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Abstract

A number of portfolio strategies followed by practitioners are
dominated because they are incompletely diversified over time. The Payoff
Distribution Pricing Model is used to compute the cost of following
undiversified strategies. Simple numerical examples illustrate the
technique, and computer—generated examples provide realistic estimates of
the cost of some typical policies using reasonable parameter values. The
cost can be substantial and should not be ignored by practitioners, A
section on generalizations shows how to extend the analysis to term

structure models and other general models of returns.



1. Introduction

Portfolio managers regularly use a number of dynamic portfolio
strategies that have not received careful theoretical analysis. Some
examples are lock—-in strategies, stop—-loss strategies, rolling over
portfolio insurance, and contingent immunization. The lack of analysis has
been due largely to the inadequacy of the traditional theoretical tools.
Specifically, mean—variance analysis is not valid when the portfolio return
is non-linearly related to market returns, as it will be under these
strategies.l Cox and Leland [1982] have shown that when the riskless rate
is constant and the risky asset follows geometric Brownian motion or a
geometric binomial process, strategies such as these are inefficient.
Unfortunately, the Cox-Leland approach, while elegant and insightful, does
not tell us the magnitude of the inefficiency. The purpose of this paper is
to use the Payoff Distribution Pricing Model (Dybvig [1980, in press]) to
compute directly the cost of the inefficiency. As a result, we can now
compare the iﬁportance of general lack of diversification with non-modeled
costs, such as trading commissions. The results indicate that the
inefficiency costs of the strategies are substantial and should not be
ignored by practitioners.

A common misconception among students first learning about the
efficient markets hypothesis is that portfolio managers can do no damage.
0f course, this is not true, because managers choosing random or poorly
diversified portfolios throw away investors’ money by obtaining them less

return than is justified for the amount of risk taken on. For example, in

1. See Dybvig and Ingersoll [1982] for a discussion of the difficulty of
using mean—variance analysis for evaluating options and other non—-linear
claims, and Dybvig and Ross [1985a,b] for a general discussion of why
mean-variance performance measures may not be valid even in the absence of
measurement error.



the mean—variance world an efficient portfolio choice could have given the
investors the same mean and variance of terminal wealth at a lower cost. In
an intertemporal context, things get a bit more complicated., Besides the
importance of diversification across assets, an efficient portfolio choice
must also be diversified across time. Furthermore, a nonconstant portfolio
choice over time may be optimal, but such a portfolio choice must react
appropriately to information arrival.

Fortunately, there is a simpler way of viewing the multiperiod problem.
As Ross [1978] has emphasized, the space of feasible consumption bundles is
quite generally a linear space. Therefore, if all consumption takes place
at the end, we can replace the original dynamic problem with an equivalent
one-period problem with the appropriate terminal state prices.2 Use of
state prices to reduce a multi-period problem to a one-period problem is the
basis of Cox and Leland [1982], and has been emphasized by many others
starting perhaps with Ross [1976] and Rubinstein [1976].3

Once we assume that all consumption takes place at the end, we apply
the Payoff Distribution Pricing Model (PDPM), which allows us to calculate a
lower bound on the cost of the efficiency loss. Here are the assumptions of
the PDPM. (See Dybvig [in press] for a formal development of the Payoff
Distribution Pricing Model.)

1. Agents’. preferences depend only on the probability
distribution of terminal wealth,

2. We will always take consumption to occur at the end. More generally, if
preferences are time-separable, the analysis is wunchanged if we treat
consumption at each date separately.

3. Other papers emphasizing state prices and reduction of a multiperiod
problem to one period include Banz and Miller [1978], Brennan and Solanki
[1981], Cox and Leland [1982], Cox, Ross, and Rubinstein [1979], Gox and
Huang [1985], and Pliska [1986].



2. Agents prefer more to less, {.e., given a choice hetween two

ordered random terminal wealths, an agent will always choose the

larger.

3. The wmarket faced by an individual comes from our standard

model of a perfect market (no taxes, transaction c¢osts, or

information asymmetries) that is complete over finitely many

equally preobable terminal states or some atomless contimuum of

States.  Such a market allows short sales without penaltiy.
Informally, the assumptions are state independence of preferences,
preference of more to less, and completeness of frictionless cowplete
markets with equally probable staLes.a

The first assumption says that preferences cepend only aon the
probability distribution of terminal consumption. This assumption allows
von Neumann-Morgenstern preferences or more penerally Machina [1987]
prefercnces  over wealth, hut precludes state—dependent proeferences
(including those induced by non-traded wealth). The second assumption,
preference of more to less, would mnot be reasonable for ice cream but is
certainly reasonable for wealth. The third assumption, comple‘eness of
markets over equally probable or contihuous terminal states, 1s a natural
assumption 1in the presence of continuous trading or a complete set of
options. The assumption of equally probable terminal states is for
convenience: it allows us to use first-—order stochastic dominance. If we
allow terminal state probabilities to be unequal and assume cencavity of
preferences, the analysis is messier, but exactly the same numerical results
are valid. (See Appendix I of Dybvig [in press].)

These assumptions imply that any optimal strategy purchases more

consumption in terminal states in which consumption is cheaper. What is new

4. By definition, any atomless distribution has equally probable states
each having probability zero, (An atom is an indivisible state with
positive probability.) Whenever we refer to a continuum we will implicitly
mean & noenatomic continuum.



ta the PDPM is the idea of computing how much the cheapest portfolio
generating a given distribution function of consumption should cost, and the
development of simple machinery for doing so. This cost is given by the
change in price in response to swapping consumption across terminal states
to mgke the consumption a decreasing function of the state price density
while maintaining the same marginal distribution.

