
Comparison of Single-Page Application
Frameworks

A method of how to compare Single-Page Application frameworks written in
JavaScript

ERIC MOLIN

KTH CSC Supervisor: Dilian Gurov
Principal Supervisor: Sven Norman

Examiner: Olov Engwall
May 29, 2016

Abstract
This degree project is carried out on behalf of Decerno, an IT consul-
tancy company. The focus is to formulate a method of how to compare
Single-Page Application (SPA) frameworks written in JavaScript.

This method is based upon an abstraction of SPA frameworks. The
abstraction is done with a criteria-based approach. These criteria are
collected from literature and interviews conducted at Decerno. Every
criterion is defined and has a set of questions, which corresponds to
the criterion. Concepts are extracted from other comparative methods,
such as performance test and code comparison. This concluded in a
theoretical part with the criteria and questions and a practical part
with performance tests and code comparison.

Finally, the method is tested on three different Frameworks, An-
gularJS, Angular 2 and React. By using a prototype implemented in
the three frameworks, a code comparison and performance tests is con-
ducted. According to the method, AngularJS is suggested to be the
best choice. However, some results are similar and for future work,
this method could be evaluated to other comparative methods or be
extended with more criteria and questions.

Referat
Jämförelse av Ramverk För Single-Page Applikationer
Detta examensarbete har utförts på uppdrag av Decerno, ett IT-konsult-
företag. Fokus är att formulera en metod för hur man kan jämföra Single-
Page Application (SPA) ramverk skrivna i JavaScript.

Denna metod är baserad på en abstraktion av SPA ramverk. Ab-
straktionen har ett kriteriebaserat tillvägagångssätt. Dessa kriterier är
hämtade från litteraturen och intervjuer på Decerno. Varje kriterie defi-
nieras och har ett antal frågor som motsvarar kriteriet. Koncept extrahe-
ras från andra komparativa metoder, såsom prestandatest och kodjäm-
förelse. Detta delades in i en teoretisk del med kriterierna och frågorna
samt en praktisk del med prestandatester samt kodjämförelse.

Slutligen testas metoden på tre olika ramverk, AngularJS, Angular
2 och React. Genom att använda en prototype som är implementerad i
de tre ramverken, görs en kodjämförelse samt prestandatester. I enlighet
med metoden, föreslås AngularJS att vara det bästa valet. Men vissa
resultat är likartade och i framtiden skulle denna metod kunna utökas
med flera kriterier eller utvärderas med andra jämförbara metoder.

Contents

1 Introduction 1
1.1 Background . 1
1.2 The Problem . 2

1.2.1 Problem Description . 2
1.2.2 Research Questions . 2
1.2.3 Delimitation . 2

1.3 Approach . 2
1.4 Contribution . 3
1.5 Thesis structure . 3

2 Background 5
2.1 JavaScript . 5

2.1.1 ECMAScript . 5
2.1.2 Additional JavaScript Languages 6

2.2 Single-Page Application . 6
2.2.1 Definition of a Single-Page Application 7
2.2.2 Communication . 7
2.2.3 Execution . 8
2.2.4 Data bindings . 8
2.2.5 States . 9

2.3 Software Architecture . 10
2.3.1 Definition of Software Architecture 10
2.3.2 Identify Software Architecture 11

2.4 Framework . 11
2.4.1 Definition of a Framework . 11
2.4.2 Purpose of a Framework . 12

2.5 Related Work . 12
2.5.1 Software Architecture Comparison 12
2.5.2 Framework Comparison . 13

3 Methodology 14
3.1 Overview . 14
3.2 Interviews . 15

3.3 Performance Measuring Methodology 15
3.3.1 Data Bindings . 16
3.3.2 Loading Time . 16
3.3.3 Resource Allocation . 16

3.4 Tools . 16
3.5 Prototype . 16

4 Formulating a Comparison Method 18
4.1 Results of the Interviews . 18
4.2 Results of the Literature Research 18
4.3 Criteria Collection . 20
4.4 Criteria Definition . 21

4.4.1 Security . 21
4.4.2 Modularity . 22
4.4.3 Popularity . 22
4.4.4 Maturity and Stability . 23
4.4.5 Simplicity and Usability . 23
4.4.6 Portability and Compatibility 24
4.4.7 Cache Performance and Persistence 24
4.4.8 Testability . 25
4.4.9 Maintainability . 25

5 Comparison of SPA Frameworks 27
5.1 Frameworks . 27

5.1.1 AngularJS . 27
5.1.2 React . 27
5.1.3 Angular 2 . 28

5.2 Practical Comparison . 28
5.2.1 Performance Results . 28
5.2.2 Code comparison . 31

5.3 Theoretical Comparison . 34
5.4 Comparison Conclusions . 36

6 Discussion and Conclusion 37
6.1 Summary . 37
6.2 Discussion . 37
6.3 Socio-ethical discussion . 37
6.4 Future work . 38

Bibliography 39

Chapter 1

Introduction

The first chapter introduces the background to the thesis, a description of the problem
and its delimitation. The problem is broken down into three research questions.

1.1 Background

Web applications have suffered from poor user interactivity for many years despite
of their popularity [42]. During the evolution of the Web in the early 2000’s, it
evolves into what is referred to as Web 2.0. Among new techniques and concepts
of Web 2.0 is AJAX (Asynchronous JavaScript and XML). This technique made it
possible for web applications to asynchronously fetch new data and to update the
web page, without refreshing it [44]. Later, this evolved into a new type of web
application, known as SPA (Single-Page Application).

Developers often use one or many frameworks and libraries when developing
large and complex web applications. They can reuse code and therefore spend more
time on designing the current application by choosing an appropriate framework. On
the contrary, a less suitable framework can affect the development time and reduce
the quality of the application. Still, web framework comparison is not an establish
discipline and the closest field is software architecture comparison. Software archi-
tecture comparison is also a young discipline and one of the most popular methods
are SAAM (Software Architecture Analysis Method), originated from 1996 [21].

This project is performed at Decerno. It is a small IT consultancy company
who has built custom systems since the 80’s. Their focus is web development and
because they make custom systems, they choose tools and framework as required
for the particular project. Currently, all their customers demand systems built
as an SPA. However, new framework is developed and older ones are majorly re-
worked. Without any scientific methodology for comparing SPA frameworks written
in JavaScript, it can be troublesome to choose which one to use.

1

CHAPTER 1. INTRODUCTION

1.2 The Problem
The purpose of this thesis project is to propose a method of how to compare SPA
frameworks. This section gives a further definition of the problem.

1.2.1 Problem Description
A large number of frameworks exist and are constantly evolving. Besides, there is
no definition of a framework or what to include. The complexity of SPA frameworks
makes a comparison to other frameworks difficult. Thus, there are a lot to take into
consideration when deciding what framework to use when developing SPAs. For
example, there are differences in its data bindings, cache performance and loading
time.

First, to be able to make a comparison it is necessary to establish a definition
of what a framework is and what to include. Second, by making an abstraction of
an SPA framework, it lowers the complexity of the comparison. This abstraction
can provide a base to design a comparison method and also a base to investigate
different criteria that may be included in a method to compare SPA frameworks.

1.2.2 Research Questions
To solve the problem of how to compare SPA frameworks, three research questions
are proposed:

RQ1: What is a proper abstraction of an SPA framework?

RQ2: How can a method be formulated to compare SPA frameworks?

RQ3: Can this method be used to give a recommendation about what SPA frame-
work to use?

1.2.3 Delimitation
The study is based on SPA frameworks written in JavaScript. Most of the SPAs
have a back-end service as a database or similar. However, the focus is solely on the
client side of the SPA, where the part of the SPA using the JavaScript framework
is. The proposed method focus on SPAs of such size and complexity that it benefits
from using a properly chosen framework.

1.3 Approach
To be able to answer RQ1 and RQ2, a literature study of software architecture
comparison and framework comparison is conducted. In addition, ten interviews
are made. To make an abstraction of an SPA, concepts and criteria are chosen
by a quantitative and qualitative approach. To answer RQ3, three frameworks are
chosen and the method suggested by RQ2 is used to compare these.

2

engwall
Anteckning
Kör grammatik-kontroll. Låt någon annan korrekturläsa.

engwall
Anteckning
EN forskningsfråga, som kan ha underfrågor, men som ska vara tillräckligt allmän och övergripande så att den täcker hela arbetet.

engwall
Anteckning
Anger målet inte ett problem. Tydliggör varför detta ska göras.

1.4. CONTRIBUTION

1.4 Contribution
This thesis project contributes to an approach for making an abstraction of SPA
frameworks. Furthermore, how this abstraction can be used to formulate a scientific
method of how to compare different SPA frameworks.

1.5 Thesis structure
Chapter 2: This chapter contains a brief history of JavaScript, the architecture

of an SPA, what a framework is and the purpose of a framework. Then, a
method of describing software architecture is presented.

Chapter 3: This chapter contains the methodology of this thesis.

Chapter 4: This chapter contains the results of the interview and the literature
study. Next, a method is formulated with the abstraction of an SPA frame-
work.

Chapter 5: This chapter contains a comparison between three SPA frameworks
by using the method proposed in chapter 3 and 4.

Chapter 6: This chapter contains a discussion about the thesis and a summary.
Also, this chapter includes a socio-ethical discussion about the research.

3

engwall
Överstruket

engwall
Överstruket

engwall
Överstruket

engwall
Överstruket

engwall
Överstruket

engwall
Anteckning
Skriv om till beskrivande löptext. Det behövs inte en till innehållsförteckning, vilket detta är.

Web Related Glossary

View: The visual representation of the web application.

Model: The data models or objects that are used in the web application.

Template: A template of how the view should be represented with the data from
the models.

DOM (Document Object Model): Representation of objects and structure within
a HTML or XML document.

Business logic: The logic of the web application, regardless of what client is used.

Component: A DOM-node that represents a visual component in a web applica-
tion.

