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Abstract
The goal of this thesis is to find, implement and evaluate a
suitable machine learning algorithm to classify and predict
true and false alerts using labelled data. Alerts are trig-
gered in the Scila Surveillance software when certain pa-
rameters are exceeded in a trade, such as a to big volume
over a to small time-span.

Financial market operators are nowadays required by
law to perform market surveillance and due to the huge
amounts of data accumulated, machine learning techniques
in general and supervised learning in particular comes as a
natural choice.

This thesis starts with a survey of existing algorithms
and their performance as well as related work. The tech-
nique of Support Vector Machines (SVM) is the most used
and overall best performing algorithm, why it is chosen to
be further tested. Next is a thorough derivation of the SVM
classifier starting with convex optimisation theory and how
SVM are mathematically constructed.

When implementing SVM both grid-search and cross-
validation are utilized. The classifier is threaded as much as
possible to allow parallelisation which drastically reduced
computational time. The characteristics of a good classi-
fier is not trivial and several accuracy-measures are imple-
mented and tested showing that balanced accuracy and a
combined analyses of positive and negative recall are the
most useful.

The provided dataset is huge and a few specific alerts
are chosen for the proof-of-concept implementation. These
are in turn separated into subsets based on alert-specific
subcategories. Several tests are then conducted using a
lightly modified Java version of the open-source package
libsvm.

Results show that it is easy to achieve either a high
positive and low negative recall or vice versa but to find
parameters where both are high is very difficult. For this
thesis the choice of a moderately high recall is likely the
most useful one.

SVM is definitely an interesting approach and perhaps
other techniques such as neural networks or incorporating
time-series evaluation might yield even better results but
further investigations is needed.



Referat
En undersökning & implementation för

klassificering av finansiella larm

Målet med detta examensarbete är att finna, implementera
och utvärdera en lämplig maskininlärnings-algoritm för att
klassificera och förutsäga sanna och falska larm med märkt
data. Larm utlöses i Scila Surveillance programvaran när
vissa parametrar överskrids i en handel, till exempel en för
stor volym under en för liten tidsrymd.

Finansmarknadens aktörer är numera skyldiga enligt
lag att utföra marknadsövervakning och på grund av de
enorma mängder insamlade data kommer maskininlärning
i allmänhet och övervakad inlärning i synnerhet som ett
naturligt val.

Denna avhandling börjar med en kartläggning av be-
fintliga algoritmer och deras prestanda samt tidigare studi-
er. Support Vector Machines (SVM) är den mest använda
och allmänt bäst presterande algoritmen, varför denna väljs
att testas ytterligare. Sedan följer en grundlig härledning
av SVM-klassificeraren, vilken börjar med konvex optime-
ringsteori och hur SVM är matematiskt konstruerade.

Vid genomförandet av SVM utnyttjas både rutnäts-
sökning och korsvalidering. Klassificeraren är trådad så myc-
ket som möjligt för att tillåta parallellisering som drastiskt
sänker beräkningstiden. Vilka egenskaper som är bra hos en
klassificerare är inte trivialt. Efter att flera noggrannhets-
mått har implementerats och testats visar det sig att ba-
lanserad noggrannhet och en kombinerad analys av positiv
och negativ sensitivitet är de mest användbara måtten.

Det tillhandahållna datasetet är enormt och några spe-
cifika larm väljs för en proof-of-concept implementation.
Dessa är i sin tur uppdeladad i undergrupper baserade på
larm-specifika underkategorier. Flera tester genomförs se-
dan med hjälp av en lätt modifierad Java version av open-
source paketet libsvm.

Resultaten visar att det är lätt att uppnå antingen en
hög positiv och låg negativ sensitivitet eller vice versa men
att hitta parametrar där båda är höga är mycket svårt. När
det gäller målet med denna avhandling är sannolikt valet
av en måttligt hög sensitivitet den mest användbara.

SVM är definitivt en intressant metod och det är möj-
ligt att andra algoritmer så som neurala nätverk eller tidsserier-
analys kan ge ännu bättre resultat men ytterligare studier
behövs.
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Chapter 1

Preliminaries

1.1 Introduction
Machine Learning is a field in computer science that has been growing exponentially
during the recent years. In general it can be defined as a branch of artificial in-
telligence focused on the construction and learning of computational systems. The
average person associates this technique with companies like Google and Facebook
where massive information databases are constantly searched for useful patterns and
user behaviour analysed for marketing reasons. But the fact is that machine learning
has shown to be extremely useful in a wide variety of different fields, e.g. chemin-
formatics, DNA sequences classification, medical diagnosis, stock market analysis
and credit card fraud detection.

1.1.1 Supervised Learning
Apart from massive data mining and pattern recognition where human capacity is
simply insufficient machine learning can be used to drastically reduce human work-
load and automate processes where a more dynamic decision making is required.
The most apparent example of such implementations are email spam filters, that in
general are constituted by decision making algorithms that are partly based on the
history of decisions made by the user. The system tries to learn from and mimic the
behaviour of the human user by applying a learning model designed for the specific
purpose.