Section 2 contains simple numerical examples, Section 3 presents some
computer—generated numerical results for reasonable parameter values.
Section 4 discusses generalizations, particularly to term structure models.
The paper is intended to be self-contained in the sense that it does not

require any prior knowledge of the PDPYM,

2. Some numerical examples

Here are some simple examples designed to illustrate the principle
behind applying the Payoff Distribution Pricing Model to measuring
inefficiency. In these examples, we will use the binomial model of stock
returns introduced by Cox, Ross, and Rubinstein [197%]. For convenience, we
will assume numerically simple parameters: the initial wealth level and
initial stock price are both 16, the riskless rate is always zero, and in
each period the stock doubles in price or halves in price, each with
probability 1/2. We analyze a four-period model since, given our other
assumptions, this is the shortest time span over which the analysis does not

degenerate.5 Obviously, these examples are for illustration only; we will

5. Readers who are familiar with the path independence results of Cox and
Leland [1982] may find this confusing, since the strategies we consider will
have path—dependent strategies in three or even two periods., However, these
strategies will not be inefficient for agents with concave preferences that
are mot necessarily strictly concave. To get inefficiency for these general
agents, we need something slightly stronger than path dependence, which is
that a path with strictly higher state price should have strictly higher

4



analyze more realistic examples in Section 4, using the general form of the
Payoff Distribution Pricing Model.

Before moving to the examples, we first summarize some important
properties of the binomial model. (All of these properties have appeared in
the literature in one form or another.) Stock and bond returns are shown
graphically in Table 1. For binomial models, it is most common to represent
the stock price movements by an ingrown tree. An expanded tree in which all
possible stock price paths are distinguished will also be useful, since we
will be studying portfolio strategies for which the terminal portfolio value
will depend on the whole path of stock prices and not just on the final
stock price. The bond price is constant over time and in all states and is
represented by a line segment.

We can see from Table 1 that the usual convention of representing the
stock price in terms of an ingrown tree is simply a shorthand that combines
all the states in which the stock price is the same. In the expanded tree,
each state has the same probability, 1/16 = (1/2)4, because at each node the
up and down probabilities are both 1/2. We could write the bond in an
expanded tree in the same way, but the result would be a boring tree with 16
at each node.

From option pricing theory (and explicitly Cox, Ross and Rubinstein
{1979]), we know that every contingent claim paying off various amounts in
the last period can be priced, because each contingent claim can be
duplicated by some hedging strategy. In particular, we can price a claim

that pays 1 in a given state and 0 in all other states. By definition, the

consumption. For a general discussion of the relation between the amount of
regularity assumed of utility functions and the first order conditions in
terms of the state price demsity, see Dybvig and Ross {1982}, especially in
Table 1 and the related discussion.



price of this claim is called the state price of the given state. State
prices are useful because the value of any security can be written as the
sum across states of the state price times the value of the security in the
state.

To compute the state price for the binomial model, look first to a
single period. Suppose the value of an asset next period is v, if the stock

1

goes up and the value next period is v,

duplicate holding the asset. If we invest an amount Vg in stock and an

if the stock goes down. We want to

amount v, in bond today, tomorrow we will have 2vs + vg if the stock goes

up, and vs/2 t Vg if the stock goes down. If this investment duplicates the

asset’s value, then we have that

vy = 2VS + VB

and

v, = vS/2 + Vg

Solving for v, and v

S g we get that v

s

which is the hedging strategy. Note that vg t Vg = V1/3 + 2V2/3, which is

the one-period pricing relation. 1In other words, the up state has price 1/3

= 2(V1~V2)/3 and vg = (4v2—v1)/3,

and the down state has price 2/3.

of course,.we can use this procedure to obtain the state price of any
node, and by extension the value of any claim. In particular, the state
price of any node equals the price of a claim that pays I In that state at
that time and zeroc otherwise. By folding back, we conclude that the state
price of any node is (1/3)”(2/3)d, where u is the number of times the stock
price goes up and d is the number of times the stock price goes down. This
formula applies to all time intervals. For example, the value of a security

at any point is equal to I/3 times the wvalue one period later if the stock



goes up plus 2/3 times the value one period later if the stock goes down.
Working backwards a period at a time using state prices is analogous to
solving the Black and Scholes [1973] differential equation, while valuing a
claim directly by summing over the four-period state prices is amnalogous to
using the Rubinstein [1976] integral approach to option pricing. From now
on, we will focus on the approach using state prices. The reader should
keep in mind, however, that the derivation of the state prices tells us
explicitly how to compute the amounts of stock and bond held at each point
in time in the dominating strategy.

The one aspect of Table 1 we have yet to discuss is the state price
density (or state price per unit probability), which is simply the state
price divided by the probability.6 It is useful to think in terms of this
ratio, which plays a central role in the PDPM, For one thing, maximizing a
von Neumann-Morgenstern utility function gives you a first order condition
that the marginal utility is proportional to the terminal state price

density. Suppose an agent solves the following problem:

Choose ci’s to
maximize }, wiu(ci)

subject to Y p;c; = ¥,

6. One special feature of Table 1 is that the terminal state price density
is a function only of the terminal stock price. This is a very special
feature of this particular example and certain other examples including
economies with geometric i.i.d. stock price movements (see Cox and Leland
[1982]). Especially in models of the term structure (with random interest
rate movements) it is not reasonable to assume that the state price density
is a function only of the natural state variables. Fortunately, as we will
see in Section 4, the approach in this paper does not require the state
price to be a function only of the state variables driving asset returns.