JSON (JavaScript Object Notation): JSON is a text-based format to show
data. An example of a JSON object can be found in listing 1.1. It contains
a person object with the key value pairs of firstName, lastName and age.
This is supposed to resemble a person named John Smith who is 25 years old.

1 {" person ":
2 {
3 " firstName ": "John",
4 " lastName ": "Smith",
5 "age": 25
6 }
7 }

Listing 1.1. Example of a JSON object

4

Chapter 2

Background

Chapter 2 includes a brief summary of how JavaScript has developed. Furthermore,
there is an introduction to SPAs, to software architecture and to frameworks. These
are explained and how they are related to web development. In addition, related
work to software architecture comparison and framework comparisons is presented.

2.1 JavaScript

2.1.1 ECMAScript
While the Web 1.0 era, the development of a programming language that comes to
be known as JavaScript begin. In 1994, a company called Netscape, creates Netscape
Navigator, a browser widely used during the 90’s. In short, the communication with
the web where static during this time and therefore, the company decides to develop
a more dynamic browser [48].

For this reason, Netscape hired Brendan Eich in 1995 to implement a Lisp dialect
called Schema in Netscape Navigator. Before Eich begins, Netscape collaborates
with Sun, a software and hardware company, later bought by Oracle. Sun wanted to
include their language Java in Netscape Navigator, thus making their browser need
two separate languages. At that time Netscape decides that their programming
language needs a similar syntax to Java, and then ruled out Scheme and other
languages as Perl, TCL and Python. Eich completed a new programming language
called Mocha in ten days, in 1995. Then Netscape changed the name to LiveScript
and implemented the language in Netscape Navigator the same year. The use of
Java increases and is widely spread during this time of period. According to this,
Netscape changes name of the language from LiveScript to JavaScript [48].

In 1996, shortly after JavaScript was launched Microsoft implemented their ver-
sion of JavaScript in their browser Internet Explorer 3.0. To be able to reduce
competition from Microsoft, Netscape decides to standardize JavaScript and turns
to the standard organization ECMA. They start to work with the specification
ECMA-262, however, they are not allowed to use the trademark JavaScript so the
name ECMAScript is chosen. During the years 1997 to 1999 ECMAScript 1-3 are

5

engwall
Anteckning
Ta hjälp av någon som kan läsa igenom och korrigera språket. Exempel på problem markerade i detta stycke.

engwall
Markering

engwall
Markering

engwall
Markering

engwall
Markering

CHAPTER 2. BACKGROUND

released. The Technical Committee 39, includes Microsoft, Google and Mozilla dis-
card their work with ECMAScript 4 because the companies could not agree on a
set of features for ECMAScript 4. In July 2008 the Technical Committee 39 meet
again and agree to drop some features and that all future changes to ECMAScript
should be less radical. Instead of releasing ECMAScript 4, it was renamed EC-
MAScript 5 and releases in December 2009. The most current version ECMAScript
6, is launched in June 2015 [49].

2.1.2 Additional JavaScript Languages

More syntaxes and languages exist that can be compiled to JavaScript, for example,
CoffeScript, TypeScript, JSX and Dart. These extend JavaScript with new func-
tionality or another syntax that is easier to read or easier to use. In listing 2.1, is
an example of a class called HelloWord (with the function getHelloWorld) written
in TypeScript presented.

1 class HelloWord {
2 getHelloWord () {
3 return "Hello , world";
4 }
5 }

Listing 2.1. HelloWorld class written in TypeScript

However, a web browser cannot interpret TypeScript. On the contrary, by compiling
TypeScript into JavaScript, the browser is able to execute the code. Listing 2.2
shows the compilation of the HelloWord class from listing 2.1.

1 var HelloWord = (function () {
2 function HelloWord () {
3 }
4 HelloWord . prototype . getHelloWord = function () {
5 return "Hello , world";
6 };
7 return HelloWord ;
8 }());

Listing 2.2. HelloWorld class compiled into JavaScript

In this example, TypeScript gives the HelloWorld class a C++ or Java-like syntax
and removes the need for nested functions.

2.2 Single-Page Application

In this section, the fundamentals of SPAs are described by introducing how they
communicate with a server, how SPAs are executed in the browser and how data
bindings work.

6

engwall
Anteckning
Tydliggör varför detta är relevant för ditt arbete. Det är nu oklart.

2.2. SINGLE-PAGE APPLICATION

2.2.1 Definition of a Single-Page Application

It is generally agreed that there is no exact definition of the concept SPA. A. Mesbah
and A. van Deursen define it as: “the single-page web interface is composed of
individual components which can be updated/replaced independently, so that the
entire page does not need to be reloaded on each user action” [42]. To achieve a
better understanding, these key attributes are defined further:

Web interface: The interaction between a user and a web server.

Individual components: The SPA is split into smaller and individual compo-
nents.

Updated/replaced: A component can be updated or replaced by a new compo-
nent or page.

Reloaded: A typical web page needs to be reloaded, in contrast to an SPA.

User action: A user can make input to an SPA from any I/O device, which causes
some action to occur.

2.2.2 Communication

Figure 2.1 illustrates a typical communication of an SPA between a user and a web
server.

Figure 2.1. Figure of the communication between a user and a web server.

1. Initial request: The initial request is often made from a browser on a desktop
computer or mobile device. This is done by a HTTP request from the user to
a specific URL.

7

CHAPTER 2. BACKGROUND

2. Response with resources: The HTTP request is handled by the web server.
The web server responds by sending the JavaScript dependencies and addi-
tional libraries. When the user receives the response from the server, the SPA
is executed and loaded into the web browser.

3. Input: The user is now able to make input to the SPA that causes changes in
the state of the SPA. These changes are handled either by the application or
by fetching new data via AJAX from the server API.

4. Request: The request from the SPA to the API is made asynchronously. The
communication between the SPA and the server is typically made with JSON.

5. Response: The results are sent back to the SPA as soon as the API can handle
the request. Mostly, this is done by sending JSON back to the SPA.

6. Update: With the new data received from the server, the SPA updates the
components. This update is done by a re-rendering of the DOM, performed
with JavaScript. When the re-render is done, the SPA is ready for new input
from the user. This results in a loop from the third step to the sixth step until
the user exits the SPA.

2.2.3 Execution
JavaScript is executed in the browser and the way it is interpreted may vary between
different browsers. The reason behind this is that the JavaScript engine and its
implementation differs. Mozilla FireFox has an engine called SpiderMonkey [43].
Google Chrome for desktop computers got V8 [30]. Apple uses JavaScriptCore in
their WebKit [22] browser engine for its desktop and mobile browsers. In other
words, both the performance and support for newer functionality in JavaScript can
differ between browsers. Consequently, it is important to test the SPA framework
in as many browsers as possible.

2.2.4 Data bindings
There are two different types of data bindings. The one-way data binding is used in
many traditional server-side web applications. A template and one or many models
are merged on the server and sent to the user’s view. Any changes to the models
or the view are not reflected after the merge. To update the model, it is necessary
for the user to send back the view to the server. These changes must be processed
by the server and be sent back as a new merge of the template and the model [7].

The two-way data binding is common in many SPA frameworks. The view
can be seen as a “single-source-of-truth” of the model. This makes all changes in
the view instantly reflected on the model and all the changes to the model are
propagated into the view [7]. However, since the two-way data binding is two ways,
the reasoning about how the application can behave is difficult. The developer team
at Facebook Inc. state: “We found that two-way data bindings led to cascading

8

2.2. SINGLE-PAGE APPLICATION

Figure 2.2. Figure of a one-way data binding

Figure 2.3. Figure of a two-way data binding

updates, where changing one object led to another object changing, which could also
trigger more updates.” [23] This lead to trouble with their Messenger application in
the Facebook ecosystem, and to solve the problem with the two-way data binding
they developed a new type of data binding [12]. It is called Flux and is a one-way
data binding with four components instead of three [23].

2.2.5 States

States have always existed in web applications, but to increase the user interactivity,
more states are required. In server-side rendering, it is difficult to implement smaller

9

CHAPTER 2. BACKGROUND

changes in the components. These small changes also need a trip to retrieve HTML
from the server. Typically, SPAs have more complex states than traditional server-
side applications [58]:

DOM events that cause state changes: I/O into forms, the fields are validated
and gives feedback to the user.

Application state changes: Interaction with buttons cause a new page to ap-
pear.

Global state changes: Going offline in a real time application.

Delayed data from the API: AJAX call is delayed between the SPA and the
server.

Data model changes: A data model is changed and an update is sent to the
client.

2.3 Software Architecture

This section defines what software architecture is. In addition, a method of how to
identify a software architecture is proposed.

2.3.1 Definition of Software Architecture

Software architecture is a process of finding a structured solution that meets all op-
erational and technical requirements of a software project. This involves optimizing
common quality attributes, security, performance and a wide range of factors. Each
of these decisions have impact on the quality, performance, maintainability and the
overall success of the software [59].

A large variety of definitions of software architecture are found in literature.
For example, in Patterns of Enterprise Application Architecture, Martin Fowler pro-
poses: “The highest-level breakdown of a system into its parts; the decisions that
are hard to change; there are multiple architectures in a system; what is architec-
turally significant can change over a system’s lifetime; and, in the end, architecture
boils down to whatever the important stuff is.” [19].

In Software Architecture in Practice (2nd edition), Bass, Clements, and Kazman
define software architecture as: “The software architecture of a program or com-
puting system is the structure or structures of the system, which comprise software
elements, the externally visible properties of those elements, and the relationships
among them. Architecture is concerned with the public side of interfaces; private
details of elements – details having to do solely with internal implementation – are
not architectural.” [8].

10

2.4. FRAMEWORK

2.3.2 Identify Software Architecture
There are great many methods of describing software architecture, such as 4+1,
Agile modeling, IEEE 1471 and UML (Unified Model Language). The aim of all
these methods is to give an idea of describing the software architecture in different
type of views. These views can be seen as core parts of a system and all of these
methods have their own idea of which views are the most important and how they
should be presented [60].

