motivators behind single page architecture is the need to en-
hance the user experience in the web, thus usability of web applications is
also studied. I review what performance and User Interface (UI) related
problems appear in web applications and how those are solved.

1.2 Structure of the Thesis

In Chapter 2 I present the architecture, challenges and advantages of web
applications in general. Chapter 3 provides an overview of web technologies

CHAPTER 1. INTRODUCTION 3

that are related to building complex applications. Next, in Chapter 4 I
introduce the concepts and components of single page architecture and an
overview of popular frameworks.

A practical examination is conducted in Chapter 5, where I present three
single page applications that I built. I discuss the results of the applications
and share my thoughts about future work in Chapter 6. Finally, I conclude
the thesis in Chapter 7.

Chapter 2

Web as an Application Platform

The evolution of the World Wide Web during its lifetime of 25 years is re-
markable. Initially the web pages were simple text-based documents that
were connected via hyperlinks. The web evolved gradually towards a rich-
content platform lead by the use of plug-in components such as Flash, Quick-
Time, RealPlayer and Shockwave. They allowed web pages to display content
that was not possible otherwise. The web pages became increasingly inter-
active and reminded the user more of multimedia presentations than of text
documents. [61, 62]

Today, the web is undergoing another evolutionary change: the web is
rivalling desktop software as an application platform. Taivalsaari and Mikko-
nen discuss on their publications of the evolution of the web. They predict
that the web will ultimately win the battle of the main platform for end
user software, and conventional binary programs will be confined to system
software. The future of the software industry and software engineering re-
search will be determined by this battle between web applications and native
applications. [41, 61, 62]. Web applications have also been considered one
of the greatest interest in the web of the last decade. [51]

In this chapter, I discuss the background of web applications. First, I
examine a common structure and related technologies required by the ap-
plications. The technologies will be overviewed in more detail in the next
chapter. Second, I examine the challenges of the web as an application plat-
form and finally take a look at the advantages provided.

2.1 Architecture of Web Applications

First, it is important to make a distinction between a web page and a web
application. By web pages I mean classic pages that are rendered on the

4

CHAPTER 2. WEB AS AN APPLICATION PLATFORM 5

server and typically reload the page on most or all requests – even if they
behave or the functionality is application-like. By web applications I mean
“pages” that are loaded only once and utilize the server primarily just for
exchanging data. In this thesis, I focus solely on web applications.

Despite the standardized components of the web, a web application can be
built in many different ways. Contrary to many native application platforms
that provide dedicated libraries, SDKs, APIs and development environments,
the web as a development environment is very diverse. [51] It is up to the
the developer to select a development stack as they like, the good being in
that there are almost no restrictions on how to design the architecture.

One way to identify application architectures is to divide the application
to tiers by its fundamental areas: data logic, business logic and presentation
logic, as shown by Figure 2.1 below. Such tiers can be recognized, e.g.,

Database

API

U
se

r A
ge

nt CSS

CLIENT

SERVER

HTML

JavaScript

Data

Logic

Presentation

Figure 2.1: 3-tier web application architecture, adapted from [48].

as 1-tier, 2-tier and 3-tier architectures. In 1-tier architecture there is no
clear separation in code when it comes to the fundamental responsibilities,
whereas in 2-tier architecture presentation logic and data logic are separated
but both augmented with the business logic. 3-tier architecture separates
all the areas and is considered superior to the former two considering many
aspects of building software, including better performance, interoperability
and maintainability. [48]

Web applications built with single page architecture follow the 3-tier

CHAPTER 2. WEB AS AN APPLICATION PLATFORM 6

model. The application running in the browser is purely the presentation
layer, whereas business logic layer can not be distinctly divided to either,
but is partly implemented in both. Servers and external services are used
for containing and exchanging the data. Thus, page architecture is an archi-
tecture for the presentation tier implementation and not comparable to the
3-tier architecture.

2.1.1 Presentation tier

The user interface is built with HTML, CSS and JavaScript. New page loads
are rendered by the internal browser mechanism, but as is case with single
page architecture, only the start page is rendered and further updates are
triggered by JavaScript.

HTML is used to define the layout and sections of the web page and CSS
defines how they are displayed. Based on the scripts and HTML, browser
builds a Document Object Model (DOM), which represents the current struc-
ture and content of the web document (page). [20]

2.1.2 Business logic tier

As can be seen from the Figure 2.1, the application logic is divided to both:
to the client and to the server. In this thesis, I do not examine business logic
on server-side, but only on the client-side. Client-side logic is implemented in
JavaScript, which is a dynamic language used in all web browsers. JavaScript
is examined in more detail in a later chapter.

After the introduction of AJAX (Asynchronous JavaScript And XML)
[17] in 2005, the web has gained momentum in separating the business logic
from the presentation layer as opposed to classical web. [38] The essential
concept in this 3-tier architectural division is the ability to loosely couple the
client with the server, allowing the logic to be changed with as little effort
as possible. [48]

In single page architecture, the separation of presentation and data layers
implies the separation of the DOM and the data. With the help of AJAX,
it is possible to build web pages where the data is loaded asynchronously
with multiple requests and the application state is retained between those
requests. [39] With this model, the DOM is built by fetching the data from
external resources, whereas in classical web sites the DOM is built only based
on the initial data, effectively HTML, fetched from the server.

CHAPTER 2. WEB AS AN APPLICATION PLATFORM 7

2.1.3 Data tier

Web applications typically rely on external databases, most likely SQL or
NoSQL databases. The data is consumed via an interface like REST or
SOAP that serializes and exchanges the data between the database and the
client application.

More and more web applications rely their storage on the client-side,
namely the browser’s, storage capabilities. Technologies like Web Storage
[23] for storing structured data and Indexed Database API [37] for key-
value data are in standardization process by W3C1. [50]

The focus on this thesis is only on the client-side data, which in practice
means the fetched data from the server via HTTP requests.

2.2 Challenges

Origins of the web in document-oriented information sharing yield a number
of issues that hinder the development of applications for a web-browser en-
vironment. The over 20-year history of the Web and the rapid development
of the Internet has resulted in new technologies being adapted faster by de-
velopers than they can be standardized – causing lots of diversification in
technology adoption. Some of the practical challenges are identified in more
detail below:

Application complexity
The Internet web sites range from small, non-interactive personal web
sites to large and complex software products that perform advanced
business functions. Nowadays, complex web application development
needs a diverse team having considerably many fields of expertise. [29,
51]

Browser semantics
Mainly due to historical reasons, many of the browser features do not
fit to the context of applications. For instance, the buttons used to
navigate between pages, namely ’back’ and ’forward’ buttons, have no
semantic meaning in many applications where the state is persitent.
Also, browser’s generic context menus rarely provide any useful func-
tionality. [62]

Same-origin policy
Web browsers implement a security-related policy that is used to pre-

1http://www.w3.org

http://www.w3.org

CHAPTER 2. WEB AS AN APPLICATION PLATFORM 8

vent some of the Cross-site Request Forgery (CSRF) attacks. For ex-
ample, a web application loaded from a web-site can access resources
from the same domain, but not arbitrary resources from other web
sites. Thus, it prevents reading data from external resources also on
purpose, which is often necessary when fetching data from a REST
API for instance. To overcome this, the web application developer
must make special arrangements on the server, like set up a proxy to
access the web site. A better mechanism, called Cross-Origin Resource
Sharing (CORS), has been recommended by W3C. It provides a way
for web servers to support cross-site access, but is not controllable by
the application developer. [55, 62, 63]

Software engineering principles
Again, in the early web the primary conceptual components of web
sites were documents, pages and forms. Thus, it was not software en-
gineering in the same sense as it is today. This has resulted in the lack
of software engineering principles like modularity and reusability, sepa-
ration of concerns, well-defined (manifest) interfaces and information
hiding. [40]

Compared to conventional applications, the web is very dynamic by its
nature, which causes fundamental changes in the development style.
Other languages like C++, C# and Java have static type checking
and generally well-defined interfaces, whereas JavaScript lacks these
completely. The web applications need a stepwise approach2 and an
exploratory programming style, which mainstream software developers
are often unaware of. [62]

Performance
Previously, the performance problems of web browsers were primarily
related to online connectivity and network latency issues. However,
today, as the web serves more and more application-style websites, the
performance issues of the browser also as a runtime environment has
become apparent. [62] The issues have been tackled by the develop-
ment of JavaScript engines, one of which has become so fast that it
is used even in server-side applications on a platform called Node.js3).
However, a single fast JavaScript engine does not solve the perfor-
mance problem, as many times the application must be runnable even

2In stepwise approach to programming, the program is developed gradually in steps.
Each step is decomposed from one or several instructions and is broken up into a number
of subtasks. The program description and the implementation can be refined in parallel.

3https://nodejs.org

https://nodejs.org

CHAPTER 2. WEB AS AN APPLICATION PLATFORM 9

on the slowest JavaScript engines. Additionally, the perceived per-
formance is not only determined by raw JavaScript execution speed,
but by browser’s properties including the operation speed of DOM in-
teraction, rendering speed of graphics like SVG, multi-threading and
utilization of GPU. [43] Also, the memory management capabilities of
JavaScript virtual machines have been denoted to have poorly suitable
to large, long-running applications. [62]

Fragmentation
In an ecosystem of native applications, fragmentation typically means
the phenomenon when the developer has to maintain multiple code-
bases or have custom builds for different devices and platforms. This
adds unnecessary complexity and the ideal situation is always to have a
single codebase with a straightforward build and distribution process.
In practice, the fragmentation is apparent especially in mobile applica-
tions, where the developer has to customize the application to work on
Android 2.x and Android 4.x operating systems.

Web applications are not subject to similar fragmentation as conven-
tional applications. The browser environment is considered universal
and the same code is supposed to work in every browser. Instead,
the fragmentation challenges are related to browser diversity, rapid de-
velopment of technologies and the fact that the web browser has not
initially been designed to be a runtime environment for applications.
The amount of different frameworks and libraries built and being built
for web is significant. The fact that there is a plethora of options re-
garding the technologies may cause new application to be built with
unfamiliar technologies and be difficult for developers to adapt to.

HTML semantics
HTML5, of which the final version was published in 2014, added new
semantics and APIs for complex web applications. It included impor-
tant features like <audio> and <video> elements. [24] Also, it included
semantic replacements for generic block elements, including <nav> and
<footer> elements. However, it has been criticized that HTML is not
suitable for constructing application user interfaces due to the fact the
elements are designed to represent document-oriented structure rather
than a UI layout. [5] It can be argued, though, that HTML is well suit-
able for the web due to its focus on content rather than presentation
leading to better adaptation to different screen sizes. [16]

There are attempts to solve the semantics issue in a standardized way.

CHAPTER 2. WEB AS AN APPLICATION PLATFORM 10

Web Components4 is an umbrella term for technologies being standard-
ized to allow defining custom elements. Polymer5 is a technology being
developed by Google built on top of Web Components. It adds further
functionality to custom elements, such as templating and two-way data
binding. However, the technologies are still relatively new and are not
recommended for production use.

Monetization
A lot has changed in the evolution of distribution and monetization
model of software since the early days of the Web. Still in the 1990s,
the primary way of monetizing applications was to offer them to be
purchased by CDs on the shelves of physical stores. Some of the ap-
plications needed a unique serial number to unlock the application.
In 2000s, the applications were also sold and downloaded online from
web sites. 2010s was the revolution of dedicated application stores like
Apple’s App Store and Google’s Play Store.

Compared to conventional applications, web applications face a chal-
lenge of proper monetization in order to be commercially viable. The
web applications are available for everyone on the web – theoretically
for free. Nevertheless, the current trend is towards Software as a Ser-
vice (SaaS) monetization model, which requires users to register to the
application as a service and pay a periodic fee. Also, the web applica-
tions could be packaged as native applications and distributed in the
application stores, or they could use advertising as the monetization
model. The monetization model of web applications is not essentially
a problem, but merely a challenge.

Distribution and promotion
Non-trivially, there are certain challenges related to distributing and
promoting web applications. Consider application stores, where the
store provider actively validates the uploaded applications, promotes
the top applications and the users write reviews that help other users
to evaluate the applications. As of today, there is no such central-
ized organization conducting that for web applications. Finding and
validating web applications is a challenge for the end users.

Network dependency
Most of the web applications today require an Internet connection in
order to work. Nonetheless, certain applications, like utilities and tools,

4http://webcomponents.org
5https://www.polymer-project.org

http://webcomponents.org
https://www.polymer-project.org

CHAPTER 2. WEB AS AN APPLICATION PLATFORM 11

should also work offline in order to compete with native applications
that are not network dependent.

2.3 Advantages

The largest advantage of the web as an application platform is the immense
popularity of the web and the web browser. All major operating systems
ranging from mobile to desktop devices include a web browser by default.
The applications deployed to web can be considered to be instantly accessi-
ble all over the world. Once the application is deployed or upgraded, it is
immediately available. Thus, there is no need to manually download, install
or upgrade web applications, which is almost an unfair advantage compared
to conventional applications.

Traditional applications – before the time of application stores – were
often developed for long before releasing. It was not uncommon to have
multiple months, or even years long of release cycle. This lead to problems
when critical bugs appeared in the software. The bugs could be patched,
but distributing the patch, informing and making the users install it would
be challenging. Application stores takes a leap forward in this sense, as the
stores notify users of updates and streamlines the install process. Yet, the
developers have to often wait for the approval of the update to be available at
the application store, slowing the process. In the web, there is no middlemen
in distributing and the bug fixes can be virtually instant. It is up to the
developer to decide when and how often to update the application. For
example, a Finnish newspaper “Kauppalehti”6 deploys their single page web
application four times a day by average. [46]

Web applications are suitable for agile development style. The process
style of building web applications tends to be spiral-like, a continuous itera-
tive process between implementation, testing and maintenance. The dynamic
language qualities of JavaScript fit to such rapid and light development pro-
cess. [51]

The web is cross-platform. Conventional applications have the challenge
of supporting different types of operating systems, devices or CPU architec-
tures [62]. Theoretically, web applications can be run on any device and on
any browser. Web applications are not without challenges, however. In order
to work on a plethora on devices and browser, they need to be compatible
with different browser versions and even different versions of web technolo-
gies like HTML. They need to adjust to different screen sizes in order to be

6http://www.kauppalehti.fi

http://www.kauppalehti.fi

CHAPTER 2. WEB AS AN APPLICATION PLATFORM 12

usable. Despite these challenges, the fact that there is no need to write the
same application with multiple languages and development kits, is a great
advantage.