7



where c, is consumption in terminal state I, LA is the probability of
terminal state i, u(¢-) is the agent's utility function, and p; is the state
price of terminal state i. If u(-) is differentiable, then the first—order

condition is that for some X,

wiu (Ci) - Api
or

u’(ci) - J\pi/rri = Api, (1)

i.e., the agent's marginal utility of wealth in terminal state i is
proportional to the terminal state price density Py = pi/fri.7 A second
important feature of the state price density is that if we combine states
with the same state price density, the combined aggregate state will also
have the same state price density. Perhaps more importantly, we can define
the state price density even if there is a nonatomic continuum of states (in
which case both the state price and the probability are zero), as in the
diffusion models. The state price deunsity is defined at each node as the
ratio of the state price to the probability of the node. The state price
density follows a multiplicative process whose movements locally price all
assets correctly. In our specialized binomial model, the state price
density at a node following u ups and d downs is given by Pn = Pp/m, =
((1/3)%2/3)%) /((1/2)%(1/2)%) = (2/3)%(372)°.

We will need a few concepts and results of the Payoff Distribution

Pricing Model (PDPM)}. An asset pricing model (such as the CAPM, APT, or the

7. 1f u(-) is concave but not everywhere differentiable, u’'(-) should bhe
interpreted as some element of the marginal utility correspondence which is
the closed interval bounded by the right and left derivatives. See Dybvig
and Ross [1982].



Black-Scholes model) gives us the price of a random cash flow, as in the
budget constraint to the agent's maximization problem above. In our
context, we can write the asset pricing model as PA(c) - Zi p;c;- The
Payoff Distribution Pricing Model assigns a price to a distribution function
of consumption by assigning to it the price of the least expensive
consumption pattern having that payoff. In other words, we can write the
distributional pricing function as PD(F) - min{PA(c)Ic—-F}, where ~ means "is
distributed as." For the extensions in Section 4, we will refer to a
general formula for this minimum cost in terms of the distribution functions
of ¢ and p, but for now all we need is the following Theorem that combines

several results from Dybvig [in press].

Theorem: The following are equivalent.

1. The consumption pattern ¢ 1s chosen by some agent with strictly
increasing von Neumann—Morgenstern preferences over terminal wealth.

2. The consumption pattern has an asset price equal to the
distributional price of its distribution function, that Iis,

PA(c) - PD(FC).
3, Consumption is nondecreasing in the terminal state price density.

Proof: See Dybvig [in press], Theorems 1 and 2. |

This Theorem is useful to us for two different reasons. First, it says that
PA(c) - PD(FC) is a tight lower bound on the amount of initial wealth an
agent would pay to switch from ¢ to an optimal strategy, given that we do
not know the agent’'s actual preferences. (This is a bound because all
agents are indifferent between ¢ and the strategy underlying PD(C), and the
bound is tight because the theorem tells us that there is some agent who
would follow that underlying strategy, implying the bound is achieved for
that agent.) Second, it tells us how to compute the bound, namely, by

9



swapping consumption across terminal states, leaving the distribution
function unchanged, until consumption is nondecreasing in the terminal state
price density.

Now that our reviews of the binomial model and the PDPM are out of the
way, we are ready to proceed to our examples, All of our examples use the
concepts and tools of the PDPM to quantify the amount of damage done by
following an inefficient policy, that is, a policy for which consumption is
not nonincreasing in the terminal state price demsity. Our first example
examines a policy of holding stock initially but limiting potential losses
by switching from the stock to the bond if ever the portfolioc wvalue falls

too much. We refer to this policy as a stop-loss strategy.

Example 1 Stop-loss strategy

The rule under this strategy is to invest in the stock until the
portfolio value falls to 8, and to stay in the bond from then on. The value
of the portfolio under this strategy is given in the ingrown tree in Table
2. The probabilities are computed by adding up the number of paths to the
terminal node and multiplying by 1/16. For example, there are three paths
(up—up—up—down, up-up—down-up, and up—down—-up—up) having terminal wealth of
64 and .two paths (up—up-down-down and up-down-up~down) having terminal
wealth of 16. Horizontal paths corresponding to holding the bond have to be
counted twice per period the bond is held, since the horizontal line
captures both states. Therefore, there are ten paths with terminal wealth
of 8 (up—down-down-up, up-down-down-down, down-up—up-up, down—up-up—down,
down—up—-down—-up, down-up-down-down, down—down-up—up, down-~down—up—down,

down-down~down-up, and down-down-down-down).