The model that is used in this paper is proposed by Microsoft Research, Appli-
cation Architecture Guide, 2nd Edition. This is an iterative method in five steps.
This would help to put together the key decisions of a software architecture. An
iterative process can make the developers able to refine the design over time and
even through the life cycle of the software [60].

The five steps consist of:

1. Identify Architecture Objectives: Give a precise specification of the objec-
tives of the architecture. This helps with focusing on the right problems in
the design.

2. Key Scenarios: By identifying key scenarios, the focus is brought to what is
most important for the architecture. These scenarios can be used to evaluate
a candidate architecture.

3. Application Overview: The application should reflect reality and its context
must be identified. For example, application type, deployment architecture,
architectural styles and technologies.

4. Key Issues: Based on quality attributes the key issues must be identified. In
this field, the most mistakes are made when designing an application.

5. Candidate Solutions: Create an architecture prototype and evaluate it by the
key scenarios, issues and deployment constraints. When this is done, one more
iteration can be done for further refinement of the candidate architecture.

2.4 Framework
This section defines what a framework is and its purpose.

2.4.1 Definition of a Framework
In literature, there are many definitions of what a framework is. These frameworks
are often referred to as software or application framework. Ralph E. Johnson states
that a framework is a reusable design that is represented by a set of abstract classes.
In addition, he calls a framework for a skeleton application that can be customized
by a developer [36]. Besides of being called a skeleton application, a framework can
be seen as a ‘semi-complete’ application [53].

11

CHAPTER 2. BACKGROUND

2.4.2 Purpose of a Framework

Dirk Riehle discusses in his dissertation, Framework Design, that a developer who
uses a framework, reuses its design. Furthermore, the developer is able to solve the
problems that fall within the domain of the framework [50]. By reusing code the
developer enhances the effectiveness and efficiency of innovation which results in
higher quality product [35, p. 4].

2.5 Related Work

This section introduces different methods for software architecture comparison and
framework comparison.

2.5.1 Software Architecture Comparison

SAAM is used to evaluate one candidate architecture at a time. This evaluation
is performed via scenarios, quality attribute and quality metrics. The quality at-
tributes and metrics are used to define the business value, while the scenario is used
to understand the architecture. Different architectural approaches are identified
and are evaluated using these scenarios, attributes and metrics [38].

ATAM is similar to SAAM, but this method focuses on finding tradeoffs. For
every tradeoff, each architectural approach is evaluated of how this tradeoff can
affect it [13].

FAAM (Family Architecture Analysis Method) can only evaluate information-
system family architectures. System quality requirements are taken and evaluated
against the proposed architectural approaches [16].

CBAM (Cost Benefit Analysis Method) is an enhancement of the ATAM. The
authors propose ATAM with the addition of finding the benefit and cost for each of
the proposed architectural approaches [33].

ALMA (Architecture Level Modifiability Analysis) is used to evaluate one ar-
chitecture candidate. The method includes a set of scenarios and are evaluated of
how well the architecture is supporting these scenarios [9].

SACAM (The Software Architecture Comparison Analysis Method) can com-
pare different candidate architectures. This method extracts quality criteria from
the business goals and describes them as scenarios. These scenarios are then eval-
uated given metrics and predefined architectural views [57].

DoSAM (Domain-specific Software Architecture Comparison Model) is used to
compare different architectures given a specific domain. By collecting quality at-
tributes, a domain specific architecture blueprint can be created. This is used as a
schema for how the architecture is put together. Quality metrics are collected and
the blueprints are evaluated given these metrics [10].

ARID (Active Reviews for Intermediate Designs) is a combination of design
reviews and ATAM [39].

12

2.5. RELATED WORK

2.5.2 Framework Comparison
This section describes current research in the field of framework comparison.

Tim Malmström proposes a method of how to compare SPA frameworks written
in JavaScript. He uses seven requirements taken from interviews. After defining the
requirements, he discusses how the frameworks individually fulfill the requirements.
Malmström also performs a performance test on two of the frameworks [41].

Anton Gerdessen in [20] proposes a method of comparing two Java back-end
frameworks. He collects criteria from literature studies and removes the criteria
that could not be applied to a web related framework. The criteria are sorted into
two domains and Gerdessen creates a theoretical framework is used to compare the
two frameworks. Then, he iterates through all the criteria and reviewed the two
frameworks side by side. A more in depth analysis is performed with two of the
chosen criteria on the two frameworks [20].

Joe Lennon proposes a method of comparing JavaScript frameworks. He uses
a set of features and compares how these features is implemented and used within
the frameworks. Furthermore, he develops a prototype using these frameworks and
performs a code comparison between the prototypes [40].

Maria del Pilar Salas-Zarate et al. present a list of best practices for web devel-
opment and use these for comparison of web frameworks. Furthermore, the authors
implement a prototype using the Lift framework [15].

In [21], Ignacio Fernández-Villamor et al. propose a method of how to com-
pare agile web frameworks. They define a “blueprint architecture” containing eight
criteria important for a web framework. These criteria are defined using a set of
questions that summarize the general features of an agile web framework. This re-
sults in a table where the authors use a percentage of how the framework fulfills the
question. Furthermore, the authors choose to use weights on each question. For each
framework and the strength and weaknesses are revealed by a final discussion [21].

In [55], T. C. Shan and W. W. Hua propose a list of design principles that all
web frameworks should follow and a taxonomy is proposed of how to group different
web frameworks written in Java [55].

13

Chapter 3

Methodology

Chapter 3 contains an overview of the methodology being used for the interviews, the
literature study and the performance measuring. In addition, an explanation of the
prototype and tools that is used to measure the performance of the SPA frameworks.

3.1 Overview

In this paper, a combination of quantitative and qualitative methods are used to
develop a way to compare SPA frameworks. The following sections describe how
the research has been carried out.

The first step, before proposing a method of how to compare SPA frameworks, is
to conduct a literature study. This study is performed in order to find out whether
similar studies have been carried out and find comparative methods used previously.
Finally, the analysis of the methods used in the literature resulted in a first draft
of a comparison method. This method consists of a theoretical and a practical
comparison, which are extended upon further in the study.

Secondly, a more comprehensive literature study is conducted to provide a basis
for an abstraction of SPA frameworks. This study formed the main source of data
that were collected and sorted into different criteria. As suggested by [14, p. 88-90],
key concepts and terms are extracted. However, the word criterion is used instead
of terms. As a complement to the literature study, ten interviews are held with
employees at Decerno, who encounter SPAs on a daily basis.

For each criterion, a set of questions are proposed. These questions are for-
mulated after an analysis of general features existing in some of the current SPA
frameworks. In addition, questions from other framework comparisons and inter-
views are selected and placed into the corresponding criteria.

Finally, a testing methodology is chosen and performance tests are performed
on the prototypes.

14

engwall
Markering

engwall
Anteckning
Detta blir märkligt. Delvis för att det är en självklarhet att arbetet ska innehålla en litteraturstudie, men framför allt för att du redan har presenterat resultaten av den första studien i föregående kapitel. Ta bort och/eller formulera om.

3.2. INTERVIEWS

3.2 Interviews

Interviews are often used as a qualitative method where participants are able to
elaborate on what they think or feel [17]. The aim of the interviews is to gather
more information concerning which criteria are important when choosing an SPA
framework, hence these interviews are held with a more quantitative approach. All
participants hold different technical roles at Decerno, such as front-end developer,
system developer or project manager. The reason for choosing employees with
different roles is because all of them are engaged in work with SPAs on a daily basis,
but not all of them are working full time with writing code. They are encouraged
to speak freely and keywords from their statements are written down. However,
notes are not taken on why or how. The participants could speak freely without
any interruption until no more criteria could be found [54].

An interview situation may contain personal information that might be exposed
in the research. Some of these issues are explained by Michael Q. Patton in [46],
such as consent and confidentiality. To achieve an ethical interview, the participants
are introduced to the purpose of this thesis and told how their answers is used. All
the participants in the interviews take part voluntarily and their answers are going to
remain anonymous. After the interview, the notes are presented and the permission
to use the data in the thesis is acquired.

3.3 Performance Measuring Methodology

A general method of performance testing proposed by [34] is used. This method is
used to obtain a structure of how to perform a performance test of a web application.
The method consists of seven steps:

1. Identify test environment

2. Identify performance acceptance criteria

3. Plan and design tests

4. Configure test environment

5. Implement the test design

6. Execute the test

7. Analyze results, report and retest

Typically, it is the back-end service being tested in a web application. Instead, this
paper covers the client side of an SPA. The crucial part of an SPA’s performance is
the data bindings, the loading time and equally important is resource allocation.

15

engwall
Anteckning
förklara why och how

engwall
Markering

engwall
Anteckning
Jag har markerat ett urval av grammatikfel, men inte alla. Se till att köra en grammatik-kontroll.

CHAPTER 3. METHODOLOGY

3.3.1 Data Bindings

Data bindings are a crucial part for web applications. Typically, a two-way data
binding is used in SPA frameworks (section 2.2.4). These bindings can be tested by
loading data and see how fast it is reflected in the view. Besides, the tests consist
of updating the data bindings with new data. This test shows how quickly data
bindings react to changes in the data model.

3.3.2 Loading Time

For the initial load, the server needs to send the JavaScript file to the user and the
SPA must initialize. For a typical user, the loading time of an application should
not exceed 0.1 - 1 second. However, up to 10 seconds are the upper limit for most
users, meaning users initial thoughts might be interrupted and they decide to do
something else [45].

3.3.3 Resource Allocation

A smartphone might not have the same amount of memory available as a desktop
computer. Therefore, it is necessary to limit the memory load when an SPA is
running. There are various ways to control this, such as limiting the amount of
data bindings during the first initial load.