A complex process can be viewed as a mathematical function that maps input
to output data, e.g. the human brain processing email content. Such a complex
unknown function is referred to as the target function and can in general not be
defined explicitly. An alternative strategy, that is rather intuitive, is to use known
examples of the function behaviour to try to predict its future behaviour. This
approach is know as the learning methodology and in the case where the examples
are represented as a set of input-output pairs it is called supervise learning [1]. This
approach is similar to the way children learn, which is based on generalizing from
examples rather than applying given definitions. After the "training" the resulting
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CHAPTER 1. PRELIMINARIES

system, which sometimes is referred to as the decision function, can make decisions
that follows in the footprint of the target function.

1.1.2 Financial Surveillance

Financial market operators are required by law to perform market surveillance in
order to detect illegal market activities, e.g. money laundering or insider fraud.
Furthermore it is in the market operators’ interests to keep their market attrac-
tive to honest customers. However due to the financial development during the
last decades in foremost the western countries but also many development countries
overall activity in financial markets has drastically increased. This has of course in-
creased the need for more efficient surveillance systems which need to be automated
as far as possible. Why this is another rapidly growing area for implementation of
machine learning techniques.

Scila AB

This project will be carried out on the request of Scila AB, which is a company
within the field of financial surveillance development. They are based in Stockholm
but act globally, with customers in Europe, Asia and the MENA region. This
company was founded in 2008 and has been tremendously successful in a very short
time with a verity of target customers, e.g. trading venues, investment banks,
brokers and regulators.

Their product is integrated into the customer’s system where it looks for suspi-
cious anomalies. When such is detected a human operator is alerted, which initiates
an investigation that in turn leads to a classification of the alarm as valid or false.
Among the pool of alarms raised during an average business day there are very few
that are in fact valid. However since this product is very general the criteria of a
valid alarm varies among different customers, hence a strict inflexible filter suited for
one customer could render devastating misses of valid alarms for an other. There is
an obvious need for a flexible dynamic filter that can adjust the criteria for filtering
to the specific needs of each customer. Thus it is likely that machine learning is a
cost-efficient complement to traditional methods.

1.1.3 Goals

The task appointed to us is to implement a learning model that can learn from the
previous alerts already classified by human operators to try to classify future alerts.

1.2 Related Work
The problem at hand is a classic one, well suited for a number of different ma-
chine learning algorithms. Several of the most common approaches will be briefly
described and evaluated in the following sections.
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1.2.1 The Naïve Bayes Classifier

Probably the most common and well known approach is the naïve Bayes classifier[2].
We want to determine which class, Ci, an object belongs to with regard to the
parameter Xj . This is the conditional probability that given the value Xj , the
object belongs to the class Ci. This is denoted P (Ci|Xj). By examining old data
we can easily get the conditional probability that if the object belongs to the class
Ci the value is Xi. We write this as P (Xi|Ci). Now the joint probability of Ci and
Xj is:

P (Ci, Xj) = P (Xj |Ci)P (Ci) (1.1)

or equivalently:

P (Ci, Xj) = P (Ci|Xj)P (Xj) (1.2)

Since the equations are equal we can rearrange the terms and arrive at:

P (Ci|Xj) = P (Xj |Ci)P (Ci)
P (Xj) (1.3)

which is Bayes rule and the foundation of the naïve Bayes classifier.
Now, if every observation Xk belongs to a class Ci we can compute:

P (Xk) =
∑

i

P (Xk|Ci)P (Ci) (1.4)

which we already know from previous data. Bayes rule allows us to calculate
posterior probabilities from known prior probabilities which allows us to classify
new data.

If the data contains several features i.e. P (X̄j |Ci) = P (X1
j , X

2
j , ...X

n
j |Ci). This

can be simplified by assuming that the elements of the feature vector is conditionally
independent of each other.

The classification rule is then simply: given an feature vector X̄j , calculate
the conditional probabilities for each class and choose the one with the highest
probability:

P (Ci)
∏
k

P (Xk
j = ak|C7i) (1.5)

However the naïve Bayes classifier has some drawbacks[3]. The first and most
obvious is the fact that the derivation of Bayes rule only holds for conditionally
independent variables. This is often a very unrealistic assumption in real-life appli-
cations. Another serious flaw is that the denominator in Bayes rule normalizes so
the probability of getting any class with given Xk to unity. This means that if the
training set is biased and not really representative of the real data the probabilities
will be biased and decrease performance.
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1.2.2 Neural Networks
A natural approach to create a learning classifier is to attempt to mimic our own
learning process by simulating a simple brain. Very roughly the brain consist of
billions of neurons. A neuron acts like a relay. From a nerve or another neuron
ions are emitted and if the concentration reaches a certain limit, i.e. the electric
potential is above or below a certain threshold, the neuron fires and releases ions to
the next neuron[2].

This can be simulated by using a step function. We give an input and if it’s above
a certain level, most commonly zero, it sends a new value which is predetermined
to be positive or negative. However a single neuron isn’t going to learn much. But
if we combine several in a single layer, as shown in Figure 1.1, we start to get some
results.

Figure 1.1. Single Layer Neural Network

However the network still isn’t learning. By adding weights to each neuron we
can start to correct the network after each trail. We use an input for which we know
the desired output and we simply check which neurons fired and which didn’t. Now
we update the weights to minimise the error and this way the network begins to
adapt.