10



The second strategy in Table 2 was chosen to obtain the same
distribution of terminal wealth (allocated differently across states) but
with consumption ordered opposite of the terminal state price density which,
from Table 1, is ordered opposite of the stock price. To do this, we walk
down the two probability distributions together. First, we assign the 1/16
probability of 256 to the terminal state in which the stock reaches 256.
Next, we assign the 3/16 probability of 64 to three of the four terminal
states in which the stock price reaches 64. Now, we assign 1/16 of the 2/16
probability of getting 16 to the remaining terminal state in which the stock
is 64, and the remaining 1/16 to one of the terminal states in which the
stock is 16. 1In all the remaining terminal states (10 of them) the amount
we get is 8. Because this selection makes consumption nonincreasing in the
terminal state price density, by Theorem 1 the resulting portfolio strategy
is efficient. The values earlier on in the tree are computed by walking
back period by period using the 1/3-2/3 weighting rule. We find that this
portfolio strategy, while giving exactly the same probability distribution
of terminal wealth as the stop-loss strategy, costs only 15 65/8l (as

compared to 16). g

What is really going on here? If we compare the two strategies’
terminal wealth state~-by—state, we find that they differ only in the states
up—down-up—down and down—up-up-up. Since the latter state has more up's and
fewer down’s, the terminal state price density is lower, The efficient
dominating strategy has its higher consumption in that state (16 versus 8)
while the stop—loss strategy has it reversed (8 versus 16). The savings is
the difference in cost of the two strategies (16 — 1280/81 = 16/81), which

is the probability (1/16) times the difference in terminal state price

11



density (64/81 - 32/81 = 32/8l) times the amount of consumption moved (16 —
8 = 8). In richer examples with more periods or more elaborate strategies,
there would be more terminal states in which the inefficient and dominating
strategies disagree. Nonetheless, the concept would be the same; the
dominating strategy would move consumption from expensive terminal states to
cheaper states,

The second example is in the same spirit as the first, but in reverse.
The poliey is to hold stock initially, but to switch into bonds (to lock in
the gain) if there is sufficient improvement in the portfolio value. We

refer to this policy as a lock—in strategy.

Example 2 Lock—in strategy

The rule under this strategy is to invest in the stock until the
portfolio value rises to 32, and to stay in the bond from then on. The
value of the portfolio is given by the ingrown tree in Table 3. In terms of
which paths can occur (and therefore the probabilities of the outcomes), the
ingrown tree is just the same as the stop-loss tree of Example 1 in Table 2,
only upside down. The efficiency loss is different, however, since the
quantities and terminal state prices are different when we turn the tree
upside down.

The second strategy in Table 3 was chosen to obtain the same terminal
distribution of terminal wealth as the lock-in strategy but with consumption
ordered opposite of the terminal state price density. This process is just
as in Example 1, except starting from the opposite side. Computing the
Initial investment required for this strategy, we find that it costs only 15
17/81 (as compared to 16),

a

12



As in Example 1, iIf we compare the terminal wealth of the lock—in
strategy with its dominating strategy state-by-—state, we find that the two
differ in only two states (up~down-down—-down and down—up—down—up). The
improvement made by the dominating strategy Iis to move the larger
consumption from the more expensive of the two states to the cheaper one.

In our next example, we compute the potential cost of hiring someone

who claims to have timing ability but actually may not.

Example 3 Random market timing strategy (market timer who can’t)

The rule under this strategy is to invest in the stock in some two of
the four periods (half the time) and to invest in the bond in the other two.
The timing is based on any random rule that is independent of market
returns. The distribution of terminal wealth is the same whatever the
timing; two examples ("A" and "B") are illustrated in table 4. Strategy
"A" has the sfock investment in the first two periods, Strategy "B" has
the stock investment in the first and last periods. Since the terminal
distribution is the same independent of the random choice, the unconditiomal
distribution is the same under each choice.

As before, the way to dominate the strategy is to move the large
amounts of consumption to terminal states in which consumption is cheaper.
From Table 4, we can see that the move to the dominating strategy requires
two switches, one between up-up—down—down and up-down-up—up, and the other
between down—up—down—down and down—down—up-—up. The first switch reduces
cost by the product of the probability 1/16, the amount 48 (= 64 - 16) of
consumption moved, and the difference 32/81 (= 64/81 — 32/81) in terminal

state price density, for a cost reduction of 1 5/27 (= 32/27). The second

13



switch reduces cost by the product of the probability 1/16, the amount 12
(= 16 - 4) of consumption moved, and the difference 64/81 (= 128/81 - 64/81)
in terminal state price density, for a cost reduction of 16/27. Combining
these two changes we have a total cost reduction of 1 7/9 (= 1 21/27), which

reduces the initial cost from 16 to 14 2/9. 0O

This concludes our section of simple numerical examples. In Section 3,
we report computer—based calculations of the loss under more reasonable

parameter values.

3. Realistically, how large is the cost?

In Section 2, we looked at three numerical examples that showed the
theoretical principle behind measuring the cost of following a dominated
strategy, Now we compute the cost in more realistic situations. The
calculations approximate continuous lognormal stock movements using a
bincmial process with a daily grid. To approximate current conditions with
a round number, the short riskless rate is assumed to be 8%. To approximate
the Ibbotson-Sinquefield historical returns on a well-diversified portfolio,
we assume that the stock has an expected return of 16% (i.e., an excess
return of 8% annually) and an annual standard deviation of about 20% (in
logs).

Table 5 summarizes how these parameter assumptions map into per-period
returns. As the time increment At gets smaller and smaller, the stochastic
process described in Table 5 and the corresponding pricing converges to a
standard lognormal diffusion model for the stock price (as is consistent
with Black and Scholes [1973] with a constant mean return). (For related

analyses see Banz and Miller [1978], Brennan and Solanki {1981], Cox and
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Leland [1982], Cox, Ross, and Rubinstein [1979], Garman [1976]}, Ross [1976],
and Rubinstein [1976].) Therefore, we can consider our numerical results to
be an approximation to what would be obtained in continuous time.