3.4 Tools

To test the data bindings, the benchmarking framework BenchmarkJS is used [2].
The standard approach of doing performance tests is to run a certain test and
present the results with a certain margin of error. This tests do not not work
properly on JavaScript applications since the time can vary from one browser to
another browser. The approach of BenchmarkJS is to repeat the tests until 1%
margin of error is achieved. It includes different type of clocks to get a better
reliability of the time measurements [11]. The resource allocation and loading time
tests are performed using the analytics tool provided by Google Chrome.

3.5 Prototype

The prototype is created by TodoMVC [6]. The code is taken from their GitHub
repository [61]. TodoMVC is chosen because it is a minimal example of a web
application with basic functionality. These applications are created by experienced
developers who utilizes the way the framework is supposed to be used. The main
functionality of the TodoMVC application is to be able to add tasks to a list, which
can be marked as completed. The application has three main components:

16

3.5. PROTOTYPE

Input field: This text field is used for adding a task. At the bottom of the task
list, the task iscreated as an uncompleted task. This component also consists
of a button for marking all tasks as completed or uncompleted.

Task list: This component is a list of tasks. The tasks individually can be marked
as completed or uncompleted, can be renamed or removed from the list.

Footer: The footer component is the row in the bottom of the list. This contains
four buttons and one counter. The counter represents how many uncompleted
tasks are left in the task list. The buttons “all”, “active” and “completed”
are sorting options for the task list. The “Clear completed” button removes
all completed tasks from the task list. The footer is hidden when there are no
tasks in the list.

Figure 3.1. Figure of the TodoMVC application

17

Chapter 4

Formulating a Comparison Method

In chapter 4, the results of the interviews and the literature research are presented.
Furthermore, the theoretical comparison is presented as a method with criteria and
questions.

4.1 Results of the Interviews
The interviews are completed as described in section 3.2. The attendances are ten
employees at Decerno with varying professional roles. The criteria that they think
are important when choosing an SPA framework are summarized below:

• Cache performance

• Compatibility

• Developer guidelines

• Documentation

• Does in-house competence exists?

• Is it simple to use?

• Maturity

• Performance

• Popularity
• Portability
• Scalability
• Security
• Size
• Testability
• Who is the developer team behind

it?

4.2 Results of the Literature Research
There is no doubt, when comparing something as complex as a framework, an
abstraction is needed. As proposed by [20], an abstraction can be made by creating
a “conceptual framework”, “blueprint architecture” or “blueprint framework”. The
abstraction can be built with either a scenario- or criteria-based approach.

All methods mentioned in section 2.5 are using some of these concepts, which
are summarized below:

18

engwall
Sticky Note
Kvantifiera. Hur många ansåg att respektive kriterium var viktigt? Fanns det någon rangordning vilka som är viktigast? Var det några kriterier som samtliga nämnde? etc.

4.2. RESULTS OF THE LITERATURE RESEARCH

Concept Reference
Criteria-based comparison [10,15,21,40,41,57]
Scenario-based comparison [13,16,33,38,39]
Collect business goals [10,13,57]
Scoring with yes/no [15,21,40]
Scoring with percentage [10,21,57]
Scoring with discussion [9, 13,20,33,38,39,41,57]
Score is weighted [10,21,38,57]
Evaluation of one candidate [13,16,33,38,39]
Comparing different candidates [10,15,21,40,41,57]
Contain “social aspects” [13,16,39]
Prototyping [13,15,38,40,41]
Performance testing [41]
One/many metric/metrics for every criteria [15,20,21,41]

Table 4.1. Concepts found in literature

Conclusions

As seen in table 4.1, all the scenario-based methods can only evaluate one candidate
architecture at a time and the criteria-based methods are used to compare different
candidates. In [10, 13, 57], the authors propose the use of business goals as a base
for collecting scenarios. These scenarios are specific and may vary from project to
project.

Another way of comparing software architecture is to utilize many different
groups of employee and external experts. Some of these aspects proposed by [13,
16,39]:

• Workshops with different development teams to get a broader perspective.

• Involving the whole team in the beginning of the development phase.

• Involving external experts in the design process.

• Presenting the findings for the other teams involved in the design process.

These social aspects are highly recommended when working in a project. Scenarios
can fit well in an initial process of development. However, this paper proposes a
method that can be used to compare SPA frameworks, therefore scenarios is not
be an appropriate choice. The reason behind this is that the method proposed
in this thesis is not have any specific parts that require other participants. It is
also recommended that the same person or persons perform the method, since the
answers can vary from person to person and making the actual comparison biased.

The authors behind SACAM, C. Stoermer, F. Bachmann and C. Verhoef state:
“Comparing software architectures implies a set of criteria. A comparison without
any criteria produces no sound reasoning about a selection.” [57]. As stated by

19

engwall
Sticky Note
Generellt: Det är på flera ställen oklart om "this paper" refererar till en tidigare studie du beskriver eller till ditt arbete. Förtydliga. Och använd "thesis"/"project"/"report" om ditt arbete istället.

CHAPTER 4. FORMULATING A COMPARISON METHOD

[57], the use of criteria is giving a sound reasoning of how well the architecture or
framework performs when compared to another.

Naturally, it is important to identify a number of criteria which are general and
essential. This thesis has focus on identifying a set of criteria as a fundamental
part of the proposed method. The comparison is done by defining each criteria and
formulating questions as proposed by [15,21,40,41]. These questions can be seen as
metrics and how well the questions fulfill the criteria, as proposed by [15,20,21,41].
Weights can be used, however this thesis does not promote any specific way of using
it. Ignacio Fernández-Villamor et al. in [21], are using weights on each question,
and gives a score for each criteria based on the questions and their weight.

4.3 Criteria Collection

The table below consists of a summary of criteria which are found in the literature
research (section 4.2) and the interviews (section 4.1):

Criteria Reference
Cache performance [41], (Section 4.1)
Documentation [41,55], (Section 4.1)
Does “in-house” experience exists (Section 4.1)
Integration [55]
Maintainability [41], (Section 4.1)
Maturity [41], (Section 4.1)
Modifiability [20]
Modularity [20,21,41], (Section 4.1)
Performance [20,41,55], (Section 4.1)
Persistence [20,21]
Popularity [21,41]
Portability [20,40,41], (Section 4.1)
Presentation [21]
Reliability [15]
Scalability [20,55], (Section 4.1)
Security [15,20,21], (Section 4.1)
Simplicity [55], (Section 4.1)
Size of the framework (Section 4.1)
Testability [20,21,41], (Section 4.1)
Transparency [20]
Usability [15,21]

Table 4.2. Criteria found by literature research and interviews

20

engwall
Highlight

engwall
Highlight

engwall
Highlight

engwall
Sticky Note
Hur kan frågorna uppfylla kriterier?

engwall
Sticky Note
Nämns inte i 4.1

engwall
Sticky Note
Nämns inte i 4.1

4.4. CRITERIA DEFINITION

Conclusions

In order to limit the number of criteria, only the criteria with two or more references
are selected. Stability and maturity are related because software maturity impacts
on the stability, therefore they are put together to one criterion. To be able to use
an SPA framework in as many browsers as possible, compatibility and portability
are essential and thus these two criteria are grouped together. In computer science,
persistence often relates to keeping the current state of the application in memory.
To keep the state of an SPA in memory, good cache performance is required. This
results in grouping persistence and cache performance together. Usability can be
defined by the ISO 9241-11 standard, which covers the field were a user should
be satisfied with the usage of the software [18]. This pairs well with simplicity,
because if something is simple to use it should have a high usability, on the contrary,
something that is not simple to use should have a lower grade of usability. Therefore,
simplicity and usability is grouped.

Documentation, size of the framework and in-house experience are chosen as
questions to use within their corresponding criteria.

4.4 Criteria Definition
In this section, the criteria found in section 4.3 are given wider definitions and
questions that fulfill the criteria.

4.4.1 Security
Today, many web applications store user credentials or credit card numbers in a
database that is connected to the Internet. If it would be a security breach in the
web application, all the user’s data can be stolen and the trust of users could be lost.
OWASP (Open Web Application Security Project) [4] is a non-profit organization
and an online community which main goal is to improve the security of software.
One of their most well-known contribution is their top 10 list of the most common
security issues with web applications.
SQ1: When a security related bug is found, does the framework have a

security policy [3]? A security policy is how a security issue is handled by
the developers behind the framework. This policy can be about responding to
the issue by e-mail, who is notified and how long the framework update takes.

SQ2: Does the framework have a promotion for finding bugs [29]? These
kind of promotions tend to give money to people who find security bugs in a
web application. This might cause more people trying to find security related
bugs.

SQ3: Does the framework prevent Cross Site Request Forgery [1]? Cross
Site Request Forgery is a security issue where a form in a web application is
vulnerable to manipulation, that the user is not aware of.

21

engwall
Sticky Note
Tveksamt urval. Det beror ju helt på hur heltäckande du varit i din litteraturstudie. Ett bättre val (utan att göra om särskilt mycket) vore att välja de kriterier som både litteraturen och intervjuerna anger är viktiga. Egentligen skulle du snarare först genomföra litteraturstudien och få fram en lista och därefter låta intervjupersonerna ta ställning till denna lista. Men det är förstås för mycket att kräva i detta läge.

engwall
Highlight

engwall
Highlight

engwall
Highlight

CHAPTER 4. FORMULATING A COMPARISON METHOD

SQ4: Does the framework prevent Cross Site Scripting [5]? Cross Site
Scripting is another security flaw in web applications. By utilizing this flaw,
malicious JavaScript can be executed in the browser.

4.4.2 Modularity
The purpose for modularity is to give a structure for how the development with
the particular SPA should be. An example of modularity could be to separate all
components. If a component is moved from the application, it should work as an
isolated unit and be fully functional. Separation could also mean having a separated
view and data layer in the application. This approach makes it easier to change an
isolated functionality in a specific component and overall make the SPA easier to
maintain.