Chapter 3

Overview of Web Technologies

In this chapter, I present an overview of the web technologies that are related
to building applications for the web. These technologies include those that
are often referred to as “Web 2.0 technologies”, intended for the creation of
collaborative and interactive, rich desktop-style applications, as identified by
Mikkonen and Taivalsaari. [62]

Although not being the focus of the thesis, it is crucial to understand
the technologies in order to make sense of the concepts that differentiate
web applications from traditional web sites and provide functionality familiar
from conventional applications. I evaluate the role and importance of these
technologies regarding building modern web applications.

I have divided the technologies into four categories. In the first three
sections I present the base components for every website and web application.
In the fourth section, I present additional APIs that have been standardized
or are in common usage across the web.

3.1 HTML5

HTML is the markup language used on all web pages to define and describe
the documents displayed by the web browser. HTML5 not only implies the
markup language, but it is often used to refer to the set of features and
APIs released along with HTML5 specification. The relevance of HTML5
related to web applications can be assessed by the fact that due to historical
reasons: it was originally named as “Web Applications 1.0” by WHATWG
(Web Hypertext Application Technology Working Group)1 until renamed to
“HTML5” by World Wide Web Consortium (W3C)2. [49]

1http://whatwg.org
2http://www.w3.org

13

http://whatwg.org
http://www.w3.org

CHAPTER 3. OVERVIEW OF WEB TECHNOLOGIES 14

HTML5 is the successor of HTML 4.01, which was the previous standard
released in 1999. The first draft of HTML5 was published in 2008. The
final recommendation of the specification by W3C was not released until
October 2014, but HTML5 was in general use long before that. The focus
of developing HTML5 was specifically towards web applications, which was
thought to be most lacking. In the end, HTML5 addresses lots of practical
problems and supports building dynamic and social sites that require various
features. [34]

In this chapter, I take a look at the HTML5 and related technologies
and evaluate them from the application point of view. It is hard to define
which technologies – or which only – are clearly related to HTML5, but this
overview focuses on those that are important for web applications.

3.1.1 Elements and semantics

Elements are the most central component of HTML. They are used to de-
scribe the document and its content. The elements are associated with certain
semantics, which means that the element has certain meanings. For exam-
ple, the h1 element represents the highest level heading in the document. [24]
The intended use of elements is to use them only for the correct semantic
purpose, but web applications often violate this principle. As I discussed
in the Challenges section, web application developers want to describe UIs
rather than documents. It is an open question whether this kind of violation
is actually harmful. The semantic correctness is useful when the content is
indexed by a search engine, for example. However, the nature of web appli-
cations is often not to present content in a traditional way and the content
of such applications is not usually linkable.

The HTML5 standard divides elements into zero or more categories grouped
with similar characteristics of the elements. [24] The categories and example
elements are presented below.

• Metadata: Elements located typically in the head sections. Sets be-
haviour and presentation of the document and relations to other doc-
uments.

Examples: link, script, style, title

• Flow content: Most elements used in the body of documents and
applications.

Examples: a, button, div, form, span, table

• Sectioning: Elements that define sections, i.e., scopes of other ele-
ments like headings and footers.

CHAPTER 3. OVERVIEW OF WEB TECHNOLOGIES 15

Examples: article, asude, nav, section

• Heading: Elements that define headers for sections in the section’s
scope.

Examples: h1, h2, h6

• Phrasing: Text elements and other elements that phrase content.

Examples: cite, code, small, sub

• Embedded: Elements that import another resources into the docu-
ment.

Examples: audio, video, canvas, iframe

• Interactive: Elements that are specifically intended for user interac-
tion.

Examples: audio and video with controls, button, input

3.1.2 Media support

HTML5 added two new media elements: <video> an <audio>. Both of
them support basic operations like play, pause and mute/unmute. Also, the
elements can be controlled programmatically in JavaScript. [34]

Previously web pages had to rely on plug-in components, such as Flash
and QuickTime, to play media content. The plug-ins had to be separately
installed and the support from different browsers was inconsistent. HTML5
playback is being adopted by many media-focused companies including YouTube
and Netflix, both of which have transitioned to HTML5 videos as the stan-
dard playback option. Moreover, at the time of launching iPhone, one of the
revolutionary devices regarding the Web, Apple famously announced to stop
supporting Flash on its devices – HTML5 most likely being the motivator.
The standardized media playback is without question an important feature
that enhances the user experience of the web browser since no additional
plug-ins installs are needed.

3.1.3 Canvas

HTML5 defines the <canvas> element, which is essentially a way to draw
advanced two-dimensional graphics programmatically. Its intended use is in
generating charts, composition images and animations. In practice <canvas>
is a rectangular bitmap area on the page among the other elements. The
drawing API provides a way to draw simple shapes, text, paths, images,
gradients and ways to modify their properties. [34]

CHAPTER 3. OVERVIEW OF WEB TECHNOLOGIES 16

3.1.4 Drag-and-drop

Drag-and-drop is an interaction paradigm where the user can move an el-
ement freely within the user interface, by dragging and dropping with the
mouse. With this API, it is easy to create advanced user interfaces without
third party JavaScript libraries.

Drag-and-drop is often considered a HTML5 feature, as it appeared in the
draft versions of HTML5 specification. Nonetheless, the final specification
was postponed to HTML5.1 specification that is yet to be released. Drag-
and-drop support is, however, implemented in all major desktop browsers
– even IE 8 [1]. Thus, it is included here. Also, it is worth noting that
drag-and-drop is not an user interaction paradigm on mobile devices.

3.1.5 Web Messaging

Web Messaging or cross-document messaging specification allows documents
to documents to communicate with each other. For example a document
containing an iframe element pointing to an external web site, could send
message to the document loaded into the iframe The communication is not
limited by a same-origin policy. Thus, use of the API needs extra care to
protect users from abuse. [21]

3.1.6 Browser history management

HTML5 brings a significantly important feature from the single page archi-
tecture point of view: Browser History API. The API allows to manipulate
the navigation history programmatically without the need of interacting with
browser navigation controls [24]. This allows to single page applications
to simulate the transition in history, although technically, they never move
back-and-forth between pages.

3.1.7 Offline Web Applications

Classical web sites are designed to work online and are seldom concerned
by support. Web applications, however, should in many cases work also
offline. The user might move around drop the connection occasionally or
the network connection could be unreliable for an unknown reason. Such
situations should be tolerated by the application.

In HTML5 applications, this is addressed by application cache and browser
state detection. The application cache is created by defining cache manifest,
which is a simple text file that lists the resources that need to be accessed

CHAPTER 3. OVERVIEW OF WEB TECHNOLOGIES 17

offline. HTML5 also defines functionality to detect current network status
and the events fired on the status change. [64]

3.2 Cascading Style Sheets

Cascading Style Sheets (CSS) is the styling language for the Web. It is used
to format the layout and elements on the web page written in HTML. The
latest version of CSS is CSS3 (CSS Level 3). The previous standardized
version is CSS2.1 and since then CSS3 has brought lots of new and crucial
features to build web applications. CSS3 supports features like gradients,
transitions, animations, grid layouts and custom fonts.

CSS can be even more powerful used in conjunction with a CSS pre-
processor. The current trend is not writing raw CSS, but to compile to
it by using more advanced languages that introduce features like modules,
variables, maps, functions, mixins and loops. [31, 57] The most popular
preprocessors are arguably SASS (Syntactically Awesome Style Sheets)3 and
Less4. Preprocessors are very useful in styling large websites and applications
due to the possibility for more declarative code with the help of modules and
variables.

Cross-browser support is one of the major challenges in CSS. Given a
combination of HTML, CSS and browser parameters like viewport size, every
browser is expected to render it equally. In practice it, however, is not the
case. No browser implements all CSS features or they implement special
non-standardized keywords. This adds to the developer’s overhead and is
one of the problems solved by preprocessors.

Considering building web applications, CSS3 has really some important
features. Web applications often have to work on multiple devices, resulting
in a plethora of screen sizes and resolutions. Media queries feature can detect
the view-port size and specify style rules accordingly. [32] Fonts specification5

allow developers to easily integrate custom fonts, including traditional type-
faces and icons. Animation support6 allows the applications to take advan-
tage of the browser’s hardware acceleration and be used to create UIs that
compete with desktop software.

3http://sass-lang.com/
4http://lesscss.org/
5http://www.w3.org/TR/css3-fonts/
6http://www.w3.org/TR/css3-animations/

 http://sass-lang.com/
http://lesscss.org/
http://www.w3.org/TR/css3-fonts/
http://www.w3.org/TR/css3-animations/

CHAPTER 3. OVERVIEW OF WEB TECHNOLOGIES 18

3.3 JavaScript

JavaScript is used everywhere in the web and works on all modern web
browsers – on desktop computers, tablets, smart phones, televisions, game
consoles. A majority of all websites utilize JavaScript and the software in-
dustry is shifting towards web applications built with JavaScript instead of
classical languages like C# and Java. Moreover, some operating systems have
adopted the web standards as the presentation layer for native applications,
including Windows 8, Firefox OS and Chrome OS. Therefore, JavaScript is
considered one of the most important and most popular languages in the
world. [9, 12, 15]

JavaSript was originally developed at Netscape and the name “JavaScript”
was trademark licensed from Sun Microsystems. ECMA (European Com-
puter Manufacturer’s Association) standardized the language, and due to
trademark issues, the standardized version of the language was finally called
“ECMAScript”. However, because the language is so widely known as “JavaScript”
and that is the term practically everyone uses, we mostly call the language
also in this thesis “JavaScript” instead of “ECMAScript”. It is also worth
noting that, despite the name, JavaScript has nothing to do with Java. [15]

The current widely adopted version of JavaScript is ECMAScript 5 and
it is defined in the Standard ECMA-2627. Version 4 was never released and
ECMAScript 3 was the previous major release.

ECMAScript is a high-level interpreted language that suits well to object-
oriented and functional programming styles. [15] It has been argued that the
language have some badly designed parts but also well designed ideas includ-
ing loose typing, dynamic objects and expressive object literal notation. [9].
JavaScript supports features like encapsulation, polymorphism, multiple in-
heritance and composition. [12] JavaScript was once considered a toy-like
language, but it has outgrown the roots of a mere scripting-language and is
today considered an efficient general-purpose language. [15]

JavaScript does not only have lots of expression power, but despite its
just-in-time compilation in the web browser, it is also very performant. The
JavaScript programs are event driven and non-blocking, which compensates
for performance overhead derived from garbage collection and dynamic bind-
ing. In practice, JavaScript is also the only language in the world where the
same code can be run in both the web browser and the server. This has
been enabled by the JavaScript environment called Node.js8, that is built on

7http://www.ecma-international.org/publications/standards/
Ecma-262.htm

8https://nodejs.org

 http://www.ecma-international.org/publications/standards/Ecma-262.htm
 http://www.ecma-international.org/publications/standards/Ecma-262.htm
https://nodejs.org

CHAPTER 3. OVERVIEW OF WEB TECHNOLOGIES 19

Google’s V8 JavaScript engine. [12]
During the time of writing this thesis, there has been a buzz about the

next version of ECMAScript. The new version is called “ECMAScript 6” and
has also been informally referred to as “JavaScript 2015”. The final version
of the draft was released on April 14th 2015 and will be voted for approval
on June 2015. The feature-set of the new ECMAScript is frozen, but minor
editorial and bug fixes may still be made. [27]

The reason why ECMAScript 6 brings so much excitement among the
developer community can be understood when looking at the specification:
it brings many new useful features. Some of the most important new features
are listed below [11, 25]:

• Arrow functions. ECMAScript 6 introduces a shorthand => to define
arrow functions, which are lexically scoped functions in either expres-
sion or statement bodies.

• Classes. ECMAScript 6 defines classes that are familiar to developers
from more classical languages like C++, C# and Java. However, the
prototypal inheritance is not changed – classes are merely a syntactic
sugar.

• Modules. ECMAScript 6 brings a language-level support for com-
ponent definitions. It allows developers to encapsulate their code and
define dependencies (imports). Until now, the only way to load other
modules inside code was to rely on 3rd party implementations of specifi-
cations like CommonJS9 and AMD (Asynchronous Module Loading)10.

• Data structures. The new standard defines new data structures for
common algorithms: Map, Set, WeakMap, WeakSet. They provide
some useful features, such as arbitrary values for keys in Map, and can
be used to improve memory management.

• Block scoping. ECMAScript 6 introduces a new keyword let to
define a block scoped variable. As opposed to using var, let helps
to overcome confusion often associated with JavaScript’s feature called
hoisting.

• Proxies enable defining custom behavior for fundamental operations
into objects, like interception, virtualization and logging.

9http://www.commonjs.org
10http://github.com/amdjs/amdjs-api/wiki/AMD

http://www.commonjs.org
http://github.com/amdjs/amdjs-api/wiki/AMD

CHAPTER 3. OVERVIEW OF WEB TECHNOLOGIES 20

• Promises is a new library natively provided by ECMAScript. Promises
are important for the asynchronous programming pattern present espe-
cially in web applications. Promises have been implemented by many
existing JavaScript libraries.

• Unicode. ECMAScript 6 brings non-breaking additions to support
full Unicode, which is a great help in building global applications in
JavaScript.

The new features will address some of the major challenges that we al-
ready discussed in the challenges section. Consider complexity, software en-
gineering principles and performance challenges for example: the improved
modularity, classes and data structures in ECMAScript 6 will most likely af-
fect the way web applications are built in a major way. The chances are that
the new ECMAScript definition will streamline and unify web application
development in general, very good.