What this method actually does is attempting to separate the classes with a
straight line in 2D, a plane in 3D and a hyperplane in higher dimensions. To solve
problems that aren’t linear you need more neurons in a single layer or more layers.
This is called a multi layer neural network and is shown in Figure 1.2.

Figure 1.2. Multi layer neural network

The second layer is called a ’hidden’ layer, since it cannot be directly observed.
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Given an input it response with a correct of incorrect output. If it is incorrect
there is no way of knowing which neuron or neurons in what layer that screwed up.
However this can be solved by replacing the step function from the neuron with
the sigmoid function. This function is very similar to the step function but is has
a continuous derivative. This means that we can use the derivative, and if there’s
many hidden layers the chain rule, to minimise the error in the hidden layers as
well.

A downside with neural networks is the fact that it’s hard to understand them.
If you would ’open’ them and check the values of every neuron it would only seem
to be random numbers. The complexity of even a small network makes it a ’black
box’. You feed the network with an input, you get an output that’s probably right
but you have no idea what happened in between.

Also if you want to solve complex problems you need large networks and this
means you’re going to suffer from the curse of dimensionality. As your number of
neurons increase the training time increases exponentially which leads to limitations
and the need for simplification or massive computations.

1.2.3 Artificial Immune Systems

Artificial immune systems share some similarities with neural networks. You define
a number of detectors with individual weights similar to anti-bodies in our own
immune system. These are specialized and searches for certain patterns and if a
detector successfully finds or classifies an input it’s rewarded by incrementing it’s
weight and opposite by decrementing it if it wrongfully classifies an input.

Just as the naïve Bayse classifier this method is vulnerable to ’unbalanced’ data
and can become biased[5].

1.2.4 Support Vector Machines

Support Vector Machines is another mathematical theory founded approach to
learning and classification. Just as the neural networks this method attempts to
separate classes with a function. Every input you want to classify consists of a
number of values. These can be seen as base vectors in an n-dimensional room. For
the sake of simplicity, regard an example of two classes in a 2-dimensional vector
space and assume that the classes are linear. In this case there exists a line that
can separate the two classes and only the points from the different classes which
are nearest this line is relevant. We only need to compare a new input with these
points. Figure 1.3 displays a maximum margin with the associated support vectors.

As seen in the figure the choice of the separating line isn’t the only one. However
it is the one that maximises the distance between the two classes. But what if our
classes aren’t linear and no straight line exists between them? Using an appropriate
kernel function we can map our input onto a more favourable vector room. Figure
1.4 shows the mapping of data from an linear un-separable space onto a separable
one.
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Figure 1.3. Support vector with maximum margin

Figure 1.4. Changing the input space to a more favourable feature space

The SVM is built to separate between two classes but if there are methods to
generalize this. The most common are to train an SVM to differentiate between one
and all others or two simply train one for each pair of classes. The first method is
known as one vs all and the other as all vs all. When you want to classify an input
you simply let all your SVMs evaluate it and choose the one with best margin[1].

A complete derivation of the SVM will be given in Section 1.3.

1.2.5 Examples & Evaluation

One of the most if not the most common classification problem today is sorting
out e-mail spam messages. This resemble our problem at hand quite a bit with the
exception that it’s often binary, it’s either spam or legit.

Of all the different classifiers mentioned above the one who is most commonly
used is the SVM. It has many pros and few cons compared to the other. The naïve
Bayes classifier requires balanced data and assumes that the different features are
conditionally independent. Neural networks are ’black boxes’ with little insight and
suffers from the curse of dimensionality when the problems becomes complex. The
artificial immune systems can’t simply keep up with the adaptiveness or the effec-
tiveness of the SVM. In spam filtering the SVM is very versatile and effective[5] and
in text classification it outperforms the other algorithms with margin[6]. SVMs also
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handles the problem of overfitting[4] with several techniques and the central ker-
nel trick reduces calculation costs significantly. By choosing an appropriate kernel
incorrect classifications as well as computational cost can be further decreased[7].
Even though the SVM is created to separate two classes the one vs all or all vs all
makes it one of the best, if not the best, multi-class classifiers with several different
methods to further boost the effectiveness[8]. The algorithm of choice for the clas-
sification problem at hand is the SVM which will be described in detail in the next
section.

1.3 Theory

1.3.1 Convex optimization & Lagrange multipliers
To fully understand how SVM work we first have to equip ourselves with a few
mathematical tools. The first of these is the theory of convex optimization.

We begin by defining the primal optimization problems as follows:
Given functions f, gi, i = 1, ..., k and hi, i = 1, ...,m defined on a domain Ω ⊆ Rn

minimize f(w̄), w̄ ∈ Ω
subject to gi(w̄) ≤ 0, i = 1, ..., k

hi(w̄) = 0, i = 1, ...,m
(1.6)

The set where f(w̄) is defined and the constraints are met is called the feasible
region. A solution to the optimization problem is a point w̄∗ in this region where
there exists no other point w̄ so that f(w̄) < f(w̄∗). This is in other words a global
minimum. But if we find a solution, how can we be sure that f(w̄) < f(w̄∗) is
actually true and we haven’t just found a local minimum. If the set Ω is convex, i.e.
the Hessian of f(w̄) is strictly positive, we are assured that w̄ is a global minimum[1].