Now we are ready to look at some numerical results. Figures 1, 2, and
3 are plots of numerical estimates of the cost of following the three
inefficient strategies from Section 2. The estimates were made using a set
of routines for analyzing probability distributions developed using Scheme,
which is a dialect of Lisp (see R. K. Dybvig [1987]). The program computes
the minimum cost by matching consumption levels in reverse order of the
terminal state price density as in Section 2. In computing the terminal
distribution, the routines manage the size of the problem by combining
indistinguishable states along the way.

Figure 1 shows the cost of following a stop-loss strategy, as a
function of the limit value. (The "jaggedness" of the plot comes from the
coarseness of the daily binomial approximation to the diffusion, and the
plot becomes smoother when we move to a half-day interval.) For example,
assume the current portfolio value is $2 billion and we plan to switch inte
stock if the walue falls to $1.8 billion or below. Then the limit value is
90% (= 1.8/2.0). Figure 1 says that we will be throwing away about 60 basis
points or §12 million by following the stop-loss strategy for a year, as
compared to following the efficient strategy giving the same distribution of
terminal wealth. While this ignores transaction costs for the two
strategies, 60 basis points over a year is a large number, and we can surely
do better than a stop-loss strategy. When the limit walue is small, the
efficiency loss is small, since the limit is rarely achieved and the
portfolio strategy is nearly the same as holding the stock (which is

efficient). Similarly, as the limit value appreaches 100% from below, the

15



probability of hitting the limit close to the starting time increases to
one, and the strategy looks more and more like holding the bond (which is
also efficient). When the 1limit wvalue is 1008 or more, the strategy
switches immediately to the bond and the strategy is precisely holding the
bond (which is efficient). Intuitively, the loss is largest when there is a
large chance both of hitting and of missing the 1limit soon after the start.
This is coﬁsistent with Figure 1, which shows the largest loss at a limit of
about 95% (with a one year horizon), which is 1/4 of the one-year standard
deviation of the stock.

Figure 2 shows the efficiency loss of a lock-in strategy, which is in
some sense a mirror image of a stop-loss strategy. The loss is not exactly
symmetric since the terminal state price density is higher for lower stock
prices. This means that the damage done by the stop-loss strategy (which
usually occurs when the stock has gone down) 1Is more costly than damage done
by the lock-in strategy. Nonetheless, the cost of following a lock-in
strategy is substantial and should not be ignored by practitioners.

Figure 3 shows the efficiency loss of a random timing strategy (a
"timer who can’'t"), as a function of the fraction of time the timer holds
the stock. The efficiency loss of this strategy can be as high as 200 basis
points over a year, or $40 million for a $2 billion dollar portfelio! While
Figure 3 contains simulation results, this is one of the few cases we can
actually solve analytically for the diffusion model. The random timer
follows a strategy which holds the stock a fixed fraction f of the time and
the bond a fraction (1-f) of the time. (Since we are not including
transaction costs, the exact allocation doesn’t matter — it only matters

that the stock is held exactly a fraction f of the time.) If L is the
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initial wealth, then the wealth ;T at the end (time T) is lognormally

distributed, as
- 2 2
log(wT) -~ N(log(wo) + ufT + r(1-£)T + o £fT/2, o £T). (2)

An alternative strategy with initial wealth X, and a fixed portfolio weight
a is also lognormally distributed, and is efficient for a > 0. Its terminal

distribution is

2 2

log(%,) ~ N(log(xy) + wal + r(1-a)T + o o172, o%e’T) . (3)
+

To give these two the same distribution (for a > 0), we must choose a = I?

to match variances and then
log(xo) = log(Wo) - (JT-f) (p—r)T (4)

to match means. In log terms, (J/E-f)(p—r)T is the loss, and up to scaling

this is essentially what is plotted in Figure 3.8

B. The formula for the loss in the random timer case is linear in T.
Another way of saying this is that if you split the time interval inteo two
parts, the value as a percentage of potential on the whole is the product of
the value as a percentage of potential on each half. This is a special case
of a general result. Suppose security returns are independent over time and
that the return to the inefficient portfolio strategy in the two sub-periods
is independent. Then the value as a percentage of potential on the whole
period is less than or equal to the product of the values as a percentage of
potential on the subperiods. To prove this, consider making the dominated
strategies on the subperiods your strategy over the whole period. This may
not be optimal over the whole period, but achieves a value that proves the
bound. This result says that when stock returns are independent, you cannot

recover from past inefficient policies. As an example of applying this,
rolling over portfolio insurance each year is efficient in each period but
inefficient over two years (an example of inequality). Rolling over

portfolio insurance each year over four years is at least twice as bad

17



Figure 4 shows the efficiency loss to a strategy not analyzed in
Section 2, which used portfolio insurance repeatedly. (Because of technical
limitations of my computer program, I have chosen slightly different
parameters and weekly rebalancing for this example. Both choices reduce the
number of terminal nodes and help to keep the size manageable in spite of
exponential growth.) Since many managers create synthetic portfolio
insurance with a one-year horizon repeated annually, the large size of the

efficiency loss shown here (over 5% in I0 years) is especially troubling.

4. Generalizations

In this section, we derive a formula for the state price density in the
general case when asset prices follow general Ito processes, The main
economic assumptions we need are completeness of markets and the absence of
arbitrage.9 We then turn to applications involving the term structure of
interest rates. While numerical analysis like that in Section 3 has not
been performed for the term structure applications, doing such computations
is a promising avenue for future research,

The state price density p gives a representation of the linear pricing
rule of Ross [1978}. [Letting P be the vector of re-invested price series,
then we have that the price at time s can be written in terms of p and the

price at a later time t as

(measured in logs) as rolling over portfolio insurance each year for two
years (by the result — in fact it is even worse).