3.4 Related specifications

3.4.1 Web Storage

Traditionally the data stored on the browser by the accessed web site has
been limited to cookies. Web Storage specification addresses the issues that
arise in web applications when needed to overcome the limitations of cookies,
such as the size limitation. The maximum size of a cookie is generally only
4KB. They also have another problem: cookies are transmitted back and
forth on every request. It is a potential security risk when the connection is
not encrypted. [34]

Web Storage API provides a simple way to store and retrieve JavaScript
objects. The developer can choose whether to use sessionStorage or localStorage,
which either persists the data between sessions or does not, respectively.
Moreover, Web Storage supports values as high as a few megabytes, which
makes it more suitable for storing document and file data contrary to cook-
ies. [34]

3.4.2 WebSockets

Conventionally the client-server communication on web applications has been
limited to HTTP (Hypertext Transfer Protocol). HTTP is a stateless and
synchronous protocol that operates on top the TCP/IP protocol stack. Nowa-
days, there is a need for two-communication between the clients and the

CHAPTER 3. OVERVIEW OF WEB TECHNOLOGIES 21

servers. For example, the server might want to send push notifications to
the client or the client would want wait for an asynchronous answer from the
server to a request. However, HTTP was not originally designed to main-
tain long-living bi-directional data streams. It has been worked around by
XHR-polling (XMLHttpRequest Long Polling), which is essentially a way to
periodically ask the server if there is a message. The problem with XHR-
polling is the overhead caused by multiple redundant HTTP requests. Each
HTTP request includes effectively the same header information and requires
a new TCP connection to be opened every time. [2, 59]

tim
e

tim
e

Request

SERVER
CLIENT
(HTTP)

CLIENT
(WebSocket)

Response (no update)

data update

Response (data update)

Request

Response (no update)

Request

Response (data update)

data update

Connection initialization

SERVER

Acknlowledge
Data update

data update

Data update
data update

Figure 3.1: HTTP and WebSocket communication patterns compared,
adapted from [2] and [59]. HTTP requests on the left, bi-directional Web-
Socket messages on the right.

Websockets were designed to overcome many of these limitations. Web-
sockets are initiated through an HTTP request, which is then upgraded to a
websocket connection by a special upgrade-message. HTTP and WebSocket
communication patterns are compared in figure 3.1. The websocket con-
nection is run on top of a long-lived TCP socket and allows bi-directional
communication. [2] Compared to HTTP packets, the overhead of packets
sent over a websocket connection is considerably smaller. Websockets can
provide a 500:1 to 1000:1 reduction in header traffic and 3:1 reduction in la-
tency. [35] The WebSocket API11 have been standardized by W3C and the

11http://www.w3.org/TR/websockets/

http://www.w3.org/TR/websockets/

CHAPTER 3. OVERVIEW OF WEB TECHNOLOGIES 22

websocket protocol is defined by IETF RCWEB group in IETF RFC 645512

Due to the low overhead in traffic and low latency, websocket are very
capable of handling realtime traffic. Thus, it is a suitable communication
protocol for client-server-client pattern messaging focused applications, such
as chats, games, logging and monitoring. From the web as an application
platform perspective, websockets can be considered a major technology in
bringing web applications closer to desktop applications which have been able
to utilize raw TCP/IP connection for high-speed and realtime communication
for decades.

3.4.3 Web Real-Time Communication

W3C is working on standardizing Web Real-Time Communication (WebRTC)
API, which introduces peer-to-peer (P2P) connections to web browsers. WebRTC
enables data and media streaming in a stateless fashion (consider UDP in
contrast to TCP), which is suitable for streaming video and audio, for in-
stance. The RTC architecture is on direct client-to-client communication and
server as the mediator, as shown on figure 3.2. [4, 33].

SERVER

CLIENT A
Browser

JavaScript application

media stream

ne
go

tia
te negotiate

WebRTC
API

CLIENT B
Browser

WebRTC
API

JavaScript application

(mediator service)

Figure 3.2: A typical WebRTC architecture between clients and a mediator
service.

The WebRTC standard allows web browsers to interact with devices like
microphones, webcameras and speakers. It allows to record, display and
show media to or from local devices, which makes the web browser power-
ful regarding rich internet applications. The challenges are in security and

12http://tools.ietf.org/html/rfc6455s

http://tools.ietf.org/html/rfc6455s

CHAPTER 3. OVERVIEW OF WEB TECHNOLOGIES 23

privacy – the user has to have the control when a local device is recorded.
Yet, there is also the possibility use this technology to improving security
and accessibility: consider face and voice recognition technologies.

3.4.4 Touch Events

Conventionally the web was browsed with a pointer device and a keyboard,
but today the web is used more and more with touch-based devices like
tablets and smartphones. In order for the web to serve as an application
platform, it has to adapt to the underlying operating system from the user
experience point of view. This has caused the need to support new interaction
functionality, such as swiping and pinching, also in the web browser.

The Touch Events specification introduces an API to capture events
for multi-touch interaction. It defines simple events such as touchstart,
touchmove and touchend that allow developers take advantage of the multi-
touch gestures. [58]

3.4.5 Web Workers

Web Workers is an API to enable multi-threading in JavaScript applications
and take advantage of multi-core CPUs (Central Processing Units). Desktop
application have always been able to leverage multiple CPU threads to run,
for instance, user interface and a computation process in different threads.
This would be beneficial also in heavy web applications to keep resource-
heavy operations from freezing the UI. Following the trend of applications
moving to web, Web Workers is a crucial API for running advanced applica-
tions in the browser.

Web Workers can be utilized by detaching a fragment of JavaScript to
run in a separate thread, i.e. “worker”. The workers normally include long-
lasting background tasks or code that is too expensive to be executed in the
main thread. There are also limitations to Web Workers: they cannot access
the DOM and they are tricky to debug. [34, 66]

3.4.6 Service Workers

Service Workers is a new API underway, which deals with the assumption
that network is reachable. It enables to register event-driven scripts inde-
pendent from the web pages or applications. Service Workers can work as
interceptors between page requests and the network, and thus override de-
fault network behavior e.g. by generating content when the network is not
reachable. The API is also intended to replace the deprecated AppCache

CHAPTER 3. OVERVIEW OF WEB TECHNOLOGIES 24

API and support caching for offline use. Service Worker scripts are run
asynchronously on separate threads and they can be utilized for features like
push messaging, background scheduling and synchronization. [56]

3.4.7 Server-Sent Events

Server Sent Events (SSE) is a browser API standardized by W3C. It provides
a simple way for the browser to listen to event streams on the server. It par-
tially overcomes the limitation of HTTP: receiving data without polling.
However, it does not enable real bi-directional communication, since the
standard only allows server-to-client messaging. Contrary to regular HTTP
connections, the SSE connection is persistent. [22] It could be utilized, for
instance, to send push notifications or real-time data updates.

3.4.8 Cross-Origin Resource Sharing

Cross-origin HTTP requests include an Origin header, which announces the
server the request was sent from. Due to security reasons, it cannot be
changed. Browsers implement same-origin policy to prevent CSRF attacks,
as we discussed in the previous chapter. This often leads to issues when the
web application needs to get access to external resources, such as APIs or a
CDN (Content Delivery Network).

Cross-Origin Resource Sharing (CORS) addresses the issue by allowing
the server to set allowed origins in the HTTP header. It also specifies a way
to negotiate the access control restriction with preflight requests. [63]

It is worth noting that same-origin policiy is merely an agreed policy
and is not guaranteed to be implemented in all browsers. Developers should
not rely on it being implemented when considering the security of their web
applications. A user might use a hacked browser or a simple plug-in to
overcome limits set by same-origin policy. Nevertheless, exploiting the policy
would only harm the user himself.

3.4.9 File API

Accessing and reading local files is often required by applications. In the web
browser this is addressed by the File API, which allows asking the user to
select files and then read the contents. User can select the files by either using
a modal initiated by HTML input element or by dragging and dropping.
The standard provides also a way to follow the progress of loading event by

CHAPTER 3. OVERVIEW OF WEB TECHNOLOGIES 25

listening to a ProgressEvent13. [44, 53]

3.4.10 Geolocation

Geolocation API provides a way to locate the user device based on the un-
derlying device API. The device implementation could use GPS (Global Po-
sitioning System) signals or a database based on Wi-Fi signals to locate the
user, for instance. The geolocation API on the browser is, however, agnostic
to the underlying implementation. [52]

3.4.11 Scalable Vector Graphics

Scalable Vector Graphics (SVG) standard is an XML-based image format
for two-dimensional graphics. It supports interaction and animation with
JavaScript. SVG can be used to draw many types of graphics, including basic
shapes, paths, text, fills, strokes, gradients, patterns and filters. Additionally,
it supports masking and embedding bitmap images. [10]

SVG reduces the need of embedding bitmap images to web pages or ap-
plications. Especially, during the era of mobile phones and high-resolution
displays the ability to include and display images in a vector format is ex-
ceedingly important. Web developers often want to build UIs that look and
behave the same regardless the screen resolution. Without a scalable vector
format that is achievable merely by including multiple versions of a single im-
age, that are sized accordingly to the screen resolutions. SVG eliminates the
need, as it can be scaled to any screen resolution in a pixel-perfect manner. [7]

3.4.12 Web Audio

The history of playing audio in the web browser has ranged from browser-
specific, non-standardized implementations to third party plug-ins like Flash.
HTML5 introduced the <audio> element but it has many limitations consid-
ering advanced audio in web applications: it has no timing controls, limited
number of sounds can be played at once, no pre-buffering and no ability to
apply real-time effects. [60]

Web Audio is a low-level JavaScript API to overcome the limitations
of the <audio> element. It allows audio to be loaded and played with
JavaScript, without an element in the DOM. It defines advanced function-
alities, like adjusting timing, latency, volume and pitch, and also combining

13Progress Events. W3C Recommendation. http://www.w3.org/TR/2014/
REC-progress-events-20140211

http://www.w3.org/TR/2014/REC-progress-events-20140211
http://www.w3.org/TR/2014/REC-progress-events-20140211

CHAPTER 3. OVERVIEW OF WEB TECHNOLOGIES 26

multiple different audio files. Moreover, it allows sound synthesization and
processing directly in the browser. [60]

3.4.13 WebGL

WebGL (Web Graphics Library) is a low-level API for rendering 3D graphics
in the web browser. It enables developers to include 3D context in the HTML
with pure JavaScript, that was previously impossible without third party
browser plug-ins. WebGL works on majority of the desktop browsers and in
a growing number of mobile browsers. [47]

The WebGL library is developed and maintainer by the Khronos Group14.
Major browser vendors including Apple, Google, Mozilla and Opera belong
to the WebGL Working Group. [28] The WebGL 1.0 specification15 was re-
leased in 2011 and it is based on OpenGL ES 2.0 (Open Graphics Library
for Embedded Systems). The WebGL 2.0 specification16 is currently in the
making and it will be based on OpenGL ES 3.0.

WebGL uses the <canvas> element introduced in HTML5. Thus, being
rendered on a regular HTML element, 3D rendering can be combined with
other web content. The underlying OpenGL is abstracted in a JavaScript
API that is used in conjuction with the typed arrays. Typed arrays specifi-
cation17 was created to allow better memory management and performance
for resource-heavy WebGL applications. [47]

Web browser make a very powerful 3D platform. JavaScript and WebGL
are cross-platform technologies, meaning the 3D can be presented on a vast
amount of different devices, ranging from mobile phones to televisions. WebGL
being designed for web, it is easy to use and hassle-free for the end users. It
is expectable to be adopted in advanced user interfaces and virtual reality
applications in the near future. Improving the visual interfaces have been
proven to be an effective way to add value to a web service, especially in the
domains of entertainment, learning and commerce [6].

14http://khronos.org
15http://www.khronos.org/registry/webgl/specs/1.0/
16http://www.khronos.org/registry/webgl/specs/latest/2.0/
17http://www.khronos.org/registry/typedarray/specs/latest/

http://khronos.org
http://www.khronos.org/registry/webgl/specs/1.0/
http://www.khronos.org/registry/webgl/specs/latest/2.0/
http://www.khronos.org/registry/typedarray/specs/latest/

Chapter 4

Single Page Architecture

Despite the popularity of the web, web applications often suffer from inferior
interactivity and responsiveness compared to native applications. Prior to
single page architecture (SPA), classic web applications needed the entire
interface to be refreshed due to the multi-page design pattern. [39] SPA aims
to enhance the user experience of web applications by improving the UI
responsiveness and interaction.

In this chapter, I present key concepts and components of the single page
architecture. Since there is no single right way to implement a SPA, I also
present some of the most popular framework implementations.

4.1 Key Concepts and Components

This section presents the key concepts and components required by single
page applications. The first two, AJAX and REST, are enabling technologies
that underlie the frameworks and the rest are common SPA-specific concepts.
It is essential to understand these technologies in order to effectively work
with single page applications.

4.1.1 AJAX

Today, AJAX is the main technology on the web used to make rich client ap-
plications. It allows an application to update new data to the DOM without
refreshing the whole page. Traditional web applications force users to wait
until a response from the server when transitioning to a new view. Allow-
ing users to interact with the page during the process, showing progress and
status, vastly enhances the user experience in single page architecture. [65]

AJAX is based on the following core components: HTML, CSS, DOM,

27

CHAPTER 4. SINGLE PAGE ARCHITECTURE 28

XMLHttpRequest object and JavaScript. The components could be de-
scribed as follows: HTML and CSS are used for standard rendering process,
DOM for dynamic displaying and interaction, XMLHttpRequest for data
exchange and JavaScript as the glue and logic. The components are well
supported in all major browsers. [65]

AJAX enables developers to create web applications that are based merely
on state changes in the client application, contrary to keeping session on the
server and rendering static pages accordingly. This is substantially different
from the classic synchronous request-wait-response-continue model, as visual-
ized in figure 4.1. Moreover, the amount of data exchanged between browser
and the server is reduced, thus resulting in improved responsiveness. [39, 65]

Web browser

Web page

H
TM

L
do

cu
m

en
t

H
TT

P
Re

qu
es

t

Storage

Backend (static)

HTTP Server

Web browser

JavaScript
(AJAX engine)

Web page

H
TT

P
Re

qu
es

t

St
ru

ct
ur

ed
 d

at
a

(X
M

L,
 J

SO
N

)

H
TT

P
Re

qu
es

t

In
iti

al
 H

TM
L

do
cu

m
en

t

Rendered HTML

Storage

Backend (static + API)

HTTP Server

Figure 4.1: Comparison of regular web page requests (left) to asynchronous
AJAX requests (right).

AJAX processes are asynchronous and thus they allow multiple operations
to be done at once. This helps to increase the interactivity on the client
side. [39] For example, user could submit a form, see a progress bar and

CHAPTER 4. SINGLE PAGE ARCHITECTURE 29

continue navigating the page. When there is response from the server, the
user would get an acknowledgement of the form submission. This technique
could be scaled and used to build immensely complex native-like applications,
such as Gmail. Google was one of the first companies to understand the full
potential of AJAX. [14]

4.1.2 REST

Representational State Transfer (REST) describes an architectural style of-
ten used in conjunction with AJAX-powered applications. The idea behind
REST is to make the application data be accessible in components, i.e., re-
sources. REST can be described in five constraints as listed below: [19]

1. Resource Identification. All resources must use Uniform Resource
Identifiers (URI).

2. Uniform Interface. The resources are accessible through a uniform
interface, which is typically HTTP.

3. Self-Describing Messages. A REST interface uses a known and
agreed-upon resource format, such as XML or JSON for data exchange.
Thus, no individual negotiations for servers and clients are needed.