When we are faced with a primal optimization problem on a convex set as
described above we can use the method of Lagrange multipliers. For an optimization
problem with objective function f(w̄) and only equality constraints hi(w̄) = 0, i =
1, ...,m we define the Lagrangian function as:

L(w̄, β̄) = f(w̄) + Σm
i=1βihi(w̄) (1.7)

where the coefficients βi are called the Lagrange multipliers.
From this theory one can derive that in order for a point w̄∗ to be a minimum

of f(w̄) subject to hi(w̄) = 0, i = 1, ...,m with f, hi ∈ C1 the following conditions
must be true:

∂L(w̄∗, β̄∗)
∂w̄

= 0

∂L(w̄∗, β̄∗)
∂β̄

= 0
(1.8)

7
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for some values of β∗. These conditions also implies that L(w̄, β̄∗) is a convex
function of w̄.

However this problem only included the equality constrains, not the inequality
constrains which we want to include. We need a new definition:

Given an optimization problem with domain Ω ⊆ Rn

minimize f(w̄), w̄ ∈ Ω
subject to gi(w̄) ≤ 0, i = 1, ..., k

hi(w̄) = 0, i = 1, ...,m
(1.9)

we define the generalised Lagrangian function as:

L(w̄, ᾱ, β̄) = f(w̄) + Σk
i=1αigi(w̄) + Σm

i=1βihi(w̄)
= f(w̄) + ᾱḡ(w̄) + β̄h̄(w̄)

(1.10)

We can use this to define the Lagrangian dual problem:

maximize Θ(ᾱ, β̄)
subject to ᾱ ≥ 0̄

(1.11)

where Θ(ᾱ, β̄) = infw̄∈ΩL(w̄, ᾱ, β̄).
The dual problem is upper bounded by the primal problem and when the primal

problem is convex the solutions to the dual and primal problem is the same[1].
This means that we can find a solution that satisfies both the dual and the primal
problem, we have found the global minimum. This is a consequence of the strong
duality theorem which states:

Given an optimization problem with convex domain Ω ⊆ Rn,

minimize f(w̄), w̄ ∈ Ω
subject to gi(w̄) ≤ 0, i = 1, ..., k

hi(w̄) = 0, i = 1, ...,m
(1.12)

where gi and hi are affine functions, that is

h̄(w̄) = Āw̄ − b̄ (1.13)

for some matrix Ā and vector b̄, the duality gap is zero[1].
We are now fully equipped to derive the theory of Support Vector Machines.

1.3.2 Support Vector Machines
As described in Section 1.2.4 SVM:s attempts to classify data by separating it with
a hyperplane based on the training data.

8
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The most simple version of an SVM is a linear hard-margin classifier. This
means that it can only separate linear data and it will attempt to classify the data
exactly. While this might seem very good one has to remember that we are training
the classifier using one set of data and we want it to be able to classify any data.
A hard-margin classifier will most likely be over-fitted and generalize poorly when
being presented new data. This is especially true when the training data is noisy.
Fortunately both these problems can be countered. We begin by defining the margin
M as seen in Figure 1.5

Figure 1.5. A linear soft-margin classifier

The line separating the two classes can be written as:

y = w̄ · x̄+ b (1.14)

where x̄ is the input vector and w̄ is the weight vector which determines how
important an input is. From this we can express the margin M as:

M = 1
2
√
w̄ · w̄

(1.15)

In order to find the line which maximize the margin and gives us the most
accurate classification we need to minimize the norm of w̄, i.e. minimize

√
w̄ · w̄.

Furthermore we define the values of our two target classes to be ±1 and the target
function ti to be the class which an input x̄i belongs to. To ensure that an input is
in the correct class we also get the constraint:

ti(w̄ · x̄+ b) ≥ 1 (1.16)

9
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To handle the problem of with hard-margin and over-fitting we introduce another
feature, slack variables denoted εi. These will allow the classifier to accept a certain
level of error and thus make the separating hyperplane smoother which will allow
it to better generalize. We are now ready to formulate our primal optimization
problem:

minimize w̄ · w̄ + CΣl
i=1ε

2
i

subject to yi(w̄ · x̄i + b) ≥ 1− εi, i = 1, ..., l
(1.17)

However in our optimization problem we now have two variables, ‖w̄‖ and εi.
How this should be solved is up to the application and the data to be classified.
Choosing a big C will mean very strict boundaries and a small C might allow to
many miss-classifications. This is a trade off between the two. To find the optimal
C-value for the problem at hand a common technique is cross-validation which will
be described in the next chapter.