9. There are some additional technical assumptions that would be required
in a more formal analysis. See, for example, Harrison and Pliska [1981],
Cox and Huang [1986], or Dybvig and Huang [1987] for related results. In
those papers, the emphasis is on the risk neutral probabilities (called
martingale probabilities). The state price density is equal to a discount
factor times the Radon-Nikodyn derivative of the risk-neutral probabilities
applied to indicator sets, with respect to the probability measure.
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p P, = Es[ptPt]’ | (3)
or in particular if we take p = 1 at s = 0, we have that
P, = Eylp, Pl (6)

Equation (5) says that pP is a martingale, which implies that pP has mno
drifct.

We assume that prices follow an Ito process. Specifically, the
n—-vector of risky asset price changes is given by

dp

B = pdt + adZ, (7)

where the division is componentwise, u is the n-vector of expected returns,

Z is a k-dimensional Wiener process, and ¢ is a kxn matrix of risk
A

exposures. Under reasonable assumptions, p itself follows an Ito process

involving only Z. We will take this as given. Then we have that

%f = adt + b'dZ (8)

where pg = 1 or equivalently

_ t t - 1 t
Pp = €Xp I a ds + I b’dZs -3 J b’b ds (9)

s=0 s=0

for some random I-dimensional process a and some k-dimensional process b.

Since (5) holds for all assets,
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d(pP) _dp , dF , dp dP
P p + i3 + > D (10)

has no drift, or by Tto’s lemma, this implies that

0 - a‘rift(g-—(;&] - ae + 4 + ab, (11)

where & is an n-vector of ones. If we eliminate locally redundant assets,

completeness implies that ¢ is square and nonsingular, and therefore

&8 = -r (12)
and

b = —o L (p-re) (13)
where r is the local riskless rate. Generally, a and b are solutions to

(10}, even if we have not eliminated locally redundant assets. Of course,
completeness of markets implies that there is a locally riskless portfolio.
To use (B}, (11), and (12) with the payoff distribution pricing model,
we have to use the continuous state-space analogue of valuation using
consumption ordered in reverse of the terminal state price density. This
analogue implies that the cost of the dominating portfolio (the

distributional price) is

L
Py = .[ F (Y F ~(1-v}dy, (14)
p c
=0
which 1s equation 3 of Dybvig [in press]. This is a general expression for

the eXpectation of the preoduct of two variables p and ¢ that are perfectly

. —1 - s
inversely related. Fp has the same units as p (state price over
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probability), le has units of consumption, and ¥ has units of probability.
The arguments v and I-y signify inverse ordering, and the integral

10

corresponds to summing across states in the finite model.

Term Structure Models

To illustrate the evolution of the state price density in continuous
time models, this section computes the state price density in closed form
for a class of models with interest rate uncertainty. Because interest
rates can move randomly, there is a nontrivial term structure of interest
rates in these models. Throughout the rest of this section, we will assume
either that preferences are over nominal payoffs, or that we are expressing
all returns in real terms (which is formally equivalent).

To illustrate the computation of p, we assume the vector b of asset

risk premia is constant. Then we can write the state price density (9) as

7, = exp -Jt r ds + J.t brdZ_ - g b'b]. (15)
s=0 s=0

In particular, if b = 0, we have the "local expectations hypothesis" (see

Cox, Ingersoll, and Ross [198l]), which is a reasonable assumption if all

the assets in our list are bonds or derivative of bonds. In this case,

every efficient portfolio has a terminal value that is a nondecreasing

function of the compounded return on rolling over shorts. One interesting

implication of this result is that contingent immunization is mnot an

10. TFor details, see Dybvig [in press]. To define the inverse distribution
function for discrete variables (or more generally at mass points), we put
"risers" on the step function. For example, suppose a random variable is
either 1 or 2, each with probability 1/2. Then the inverse distribution
function is defined to be I on (0,1/2] and 2 on (1/2,1). The value assigned
to the endpoints 0 and 1 don't matter, because they don't affect the
integral in (14).
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efficient strategy.11

This is formally true from (15) whenever the local
expectations hypothesis holds; more generally (9) and (12) tell us that we
would have to make a bizarre assumption about the movement of the vector b
of risk premia to make contingent immunization efficient.

To apply our analysis to a term structure model, we would want to use
(14), for which we need to know the distribution of the state price density
following the process as given by (15). In pgeneral, we can do this
numerically, but we want to consider a special case in which we can compute
the distribution analytically. We will use a special case of Vasicek
[1977]. Loosely speaking, Vasicek showed that if interest rates follow a
Gaussian process, then we can compute bond prices. (One has to make an
assumption about risk premia as well, ocur assumption that the vector b of
risk premia is a constant is sufficient.) Vasicek’s model is attractive
analytically because the normality makes it tractable. (Unfortunately,
however, it is not a good approximation to the actual movement of interest
rates, except perhaps over very short periods of time.lz) From (6) and

(15), we can see how to compute bond prices in the Vasicek models. By (6),

the price at 0 of a bond paying 1 at t is Eo{pt/po] = EO[Pt]' If r and Z

11. Intuitively, a contingent immunization strategy switches from one risky
portfolio into an immunized portfolio using a cut—off rule that is
qualitatively similar to the stop-loss strategy, if we consider the initial
portfolio as the stock and the immunized portfolio as the bond. (Using the
immunized portfolio as numeraire makes the analogy almost exact.)
Therefore, while the qualitative properties of the efficiency loss should be
as in Figure 1, without further analysis we cannot be sure of the magnitude
of the loss. It does seem, however, that if the size of the loss we are
insuring is significant, the efficiency loss will be significant, too.