4. Hypermedia Driving Application State. Clients consuming a
REST service must follow the links found in the resources. Thus, it is
possible to explore the service without dedicated discovery formats.

5. Stateless Interactions. The requests must be self-contained, mean-
ing that they need to contain all the information is needed to be in-
cluded in a single request. This results in statelessness, i.e., there is
no state information in the HTTP requests. A state, however, could
persist on the client or the server.

Web applications communicate with REST services via standard HTTP
requests. HTTP defines action-like semantics for the operations that are
called verbs. Each verb has two properties: safety, which implies whether
the method may change the resource’s state or data, and idempotency, which
implies whether it can be assumed that equal multiple requests does not
cause side effects different from sending a single request. The HTTP verbs
are compared and explained in more detail in the table 4.1: [14]

CHAPTER 4. SINGLE PAGE ARCHITECTURE 30

Verb Description Safe Idempotent

GET Retrieve a resource Yes Yes

HEAD Retrieve resource information.
Effectively the same as GET request’s
HTTP headers.

Yes Yes

PUT Update an existing resource. No Yes

DELETE Delete an existing resource. No Yes

POST Add a new resource or request an ac-
tion on an existing request

No No

OPTIONS Query for the supported HTTP verbs
for a resource.

Yes Yes

PATCH Update a part of an existing resource.
Note: this method is not part of the
original HTTP 1.1 but was added
later.

No Yes

Table 4.1: HTTP Verbs

REST services are beneficial to single page applications, because they al-
low loose coupling of the back-end (server) and the front-end (client). Con-
sider a company that wants to serve as many customers as possible. They
will likely to build a REST service, which can not be consumed only by a web
application, but also by native mobile and desktop applications. Classical
web applications are tightly coupled with the business logic on the backend
and limit the possibilities of extending the service.

An alternative technology to REST is SOAP (Simple Object Access Pro-
tocol). SOAP is an enterprise-level technology often coupled with WSDL
(Web Service Description Language) and UDDI (Universal Description Dis-
covery and Integration). SOAP-based services have proven to be unpopular
among web developers and the use is typically limited to legacy systems.
Compared to SOAP, which is a complex and requires orchestrating services,
REST is lightweight and supports adaptation in changing environments, i.e.,
in dynamic web. Lanthaler and Gütl argue in their paper that compared to
SOAP, REST-based services can be more scalable, reliable and visible and
are the preferred choice for Internet-scale applications. [36] Thus, I focus
solely in REST in this thesis.

CHAPTER 4. SINGLE PAGE ARCHITECTURE 31

4.1.3 Separation of Concerns

Separation of Concerns (SoC) is a software engineering principle implying
modularity: a pattern in architectural design that decomposes software be-
haviour in encapsulated units. It can be achieved by grouping together logi-
cally related elements, which ultimately results in low coupling. [30] Breaking
a large application into small units reduces code complexity. In single page ar-
chitecture, SoC is essentially a Model-Controller-View (MVC) pattern, which
is found also in classical web application frameworks. [12]

MVC (see figure 4.2) is a common software architecture pattern that is
used to separate the visual data representation from the underlying model.
Traditional web applications utilize MVC on the server where the application
is written in C#, Java, Python or Ruby, for example. However, modern
JavaScript applications transfer the MVC logic completely from the server
to the client. [42]

Model

Change
events

UI events

Manipulates view

Queries
state Updates

state

View Controller

Figure 4.2: Model-View-Controller architecture. [42]

In fact, the development of single page architectures has spawned other
patterns as well. MVP (Model-View-Presenter) and MVVM (Model-View-
ViewModel) are architectural patterns that are derivatives of MVC. In MVP
presentation model is delegate of the data and directs both: view and model.
MVVM is essentially MVC used in conjunction with two-way data binding,
which I will introduce in the next section. [42] Therefore, I use “MV*” as a
broad term for addressing MVC, MVP and MVVM in single page applica-
tions.

Implementing MV* pattern in a framework ultimately leads to compo-
nents including templates, data models and controllers. Some frameworks
introduce new features, like “directives” by AngularJS, that further mod-
ularize the architecture in smaller MVC components (consider MVC inside
MVC). Templates are typically plain HTML, which is written either in sepa-
rate files or directly into a JavaScript component. Data models are typically

CHAPTER 4. SINGLE PAGE ARCHITECTURE 32

written either pure JavaScript object prototypes or by extending skeleton
objects provided by the framework. Controller pattern is usually strictly
defined by the framework, which then connects it to related processes like
routing and dependency injection.

4.1.4 Data binding

Data binding is the process of establishing a connection between the appli-
cation UI and the business logic. It is one of the core features of any web
application that separates the logic in MVC or MVC-like pattern. There
are two kind of data binding processes: one-way and two-way data binding.
Conventional applications bind data only in one direction, i.e. implements
one-way binding. In one-way binding, the view (template) is updated to
reflect the model (data). The conceptual difference between these two tech-
niques is visualized in figure 4.3. [18]

View

Template Model

Compilation
View

Template

Compilation

Model
updated

from view

View
updated
by model

Model

Figure 4.3: One-way data binding (left) vs. two-way data binding (right).
Adapted from [18].

Two-way data binding is a technique introduced by modern SPA frame-
works like AngularJS and Ember. It allows data to flow to both directions:
changes in view update the model and changes in model update the view.
In practice this could happen when there are multiple independent com-
ponents updating the view: if the view is updated by one component, the
changes would propagate also to the other components. This is a complex,
but powerful technique and allows very rapid development without setting
event-handlers to update the view.

CHAPTER 4. SINGLE PAGE ARCHITECTURE 33

4.1.5 Routing

Router is a module that delegates requests from predefined URIs to the
proper functions. In MV* architectural pattern this is typically a map-
structure that defines URI-patterns, assigns them a controller and passes pa-
rameters captured from the URI. Listing 4.1 shows an excerpt of JavaScript
code as a trivial example to configure routing in AngularJS. It configures
two routes: route1 with “template-1.html” and “FirstController”; route2
with “template-2.html” and “SecondController”. Route2 additionally parses
a parameter “param” from the URI and passes it to the controller.

1 $routeProvider.

2 when(’/route1 ’, {

3 templateUrl: ’template -1. html’,

4 controller: ’FirstController ’

5 }).

6 when(’/route2 /: param’, {

7 templateUrl: ’template -2. html’,

8 controller: ’SecondController ’

9 }).

10 otherwise ({

11 redirectTo: ’/’

12 });

Listing 4.1: Route configuration example in AngularJS 1.3.

Finding resources on the web is based on URIs, thus routing is an essential
feature in every web application. This also differentiates web applications
from native applications, since in native applications there is no way to save
the application state in an URI or an URI-like object. Thus, URIs allow
the application state to be saved as bookmarks or to be sent as links to
other users. Not all single page applications, however, support saving the
application state in the URI. Also, serializing complex states to an URI is
difficult and often impossible.

Routing is non-trivial for web applications, since application UIs often im-
plement a “go-back/go-forward” or “undo/redo” functionalities. This means
that the application has to retain history, i.e., save changes of state to mem-
ory. Many SPA frameworks exploit the History API1 that was introduced in
HTML5. However, the API is not supported by all major web browsers –
especially the older ones like IE 8. Some frameworks implement a compati-
bility mode to support old browsers known as “hashbang mode”. It prefixes
the URIs with hash and exclamation symbols to allow changing the URI
programmatically.

1http://www.w3.org/TR/2011/WD-html5-20110113/history.html

 http://www.w3.org/TR/2011/WD-html5-20110113/history.html

CHAPTER 4. SINGLE PAGE ARCHITECTURE 34

4.2 Overview of Popular Frameworks

In this section I overview some of the most popular JavaScript frameworks
that are designed for single page applications. I look at what has been
emphasized in the design of the frameworks and what are their main concepts
and principles.

I chose to overview the following four open-source frameworks: Angu-
larJS2, Backbone3, React4 and Ember5. The selection was made by consid-
ering the following properties: Google trends6, amount of questions tagged
in Stackoverflow7 and GitHub8 stars. Google trends evaluate the popularity
based on keywords used in searches, Stackoverflow is a very popular question
& answer platform for developers and GitHub is a Git-repository provider
primarily for open-source projects. Stars in GitHub resemble the amount of
people marked the project as their favourite.

Keyword Stackoverflow ques-
tions (tags)

GitHub stars

AngularJS 91015 37973

BackboneJS 17821 21569

CanJS 170 1135

Durandal 1551 1179

EmberJS 14886 13538

KnockoutJS 6318 13504

Meteor 11330 24509

ReactJS 2483 21142

SpineJS 180 2954

Table 4.2: JavaScript SPA framework popularity com-
parison (measured 28 April 2015).

It is easy to see from the figure 4.4 and the table 4.2 that AngularJS is

2http://angularjs.org
3http://backbonejs.org
4http://facebook.github.io/react/
5http://emberjs.com
6http://www.google.fi/trends
7http://stackoverflow.com
8http://github.com

http://angularjs.org
http://backbonejs.org
http://facebook.github.io/react/
http://emberjs.com
http://www.google.fi/trends
 http://stackoverflow.com
 http://github.com

CHAPTER 4. SINGLE PAGE ARCHITECTURE 35

Figure 4.4: Google trends for the selected frameworks (2010–2015). The
y-axis represents the percentage of the highest interest rate of given data set.

Figure 4.5: Google trends for the selected frameworks (2010–2015) including
Meteor and excluding AngularJS. The y-axis represents the percentage of
the highest interest rate of given data set.

CHAPTER 4. SINGLE PAGE ARCHITECTURE 36

currently the most popular framework by a large margin. It is also evident,
that React has gained much of popularity in a short period of time. Despite
the low numbers for Stackoverflow questions, it is on par on GitHub stars
with Backbone, which has the longest history.

To clarify the differences between the next popular frameworks, figure 4.4
displays the trend without AngularJS. Meteor9 is also seemingly popular
framework, but is based on very different concepts than the other frameworks.
It is more of a platform rather than a framework, that involves also server-
side technologies. Thus, it was excluded from the overview.

4.2.1 AngularJS

AngularJS is a SPA framework that was first released in 2009. Version 1.0
was released in 2012 and the framework is considered to have become popular
in 2013. As of writing the thesis, the newest stable version of AngularJS is
1.3. Version 1.4 is a release candidate version and a completely new version
2.0 is in the works. This thesis focuses solely on version 1.3.

The framework is being maintained and developed by Google. According
to the developers, AngularJS is built around the belief that declarative code
is superior to imperative when it comes to building UIs, and imperative code
is better at expressing business logic. The principles behind AngularJS are
listed as follows: [18]

• Business logic should be decoupled from the DOM manipulation logic,
which results in better testability.

• Testing should be valued as high as writing the actual code, since struc-
turing the code affects dramatically testing.

• The client app should be loosely coupled from the server side. This
makes parallel development of both, client and server sides, possible.
Also, it allows reuse of both sides.

• Framework should guide the developer through the whole application
building process, including UI design, writing business logic and testing.

• Common tasks should be trivial to accomplish but difficult tasks should
not be restricted.

AngularJS introduced many new techniques and concepts that help build-
ing single page applications efficiently. New concepts include scopes (for

9https://www.meteor.com

https://www.meteor.com

CHAPTER 4. SINGLE PAGE ARCHITECTURE 37

controller-view data binding), services, providers, dependency injection and
directives. AngularJS makes heavy use of two-way data binding, but sup-
ports also one-way binding. I review the concepts in more detail in the
implementation chapter.

AngularJS is an opinionated framework, meaning it defines rather strict
patterns which have to be followed in order to build applications the “AngularJS-
way”. While it may take a while to learn the AngularJS style, the pre-defined
patterns can be beneficial for beginners with little experience. Nevertheless,
an agreed-upon structure in an application makes it easy to collaborate on
a project if everyone knows the framework. If the framework is not opinion-
ated, many people will have different ways of accomplishing similar tasks,
thus there will be collisions in the preferred methods and patterns.

4.2.2 Backbone

Backbone takes more of a minimalistic approach compared to a full-featured
framework, like AngularJS. It provides many helpful functions to build a
single page application, but does not provide an opinionated structure for
the application. Thus, it is considered more a library than a framework.
It is intended to be used as a foundation for SPA framework or for small
applications as is.

The library provides patterns to define object-oriented structures, namely
“models” and “collections”. Also, it introduces event handling functional-
ity, view models and router with history functionality. [45] To manipulate
the DOM, Backbone is almost always paired with a library like jQuery10 or
Zepto.js11, that make it easy traverse and manipulate the HTML document.

Backbone is often used with an extension called “Marionette”, which
aims to make it easy to build large-scale applications. Together they form
an entirety that is more of a framework in a sense that it provides a stream-
lined architecture for SPA projects. It adds scalability via modularization,
reduces boilerplate code, eases view management and extends some features
like routing and event handling. [45]

Behind the scenes, Backbone makes use of a popular library called “Un-
derscore.js” and uses it as basis for many of its features. In fact, Under-
score.js is written by the same author ass Backbone. Underscore.js and simi-
lar libraries, including Lodash12 and Lazy.js13, are often used individually to
provide functional features to any JavaScript application.

10http://jquery.com
11http://zeptojs.com
12http://lodash.com
13http://danieltao.com/lazy.js/

http://jquery.com
 http://zeptojs.com
http://lodash.com
http://danieltao.com/lazy.js/

CHAPTER 4. SINGLE PAGE ARCHITECTURE 38

Evidently,as its name suggests, Backbone is merely a “backbone”. Expe-
rienced developers that want flexibility, compose the application from compo-
nents made by different vendors or want to convert an existing web applica-
tion to a single page application, will probably prefer Backbone-like frame-
work. However, adapting a low-opinionated framework, will likely require
previous understanding of building a single page applications to effectively
solve problems that large applications might cause. Thus, beginners might
not adapt to Backbone very quickly. On the other hand, Backbone does not
introduce such new concepts, like AngularJS does, that might be completely
new to a developer and cause a steep learning curve. Nevertheless, a cer-
tain benefit Backbone has, is the light weight and small footprint. It is easy
to start converting existing applications to Backbone, since it is possible to
compose (only) from the features the developer likes and use any existing
libraries accordingly.