MQ1: Does the framework support a design pattern which leads to easier
development of separated layers or components [41]? As mentioned
above, separation is important and a framework can aid this by proposing a
design pattern that is suitable for a component-based design or layer structure.

MQ2: Does the framework support a component-based approach of de-
velopment? By having components that work as isolated units leads to
better modularity where components can be moved or changed without inter-
fering the rest of the application.

4.4.3 Popularity
Using a popular framework could be an important factor for both maturity and
security. Much experience is gathered on StackOverflow and similar forums where
developers discuss how they solved common problems. A large developer base can
produce more bug reports and more people are likely to be involved in fixing these
issues [52].

PQ1: How are the frameworks related to each other on Google Trends [41]?
A Google Trends graph can give an indication of how popular a framework is
and how the number of searches has increased. If more than one framework is
allowed to be displayed, it is possible to compare their popularity progression.
This graph gives an overview of which framework is most popular and how
this has changed over time.

PQ2: How many GitHub watchers does the framework repository have [41]?
If a framework has many followers on GitHub, a wider audience are able to
try a version that still is in development.

PQ3: How many StackOverflow questions does the framework have [41]?
Mostly, problems are never unique and by having many questions already
answered about the framework could save time.

22

engwall
Highlight

engwall
Highlight

engwall
Highlight

4.4. CRITERIA DEFINITION

4.4.4 Maturity and Stability
There is no exact method of how to measure the maturity and stability of software.
A CMM (Capability Maturity Model) can be used to measure the maturity of a
process of software development within an organization [47]. However, it is difficult
to know the processes since these are not publicly available. Instead, maturity and
stability can be defined as how widely the framework is used by large corporations.

MSQ1: Is there any system of a larger corporation that uses the SPA
framework in a production environment? If a large company uses this
framework in one of their production system, this can be an indication of the
maturity and stability of the framework and their belief in its future.

4.4.5 Simplicity and Usability
It is almost impossible to add new functionality to a software without doing any
changes to the code base. By keeping the changes small, some defects can be
avoided. In contrast, if a major change is required, the developer needs not to
introduce more complexity than necessary. Given a context, the simplicity can vary
between the users of the framework. For the original developer of a software it might
be simpler to change the code than for a new developer. This issue can be solved
by some kind of competence sharing, such as documentation or guidelines [37, p.
49-50].
SUQ1: Does in-house experience exists (Section 4.1)? The possibility for

success is higher if there already exists knowledge of the framework. Further-
more, experienced staff can teach less experienced colleagues.

SUQ2: Does documentation exist [41], (Section 4.1)? When working with a
new framework or expanding an existing application with new functionality,
documentation is important to be able to solve problems.

SUQ3: Does any third-party tool provide code generation [21]? Instead
of writing repetitive code, third-party tools can generate code and save time
for the developer.

SUQ4: Does any IDE support this framework? An IDE (Integrated Devel-
opment Environment) serves the developer as a support for auto completion
of code or API documentation while writing.

SUQ5: Which JavaScript language does the framework promote? There
are many different JavaScript versions and there exist a variety of JavaScript-
based languages where the aim is to simplify development.

SUQ6: What is the cyclomatic complexity of the prototype? The cyclo-
matic complexity measurement can be used as an indicator of how complex
the code is in an application. Having a low cyclomatic complexity can keep
the software more reliable and maintainable [62].

23

CHAPTER 4. FORMULATING A COMPARISON METHOD

4.4.6 Portability and Compatibility
JavaScript is executed in the browser and it is important that the framework is
supported in as many browsers as possible. Equally important is the support for
mobile devices, since many people are using their mobile devices for browsing the
Internet.

PCQ1: Which browsers are every release tested with [41]? For portability
reasons, it is important that all releases are tested in as many browsers as
possible.

PCQ2: Which is the current latest browser versions supported [40, 41]?
Most of the users tend to update their browsers more regularly except the
Internet Explorer users. Most of the Internet Explorer users are spread out
through versions 8, 9, 10, 11 and also Microsoft’s new web browser Edge 12
and Edge 13 [56]. Therefore, it is important to support the latest version
available.

PCQ3: Which is the earliest browser version supported? Legacy support is
another important factor because many users are still not using the latest ver-
sions of their current web browser. As seen in PCQ2, the user base of Internet
Explorer is more spread out through many versions of the web browser.

PCQ4: Which version of JavaScript (ECMAScript) is the framework
built with? Currently, ECMAScript 6 is not fully supported in all browsers.
For this reason, all JavaScript that use the new ECMAScript 6 functional-
ity need to be compiled to ECMAScript 5. If the framework is built with
ECMAScript 6 or any future version of ECMAScript that is not currently
fully supported in all browsers, needs to compile into the latest version that
is currently supported.

PCQ5: Does the framework support mobile devices? Today, many users
browse the Web with their mobile device. Therefore, it is important for a
framework to support mobile devices.

PCQ6: Is the framework compatible with other libraries that is required
by the application? When developing a web application, it is common to
use more than one library or framework. Therefore, it is important that the
framework should compatible with the libraries or frameworks that is used.

4.4.7 Cache Performance and Persistence
Cache performance and persistence is important in an SPA to enhance the user
experience. If the initial loading time is too high, a user might exit the SPA before
it is properly loaded. Another reason to have some utilities for boosting cache
performance is to reduce the data load from the server to the SPA. Hence, this can
save resources on the server and decrease the time the user has to wait.

24

engwall
Sticky Note
Oklar logik: IE-användare är utspridda på olika versioner. Därför är det viktigt att stödja den senaste versionen. Menar du att denna är bakåtkompatibel?

engwall
Highlight

engwall
Sticky Note
Upprepning av inledningen ovan.

engwall
Highlight

engwall
Highlight

engwall
Highlight

4.4. CRITERIA DEFINITION

CPQ1: What is the size of the JavaScript file (Section 4.1)? For a user to
be able to use an SPA, the JavaScript files need to be downloaded. A larger
file size increases the loading time and place more strain on the server.

CPQ2: Does any functionality exists to support less data transfer be-
tween the SPA and the server [41]? The framework can save data trans-
fers by caching resources.

4.4.8 Testability
Whether the developers use a test-driven development or not, it is important to have
a framework that can be properly tested. To ensure that changes do not interfere
with old tests or that new functionality can be tested before a new release.

TQ1: Does the framework support unit testing [21,41]? Unit testing allows
testing of a module to ensure its functionality.

TQ2: Does the framework support integration testing [21]? Integration
testing or end-to-end testing allows testing of the full application.

TQ3: Does the framework support functional testing [21]? Functional test-
ing allows testing of certain logic in the application.

TQ4: Does the framework support performance testing [21, 41]? Perfor-
mance testing allows testing of parts or the whole application through bench-
marking or profiling.

TQ5: Does the framework support mocking of objects [21, 41]? Mocking
of objects makes some tests easier to perform when there is not sufficient data
or if it is hard to define the data.

4.4.9 Maintainability
In software development, it is common for one team to start the development and
another one taking over. One example of having a high level of maintainability is
that a new developer can start to fix issues and bugs quickly [51].

MaQ1: Does the framework promotes any developer guidelines? When
working in a large team it is important that every involved developer knows
how to work with the framework.

MaQ2: Does experience of this framework exist among programmers [21]?
If there exist many developers with knowledge of this particular framework,
it reduces the risk of not being able to recruit experienced developers.

MaQ3: Who is the developer behind this (Section 4.1)? Is the developer a
single person, a developer team or a company? A company that develops a

25

engwall
Highlight

engwall
Highlight

engwall
Sticky Note
Ofullständig mening.

engwall
Highlight

engwall
Sticky Note
Vad betyder "this"?

CHAPTER 4. FORMULATING A COMPARISON METHOD

framework has professional people that work with it on a daily basis, a single
person might not be able to work daily with the framework and might not
update the framework as frequently as necessary.

MaQ4: Does the team behind the framework use it in their own produc-
tion environment? If the developer team behind the framework use their
own framework in a production environment, this can be an indication that
they believe in their product and that it is suitable for a production system.

MaQ5: How many lines of code is the prototype written in [52]? An
application with fewer lines are suggested to be more maintainable [52].

26

engwall
Highlight

engwall
Sticky Note
implementation

Chapter 5

Comparison of SPA Frameworks

Chapter 5 contains a comparison between AngularJS, React and Angular 2, by using
the method proposed in chapter 3 and 4.

5.1 Frameworks
In this section, the frameworks AngularJS, React and Angular 2 are introduced by
a short summary.

5.1.1 AngularJS

AngularJS is developed by Google Inc. and the initial release was in 2010. The
aim of AngularJS is to extend the HTML vocabulary with data bindings. This is
implemented with ng-tags, which bind the view to one or many models. [26]. The
data bindings in AngularJS are implemented with dirty checking. This means that
if a value is bound to the view through a model, it is not immediately updated,
instead it is updated when AngularJS does the dirty checking on the value [32]. In
addition, AngularJS was created with testability in mind and therefore has built-in
dependency injection. This makes it easier to test individual components [27].

Current version

Version 1.5.5. March 18, 2016.

5.1.2 React

React is a framework developed by Facebook Inc. and the initial release was in 2013.
It uses a Virtual DOM, where new DOM trees can be created with JavaScript, which
creates a simpler programming model. The data bindings in React are implemented
with something Facebook Inc. calls diff algorithm. This algorithm causes a full re-
render of the application every time something changes. To detect the changes in
the Virtual DOM, React compares the DOM trees in every level and re-renders when

27

engwall
Highlight

CHAPTER 5. COMPARISON OF SPA FRAMEWORKS

a change is found [25]. In addition, React has its own JavaScript language called
JSX. This provides an extension to the JavaScript language by adding XML-like
syntax, which gives the programmer an ability to use a similar language to HTML
within the code [24].