We can now use the theory of Lagrangian multipliers to formulate the dual
optimization problem:

maximize L(w̄) = maxΣl
i=1αi −

1
2Σl

i=1Σl
j=1αiαjtitj x̄i · x̄j

subject to 0 ≤ α ≤ C
and Σl

i=1αix̄k = 0

(1.18)

However one last problem is that the classifier is still linear but if take another
look at eq. 1.18 we notice that the input vector x̄ only exists in an inner product
with another input vector. There is no reason why we cant modify this to another
function of x̄, more accurately a kernel function. This changes the normal euclidean
dot product an inner product which transforms and projects our data onto a more
favourable vector space. However projecting your data from a linear vector space
onto a higher dimensional or even infinite dimensional space means that the com-
putation of the inner product is way more expensive then the simple dot product.

What saves us is that we actually never need to do any computations in the
much more complex space, a good choice of kernel can always be reduced to a
function containing the euclidean dot product and doing the computations in a
smaller subspace. But which kernel should we choose?

There is plenty of inner product to choose from but we need one that is positive
definite which implies that it is convex. To name a few one can use a polynomial
kernel, a sigmoid kernel but the most common and well used is the Gaussian or
Radial Base Functions expansion kernel:

K̄(x̄i, x̄j) = exp(−γ(x̄i − x̄j)2) (1.19)

where γ = 1
2σ2 and thus is always positive. The RBF kernel is often the best

because it doesn’t have computational problem as many of the other kernels do

10
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have. The sigmoid kernel can have unusable parameters and the polynomial kernel
might go to zero or diverge to infinity, both which are bad when trying to solve a
problem numerically[9].

Now our SVM is ready for training and then finding the optimal parameters
for the kernel, γ, and for the strictness of the classifier, C, to achieve optimal
performance. This will be covered in the next chapter.
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Chapter 2

Implementation & Testing

2.1 Method

The task to find optimal parameters for our SVM is not a trivial one. It depends
entirely on our dataset and if we’re unlucky it might not even be possible. There
are a few different ways to do this but one in particular has shown to be quite
effective[9] and simple why it now is widely used.

2.1.1 Grid-search

As naïve as it might sound, the very crude approach of simply testing a huge number
of values in a systematic fashion is quite effective. The idea is to search through the
space spanned by the parameters γ and C in rather large steps. Normally you start
with values in powers of 2 from about -25 to 25 for both parameters. A finer search
can then be conducted around the best regions if the results were inadequate.

An example of a more sophisticated method is the Gradients accent. Here one
looks at the direction in the grid where the accuracy increases and move in that
direction. The downside of this process is that it is very iterative and very hard
to parallelize compared to a grid-search where every point is independent and can
thus be easily calculated separately [9].

Another advantage of the grid-search approach is that it is very easy to imple-
ment. Once you set up the training of your SVM all you have do is repeat this for
every point and evaluate it using Cross-validation.

2.1.2 Cross-validation

A problem with most classifiers is over-fitting. This is when you train your classifier
"to hard" on your training data, often achieving great results during training, and
when tested on new data it performs poorly. By over-fitting the classifier to the
training data it has lost the ability to generalize to new data which is unsatisfactory.
This can be prevented or at least reduced using cross-validation, CV[9].
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In n-fold CV you divide your training data into n different folds. Sequentially
one fold is tested using the classifier trained on the remaining n − 1 folds. The
accuracy is then taken as the average of the n test. By doing this we can train and
test every point in the grid-search on n "different" data sets. If a certain value of
γ and C generalizes poorly the average accuracy will be poor as well and we can
continue our search for better parameters.

A normal number of folds is 10 but for large datasets this might be incredibly
time consuming and computational heavy and one might want to reduce the number
of folds.

2.1.3 Accuracy Measurements
Up until now we have mentioned accuracy and results but no motivation of which
accuracy to use or what a good result is. It’s easy to simply state: "The number
of correct classified items over all items must be the best accuracy measurement!".
However giving this a second thought proves this to be slightly naïve, unfortunately.
Our main goal in this project is to sort out the few number of real alerts, positives,
from a huge number of false alerts, negatives. The classifier can easily achieve a
great accuracy by simply classifying everything as false alerts, but in our case this
is entirely useless.

A more common way to visualize performance in supervised learning is through
a confusion matrix. For our binary case this is a two-by-two matrix with classified
positives and classified negatives on one side and the real positives and real negatives
on the other side. Figure 2.1 shows a standard confusion matrix.

Figure 2.1. The layout of a confusion matrix in binary classification

The diagonal contains the true positives, TP, which is the correct classified
positives, the true negatives, TN, which is the correct classified negatives. The
other two entries is the false positives, FP, which is negatives miss-classified as
positives and the false negatives, FN, which is positives miss-classified as negatives.
This is called a confusion matrix since FN and FP is the items the classifier has
confused with the wrong class. If both FN and FP is zero we have achieved a perfect
classifier.

From this we can construct smarter measurements than our first naïve accuracy.
We define the precision as:

Precision = TP

TP + FP
(2.1)
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and the positive and negative recall as:

Positive Recall = TP

TP + FN
Negative Recall = TN

TN + FP
(2.2)

The precision is the ratio of correct classified positives over all classified positives.
A high precision indicates few miss-classified negatives, while low values means that
we have classified way to many as positives.

The recalls on the other hand is a measurements of how many points out of the
set of one single class we have "found". It is noteworthy that if everything is classify
as positive for instance the positive recall will peak since we haven’t missed any real
positives. The precision on the other hand would plummet.