4.2.3 React

React is a very new library maintained and developed by Facebook. The first
version of React became available to the public around 2013 when Facebook
decided to publish the framework as open-source. Since then it has been
adopted rapidly by the developer community. It has caused a lot of buzz,
since it is fundamentally different from most of the popular frameworks.

React is not a framework alone, but it has a separate section in this work
because of the major way it affects a single page application architecture.
It is often considered just the “V” in MVC, and together with a library
like Flux14, it becomes more framework-like. However, even React and Flux
together does not form a framework, but more like a set of agreed-upon
patterns. Noteworthy to say, React works well along with any other light
weight framework, such as Backbone. However, Flux is often preferred, since
it is also made by Facebook and designed the React-style architecture in
mind.

The fundamentals of React consist of the following three ideas:

• Create simple components that do not mutate the original data.

• Render only what has been changed to DOM. This improves perfor-
mance,

• Use one-way reactive data flow to make it easy to reason the component
relationships.

14http://facebook.github.io/flux/

http://facebook.github.io/flux/

CHAPTER 4. SINGLE PAGE ARCHITECTURE 39

A typical application built with React and Flux would consist of com-
ponents called dispatcher, stores and views (see figure 4.6). Dispatcher is a
component that gathers action events and delegates them to views (React
components). Views may save only minor UI-related state, but never the
actual application data. The data is saved in stores from which the views
read. According to the developers of Flux, this kind of style can be called
“functional reactive programming”. [26]

Dispatcher Store

Action
from inside,

e.g. click event

Action
from outside,

e.g. data update
View

(+ controller)

Figure 4.6: Data flow model in Flux+React. [26]

React is very well suited for building reusable components. Its rendering
speed is said to be very fast, and thus it would suit also to creating hybrid
mobile applications and DOM-heavy components, such as lists with hundreds
of items. It can be paired theoretically with any MVC framework and replace
the “V”. It is developer friendly due to the very loosely coupled components
and a simple data flow mechanism.

4.2.4 EmberJS

Ember is a full-featured SPA framework. It is considered very opinionated
and it reduces lots of boilerplate code by providing naming conventions. The
framework is based on the following core concepts [13]:

• Templates. Ember utilizes a templating library called “Handlebars”15,
which supports expressions, outlets (template helpers) and components
(custom HTML elements).

• Router. The router is used to translate URL into a series of nested
templates. Ember automatizes the URL serialization based on models.

• Components. In Ember, a component is a custom HTML tag de-
scribed in Handlebars templates and its behaviour is implemented in
JavaScript.

15http://handlebarsjs.com

http://handlebarsjs.com

CHAPTER 4. SINGLE PAGE ARCHITECTURE 40

• Models. Models are objects that store persistent state. Ember imple-
ments various helpers for models, including records (pending objects
to be saved to the server), adapters (translates requests to a certain
server), serializers (turns models intro raw JSON objects), and auto-
matic caching.

The design of Ember is much like in AngularJS. They consist of similar
concepts and principles, such as two-way data binding. Compared, Ember
is more opinionated and lacks similar module-level dependency injection.
Ember has more boilerplate functionality and its concepts are higher level,
i.e. more abstract, than in AngularJS. This makes it easy for beginners, but
experienced developers will likely want to understand what is under the hood
of Ember.

Chapter 5

Implementations with AngularJS

In this chapter, I present three single page applications that I implemented
using the AngularJS framework, HTML5 and related web technologies. First,
I describe the specification and requirements of the applications, and then
overview the used tools, techniques and practices. Finally, I present the
design and the results.

AngularJS was selected as the framework due to the popularity of the
framework, as discussed in the previous chapter. Also, as a full-featured
framework, it is well suitable for building applications from the scratch.
JavaScript was selected over native technologies to support multiple plat-
forms as easily as possible.

I built the applications for my startup Fresgo, which aims to create new
business in the field of food industry. The company focuses in providing a
way to buy food by a mobile phone. The product is a web platform, which
provides a tablet/desktop application for restaurants to receive orders, and
a mobile application for consumers to place the orders.

5.1 Specifications

In this section, I present short specifications to give a concrete scope for
the implementation. For the sake of simplicity, I name the applications ac-
cording to the target users as follows: “Restaurant application”, “Consumer
application” and “Monitoring application”.

Restaurant application

The restaurant application will run on a tablet device, namely on an iPad. We
chose iPad as the single supported device, since the company determined the

41

CHAPTER 5. IMPLEMENTATIONS WITH ANGULARJS 42

used devices. Thus, there was no need to support multiple different platforms
and devices. Moreover, iPad’s hardware and web browser performance have
a good reputation among developers. Also, other than development-related
properties were considered, such as operating system stability and usability,
appearance at a restaurant environment, availability of stands and resale
value.

The application should work in an extremely challenging environment:
a busy, crowded and loud cafeteria with either a Wi-Fi or a 3G Internet
connection. The application should be constantly powered, online and be
able to recover from connection drops. The status of the connectivity and
orders should be updated to the server in real time. It should notify the
restaurant personnel of new orders and reminders with different types of
audio notifications. The application should emphasize good user experience,
implement a touch interface and prevent erroneous misclicks by design.

Being deployed in multiple locations, it should be effortless to update
the clients remotely. This should not require interaction from the restaurant
personnel. Thus, the iPad should be always on and ready to receive orders.

Consumer application

The consumer application should work on iOS and Android operating sys-
tems. It should be available in the native application stores, thus it will be
implemented as a hybrid application, i.e., packaged as a native application
that utilizes web technologies. The application should be usable in various
mobile phones and in various screen sizes.

Consumers need to be able to register, sign in and set a payment card
to the application. Also, the most relevant part of the application is the
purchasing feature: consumers should be able to select a restaurant, view its
menus, choose products and add them to a virtual shopping basket. Finally,
the application should provide a way to order the content of the basket.

The application should work on slow Internet connections. The interface
needs to be optimized for touch use and it should be clear and simple enough
to be used on the go.

Monitoring application

The monitoring application should allow the company (the service provider)
to monitor the restaurant application clients. It should display in real time
the connection and order statuses in the restaurants. It should show recent
log messages in order to reveal errors. The application has no strict require-
ments for the platform or performance, since it is used merely as a tool by

CHAPTER 5. IMPLEMENTATIONS WITH ANGULARJS 43

the developers.

5.2 System Architecture

REST API

SERVER

CLIENT pr
od

uc
t d

at
a

ne
w

 o
rd

er
s

ne
w

 o
rd

er
s,

or
de

r u
pd

at
es

,
co

nn
ec

tio
n

st
at

us

new orders
connection statusin

iti
al

 o
rd

er
s

or
de

r u
pd

at
es

Consumer
application

Restaurant
application

Monitor
application

Database Message Queue

WebSocket layer

Figure 5.1: System architecture, data flow and storage.

In addition to the three client applications, the system consists of the
following four main components: REST API, WebSocket layer, database
and a message queue. The relationships of the components are illustrated in
figure 5.1 and the purposes described below:

REST API
The main application logic is implemented on the client side, and a
REST API is used as an interface to send and retrieve data between
the client and the server. REST API provides the following function-
alities: authentication, authorization, validation and manipulation of
data. Consumer application retrieves the restaurant and product data
and sends new orders through the API. Restaurant application retrieves
initial orders through the API and posts updates to the orders (e.g.
“in-progress” or “done” updates).

CHAPTER 5. IMPLEMENTATIONS WITH ANGULARJS 44

WebSocket layer
The WebSocket layer is used for real time and bi-directional communi-
cation. It notifies the restaurant application of new orders and receives
its connection status. Also, it logs events to the message queue, which
can be viewed by the monitor application.

Database
The database is used as a persistent data store. The REST API works
as an interface to communicate with the database.

Message queue
The message queue works as a buffer for the real time messages and as
a non-persistent storage for log messages.

5.3 Development tools

Efficient development of single page applications require tools that are dif-
ferent from the ones designed for traditional web applications. Such tools
automatize and streamline the development process and are also crucial to
follow good software engineering principles. In these applications, I used
tools for testing, building (compilation) and serving automatization.

For build automatization I used tools called Grunt1 and Gulp2. They min-
imise the files distributed to the user by concatenating the HTML, JavaScript
and CSS files. Moreover, they remove unnecessary whitespace and optimize
images. This greatly reduces the amount and size of files to download and
results in faster load time for the end user.

Grunt and Gulp were also configured to serve files locally. Since single
page applications use URLs to link to sub pages, which are technically just a
single page, a special arrangement for the HTTP server is typically needed.
All HTTP requests were configured to be redirected to the root document,
namely index.html. Using a tool like Grunt or Gulp made it easy to use
the same configuration for serving among all developers.

A tool called Bower3 was used to automatize the installation of required
packages. It allows to define the packages in a single text file, download and
install them by a single command. This greatly lessens the efforts needed to
install new or update out of date packages – especially in a team when the
configuration file can be shared through the version control system.

1http://gruntjs.com
2http://gulpjs.com
3http://bower.io

http://gruntjs.com
http://gulpjs.com
http://bower.io

CHAPTER 5. IMPLEMENTATIONS WITH ANGULARJS 45

Testing is an important part of software development process. For unit
testing I used Jasmine4 test suite and a test runner called Karma5, which is
designed especially for AngularJS. Karma runs on Node.js and it brings a
tremendous advantage compared to conventional web application test run-
ners: paired with a UI-less web engine (e.g., PhantomJS6) it can run con-
stantly on the background and provide almost instant feedback of the test
results. A modern computer runs tens and hundreds of tests in a matter of
seconds. This supports well test driven development style.

5.4 Libraries

In addition to AngularJS, I used many UI and utility libraries. Consumer and
restaurant applications depended heavily on a UI framework called Ionic7,
which is built on top of AngularJS, and thus it cannot be used in conjunction
with any other SPA framework. Ionic implements a plethora of UI compo-
nents that mimic the looks and behaviour of many mobile native platform UI
components. For instance, such components include buttons, content areas,
form elements, popups, modals and slide menus.

Monitor application utilized another UI library called Bootstrap8, which
similarly implements UI styles for buttons, forms, typography, grids, alerts,
progress bars etc. However, Bootstrap is not primarily designed for mobile
and touch use, but rather it is designed in a “mobile first” manner. Essen-
tially, this means it will work on smaller screen sizes, but does not mimic
behaviour known from mobile operating systems.

Lo-dash9 is a utility library that is useful for any JavaScript application,
and was used in all three applications. It implements patterns that are com-
monly used in functional programming style. It encourages using immutable
data structures, and thus improves code readability and quality.

Apache Cordova10 is a library and a tool to package web applications as
native applications (hybrid applications). It does not affect the way to build
web applications other than allowing the use of native APIs. I packaged
the consumer and restaurant applications with Cordova and distributed it to
Apple App Store and Google Play Store. Only splash screens and status bars

4http://jasmine.github.io
5http://karma-runner.github.io
6http://phantomjs.org
7http://ionicframework.com
8http://getbootstrap.com
9http://lodash.com

10http://cordova.apache.org

http://jasmine.github.io
http://karma-runner.github.io
http://phantomjs.org
http://ionicframework.com
http://getbootstrap.com
http://lodash.com
http://cordova.apache.org

CHAPTER 5. IMPLEMENTATIONS WITH ANGULARJS 46

were customized for the applications with Cordova APIs. We configured the
web view on Android to run Google Chrome with the help of library called
Crosswalk11.

5.5 Technologies

In this section, I present the used web technologies that were introduced in
chapter 3. The technologies and their usage descriptions are listed below.

Touch Events
Touch events were used extensively in the touch-based consumer and
restaurant applications. The UI components included slidable, drag-
gable and scrollable elements.

Media elements
HTML5 <audio> element enabled us to play audio notifications on the
restaurant application. However, we replaced the functionality later by
Web Audio API.

Web Messaging
A special arrangement in the restaurant application was made with
iframes. The iframe used web messaging to communicate with the
containing page.

Browser history management
Browser history management was used by AngularUI Router to enable
back and forward navigation functionalities in the consumer applica-
tion.

Cascading Style Sheets
I used CSS comprehensively to style the applications. I used SASS and
LESS preprocessors to take advantage of the advanced functionalities
and to better organize the files. Ionic utilized many advanced CSS
properties including transitions and the “flexbox” display mode for
elements.

Web Storage
I used Web Storage for caching data locally in the consumer application.
It prevented unnecessary requests and the user could start using the
application immediately after launch, as the most important data was
saved in the cache.

11http://crosswalk-project.org

http://crosswalk-project.org

CHAPTER 5. IMPLEMENTATIONS WITH ANGULARJS 47

WebSockets
I used WebSockets in the restaurant and monitoring applications to
send and receive orders, order updates and log messages.

Cross-Origin Resource Sharing
CORS configuration made it possible to use the same REST API for the
consumer and restaurant applications without special arrangements.

Scalable Vector Graphics
I implemented all icons in SVG format. Ionic provides an extensive
icon kit where all the icons are mapped to easy-to-use CSS classes.

Web Audio
Advanced audio functionalities were needed, such as programmatically
stopping and playing the audio and concurrent audio tracks. This
caused problems with the <audio> element. Thus, migration to the
Web Audio API was done.

5.6 Application structure

Routing

The routing was implemented using an AngularJS library called AngularUI
Router12. Compared to the router included in AngularJS, it provides much
more functionality to build complex applications. It implements nested and
parallel views and is organised around states rather than routes. States are
like routes where the associated URL is optional.

The routing mechanism in AngularJS allows attaching animations to the
pages. Transitions between views are common especially in mobile appli-
cations, where the smaller view cannot contain simultaneously as much in-
formation as in desktop applications. Transitions help user to conceive the
navigation structure and give an impression of responsiveness. For example,
in the consumer application many of the subsequent pages have a sliding tran-
sition in between. The transition changes direction based on whether user
is navigating backwards or forwards. The animations are implemented by
CSS3 transitions and are triggered by JavaScript based on the state change.

An example excerpt of routing in the consumer application is shown on
listing 5.1. AngularUI Router allows to define also abstract states, which are
states that cannot be rendered as is. The abstract states must be inherited
by regular states that may or may not override the abstract state’s data or

12http://github.com/angular-ui/ui-router

http://github.com/angular-ui/ui-router

CHAPTER 5. IMPLEMENTATIONS WITH ANGULARJS 48

add sub-views. Thus, the excerpt only defines two actual renderable states,
named master.menu.items and master.menu.item. Moreover, the URL is
inherited from the parent states and results in these two URLs to access
the states: /menu/items and /menu/items/:categoryId/:itemId where
:categoryId and :itemId are variables. The variables can be captured in
the controller as shown in listing 5.2.