Current version

Version 0.14.8. March 29, 2016

5.1.3 Angular 2
Angular 2 is a major rewrite of AngularJS and is currently in beta. As AngularJS,
Angular 2 also utilizes ng-tags, but with a different syntax. On the other hand,
Angular 2 does not use dirty checking as AngularJS does. Instead Angular 2 uses
component trees, where the parents are on a higher level in the tree than their
children. Every component has a change detector class, where the parent can update
its children if a change is detected [28]. Angular 2 offers better performance than
AngularJS and one of the reasons is that it can load code dynamically when needed
during the execution [31].

Current version

Version 2.0.0, beta 17. April 30, 2016.

5.2 Practical Comparison
In this section the practical comparison is made. This is done by presenting the
results from the performance tests and a code comparison between the frameworks.

5.2.1 Performance Results
The tests shown in table 5.1 and 5.2 is performed with this test setup:

• Windows 8.1 Pro
• Intel Core i7-4790k CPU @ 4.00 GHz
• 16 GB RAM
• Google Chrome 50.0.2661.102m

28

engwall
Highlight

engwall
Sticky Note
the possibility

engwall
Highlight

5.2. PRACTICAL COMPARISON

Test case (ms) AngularJS React Angular 2
Script loading time 757.6 ± 14.9% 844.2 ± 15.5% 880.5 ± 19.7%

Load 10 items 33 21 14
Load 100 items 182 67 46
Load 500 items 852 253 225
Load 1000 items 1350 553 384
Load 2000 items 2651 1050 827
Load 3000 items 3939 1425 1192
Load 4000 items 5210 1991 1591
Load 5000 items 6633 2426 1830
Edit 10 items 3 7 1
Edit 100 items 14 39 4
Edit 500 items 59 153 13
Edit 1000 items 108 291 23
Edit 2000 items 193 603 39
Edit 3000 items 285 962 55
Edit 4000 items 403 1210 73
Edit 5000 items 458 1510 93

Table 5.1. Script loading time and time of loading and editing 10-5000 items in
AngularJS, React and Angular 2.

Figure 5.1. Figure of the results from table 5.1.

29

engwall
Sticky Note
Varför % och inte ms?

engwall
Sticky Note
1. Upprepa inte samma information i både tabell och figur.
2. Ändra figurtexten så att den innehåller all nödvändig information i sig själv.

CHAPTER 5. COMPARISON OF SPA FRAMEWORKS

Figure 5.2. Figure of the results from table 5.1.

Test case (MB) AngularJS React Angular 2
Initial load 10.5 10.8 11.2

Load 10 items 11 11.4 11.6
Load 100 items 13.5 12.3 13.3
Load 500 items 17.2 15.9 19.3

Table 5.2. Memory allocation when loading 0, 10, 100 and 500 items in AngularJS,
React and Angular 2.

Figure 5.3. Figure of the results from table 5.2.

30

engwall
Sticky Note
Samma som för Figur 5.1. Figurerna är mer illustrativa än tabellen. Ta hellre bort tabellen.

engwall
Sticky Note
Samma som för fig. 5.1-5.2.

5.2. PRACTICAL COMPARISON

5.2.2 Code comparison
In this subsection a code comparison between AngularJS, React and Angular 2 is
made. This comparison consists of comparing the prototype by some of its core
features:

• How is the input saved?
• How is the footer hidden and shown?
• How are the task items created and shown in a list?

How this application is working can be read in section 3.5.

AngularJS

One of the main goals of AngularJS is to provide an extension to HTML. This is
done with ng-tags, which are used within the HTML file to bind the view to the data
models with the help of controllers. These controllers are written in JavaScript. In
the following examples the controller is called TC and holds all the functionality for
manipulating the model.

1 <form id="todo -form" ng - submit ="TC. addTodo ()">
2 <input id="new -todo" placeholder ="What needs to be done?" ng -model="

TC. newTodo .title" autofocus >
3 </form >

Listing 5.1. Example of to save the input in AngularJS

As seen in listing 5.1, it is a data binding between the input field and the model.
The ng-model-tag binds the input field to TC.newTodo.title. By binding the title
value to newTodo, the controller is able to create a new task object by accessing the
input field. To submit this value, the ng-submit-tag is used. Then, the function
addTodo within the controller handles the creation of the task.

1 <footer id=" footer " ng -show="TC.todos. length " ng -cloak >
2 ...

Listing 5.2. Example of hiding the footer in AngularJS

To show the footer, a ng-show-tag is used, as seen in listing 5.2. This tag makes
the footer to be shown when the expression inside the tag is validated to true.
TC.todos.length is evaluated to true if the task list’s length is greater than zero.
If the value is zero, the footer is hidden. To avoid flickering while loading the
application, the ng-cloak-tag is used. This causes the footer to stay hidden until
the expression inside the ng-show can be validated.

1 <li ng - repeat ="todo in TC.todos | filter :TC. statusFilter track by
$index "

2 ng - class="{ completed : todo.completed , editing : todo === TC. editedTodo
}">

3 <div class ="view">
4 <input class=" toggle " type=" checkbox " ng -model="todo. completed ">

31

engwall
Sticky Note
Oklart vilken application.

engwall
Highlight

engwall
Highlight

CHAPTER 5. COMPARISON OF SPA FRAMEWORKS

5 ...
6 </div >
7 ...

Listing 5.3. Example of showing a list of tasks in AngularJS

As seen in listing 5.3, the ng-repeat-tag is used to iterate over a list of items.
A filter is applied so the tasks can be sorted by their status. The ng-class-tag
extends the HTML class-tag, which can alter the visual style of the HTML. The
ng-class in this example alters how the item looks like if it is completed or if it is
being edited, and adds the HTML-tag accordingly. However, this depends on the
state of the task.

React

The React application is separated into four components, the input field, the task
list, the task items and the footer. If one component uses another, both are rendered.
In this case, the main application is the input field, which uses the list and the footer,
the list uses the task items.

1 <h1 >todos </h1 >
2 <input
3 className ="new -todo"
4 placeholder ="What needs to be done?"
5 value ={ this.state. newTodo }
6 onKeyDown ={ this. handleNewTodoKeyDown }
7 onChange ={ this. handleChange }
8 autoFocus ={ true}
9 />

Listing 5.4. Input field component in React

1 handleNewTodoKeyDown : function (event) {
2 if (event. keyCode !== ENTER_KEY) {
3 return ;
4 }
5 event. preventDefault ();
6 var val = this.state. newTodo .trim ();
7 if (val) {
8 this.props.model. addTodo (val);
9 this. setState ({ newTodo : ’’});
10 }
11 }

Listing 5.5. Logic for the input field component

In listings 5.4 and 5.5, the input field can be seen, and it is a separate component
with its own internal logic. In listing 5.4, the visual elements of the component are
written. JavaScript do not support HTML, but with the help of JSX, it is possible
to combine JavaScript with a HTML-like syntax. Regarding the logic in listing 5.5,
the onKeyDown property is triggered when a user presses a key. In this case the
handleNewTodoKeyDown function is called. handleNewTodoKeyDown is a function in

32

5.2. PRACTICAL COMPARISON

listing 5.5. This function checks whether the Enter key is pressed or not. If it is,
the value from the input field is saved and a trim function is called on the input.
The addTodo function handles the addition to the model and the setState function
resets the state of the input field to an empty string.

1 if (activeTodoCount || completedCount) {
2 footer =
3 <TodoFooter
4 count ={ activeTodoCount }
5 completedCount ={ completedCount }
6 nowShowing ={ this.state. nowShowing }
7 onClearCompleted ={ this. clearCompleted }
8 />;
9 }

Listing 5.6. Example of hiding the footer in React

In listing 5.6, the TodoFooter component and its logic is presented. If activeTodoCount
(the amount of active tasks) or completedCount (amount of completed tasks) is
larger than zero, the footer is shown and the values from the model is bound to it
via JSX. The footer component, TodoFooter, uses these values and cause a re-render
of the application.

1 var todoItems = shownTodos .map(function (todo) {
2 return (
3 <TodoItem
4 key ={ todo.id}
5 todo ={ todo}
6 ...
7 />
8);
9 }, this);

Listing 5.7. Example of a task item in React

1 <ul className ="todo -list">
2 { todoItems }
3

Listing 5.8. How to show all task items in React

In listing 5.7, React creates all tasks as separate components <TodoItem ...> via
JSX. These are created and saved with their properties in a list, todoItems. This
list is bound to the view with {todoItems}, as seen in listing 5.8.

Angular 2

1 <input class="new -todo" placeholder ="What needs to be done?"
2 autofocus ="" [(ngModel)]=" newTodoText " (keyup.enter)=" addTodo ()">

Listing 5.9. Example of to save the input in Angular 2

In listing 5.9, the view is able to connect to the model via the ngModel-tag. The
keyup.enter is a function that runs every time the Enter key is pressed. The

33

engwall
Highlight

engwall
Highlight

CHAPTER 5. COMPARISON OF SPA FRAMEWORKS

function addTodo is within the controller and alters the model and saves task. In
addition, the addTodo function resets the input field by setting the newTodoText to
an empty string.

1 <footer class=" footer " *ngIf=" todoStore .todos. length > 0">
2 ...

Listing 5.10. Example of hiding the footer in Angular 2

In listing 5.10, the ngIf-tag is used in the same way as in AngularJS. If the expres-
sion is validated to true, the footer is shown. The todoStore is a data structure
that makes it possible to save all task items. todos is a list that is saved in the
todoStore. In AngularJS the ng-cloak property is necessary to avoid flickering,
but this is included in Angular 2’s ngIf-tag. Therefore, the footer is hidden until
the validation can be done.

1 <li *ngFor="#todo of todoStore .todos" [class. completed]="todo.
completed " [class. editing]="todo. editing ">

2 <div class ="view">
3 ...
4
5 ...