12. For example, interest rates can go arbitrarily negative in Vasicek's
model, and will go  negative frequently under reasonable variance
assumptions. Also, it has been shown empirically that the variance of
interest rates changes over time in a way that can be predicted by looking
at yield curves, contradicting the assumption of constant variance — see
Brown and Dybvig [1986].)
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are jointly normal (as they are in Vasicek’s model), we can compute this
expectation using the normal moment generating function.
For our extended example, assume that r follows the following simple

mean reverting process.

dr = k(r-r)dt + ©'dZ, (16)

where k, r, and T are known and constant, and Z ig the k—dimensional Wiener

process that drives security prices. Then we have that

t
r. =1+ (r-r)e " F 4+ I e (s gz (17)
t 0 T
r=0
and that
t _ _ Tkt t _ -k{t—T1) .
j rdr =Tt + (rp)i8 4 I [1—-9———-—]2':12 ) (18)
T o K K r
s=0 r=(

From (15) and (18), we have that

e -kt ot _ek(t-1) )
log(p,) = —[~b7b— + r]t - (ro—r)l i + _[ ) [b’ - 1’——6———2’](12 . (19)
T ==

Therefore, p, 1is normally distributed with mean

l_e—xt

~

M- —[92'—” + P]t - (D)

(20)

and variance
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b - ——————7 b - —:—‘1:“———2 dr
r=0 "
26’ 'F 2 g 1-e "t 5y 1-e2"E
- |b'p - + 22|+ £brs - + 2 : (21)
P x2 5 K & K 2K

Therefore, Pe is distributed lognermally, and log(pt) has mean M and
variance V., By the normal moment generating function, then, the bqnd price
is given by exp(M+%V}.

The lognormality of P, implies it is possible (although we do not do so
here) to compute analytically the cost of some types of random timing
strategies. Of course, more numerical work is required to compute the cost
of following other dominated strategies. In numerical work, having a
closed-form expression for the distribution of the state price density is
very useful, because computing it numerically requires us to keep track of
two state wvariables, r and p. In some sense, this is why term structure
models are difficult to solve analytically: the state price density is not

a function of the natural state variable (the interest rate).

5. Conclusion

Qur numerical results show that the efficiency loss to inefficient
strategies may in fact be very large, even given very realistic assumptions.
The strategies we have considered, stop—loss, lock—in, random timer, and
repeated portfolio insurance, are very similar to strategies wused in
practice. It is interesting to note that the efficiency loss is the same
whether or not the strategy was "planned" in advance; in other words, &
manager deciding to lock in the gains at the time a boundary is reached has
the same terminal distribution of wealth as a manager who planned from the

start to follow this strategy.
24



Much work remains. 1In one direction, it would be nice to extend the
analysis to include transaction costs explicitly. Short of that, we can add
the transaction cost to the cost described here to get an overall measure of
the cost of a given policy, and it would be useful to have a collection of
examples of this sort to aid our understanding. Along other lines, it is
possible to measure the efficiency loss of other strategies. For example,
it would be nice to know the magnitude of loss from contingent immunization

and other fixed-income strategies.
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Table 1 Security Returns, state probabilities, and state prices

Bond:

16 — 16 — 16 — 16 — 16

Stock:
256
128
64 64
32 32
16 <: 16 16
8 8
4 4
2
1
Stock (expanded):
64<
32
16
8
4

]
L
[=)]

o
P~

L¥%)
[3%)

oo
~

16

oo
£

N
=~

Y ™ ™ ™ 7Y 7Y 7y

[

29

state
probability

1/16
4716
6/16
4/16

1/16

1/16
1/16
1/16
1/16
1/16
1/16
1/16
1/16
1/16
1/16
1/16
1/16
1/16
1/16
1/16

1/16

state
price

1/81
8/81
24/81
32/81

16/81

1/81
2/81
2/81
4/81
2/81
4/81
4781
8/81
2/81
4/81
4/81
8/81
4781
8/81
8/81

16,81

state price
density

16/81
32/81
64,81

128/81

256,81

16/81
32/81
32/81
64,81
32/81
64 /81
64/81
128/81
32/81
64/81
64/81
128/81
64/81
128/81
128/81

256,81



Table 2 The stop-loss strategy (limit = 8) and a dominating strategy

Here is the stop—loss strategy.

probability
256 1/16
128
64 &4 3/16
32 <: 32
16 <: 16 16 2/16
8§ — 8 8 — 8 10/16

Here is a dominating strategy (which is itself undominated). This strategy
costs only 15 65/81 (= 1280/81) but gives the same terminal probability

distribution of wealth (in different states).

dominating
payoff

256
128 <:
64

64
64
32 <:
832 16
27
80 <C: 64
3
128 S
? 8
s (_
1280 8
81
2{16
3
80 8
? 8
s (_
224 ’
77 ;
s (
8
8
8
s (_
8

30

stop—loss
payoff
256
64
64
16
64

16

state price

density
16/81

32/81

32/81

64 /81

32/81

64/81 +—
64/81

128/81

32/81 «—o

64/81

64/81
128/81

64/81
128/81
128/81

256 /81



Table 3 The lock—in strategy (limit = 32) and a dominating strategy
Here is the lock—in strategy.