1 ...

2 $stateProvider

3 .state(’master ’, {

4 url: ’’,

5 abstract: true ,

6 controller: ’MainController ’,

7 templateUrl: ’templates/master.html’

8 })

9 .state(’master.menu’, {

10 abstract: true ,

11 url: ’/menu’,

12 templateUrl: ’templates/menu.html’

13 })

14 .state(’master.menu.items ’, {

15 url: ’/items’,

16 controller: ’MenuItemsController ’,

17 templateUrl: ’templates/menu -items.html’

18 })

19 .state(’master.menu.item’, {

20 url: ’/: categoryId /: itemId ’,

21 templateUrl: ’templates/menu -item.html’,

22 controller: ’ItemController ’

23 })

24 ...

Listing 5.1: Excerpt of state configuration in the consumer application.

1 ...

2 .controller(’ItemController ’, function($scope , $stateParams)

3 {

4 ...

5 var categoryId = $stateParams.categoryId;

6 var itemId = $stateParams.itemId;

7 ...

8 });

9 ...

Listing 5.2: Excerpt of state configuration in the consumer application.

CHAPTER 5. IMPLEMENTATIONS WITH ANGULARJS 49

Modularization

Being able to divide application into logical modules is essential in every pro-
gramming language and environment. This encourages reusability and testa-
bility, that are fundamentally important aspects of programming. AngularJS
approaches modularization via technique known as dependency injection.

Dependency injection is an internal implementation in AngularJS and
is not a standard way of modularization in single page applications. The
technique works by defining modules as functions that are given a name as
a string, which is then parsed by AngularJS. An example of module defi-
nition is shown in listing 5.3. It first defines an AngularJS module named
fresgo.controllers.MenuController and specifies it to use another mod-
ule named ionic. In the latter part it defines the content of the module,
which in this case is a controller named MenuController. The function pa-
rameters of the controller are injected components from the modules, $scope
being an internal component in AngularJS and $ionicModal being injected
from the ionic module.

1 angular.module(’fresgo.controllers.MenuController ’, [

2 ’ionic’

3])

4 .controller(’MenuController ’, function($scope , $ionicModal) {

5 ...

6 });

Listing 5.3: Excerpt of state configuration in the consumer application.

This technique makes it effortless to write new modules in a way that
developers know which other modules they require. However, the drawback
is that the modules are compatible only for AngularJS applications if no other
arrangements are made. Furthermore, depending on modules that depend
on other modules can be tricky, since there have to be a way to download
the whole hierarchy of the dependencies. This has been solved by the Bower
package manager, but it adds additional complexity.

Data flow

AngularJS implements two-way data binding as I discussed previously in
section 4.1.4. The binding of data between the controller and the view in
the applications is made with AngularJS $scope service. Templates that are
paired with a controller are given a scope, which is accessible directly from
both; templates and controllers. Thus, attaching a click event to a template
as shown in listing 5.4, can trigger an action defined in the controller. The
ng-click attribute is a way in AngularJS to bind to a click event.

CHAPTER 5. IMPLEMENTATIONS WITH ANGULARJS 50

1 <button ng-click="goBack ()"></button >

Listing 5.4: Example of binding to a click event in an HTML template

The scopes can be inherited also by binding data only in one direction.
This would create a one-way bound scope from the parent scope where the
changes would not propagate to the parent, but changes from the parent
would propagate to the child scope. Furthermore, the scopes can be created
also as isolated, in which scope properties are copied from the parent but the
data is not bound in either direction. Defining the bindings strictly helps to
create reusable components and improve the performance.

Data flows in the applications hierarchically from the top to the bottom.
Controller-view pairs create child scopes to parent (or master) scopes, as
also happens in listing 5.1 state configuration example. Mostly, all the hard-
coded data is written in the templates directly. All the essential content is
downloaded via the REST API using AngularJS $http service component,
and propagated to the templates from the controllers.

UI Components

UI components in AngularJS are called “directives”. They are essentially
controller-view couplings that can be given a custom HTML element or at-
tribute name. Moreover, the scope bindings and template compilation can
be customized. Directives are an important technique to achieve modular-
ity and testability. They respond directly to the “separation of concerns”
software engineering principle.

Listings 5.5 and 5.6 show a simple example of a custom directive definition
and usage, which are modified from the actual application implementation
for demonstration purpose. The listing 5.5 defines both the business logic
and the template. The scope property binds to an outer scope to get access
to the interpreted value typed between the curly brackets in the listing 5.6.

1 angular.module(’fresgo.directives.countdownTimer ’, [])

2 .directive(’countdownTimer ’, function () {

3 return {

4 restrict: ’AE’,

5 replace: true ,

6 transclude: false ,

7 scope: {

8 time: ’@countdownTimer ’

9 },

10 template: ’{{ timeLeft }}’,

11 controller: function($scope , $timeout) {

12 // logic implementation

13 }

CHAPTER 5. IMPLEMENTATIONS WITH ANGULARJS 51

14 }

15 });

Listing 5.5: Excerpt example of a countdownTimer directive definition

1 <countdown -timer="{{ order.pickupTime * 60}}"></countdown -

timer >

Listing 5.6: Example of using countdownTimer directive in a HTML
template.

The applications were implemented to make heavy use of directives. Al-
most all UI components that were used more than once, were directives. In
fact, even the router uses directives to render the views and most of the Ionic
components are directives.

5.7 User Interfaces

Figure 5.2 shows screenshots captured on an iPhone 5 (iOS 8.3) and Samsung
Galaxy S3 (Android 4.4). It can be seen that the UI scales nicely to both
screen sizes. It is almost impossible to test the UI on all different screen
sizes, but it can be assumed to work properly at least on the ones between
the tested sizes. As can be seen from figures 5.4, 5.6, 5.5 and 5.3, the UI
follows patterns present today in many native applications: headers, footers,
side menu, navigation buttons and list elements.

Figure 5.3 shows a registration modal that is opened on top of the rest of
application. The modal is animated on opening and closing, which cannot
be seen from a static screenshot. A similar approach can be seen in figure 5.4
that shows a loading icon with a darkened background. Altough techically it
is not a modal, i.e., a separate page, it is also placed on top of the rest of the
application. This kind of behavior is nearly impossible – and cumbersome at
best – to accomplish without single page architecture.

The three dots on the figure 5.3 indicate a slidable container. In other
words, it is a content container that includes three individual content areas
in the DOM, which are displayed separately. This is made possible by Ionic’s
special ion-slide-box directive that uses CSS positioning techniques and
JavaScript to achieve the effect.

A side-menu functionality is displayed on figure 5.5. It is the application’s
main navigation menu and can be opened either by clicking the menu icon
on the top left or by a swipe gesture from the left. A side-menu could be
implemented without single page architecture, but fresh page loads would
not allow animations between the views. In this application, when the user
clicks a button on the side menu, the side menu is automatically hidden by a

CHAPTER 5. IMPLEMENTATIONS WITH ANGULARJS 52

Figure 5.2: Screenshot of the consumer application (left: iPhone 5, right:
Samsung Galaxy S3).

sliding animation to the left and a new view is loaded to the main view area
simultaneously.

Drag and release functionality, an interaction paradigm that is better
known from native applications, is presented in figure 5.6. The list of restau-
rants can be updated by dragging the list down and then releasing. This
is tricky, because browsers behave differently when the user scrolls to the
edges of the page. Some browsers implement a “rubber band” functionality,
which expresses an elastic bouncing effect when user scrolls past the top or
bottom of the page. Ionic does not rely on the browser’s implementation but
disables the standard behaviour with CSS rules and implements a custom
rubber band effect by JavaScript. Thus, the dragging is completely control-
lable programmatically and allows drag and release hooks to be implemented.

CHAPTER 5. IMPLEMENTATIONS WITH ANGULARJS 53

Figure 5.3: Intermittent loading
screen on the consumer applica-
tion.

Figure 5.4: Registration screen on
the consumer application.

CHAPTER 5. IMPLEMENTATIONS WITH ANGULARJS 54

Figure 5.5: Side menu on the con-
sumer application.

Figure 5.6: Drag and release func-
tionality on the consumer appli-
cation while dragging towards the
bottom of the screen.

CHAPTER 5. IMPLEMENTATIONS WITH ANGULARJS 55

The restaurant application is presented in figure 5.7. The user interface
follows tab-based navigation paradigm. The bottom bar at the screen is a
persistent element that does not change when the view. Icons on the bar
work as tab selectors that change the main view and inside the main view
there can be sub-links and sub-views. Also, the navigation bar is fixed to the
bottom so that it is not affected by scrolling the view.

Figure 5.8 shows a screenshot of the monitoring application. The UI
the simplest of all three and does not include hierarchical navigation. The
application displays the log messages for restaurant application clients in
real time and allows filtering. It could be rather easily implemented without
single page architecture by simply using AJAX requests and updating the
DOM partially. However, there would be no benefits compared to SPA and
the benefits of MV* architecture would be lost.

CHAPTER 5. IMPLEMENTATIONS WITH ANGULARJS 56

Figure 5.7: Screenshot of the main view in the restaurant application cap-
tured on an iPad.

CHAPTER 5. IMPLEMENTATIONS WITH ANGULARJS 57

Figure 5.8: Screenshot of the monitoring application on a desktop web
browser (Chrome 42).

Chapter 6

Discussion

This chapter sums up the implementation and discusses the results. I present
advantages and disadvantages of single page architecture and assess how
it worked as basis for web applications. Also, I share my thoughts of my
potential future work as well as the future of web applications.

6.1 Development and distribution

I learned how to build and distribute web applications that take advan-
tage of multiple web technologies and AngularJS. I utilized many tools re-
lated to development and distribution workflow. Moreover, the community
of JavaScript and web application developers became familiar.

The tools for the development appeared to be very diverse. It took con-
siderable amount of time to build workflow configurations with Grunt and
Gulp, but in the end they saved lots of time. There were plug-ins for all the
required tasks and I did not face any major compatibility issues. However,
the more inexperienced developers in front-end web application development
found all the required tools to add rather a lot of cognitive overhead. As
the projects grew, the tools to streamline and share configurations became
invaluable.

As discussed in section 2.2 of the challenges of JavaScript development, I
used stepwise approach and exploratory programming style. This was made
possible by these tremendous tools for testing: Jasmine, Karma and Phan-
tomJS. AngularJS has been designed testability in mind, and the dependency
injection technique I presented in section 5.6 proved to make testing very ef-
ficient. Writing and running of tests was simple and powerful, since I could
run the test suite constantly on the background providing instant feedback
as I wrote code. I have not encountered such testability on other platforms

58

CHAPTER 6. DISCUSSION 59

and consider it a major advantage.
One of our goals was to be able to update the restaurant applications as

effortlessly as possible. This was achieved by packaging the application with
Cordova and pointing it to download the HTML, CSS and JavaScript files
from the server. Thus, the application can be distributed from the application
store, but I chose to install it on the iPads with the development tools. The
solution allows us to update the source files on the server and then send a
reload command. This way the applications can be updated almost instantly
and no interaction from the restaurant employees are needed. The ideal
solution took some effort to find, but proved to work well in the production.

Without most of the technologies listed in section 5.5 creating a single
page architecture would had been almost impossible or very hard. AngularJS
and Ionic profoundly utilize touch events, browser history API, CSS, Web
Storage and SVG. In addition, Web Audio and WebSockets were crucial
technologies to build rich applications. The SPA enabled rapid development
to develop the applications as the skeleton models were already implemented.

6.2 Performance

In the previous section, I mentioned to have deployed the restaurant appli-
cations as hybrid applications. In fact, the applications were first deployed
as a regular web applications and were accessed as “pinned to home screen”
applications on the iPads. IOS allows the user to pin arbitrary web pages
as applications on the home screen, and depending on the page’s support
it hides the web browser’s UI. I used this technique to achieve a clean UI
and avoided uploading the applications separately to the iPads. Nonethe-
less, this caused prominent performance problems resulting in non-tolerable
delays in registration of touch events and stuttering transition effects. The
performance was seemingly better on the web browser than on the applica-
tion pinned to home screen and I could not trace the root of the issue. Our
best assessment is that the performance of the pinned applications on iOS 8
are restrained on purpose to actuate the use of the native application store.

The applications were developed mainly on desktop browsers and some
problems did not occur until testing on the mobile devices. The bi-directional
data binding in AngularJS proved to cause JavaScript performance problems
when running on the mobile devices. This was clearly caused by the scope
digestion mechanism, which creates and evaluates the bindings. These prob-
lems were solved by simplifying the bindings and by reducing some unnec-
essary two-way bindings to one-way bindings. In the end, the JavaScript
performance was excellent.

CHAPTER 6. DISCUSSION 60

6.3 User Experience

User experience is largely determined by the fluency and usability of the
user interface. Single page architecture improves it by allowing to easily
show intermediate transitions and animations between the views. Moreover,
as shown in screenshots in the section 5.7, SPA enables very native-like UI
elements including hidden slide menus, slidable content boxes and modals.
Still, SPA is not necessarily required to create such UI elements, but rather
makes it effortless and maintainable.

The UI I built for the consumer application was the most complex of the
all three. Ionic’s components worked exceedingly well and they were easy to
customize. I consider the result of the mobile interface to be very fluent and
native-like without any major drawbacks.

I first built the restaurant application using Bootstrap as the UI compo-
nent library. However, I was not satisfied with the UI on touch use. Thus,
I later migrated it to Ionic. Due to the single page architecture and modu-
larization of AngularJS, the migration was easy and I achieved better func-
tionality for touch use rather effortlessly. Again, Ionic proved to work really
well from the user experience point of view.

6.4 Summary

In this section I summarize the results by analysing the challenges of the web
as an application platform presented in section (2.2).

Application complexity
Although I did not implement considerably large applications, there
was prominent complexity. One of the causes was that there is no
generally accepted/known, i.e., “standardized way” of building client-
side web applications. This lead to a steep learning curve for most
of our developers having background in server-side and native mobile
technologies. Besides understanding the concepts of AngularJS, such
as directives, services, routing and scope digestion, the developers had
to master SCSS and LESS preprocessors, and be able to configure Gulp
and Grunt to make adaptations to the work flow. Moreover, the use
of many libraries lead to scattered documentation and complexity via
leaky abstraction1. There is variation also in the tools being used,
which adds to the equation.

1Leaky abstraction in software development happens when an abstraction unpurposely
limits the actual implementation and it ultimately leads to unnecessary complexity.