Listing 5.11. Example of showing task items in Angular 2

In listing 5.11, the ngFor-tag iterates over all tasks in the list todos. For every
iteration, a todo task is created. The class brackets are used to alter the style of
the tasks whether the task is completed, uncompleted or edited.
5.3 Theoretical Comparison
In this section the theoretical comparison is made. All questions are answered and
are followed by a figure of Google Trends and conclusions.

Question AngularJS React Angular 2
SQ1 Yes, an e-mail address No No
SQ2 No No No
SQ3 Yes No No
SQ4 Yes Yes No
MQ1 Yes Yes Yes
MQ2 No Yes Yes
PQ1 See figure 5.4 See figure 5.4 See figure 5.4
PQ2 4256 2993 1480
PQ3 166994 13692 961
MSQ1 Sony and Google Instagram and

Facebook
None

Table 5.3. Answers to the questions SQ1 to MSQ1

34

engwall
Sticky Note
Här måste du hjälpa läsaren. Det är krångligt att gå tillbaka och kolla vad varje fråga var. Ge en kortversion av frågan i tabellen eller sammanfatta dem i anslutning till tabellen.

5.3. THEORETICAL COMPARISON

SUQ1 N/A N/A N/A
SUQ2 Yes Yes Yes
SUQ3 Yes Yes Yes
SUQ4 Yes Yes Yes
SUQ5 ECMAScript 5 JSX TypeScript
SUQ6 6 31 6
PCQ1 Internet Explorer,

Firefox and Chrome
Internet Explorer,
Firefox and Chrome

Internet Explorer,
Firefox and Chrome

PCQ2 Firefox 45, Safari 8,
Internet Explorer 11,

Chrome 50

Firefox 45, Safari 8,
Internet Explorer 11,

Chrome 50

Firefox 45, Safari 8,
Internet Explorer 11,

Chrome 50
PCQ3 Same as above, with

Internet Explorer 9,10
Same as above, with
Internet Explorer 9,10

Same as above, with
Internet Explorer 9,10

PCQ4 ECMAScript 5 ECMAScript 5 ECMAScript 5
PCQ5 Yes Yes Yes
PCQ6 N/A N/A N/A

Table 5.4. Answers to the questions SUQ1 to PCQ6

CPQ1 154 kB 142 kB 621 kB
CPQ2 Yes, $cachefactory No No
TQ1 Yes Yes Yes
TQ2 Yes No No
TQ3 Yes Yes Yes
TQ4 No No No
TQ5 Yes Yes No
MaQ1 Yes Yes No
MaQ2 Yes Yes No
MaQ3 Google Inc. Facebook Inc. Google Inc.
MaQ4 Yes Yes No
MaQ5 161 493 214

Table 5.5. Answers to the questions CPQ1 to MaQ5

Figure 5.4. Figure of Google Trends between AngularJS, React and Angular 2.

35

CHAPTER 5. COMPARISON OF SPA FRAMEWORKS

5.4 Comparison Conclusions
By applying the questions suggested in section 4.4, many similarities can be seen
through the majority of the questions, and that make it hard to differentiate be-
tween the frameworks. However, the greatest differences can be found within the
popularity criteria (PQ1-PQ3), in table 5.1. AngularJS has the most watchers on
GitHub (PQ2), most questions on StackOverflow (PQ3) and the highest amount
of searches on Google (figure 5.4). A possible reason behind this popularity may
be that AngularJS is the oldest of the three frameworks and existed during the up
going trend for SPAs in general.

Angular 2 is the largest of the three frameworks and therefore has the highest
initial load time and allocates most resources during runtime (figure 5.2.1). One of
the reasons behind this could be that Angular 2 still is in beta stage and code opti-
mizations are yet to be developed. Furthermore, Angular 2 is the fastest framework
to load 10-5000 items and to edit all these items (table 5.1). React is faster than
AngularJS when loading items, but the slowest framework to edit items. AngularJS
is overall the slowest framework when it comes to loading items. When loading and
editing items, DOM is changed and therefore the implementation of the data bind-
ings is important. As seen in table 5.1, React with its diff algorithm is slowest when
editing and AngularJS with its dirty checking is slowest when new data bindings
are created. However, as described in subsection 3.3.2, if it takes less than 1 second,
the user’s initial thoughts is not interrupted. With this in mind, AngularJS can
load between 500-1000 items, React can load 2000 items and Angular 2 can load
roughly 3000 items, as seen in table 5.1. A rough assumption could be that a typical
SPA has 500-2000 data bindings, which makes all of the three frameworks a suitable
choice if trying to be below the 1-second limit.

AngularJS and Angular2 have similar syntax. They both utilize ng-tags to
extend the HTML with data bindings and data models through controllers. On
the other hand, React has a component-based approach, where each component
is responsible for its own state and logic. However, if any of these frameworks are
unknown, Angular 2 has an almost nonexistent documentation and is a worse choice
than React or AngularJS.

By performing this comparison, it is suggested that AngularJS is the most suit-
able, due to its popularity and stability.

36

engwall
Highlight

engwall
Highlight

Chapter 6

Discussion and Conclusion

This chapter consists of a discussion about the method, proposals for future work, a
socio-ethical discussion and conclusions.

6.1 Summary
To be able to make an abstraction of an SPA, criteria and questions are collected.
These are chosen based on current frameworks, methods proposed by research and
interviews with developers. The abstraction is used as a base in the comparison
method, in addition to performance test and code comparison. By using this method
AngularJS is suggested to be the most suitable choice due to its popularity and
stability. However, AngularJS has bad performance when creating more than 1000
data bindings.

6.2 Discussion
Only considering the yes and no questions, the conclusion would be that they are
different. However, taking the other questions in consideration, the answers were
more similar for all of the frameworks. It is very favorable for frameworks to share
complementary similar functionality. Thus, having a code comparison and perfor-
mance tests was an appropriate part of the method. Nevertheless, this can also make
a comparison between the frameworks more difficult, as there is a vague distinction
between the frameworks. One possible reason for inexplicit difference between the
answers could be the lack of criteria or questions. With more criteria and questions,
there is a greater possibility for a larger variety of outcomes.

6.3 Socio-ethical discussion
One of the socio-ethical effects this paper, is that it could lead to a more diverse
Internet. Today, there are many old web applications where the back-end is large
and very computational heavy. By using an SPA framework, a smaller company

37

engwall
Sticky Note
vad är "they"?

engwall
Sticky Note
Väl kort diskussion. Här skulle du kunna fylla på mer vad gäller t.ex. skillnader mellan intervjuer och litteratur; vilka kriterier som är viktigast och om det kommer att fortsätta att vara på det sättet i framtiden; förutsägelser om framtida utveckling: kommer AngularJS fortsätta vara det bästa valet, och hur länge?

CHAPTER 6. DISCUSSION AND CONCLUSION

or startup with no funding, can place the logic on the client side and thus not
needing a large back end service to serve the users. By having a properly chosen
SPA framework it increase the software quality and reduce the development costs.
This may create an opportunity where more web applications are being developed,
that previously could not.

6.4 Future work
It would be appropriate to compare this method to other SPA comparison methods
to see how it performs. However, this comparison is difficult since there is a lack
of research within this field. But this field is likely to grow, since SPAs still are
relatively new and are the new trend in web development.

In addition, to get a more diverse outcome of the comparison, more criteria and
questions can be collected. This can be done by conducting more interviews with
developers or other people with a technical role towards SPAs. Another way to
improve this method can be by doing a more extensive literature study, however it
might take a few years until more has been researched in this area. Alternatively,
instead of creating more criteria or questions, the already chosen ones can be eval-
uated. As an example, the questions regarding browser compatibility, was this a
correct approach, since many of the frameworks had similar compatibility. There
might be a norm in web development that all applications should be compatible
with these browsers and versions.

Moreover, this method could also be tested with more or other frameworks than
the three chosen in this paper. If this were to be done, more variety in the results
might be found. However, AngularJS is still one of the oldest SPA frameworks
and is one of the most popular. It would be hard for another framework to try to
compete with AngularJS.

38

engwall
Sticky Note
Fråga eller inte?

engwall
Sticky Note
Vad var syftet med ditt arbete? Att ta fram utvärderingsmetoden eller att komma fram till vilket framework som är bäst? Återknyt explicit till frågan här i slutet.

Bibliography

[1] AngularJS: Security. https://docs.angularjs.org/guide/security, 2016. Ac-
cessed: 2016-04-05.

[2] BenchmarkJS. https://benchmarkjs.com/, 2016. Accessed: 2016-04-05.

[3] EmberJS: Security. http://emberjs.com/security/, 2016. Accessed: 2016-04-05.

[4] OWASP. https://www.owasp.org/index.php/Main_Page, 2016. Accessed:
2016-04-05.

[5] React: JSX Gotchas. https://facebook.github.io/react/docs/jsx-gotchas.html,
2016. Accessed: 2016-04-05.

[6] TodoMVC. https://www.todomvc.com/, 2016. Accessed: 2016-04-22.

[7] AngularJS and community. Data Binding.
https://docs.angularjs.org/guide/databinding, 2016. Accessed: 2016-04-
05.

[8] Len Bass, Paul Clements, and Rick Kazman. Software Architecture in Practice.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 2 edition,
2003.

[9] PerOlof Bengtsson, Nico Lassing, Jan Bosch, and Hans van Vliet. Architecture-
level modifiability analysis (alma). Journal of Systems and Software,
69(1–2):129 – 147, 2004.

[10] Klaus Bergner, Andreas Rausch, Marc Sihling, and Thomas Ternité. Dosam
– domain-specific software architecture comparison model. In Proceedings of
the First International Conference on Quality of Software Architectures and
Software Quality, and Proceedings of the Second International Conference on
Software Quality, QoSA’05, pages 4–20, Berlin, Heidelberg, 2005. Springer-
Verlag.