probability
32 — 32 32 — 32 10/18
16 <: 16 16 2/16
o (. )
4 4 3/16
2
1 1/16

Here is a dominating strategy (which is itself undominated). This strategy
costs only 15 17/81 (= 1232/81) but gives the same terminal probability
distribution of wealth (in different states).

dominating lock-in  state price

payoff payoff density
32 32 16/81
1 <
32 32 32/81
32
32 32 32/81
32 (
736 32 32 64,81
27 32 32 32/81
e .
224 32 32 64/81
9
6 ( 32 32 64 /81
3
1239 16 32 128/81
81 32 32 32/81
32 <
176 32 32 64/81
3
40 < 32 16 64/81 ——
3
12
248 4 4 8/81
21 16 16 64,81
s
4 4 128/81
4
4 4 128/81
2
1 1 256,81



Table 4 Random market timing strategy (50% stock) and a dominating stratepy

Here is random market timing strategy "A."

probability
64 — 64 — 64 4/16
32
16 < 16 — 16 — 16 8/16
8
b — 4 — 4 4/16
Here is random market timing strategy "B."
probability
64 4/16
32 — 32 — 32
16 <: 16 8/16
8 — 8 — 8
4 4/16

Here is a dominating strategy (which is itself undominated). This strategy
costs only 14 2/9 (=~ 129/9) but gives the same terminal probability
distribution of wealth (in different states).

dominating timing state price
payoff mAM density
64 64 16/81
64 <:
128 64 64 32/81
3 64 64 32/81
2
256 16 64 64/81 «j
9 64 16 32/81 +~——
32 <:
64 16 16 64/81
3 16 16 64/81
16 <j
128 15 16 128/81
’ 16 16 32/81
16 <:
32 16 16 64/81
3 16 16 64/81
(
64 4 16 64/81 +——
9 16 4 128/81 -
%
16 & 4 128/81
3 4 4 128/81
«(
4 4 256,81
32



Table 5 One-period returns in terms of the underlying parameters

Parameters used in numerical work:

r = 0.08 (annual interest rate = 8%, continuous compounding)

I

p = 0.16 (annual expected return = l16%, for an 8% risk premium)

o = 0.2 (annual proportional standard deviation = 20%)
At = 1/360 = 0027778 (daily)
Jat = 0527046

Here is the one—period Bond return:
1 — 1+ rAt = 1.0002222

Here is the one-periocd Stock return:

probability
1 + pAt + ofAt = 1.0109854 0.5
1
1 + pAt — oJAE = 0.9899035 0.5

State price density:

= 0.9787007

1 (p—r)At)
i-

(1+rAt) olAt |
1
1 (u—r)At)
1+ = 1.0208550
(1+rAt) OIKE )
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Legends for Figures

Figure 1 Efficiency loss of a stop-loss strategy

This figure gives the efficiency loss of a stop-loss strategy, in basis
points (hundredths of one percent of the initial investment). Under the
stop—loss strategy, the manager invests the entire portfolio in stocks until
the portfolio value reaches or falls below the limit value. When the limit
value is at or above 100% of the initial wealth, the switch takes place
immediately and the strategy is the same as just holding the bond (and is
therefore efficient). The size of the efficiency loss can be dramatic: at

its worse it 1s nearly 1% of the portfolio value in only a year!

Figure 2  Efficiency loss of a lock-in strategy

This figure gives the efficlency loss of a lock-in strategy, in basis
points (hundredths of one percent of the initial investment). Under the
lock—-in strategy, the manager invests the entire portfolio in stocks until
the portfolio wvalue reaches or exceeds the limit wvalue. When the limit
value is at or below 100% of the initial wealth, the switch takes place
immediately and the strategy is the same as just holding the bond (and is
therefore efficient). Again the size of the efficiency loss can be
dramatic: at its worse it is roughly 0.8% of the portfolio value in only a
year. (It is not exactly the same as for the very similar stop-loss

strategy, since the state prices are not symmetrical for increases and

decreases.)

34



Figure 3 Efficiency loss of a random timing strategy

This figure gives the efficiency loss of a random timing strategy. A
random timing strategy is a strategy followed by an agent who claims to have
market timing ability but really does not. By assumption, such a manager
spends a fixed fraction of the time fully invested in stocks and a fixed
fraction of the time fully invested in bonds, wusing a rule that is
independent of security returns. For the limits with 0% or 100% of the time
spent invested in the stock, the strategy is efficient, since these limits
correspond to buying and holding the bond or stocks, respectively. For
other cases, the efficiency loss is even larger than for the stop-loss and
lock—in strategies: at its worse it is nearly 2% of the portfeolio value in

only a year!

Figure 4 Efficiency loss of repeated portfolio insuramnce

This figure shows the efficiency loss of using portfolio insurance
repeatedly. Under portfolio insurance, a dynamic strategy based on option
pricing theory varies the portfolio mix between stocks and bonds to create a
payoff at the end of the insurance horizon which is proportional to the
larger of payoff to holding the stock and the initial investment. This plot
shows that while following this strategy for one year 1is efficient,
following it repeatedly with a one-year horizon is poorly diversified over
time and is very costly: in 10 years, the strategy throws away over 5% of

the initial investment!
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FIGURE 2
Efficiency loss of a lock-in strategy
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FIGURE 3
Efficiency loss of a random timing strategy
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FIGURE 4
Efficiency loss of repeated portfolio insurance
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