These two measurements complement each other, why a good classifier renders
high values in both. However finding a balance between them is difficult, thus three
further accuracy measurements will be used.

F-score is the harmonic mean of the precision and positive recall.

F − Score = 2× Precision× Positive Recall
Precision+ Positive Recall

(2.3)

Another used accuracy measurement is the Matthews correlation coefficient
(MCC), that is generally considered a balanced measure which can be used even if
the classes are unbalanced.

MCC = TP × TN − FP × FN√
(TP + FP )(TP + FN)(TN + FP )(TN + FN)

(2.4)

The final measurement is the balanced accuracy (BAC) that simply is the mean
of positive and negative recall.

BAC = Positive Recall +Negative Recall

2 (2.5)

2.1.4 Implementation & Testing
For our task we have chosen to use the open-source libsvm project which is pretty
much the standard SVM library for research these days. The original project is
written in C and we have used a version ported to Java for convenience with the
Scila software.

The first task was data processing and extracting the features to use for clas-
sification. Both the number of features and the size of the values differed greatly
between different alerts and we choose to focus on a few of the most frequently
occurring. Because of this we choose to train a different SVM for each alert type
since they were far to different to compare.

The next step was scaling the data which is usually necessary to get decent
results. Otherwise a feature with huge values might completely dominate the op-
timization process. If you rescale your data to the interval [−1, 1] you can avoid
these and also speed up the computations due to lower values.
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Once this was done we set up a grid-search by creating a thread for each point
which in turn handled cross-validation. This allowed us to parallelize the process
and significantly reduce the computation time.

However to get both a high precision and recall is not trivial. Since the dataset
contained only about a few percent of positives while the rest was negative, our
classifiers became biased towards the negatives. It seldom classified any items as
positives for any point in the grid-search. The good news is that libsvm has an
options for dealing with unbalanced data sets. One can tweak the weights or costs
of miss-classifying a positive or negative item. We increased the cost for miss-
classifying the positives with a ratio of the number of positives over negatives in the
actual dataset, which improved the results.

2.1.5 Data Labeling
Since the data provider was not able to label the data in beforehand some work
needed to be done on labeling the data to be able to train and validate the models.
The body of a single alarm in the dataset contains apart from a set of trigger
parameters (later used as features) also an identification number. This number
can be used to find related entries or so called "issues" in an separate dataset also
containing information and notes about the manual handling of the related alerts.
These notes were used as far as possible to designate the specific labeling of the
issues and thus all the alarms.
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Chapter 3

Results

3.1 General statistics

Some overview statistics of the provided dataset is presented in tables 3.1 and 3.2.
The negative-positive-ratios are later used for further analysis.

Type Count Pos. % Neg. % NP-ratio Undefined %

Volume Change 391 220 1,4 87,3 62,4 4,2
Trade To Trade 70 000 1,3 87,3 67,2 11,4
M. M. Obligation 56 485 20,0 60,0 3,0 20,0
Ramping 52 606 4,5 75,2 16,7 20,3
Unlikely Order 37 427 2,2 96,9 44,0 0,9
All Alarms 828 272 3,9 88,1 22,6 7,9

Table 3.1. Statistics for the five most frequent alarm types in the provided dataset.
The percentage of the data made up by the positive and negative classes along with
the negative-positive-ratio is presented. The "Undefined" percentage is the subset that
could not be determined belonging to ether class and is thus considered unusable data.

Type Count Pos. % Neg. % NP-ratio Undefined %

Trade to trade 2% 49 975 1,2 87,1 72,6 11,7
Ramping 0,3% 26 650 1,2 87,2 72,7 11,6
Trade to trade 5% 24 324 2,3 84,1 36,6 13,7
Ramping 5 Ticks 13 500 6,5 61,6 9,5 31,8
Ramping 3 Ticks 7 076 10,6 61,2 5,8 28,2
Ramping 7 Ticks 2 983 12,0 53,2 4,4 34,8

Table 3.2. Similar statistics as table 3.1 but for the subcategories of the "Ramping"
and "Trade to trade" alarm types.
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3.2 Spatial Disposition of Data

Figures 3.1 an3.2 shows the general spatial disposition of data for two different
alarm types along three different features. The data is scaled to values between -1
and 1. Green and red points represent true (positive) and false (negative) alarms,
respectively.

Figure 3.1. Plot of the dataset for the "Ramping Ticks" alarm type for three selected
features: Ticks, time and diff.

Figure 3.2. Plot of the dataset for the "Trade to Trade" alarm type for three selected
features: Percent change, ticks change and diff. Both positive and negative extreme
outliers are visible far from the main cluster at (-1,-1,-1), where the majority of points
are clotted together.
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3.3 Grid-search
In this section a heatmap representation will be used to visualize the results for the
different accuracy measurements. A log-log scale will be used labeled with powers
of 2. For most plots the global maximum will be of relevance, why these will be
marked with a black square. In cases where the global maximum is shared by
multiple points all of them will be marked in the same way.