[11] Mathias Bynens and John-David Dalton. Bulletproof JavaScript benchmarks.
http://calendar.perfplanet.com/2010/bulletproof-javascript-benchmarks/,
2010. Accessed: 2016-04-05.

39

BIBLIOGRAPHY

[12] Jing Chen. Hacker Way: Rethinking Web App Development at Facebook.
https://www.youtube.com/watch?v=nYkdrAPrdcw, 2014.

[13] Paul C. Clements. The architecture tradeoff analysis method. Technical Re-
port CMU/SEI-2000-TN-009, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, PA, 2000.

[14] J. Collis and R. Hussey. Business Research: A Practical Guide for Undergrad-
uate and Postgraduate Students. Palgrave Macmillan, 2009.

[15] María del Pilar Salas-Zárate, Giner Alor-Hernández, Rafael Valencia-
García, Lisbeth Rodríguez-Mazahua, Alejandro Rodríguez-González, and José
Luis López Cuadrado. Analyzing best practices on web development frame-
works: The lift approach. Science of Computer Programming, 102:1 – 19,
2015.

[16] T.J. Dolan. Architecture Assessment of Information-system Families: A Prac-
tical Perspective. Technische Universiteit Eindhoven, 2001.

[17] Rolf Ejvegård. Vetenskaplig metod. Studentlitteratur, 2009.

[18] International Organization for Standardization. Iso 9241-11:1998, 1998.

[19] M. Fowler. Patterns of Enterprise Application Architecture. A Martin Fowler
signature book. Addison-Wesley, 2003.

[20] Anton Gerdessen. Framework comparison method: Comparing two frameworks
based on technical domains, focussing on customisability and modifiability.
Master’s thesis, UvA, University of Amsterdam, 2007.

[21] José Ignacio Fernández-Villamor, Laura Díaz-Casillas, and Carlos Á. Iglesias.
A comparison model for agile web frameworks. In Proceedings of the 2008
Euro American Conference on Telematics and Information Systems, EATIS
’08, pages 14:1–14:8, New York, NY, USA, 2008. ACM.

[22] Apple Inc. JavaScriptCore. http://trac.webkit.org/wiki/JavaScriptCore, 2016.
Accessed: 2016-04-22.

[23] Facebook Inc. Overview. https://facebook.github.io/flux/docs/overview.html
#content, 2016. Accessed: 2016-04-05.

[24] Facebook Inc. React (Virtual) DOM Terminology.
https://facebook.github.io/react/docs/glossary.html, 2016. Accessed: 2016-
04-22.

[25] Facebook Inc. Reconciliation. https://facebook.github.io/react/docs/recon-
ciliation.html, 2016. Accessed: 2016-05-22.

[26] Google Inc. AngularJS. https://angularjs.org/, 2016. Accessed: 2016-04-22.

40

engwall
Sticky Note
Hela namn eller initialer? Ska vara lika för alla.

[27] Google Inc. AngularJS: Unit Testing. https://docs.angularjs.org/guide/unit-
testing, 2016. Accessed: 2016-04-22.

[28] Google Inc. ChangeDetectorRef. https://angular.io/docs/ts/latest/api/core/
ChangeDetectorRef-class.html, 2016. Accessed: 2016-05-22.

[29] Google Inc. Chrome Reward Program Rules.
https://www.google.com/about/appsecurity/chrome-rewards/, 2016. Ac-
cessed: 2016-04-22.

[30] Google Inc. Chrome V8. https://developers.google.com/v8/, 2016. Accessed:
2016-04-22.

[31] Google Inc. Features & Benefits. https://angular.io/features.html, 2016. Ac-
cessed: 2016-04-22.

[32] Google Inc. What are Scopes? https://docs.angularjs.org/guide/scope, 2016.
Accessed: 2016-05-22.

[33] Software Engineering Institute. Cost Benefit Analysis Method.
http://www.sei.cmu.edu/architecture/tools/evaluate/cbam.cfm. Accessed:
2016-04-05.

[34] Prashant Bansode Scott Barber J.D. Meier, Carlos Farre and Dennis Rea. Per-
formance Testing Guidance for Web Applications: Chapter 1 – Fundamentals
of Web Application Performance Testing. Microsoft Press, 2007.

[35] Prashant Bansode Scott Barber J.D. Meier, Carlos Farre and Dennis Rea.
Reusing Open Source Code. Microsoft Press, 2011.

[36] Ralph E. Johnson. Components, frameworks, patterns. In Proceedings of the
1997 Symposium on Software Reusability, SSR ’97, pages 10–17, New York,
NY, USA, 1997. ACM.

[37] Max Kanat-Alexander. Code Simplicity. O’Reilly Media, 2012.

[38] Rick Kazman, Len Bass, Mike Webb, and Gregory Abowd. Saam: A method
for analyzing the properties of software architectures. In Proceedings of the 16th
International Conference on Software Engineering, ICSE ’94, pages 81–90, Los
Alamitos, CA, USA, 1994. IEEE Computer Society Press.

[39] Rick Kazman, Mark Klein, Mario Barbacci, Thomas Longstaff, Howard Lip-
son, and S. Carriere. Active reviews for intermediate designs. Technical Re-
port CMU/SEI-98-TR-008, Software Engineering Institute, Carnegie Mellon
University, Pittsburgh, PA, 1998.

[40] Joe Lennon. Compare JavaScript frameworks.
http://www.ibm.com/developerworks/library/wa-jsframeworks/, 2010.
Accessed: 2016-04-05.

41

BIBLIOGRAPHY

[41] Tim Johan Malmström. Structuring modern web applications : A study of
how to structure web clients to achieve modular, maintainable and longlived
applications. Master’s thesis, KTH, School of Computer Science and Commu-
nication (CSC), 2014.

[42] A. Mesbah and A. van Deursen. Migrating multi-page web applications to
single-page ajax interfaces. In Software Maintenance and Reengineering, 2007.
CSMR ’07. 11th European Conference on, pages 181–190, March 2007.

[43] Mozilla. SpiderMonkey. https://developer.mozilla.org/en-US/docs/Mozilla/
Projects/SpiderMonkey, 2016. Accessed: 2016-04-22.

[44] S. Murugesan. Understanding web 2.0. IT Professional, 9(4):34–41, July 2007.

[45] Jakob Nielsen. Usability Engineering. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1993.

[46] M.Q. Patton. Qualitative Research & Evaluation Methods. SAGE Publications,
2002.

[47] Mark C. Paulk, Bill Curtis, Mary Beth Chrissis, and Charles V. Weber. Ca-
pability maturity model, version 1.1. IEEE Softw., 10(4):18–27, July 1993.

[48] Dr. Axel Rauschmayer. Chapter 4. How JavaScript Was Created.
http://speakingjs.com/es5/ch04.html, 2016. Accessed: 2016-04-05.

[49] Dr. Axel Rauschmayer. Chapter 5. Standardization: ECMAScript.
http://speakingjs.com/es5/ch05.html, 2016. Accessed: 2016-04-05.

[50] Dirk Riehle. Framework design a role modeling approach. Diss. ETH No.
13509, 2000.

[51] A. F. Rosene, J. E. Connolly, and K. M. Bracy. Software maintainability -
what it means and how to achieve it. IEEE Transactions on Reliability, R-
30(3):240–245, Aug 1981.

[52] Ioannis Samoladas, Ioannis Stamelos, Lefteris Angelis, and Apostolos
Oikonomou. Open source software development should strive for even greater
code maintainability. Commun. ACM, 47(10):83–87, October 2004.

[53] Douglas C. Schmidt and Frank Buschmann. Patterns, frameworks, and middle-
ware: Their synergistic relationships. In Proceedings of the 25th International
Conference on Software Engineering, ICSE ’03, pages 694–704, Washington,
DC, USA, 2003. IEEE Computer Society.

[54] Meg Sewell. The use of qualitative interviews in evaluation.
http://ag.arizona.edu/sfcs/cyfernet/cyfar/Intervu5.htm, 2016. Accessed:
2016-04-05.

42

[55] T. C. Shan and W. W. Hua. Taxonomy of java web application frameworks.
In e-Business Engineering, 2006. ICEBE ’06. IEEE International Conference
on, pages 378–385, Oct 2006.

[56] StatCounter Global Stats. Top 12 Desktop Browser Versions Com-
bining Chrome and Firefox (5+) from Apr 2015 to Apr 2016.
http://gs.statcounter.com/#desktop-browser_version_partially _combined-
ww-monthly-201504-201604, 2016. Accessed: 2016-05-02.

[57] Christoph Stoermer, Felix Bachmann, and Chris Verhoef. Sacam: The software
architecture comparison analysis method. Technical Report CMU/SEI-2003-
TR-006, Software Engineering Institute, Carnegie Mellon University, Pitts-
burgh, PA, 2003.

[58] Mikito Takada. Single page apps in depth.
http://singlepageappbook.com/goal.html, 2016. Accessed: 2016-04-05.

[59] Microsoft Patterns & Practices Team. Microsoft Application Architec-
ture Guide, 2nd Edition. Chapter 1: What is Software Architecture?
https://msdn.microsoft.com/en-us/library/ee658098.aspx, 2009. Accessed:
2016-04-05.

[60] Microsoft Patterns & Practices Team. Microsoft Application Architecture
Guide, 2nd Edition. Chapter 4: A Technique for Architecture and De-
sign. https://msdn.microsoft.com/en-us/library/ee658084.aspx, 2009. Ac-
cessed: 2016-04-05.

[61] TodoMVC. TodoMVC GitHub Repository.
https://github.com/tastejs/todomvc, 2016. Accessed: 2016-05-22.

[62] Arthur H. Watson and Thomas J. McCabe. Structured testing: A testing
methodology using the cyclomatic complexity metric. Technical report, Com-
puter Systems Laboratory, National Institute of Standards and Technology.
http://www.mccabe.com/pdf/mccabe-nist235r.pdf.

43