CHAPTER 6. DISCUSSION 61

Browser semantics
Looking at many native applications, such as text processing, spread-
sheet editing, image manipulation, calendar and messaging applica-
tions, reveals interaction paradigms very different from a web browser.
Moreover, none of our applications followed a traditional page-based
navigation model that the web browsers are originally designed for. I
realized that the browser semantics (i.e., browser UI) are rather un-
suitable for applications. Back and forward button, reload button and
address bar are seldomly needed for applications. Many views do not
use back-and-forth history states, and if they do, the application usu-
ally has a custom UI to address the navigation. Luckily, on iOS it is
possible to get rid of the browser UI by pinning the application on the
home screen or by packaging it with Cordova.

Same-origin policy
CORS was used as the solution to access the REST API from all the
applications. However, this was not affected by the application archi-
tecture.

Software engineering principles
I was able to follow good software engineering principles for the most
parts. Modularity and reusability were achived via good design in
the AngularJS application architecture. Most UI components were de-
clared separately from the business logic emphasizing reusability. I
found the absence of static typing to hinder the development at some
parts and overcame it with stepwise approach, i.e., test-driven devel-
opment style.

Performance
As I discussed in the previous sections, I found the performance to be
generally satisfactory and excellent at best. This was achieved with the
use of CSS for hardware accelerated animations, Crosswalk plugin for
the Anrdoid and single page architecture. Nonetheless, I found that it
is easy to neglect the best practices and thus compromise JavaScript
performance, especially due to the design of AngularJS.

Fragmentation
Fragmentation appeared to be a true issue when building web applica-
tions in long-term. I encountered the problem of libraries deprecating
fast and publication of new versions of frameworks only in a matter
of weeks. It caused some migration problems and took extra effort to

CHAPTER 6. DISCUSSION 62

update the software. However, I was satisfied at the speed of bug fixes
in the libraries, thus not getting stuck at framework-level limitations.

Contrary to a common case native application development, we did not
have to maintain multiple codebases to support both iOS and Android
applications. In fact, the consumer application was developed with a
desktop web browser and worked on the iOS web view without major
problems. Later, an Android conversion was made and it caused mi-
nor incompatibilities. The problems were caused by the differences in
the native web browsers, but many of them were solved by utilizing
Crosswalk that replaced Android’s native web view with Chrome.

HTML semantics
I certainly reognize that the standard HTML elements are not useful
for describing application-style user interfaces. However, it was easy
to create custom elements by utilizing AngularJS directives. Custom
tags are not valid HTML5 markup, but are supported in modern web
browsers.

Monetization
Considering monetization in web applications, a limitation is that they
cannot be sold in a similar way as native applications. There are no
stores for web applications and the client-side source is, albeit only in
theory, freely downloadable and copyable. However, I do not consider
this to be a serious limitation. Web applications usually require users to
register and monetize the application by either a one-time registration
fee or a periodical fee. The major drawbacks in this are that there is
no single central place to look for the applications and that the user
has to have multiple registrations/accounts to different applications.

In our case there is no registration or periodical fee for the application.
Thus, the use of the application for the consumer is free and the restau-
rants pay for the use of the platform. Hence, there are many ways to
monetize an application, which I discussed already in section 2.2. The
consumer application was distributed to a native application store, but
even if it was not, the web as a platform would not had been a restric-
tion considering monetization in our case.

Distribution and promotion
Distribution is closely related to the monetization. The company was
able to took advantage of the native application stores by packaging
the consumer application with Cordova. This was an efficient way to
distribute the application to consumers. However, there is no such

CHAPTER 6. DISCUSSION 63

distribution channel for applications running in the web browser. The
advantage of web applications is that they do not have to be separately
downloaded and installed, and a disadvantage is that they are harder
to find.

Network dependency
I found that it is possible to support offline use by caching. Single
application architecture supports this really well, since the application
is usually downloaded at once and the business logic is implemented
on the client. Single page applications need network connection only
to communicate with APIs, which is the same for native applications.
Conventional web applications cannot be used offline, because the busi-
ness logic is implemented on the server. Thus, only an initial page load
can be cached.

6.5 Future Work

Some of the stuttering and performance problems might had been avoided
with the use of Web Workers. For example, externalising the computation of
scope digestion in AngularJS to workers could helped, but the feature would
have to be supported by the core of AngularJS. Also, moving the WebSockets
event handling to a separate thread might be beneficial especially on heavy
use of events.

I chose not to use AMD or CommonJS to modularize the JavaScript files.
Instead, I simply included all files with the standard <script> tags. This
was possible due to the small sizes of the projects, but any larger projects
would benefit from using modularizing the JavaScript files. For example, a
project including multiple applications with cross-references in source files
would benefit from including only the referred (imported) files. I also felt
that using AMD or similar adds unnecessary complexity and might not be
worth the additional development and distribution workflow configurations.
Moreover, I am looking for a native implementation for the modules, which
will be implemented in ECMAScript 6.

I discovered that it is easy to overcome the limitations of HTML seman-
tics by AngularJS directives, and many of the UI components I implemented
were directives. Standard elements in HTML5, such as <div>, or
<article> are not meaningful to user interfaces. Consider elements named
<map> or <sidebar>, for instance; they describe the UI element in a meaning-
ful way. Seemingly, there is a trend towards this kind of component-based
development. React framework have been recently adopted by developers

CHAPTER 6. DISCUSSION 64

and it is based on the idea of constructing self-containing, independent and
reusable custom elements. Moreover, Web Components and Polymer similar
technologies being standardized to allow these kind of custom elements.

Today, JavaScript can be run also on the server, which is enabled by
Node.js. This is also transforming the way web applications are built. In a
new, isomorphic, design pattern the web pages or applications can be fully
rendered also on the server, improving initial loading speed and optimization
for search engines. This sets new requirements also on single page application
frameworks: the application state must be transferable between the client
and the server. Of the frameworks presented in section 4.2, React has been
used to create isomorphic applications. Moreover, Meteor, which was briefly
touched earlier, is designed as an isomporphic framework from the ground
up. [8, 54] However, using this technique would had only minor performance
effects on our applications.

In the near future, ECMAScript 6 (ES6) will likely have a profound ef-
fect on how to build web applications. New versions of AngularJS and Ionic
are in the works being completely based on ES6 and taking advantage of
its new features. Yet, the lack of tools and guides, smaller community and
immaturity of ES6 were reasons why I developed the applications with EC-
MAScript 5. I am looking forward to utilize especially the module system in
ES6, which will probably resolve the issues regarding modularization that I
discussed earlier.

During the writing of this thesis, a new version of HTTP protocol was in
the works. HTTP/2 (Hypertext Transfer Protocol Version 2) was released in
May 2015, and it provides major new features compared to the earlier version,
HTTP/1.1. It supports i.a. multiplexing of requests, streams, prioritization
and header compression. In practice this means less established connections,
reduced perception of latency and bi-directional communication. [3] As it
becomes mainstream, HTTP/2 will also likely affect web applications in a
major way. It will reduce the need of using WebSockets and Server-Sent
Events. Moreover, concatenating source files will no longer have as large
impact on performance as earlier. Thus, it will likely simplify application
development and distribution.

Chapter 7

Conclusions

The web is one of the most rapidly evolving technologies in the world. This
has been proven by the emergence of recent technologies, such as HTML5,
WebSockets, ECMAScript 6 and HTTP/2. The community of the web, which
is largely based on open source, adopts new technologies quickly and almost
imminently spawns a plethora of derived technologies, libraries and frame-
works. Single page architecture is a combination of some of the recent de-
rived technologies, including browser history manipulation, advanced DOM
manipulation, asynchronous loading and rendering of data. I evaluated its
suitability for building applications for the web and assessed how the Web
serves as an application platform.

I found that single page architecture is currently in the epicentre of web
application development. In its essence, it is rather a simple concept and
does not introduce any unforeseen techniques. However, the power of SPA
lies in the way how it fundamentally changes the style of web application
development. It transfers the handling of business logic from the server to the
client. This brings web applications a major step closer to native applications
in terms of the architecture. Thus, being radically different from conventional
web applications, single page applications derive new needs for new purposes,
such as Web Workers for dividing computation to threads and Web Sockets
for real time communication.

Based on results of the applications I built with AngularJS, we found the
performance of single page applications to be very satisfactory. I also found
that using SPA as basis for the applications makes it very effortless to build
an user interface that utilizes application-like UI components and beautiful
transitioning animations. Nonetheless, major challenges are the semantics of
HTML and the web browser, which I found are not suitable for applications.
Moreover, SPA supports building applications for offline usage by making it
possible to load the whole application at once. Overall, I can confidently

65

CHAPTER 7. CONCLUSIONS 66

state that SPA enhances the user experience of web applications.
An unquestionable advantage of web applications is the possibility to run

them on almost all platforms and devices. Web applications, however, have
been criticized of poor performance and user experience especially on mobile
devices. I found that a framework that focuses on touch-based use, like Ionic
I used, can truly rival native applications in terms of user experience. Again,
fundamentally this has been enabled by the single page architecture. To get
a more comprehensive comparison between web and native applications, one
would have to create similar applications with both technologies. I predict
that the results of such a comparison regarding user experience, however,
would still slightly favour native applications. The advantage of web ap-
plication would be the simplicity of development and support for multiple
platforms with one codebase.

Fragmentation and complexity are some of the challenges in application
development. I found many new concepts introduced AngularJS to increase
cognitive overload before they became evident. Also, to develop the appli-
cations I had to learn many new tools that support the workflow and distri-
bution. Complexity was increased because of those new concepts and tools.
However, I felt that AngularJS and SPA also reduced complexity via modu-
larization and component-based design. I found AngularJS directives to be
a powerful technique to create reusable components, and discussed another
popular framework, React, which emphasises similar component design. I
predict that in the near future the applications will increasingly emphasize
composition of components design pattern. With the advent of Web Compo-
nents technology they will likely not be specific to frameworks, but generally
reusable components.

The web seems to be undergoing a change where the web applications
are less and less coupled with the server-side implementations. This has
spawned an interesting era in the Web, where new technologies and libraries
are spawning and old are deprecating faster than ever. The web as an appli-
cation platform is seeking for its form, and I predict it will continue to do so
for plenty of years. In the near future, the advent of new fundamental tech-
nologies including ECMAScript 6 and HTTP/2 will have a profound effect
on how the web will evolve. Single page architecture have proved to be a
prime mover for rich web applications and I predict it to slowly become the
standard way of building applications for the Web.

Bibliography

[1] Can I Use: drag-and-drop. Available at: http://caniuse.com/#feat=

dragndrop. Accessed 17-April-2015.

[2] Agarwal, S. Real-time Web Application Roadblock: Performance
Penalty of HTML Sockets. In 2012 IEEE International Conference on
Communications (ICC) (Ottawa, June 2012), IEEE, pp. 1225–1229.

[3] Belshe, M., BitGo, R. Peon, G., Thomson, M., and Mozilla.
Hypertext Transfer Protocol Version 2 (HTTP/2) standard definition
(RTC 7540). Available at: http://www.rfc-editor.org/rfc/rfc7540.

txt. Accessed 16-May-2015.

[4] Bergkvist, A., Burnett, D. C., Jennings, C., and
Narayanan, A. WebRTC 1.0: Real-time Communication Between
Browsers (working draft). Available at: http://www.w3.org/TR/2015/

WD-webrtc-20150210/. Accessed 18-April-2015.

[5] Bleigh, M. Let’s Kill Semantic HTML. Available at: http:

//divshot.com/blog/opinion/lets-kill-semantic-html/ (2014). Ac-
cessed 14-April-2015.

[6] Bochicchio, M. A., Longo, A., and Vaira, L. Extending Web
applications with 3D features. In 2011 13th IEEE International Sym-
posium on Web Systems Evolution (WSE) (Williamsburg, September
2013), pp. 93–96.

[7] Bushell, D. Resolution independence with SVG. Avail-
able at: http://www.smashingmagazine.com/2012/01/16/

resolution-independence-with-svg/. Accessed 19-April-2015.

[8] Creamer, J. React To The Future With Isomorphic Apps.
Available at: http://www.smashingmagazine.com/2015/04/21/

react-to-the-future-with-isomorphic-apps/. Accessed 16-May-
2015.

67

http://caniuse.com/#feat=dragndrop
http://caniuse.com/#feat=dragndrop
http://www.rfc-editor.org/rfc/rfc7540.txt
http://www.rfc-editor.org/rfc/rfc7540.txt
http://www.w3.org/TR/2015/WD-webrtc-20150210/
http://www.w3.org/TR/2015/WD-webrtc-20150210/
http://divshot.com/blog/opinion/lets-kill-semantic-html/
http://divshot.com/blog/opinion/lets-kill-semantic-html/
http://www.smashingmagazine.com/2012/01/16/resolution-independence-with-svg/
http://www.smashingmagazine.com/2012/01/16/resolution-independence-with-svg/
http://www.smashingmagazine.com/2015/04/21/react-to-the-future-with-isomorphic-apps/
http://www.smashingmagazine.com/2015/04/21/react-to-the-future-with-isomorphic-apps/

BIBLIOGRAPHY 68

[9] Crockford, D. JavaScript: The Good Parts. O’Reilly Media, 2008.

[10] Dahlström, E., Dengler, P., Grasso, A., Lilley, C., Mc-
Cormack, C., Schepers, D., Watt, J., Ferraiolo, J., Jun,
F., and Jackson, D. Scalable Vector Graphics (SVG) 1.1 (Sec-
ond Edition). W3C Recommendation, W3C, Aug 2014. Available at:
http://www.w3.org/TR/SVG/. Accessed 19-April-2015.

[11] Ecma International. Final draft Standard ECMA-262 6th Edi-
tion (Rev 38), April 2015. Available at: http://wiki.ecmascript.

org/lib/exe/fetch.php?id=harmony%3Aspecification_drafts&cache=

cache&media=harmony:ecma-262_6th_edition_final_draft_-04-14-15.

pdf.

[12] Elliott, E. Programming JavaScript Applications. O’Reilly Media,
2014.

[13] EmberJS. EmberJS v1.10.0 Guides. Available at: http://guides.

emberjs.com/v1.10.0/. Accessed 28-April-2015.

[14] Fink, G., and Flatow, I. Pro Single Page Application Development.
Apress, 2014.

[15] Flanagan, D. JavaScript: The Definitive Guide 6th Edition. O’Reilly
Media, 2011.

[16] Foster, J. The Semantics of HTML and XAML. Available at: http:

//www.codefoster.com/semantics/ (2014). Accessed 14-April-2015.