3.3.1 Ramping 3 Ticks
The "Ramping 3 Ticks" alarm subtype was selected due to its convenient and well
understood features. It was scaled and had its extreme outliers removed ahead
of the grid-search and contains a total of 5081 datapoints after exclusion of the
unclassified subset. Maximum execution time for each grid-search point is 40 min.
"Ticks", "diff" and "time" are the names of the three selected features.

Figure 3.3. All the relevant accuracy measurements acquired from a C/γ-grid-
search for the "Ramping Ticks 3" dataset using a weight of 5,8 for the positive class.
The resolution is 40 by 40, thus a total of 1600 points. Global maximum for each
individual subplot is marked with a black square.
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Precision P-Recall N-Recall F-Score MCC BAC
F-Score 0.4569 0.3333 0.9333 0.3855 0.3053 0.6333
MCC 0.4569 0.3333 0.9333 0.3855 0.3053 0.6333
BAC 0.2293 0.7186 0.5934 0.3477 0.2201 0.6560

Table 3.3. Matrix of accuracy values at specific peak coordinated, using a positive
class weight of 5,8. Columns show the specific accuracy values at the same C/γ-
coordinates as the peak value of the accuracy measurements of the row. For instance
the bottom most left cell shows the precision value at the peak point of the BAC-
measurement. Precision, P-Recall and N-Recall rows excluded due to multiple peak
points.

Weight Precision P-Recall N-Recall F-Score MCC BAC
5,4 0.2816 0.5656 0.7571 0.3760 0.2499 0.6614
5,6 0.2294 0.7213 0.5920 0.3481 0.2210 0.6567
5,8 0.2293 0.7186 0.5934 0.3477 0.2201 0.6560
6,0 0.2298 0.7213 0.5929 0.3485 0.2217 0.6571
6,2 0.2310 0.7077 0.6035 0.3484 0.2201 0.6556
Table 3.4. Values of different accuracy measurements (columns) for different positive
class weights (rows) at the C/γ-coordinates of peak BAC-values.

Figure 3.4. Positive recalls for a positive class weights of 5,4 and 6,2.
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3.3.2 Ramping 0,3%
The "Ramping 0,3%" alarm subtype was selected due to similar reasons as "Ramping
3 Ticks". The dataset was also prepared in a similar fashion and had after exclusion
of unclassified data a total of 23 559 datapoints. The dataset was then shrunk by
random selection to half the size before training. Maximum execution time for each
grid-search point is 40 min. "Percent", "diff" and "time" are the names of the three
selected features.

Figure 3.5. Relevant accuracy measurements from a C/γ-grid-search for the "Ramp-
ing 0,3%" dataset using a weight of 72,7 for the positive class. The resolution is 40
by 40, thus a total of 1600 points. Global maximum for each individual subplot is
marked with a black square.

Precision P-Recall N-Recall F-Score MCC BAC
Precision 0.4250 0.1018 0.9980 0.1643 0.2028 0.5499
N-Recall 0.4250 0.1018 0.9980 0.1643 0.2028 0.5499
F-Score 0.2971 0.2455 0.9916 0.2689 0.2606 0.6186
MCC 0.3855 0.1916 0.9956 0.2560 0.2646 0.5936
BAC 0.0510 0.6108 0.8366 0.0942 0.1409 0.7237

Table 3.5. Matrix of accuracy values at specific peak coordinated, using a positive
class weight of 5,8. Interpreted in the same fashion as table 3.3. P-recall excluded
due to multiple peak points.
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Weight Precision P-Recall N-Recall F-Score MCC BAC
71,9 0.0599 0.5689 0.8715 0.1084 0.1525 0.7202
72,1 0.0689 0.5749 0.8882 0.1230 0.1695 0.7315
72,3 0.0571 0.5928 0.8592 0.1042 0.1509 0.7260
72,5 0.0563 0.5928 0.8569 0.1028 0.1491 0.7249
72,7 0.0510 0.6108 0.8366 0.0942 0.1409 0.7237
72,9 0.0642 0.5689 0.8808 0.1154 0.1604 0.7248
73,1 0.0610 0.5629 0.8753 0.1101 0.1536 0.7191
73,3 0.0569 0.5988 0.8573 0.1040 0.1514 0.7281
73,5 0.0530 0.5928 0.8477 0.0973 0.1426 0.7202
73,7 0.0651 0.5629 0.8836 0.1166 0.1609 0.7232
Table 3.6. Values of different accuracy measurements (columns) for different positive
class weights (rows) at the C/γ-coordinates of peak BAC-values.

3.4 Trade to Trade 2%
This dataset was after preparations consisting of 44 128 data points. The data was
shrunk by random selection down to one forth the size, which is approximately the
size of Ramping 0,3% used for training. Maximum execution time for each grid-
search point is 60 min. "Percent change", "ticks change" and "diff" are the names of
the three selected features.

Precision P-Recall N-Recall F-Score MCC BAC
Precision 0.3750 0.0207 0.9995 0.0392 0.0856 0.5101
P-Recall 0.0139 0.9103 0.1234 0.0273 0.0118 0.5169
F-Score 0.1250 0.0621 0.9941 0.0829 0.0795 0.5281
MCC 0.3750 0.0207 0.9995 0.0392 0.0856 0.5101
BAC 0.0236 0.4414 0.7527 0.0448 0.0514 0.5970
Table 3.7. Accuracy matrix of peak coordinated, using a positive class weight of
72,6 for Trade to Trade 2%. Interpreted in the same fashion as table 3.5. N-recall
excluded due to multiple peak points..