[17] Garrett, J. J. Ajax: A New Approach to Web Applications. 5. Avail-
able at: https://courses.cs.washington.edu/courses/cse490h/07sp/

readings/ajax_adaptive_path.pdf. Accessed 11-April-2015.

[18] Google Inc. AngularJS (v.1.13.14) Developer Guide. Available
at: http://code.angularjs.org/1.3.14/docs/guide. Accessed 23-April-
2015.

[19] Guinard, D., Trifa, V., and Wilde, E. A Resource Oriented
Architecture for the Web of Things. In Internet of Things (IOT) (Tokyo,
November 2010), IEEE, pp. 1–8.

[20] Hégaret, P. L., Whitmer, R., and Wood, L. Document Object
Model. Available at: http://www.w3.org/DOM/. Accessed 11-April-2015.

http://www.w3.org/TR/SVG/
http://wiki.ecmascript.org/lib/exe/fetch.php?id=harmony%3Aspecification_drafts&cache=cache&media=harmony:ecma-262_6th_edition_final_draft_-04-14-15.pdf
http://wiki.ecmascript.org/lib/exe/fetch.php?id=harmony%3Aspecification_drafts&cache=cache&media=harmony:ecma-262_6th_edition_final_draft_-04-14-15.pdf
http://wiki.ecmascript.org/lib/exe/fetch.php?id=harmony%3Aspecification_drafts&cache=cache&media=harmony:ecma-262_6th_edition_final_draft_-04-14-15.pdf
http://wiki.ecmascript.org/lib/exe/fetch.php?id=harmony%3Aspecification_drafts&cache=cache&media=harmony:ecma-262_6th_edition_final_draft_-04-14-15.pdf
http://guides.emberjs.com/v1.10.0/
http://guides.emberjs.com/v1.10.0/
http://www.codefoster.com/semantics/
http://www.codefoster.com/semantics/
https://courses.cs.washington.edu/courses/cse490h/07sp/readings/ajax_adaptive_path.pdf
https://courses.cs.washington.edu/courses/cse490h/07sp/readings/ajax_adaptive_path.pdf
http://code.angularjs.org/1.3.14/docs/guide
http://www.w3.org/DOM/

BIBLIOGRAPHY 69

[21] Hickson, I. HTML5 Web Messaging API proposed recommendation
by W3C. Available at: http://www.w3.org/TR/webmessaging/. Accessed
17-April-2015.

[22] Hickson, I. Server-Sent Events. W3C Recommendation,
W3C, Feb 2015. Available at: http://www.w3.org/TR/2015/

REC-eventsource-20150203/. Accessed 19-April-2015.

[23] Hickson, I. Web Storage recommendation by W3C. Available at:
http://www.w3.org/TR/2013/REC-webstorage-20130730/. Accessed 13-
April-2015.

[24] Hickson, I., Berjon, R., Faulkner, S., Leithead, T., Navara,
E. D., O’Connor, E., and Pfeiffer, S. HTML5 specification by
W3C. Available at: http://www.w3.org/TR/2014/REC-html5-20141028/.
Accessed 15-April-2015.

[25] Hoban, L. ECMAScript 6 Features. Available at: http://github.com/

lukehoban/es6features/. Accessed 17-April-2015.

[26] Inc., F. Flux documentation. Available at: http://facebook.github.

io/flux/docs/overview.html. Accessed 26-April-2015.

[27] International, E. Final draft Standard Ecma-262 6th Edition / April
2015. Available at: http://wiki.ecmascript.org/lib/exe/fetch.php?

id=harmony%3Aspecification_drafts&cache=cache&media=harmony:

ecma-262_6th_edition_final_draft_-04-14-15.pdf. Accessed 17-
April-2015.

[28] Khronos Group. OpenGL ES 2.0 for the Web. Available at: http:

//www.khronos.org/webgl/. Accessed 19-April-2015.

[29] Laine, M., Shestakov, D., Litvinova, E., and Vuorimaa, P.
Toward Unified Web Application Development. IT Professional 13, 5
(September 2011), 30–36.

[30] Laplante, P. A. What Every Engineer Should Know About Software
Engineering. CRC Press, Taylor & Francis Group, 2007.

[31] Less.js. Less language features. Available at: http://lesscss.org/

features/. Accessed 20-April-2015.

[32] Lie, H. W., Çelik, T., Glazman, D., and van Kesteren, A.
Media Queries. W3C Recommendation, W3C, Jun 2015. Available

http://www.w3.org/TR/webmessaging/
http://www.w3.org/TR/2015/REC-eventsource-20150203/
http://www.w3.org/TR/2015/REC-eventsource-20150203/
http://www.w3.org/TR/2013/REC-webstorage-20130730/
http://www.w3.org/TR/2014/REC-html5-20141028/
http://github.com/lukehoban/es6features/
http://github.com/lukehoban/es6features/
http://facebook.github.io/flux/docs/overview.html
http://facebook.github.io/flux/docs/overview.html
http://wiki.ecmascript.org/lib/exe/fetch.php?id=harmony%3Aspecification_drafts&cache=cache&media=harmony:ecma-262_6th_edition_final_draft_-04-14-15.pdf
http://wiki.ecmascript.org/lib/exe/fetch.php?id=harmony%3Aspecification_drafts&cache=cache&media=harmony:ecma-262_6th_edition_final_draft_-04-14-15.pdf
http://wiki.ecmascript.org/lib/exe/fetch.php?id=harmony%3Aspecification_drafts&cache=cache&media=harmony:ecma-262_6th_edition_final_draft_-04-14-15.pdf
http://www.khronos.org/webgl/
http://www.khronos.org/webgl/
http://lesscss.org/features/
http://lesscss.org/features/

BIBLIOGRAPHY 70

at: http://www.w3.org/TR/2012/REC-css3-mediaqueries-20120619/.
Accessed 20-April-2015.

[33] Loreto, S., and Romano, S. P. Real-Time Communications in
the Web: Issues, Achievements, and Ongoing Standardization Efforts.
Internet Computing, IEEE 16, 5 (September 2012), 68–73.

[34] Lubbers, P., Albers, B., and Salim, F. Pro HTML5 Programming.
Apress, 2010.

[35] Lubbers, P., and Greco, F. HTML5 Web Sockets: A quantum leap
in scalability for the Web. Available at: http://www.websocket.org/

quantum.html. Accessed 18-April-2015.

[36] Markus Lanthaler and Christian Gütl. Towards a RESTful
Service Ecosystem. In 4th IEEE International Conference on Digi-
tal Ecosystems and Technologies (DEST) (Dubai, April 2010), IEEE,
pp. 209–214.

[37] Mehta, N., Sicking, J., Graff, E., Popescu, A., Orlow, J.,
and Bell, J. Indexed Database API. Available at: http://www.w3.

org/TR/IndexedDB/. Accessed 13-April-2015.

[38] Mesbah, A., and van Deursen, A. An Architectural Style for
Ajax. In The Working IEEE/IFIP Conference on Software Architec-
ture (Mumbai, January 2007), IEEE, p. 9.

[39] Mesbah, A., and van Deursen, A. Migrating Multi-page Web Ap-
plications to Single-page AJAX Interfaces. In 11th European Conference
on Software Maintenance and Reengineering, 2007. CSMR ’07 (Ams-
terdam, March 2007), IEEE, pp. 181–190.

[40] Mikkonen, T., and Taivalsaari, A. Web Applications — Spaghetti
Code for the 21st Century. In Sixth International Conference on
Software Engineering Research, Management and Applications (August
2008), IEEE, pp. 319–328.

[41] Mikkonen, T., and Taivalsaari, A. Apps vs. Open Web: The
Battle of the Decade. In Proceedings of the 2nd Workshop on Software
Engineering for Mobile Application Development (Santa Monica, Cali-
fornia, USA, MSE’2011), pp. 22–26.

[42] Monteiro, F. Learning Single-page Web Application Development.
Packt Publishing, 2014.

http://www.w3.org/TR/2012/REC-css3-mediaqueries-20120619/
http://www.websocket.org/quantum.html
http://www.websocket.org/quantum.html
http://www.w3.org/TR/IndexedDB/
http://www.w3.org/TR/IndexedDB/

BIBLIOGRAPHY 71

[43] Mullany, M. 5 Myths About Mobile Web Per-
formance. Available at: http://www.sencha.com/blog/

5-myths-about-mobile-web-performance/ (2013). Accessed 14-April-
2015.

[44] Network, M. D. Using files from web applications. Avail-
able at: http://developer.mozilla.org/en-US/docs/Using_files_

from_web_applications. Accessed 19-April-2015.

[45] Osmani, A. Developing Backbone.js Applications. O’Reilly Media,
2013.

[46] Palo, A. HelsinkiJS & DevOpsFinland january 2015
meeting. Available at: http://developers.almamedia.fi/

helsinkijs-devopsfinland-january-2015/. Accessed 16-April-2015.

[47] Parisi, T. WebGL: Up and Running. O’Reilly Media, 2012.

[48] Peacock, R. Distributed architecture technologies. IT Professional 2,
3 (2000), 58–60.

[49] Pilgrim, M. HTML5 Up and Running. O’Reilly Media / Google Press,
2010.

[50] Pohja, M. Web Application User Interface Technologies. PhD thesis,
Aalto University, May 2011.

[51] Pomonis, T., Christodoulou, S. P., and Gizas, A. B. Towards
Web 3.0: A Unified Development Process for Web Applications Combin-
ing Semantic Web and Web 2.0 Technologies. Engineering Management
Reviews (EMR) 2, 2 (June 2013), 45–53.

[52] Popescu, A. Geolocation API Specification. W3C Recommenda-
tion, W3C, Oct 2013. Available at: http://www.w3.org/TR/2013/

REC-geolocation-API-20131024/. Accessed 18-April-2015.

[53] Ranganathan, A., and Sicking, J. File API. W3C Working
Draft, W3C, Sept 2013. Available at: http://www.w3.org/TR/2013/

WD-FileAPI-20130912/. Accessed 19-April-2015.

[54] Rosa, A. D. Isomorphic JavaScript Applications – the Fu-
ture of Web? Available at: http://www.sitepoint.com/

isomorphic-javascript-applications/. Accessed 16-May-2015.

http://www.sencha.com/blog/5-myths-about-mobile-web-performance/
http://www.sencha.com/blog/5-myths-about-mobile-web-performance/
http://developer.mozilla.org/en-US/docs/Using_files_from_web_applications
http://developer.mozilla.org/en-US/docs/Using_files_from_web_applications
http://developers.almamedia.fi/helsinkijs-devopsfinland-january-2015/
http://developers.almamedia.fi/helsinkijs-devopsfinland-january-2015/
http://www.w3.org/TR/2013/REC-geolocation-API-20131024/
http://www.w3.org/TR/2013/REC-geolocation-API-20131024/
http://www.w3.org/TR/2013/WD-FileAPI-20130912/
http://www.w3.org/TR/2013/WD-FileAPI-20130912/
http://www.sitepoint.com/isomorphic-javascript-applications/
http://www.sitepoint.com/isomorphic-javascript-applications/

BIBLIOGRAPHY 72

[55] Ruderman, J. Same-origin policy. Available at: http://developer.

mozilla.org/en-US/docs/Web/Security/Same-origin_policy/. Ac-
cessed 14-April-2015.

[56] Russell, A., Song, J., and Archibald, J. Service Workers. W3C
Working Draf, W3C, Feb 2015. Available at: http://www.w3.org/TR/

2015/WD-service-workers-20150205/. Accessed 02-June-2015.

[57] Sass. SASS (Syntactically Awesome StyleSheets). Available at: http:

//sass-lang.com/documentation/file.SASS_REFERENCE.html. Accessed
20-April-2015.

[58] Schepers, D., Moon, S., Brubeck, M., and Barstow, A. Touch
Events recommendation by W3C. Available at: http://www.w3.org/TR/

2013/REC-touch-events-20131010/. Accessed 18-April-2015.

[59] Skvorc, D., Horvat, M., and Srbljic, S. Performance Evaluation
of Websocket Protocol for Implementation of Full-Duplex Web Streams.
In International Convention on Information and Communication Tech-
nology, Electronics and Microelectronics (MIPRO), 2014 37th (Opatija,
Croatia, May 2014), IEEE, pp. 1003–1008.

[60] Smus, B. Web Audio API: Advanced Sound for Games and Interactive
Apps. O’Reilly Media, 2013.

[61] Taivalsaari, A., and Mikkonen, T. The Web as an Application
Platform: The Saga Continues. In Software Engineering and Advanced
Applications (SEAA) (2011), 37th EUROMICRO Conference, IEEE,
pp. 170–174.

[62] Taivalsaari, A., Mikkonen, T., Ingalls, D., and Palacz, K.
Web Browser as an Application Platform. In Software Engineering and
Advanced Applications (September 2008), 34th Euromicro Conference,
IEEE, pp. 293–302.

[63] van Kesteren, A. Cross-Origin Resource Sharing. W3C Recommen-
dation, W3C, Jan 2014. Available at: http://www.w3.org/TR/2014/

REC-cors-20140116/. Accessed 18-April-2015.

[64] WHATWG. HTML Living Standard by WHATWG. Available at:
http://html.spec.whatwg.org/multipage/. Accessed 17-April-2015.

[65] Yuping, J. Research and Application of Ajax Technology in Web Devel-
opment. In IEEE Workshop on Electronics, Computer and Applications
(May 2014), IEEE, pp. 256–260.

http://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy/
http://developer.mozilla.org/en-US/docs/Web/Security/Same-origin_policy/
http://www.w3.org/TR/2015/WD-service-workers-20150205/
http://www.w3.org/TR/2015/WD-service-workers-20150205/
http://sass-lang.com/documentation/file.SASS_REFERENCE.html
http://sass-lang.com/documentation/file.SASS_REFERENCE.html
http://www.w3.org/TR/2013/REC-touch-events-20131010/
http://www.w3.org/TR/2013/REC-touch-events-20131010/
http://www.w3.org/TR/2014/REC-cors-20140116/
http://www.w3.org/TR/2014/REC-cors-20140116/
http://html.spec.whatwg.org/multipage/

BIBLIOGRAPHY 73

[66] Zbierski, M., and Makosiej, P. Bring the Cloud to Your Mobile:
Transparent Offloading of HTML5 Web Workers. In 2014 IEEE 6th
International Conference on Cloud Computing Technology and Science
(Singapore, December 2014), IEEE, pp. 198–203.