Weight Precision P-Recall N-Recall F-Score MCC BAC
72,1 0.0220 0.4552 0.7257 0.0419 0.0464 0.5904
72,4 0.0317 0.3103 0.8719 0.0576 0.0621 0.5911
72,6 0.0236 0.4414 0.7527 0.0448 0.0514 0.5970
72,9 0.0260 0.3793 0.8075 0.0486 0.0541 0.5934
73,1 0.0233 0.4414 0.7498 0.0443 0.0505 0.5956
Table 3.8. Values of different accuracy measurements (columns) for different positive
class weights (rows) at the C/γ-coordinates of peak BAC-values.
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Figure 3.6. Accuracy measurements acquired from a grid-search for the "Trade to
Trade 2%" dataset using a weight of 72,6 for the positive class. The resolution is 40
by 40, thus a total of 1600 points. Global maximum maximum marked in a similar
fashion as other figures.
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Conclusions

4.1 Discussions

Unbalanced Data and the Use of Weights

Unbalanced data is a common problem in classification and usually leads to an
over-estimation of the most occurring class, in our case the negative class. This
distribution can be seen in Table 3.1. The negative-positive-ratio is quite large and
as Table 3.2 shows the same applies for the subgroups of Ramping.

This comes from the fact that we use a soft-margin classifier and allow a certain
amount of slack. The further into the wrong side a data point is the bigger the
misclassification cost. But since the negative points are far more numerous it is
still more cost-effective to simply classify the negatives correctly and neglect the
positive points. As mentioned weights were introduced to counter this prblem.

This effect varies in magnitude and other regions of the the grid-search are more
stable and changes more subtle. When increasing the weight more data points are
classified as positive but the change is slower and without the huge jumps. This
is likely due to the change in the maximum margin hyperplane. A larger margin
makes the classifier more stable and would likely reduce the sudden changes caused
by increasing weight.

4.1.1 Accuracy Measurements

To begin with we did not consider the selection of accuracy measurements as one
of the challenges of this project. This was shown to be incorrect, mostly due to the
unbalancedness of the dataset. We found that most available accuracies favored the
correct classification of the majority class, if it was overwhelmingly more numerous.

Precision as for instance shown in figure 3.5 increase with increasing γ. This
could in general be explained by the gauss bells in the RBF-kernel becoming nar-
rower, which in turn makes the classified areas more precise in favor for the most
numerous class. This does however not necessary imply better classification. Pre-
cision is a measurement of the ratio of true positives over all points classified as
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positive. This value increases of coarse with increasing true positives, but it also
increases with decreasing false positives. In both figures 3.5 and 3.3 one sees that
regions with high precision corresponds to regions with high negative recall. This
fact emerges from the unbalancedness of the data, which specially in the case of
Ramping 0,3% becomes quite substantial due to the large negative-positive-ratio.
This renders this accuracy measurement rather unpractical on its own.

Positive and negative recall takes little effect of misclassification of the oppos-
ing class. Conclusions can mostly be drawn only about one of the classes, why
considering a single plot of recall makes little sense.

However while the three less refined measurements used in this project (precision,
positive and negative recall) have great limitations, they can be used to verify the
quality of the three remaining more complex measurements. In tables 3.3 and
3.3 one can use for instance the positive and negative recall to draw qualitative
conclusions about the different peak points.

F-score is in essence the harmonic mean of precision and recall and should at the
first sight also be of interest. However data shows (table 3.3 and 3.3) that it suffers
from the unbalancedness and thus favors the majority class although not nearly
as much as precision. The same goes for MCC, which is developed with balance
between classes in mind. Thus these two measurements are of interest if one are
looking for best general classification of most data points of both classes.

It is however in our case of great importance to get an acceptable positive
recall. The most intuitive interpretation of BAC is that it is equally affected by the
accuracy of both classes. Since both recalls have the same significance on the final
value, BAC could be imagined as a weighted accuracy of both classes. This fact is
supported by the data, which renders BAC by far the accuracy measure of choice.

4.1.2 Ramping 3 Ticks

The theoretically best weight, i.e. the ratio between the occurrence of the negative
and positive class, rendered a positive recall of 0.72 and an acceptable negative
recall of 0.59 at maximum BAC (table 3.3). F-score and MCC peaks at the same
grid-search point which corresponds to a positive and negative recall of 0.33 and
0.93.

The two alternatives pair of C and γ would result in classifiers of different
character. If one imagine a dataset of 100 points with the same NP-ratio (i.e.
5.8), the BAC peak would in theory correctly classify 11 out of 15 positive points
together with 35 misclassified negative points out of 85. The MCC/F-Score peak
would, provided the same dataset, instead find 5 out of the 15 positives and present
it together with 6 misclassified points out of 85 to the user.

Other weights were analyzed apart from the theoretically predicted one of 5,8.
Accuracies at the BAC peaks are presented in table 3.4. The best values are acquired
at weight 6,0 where also the best positive recall of 0.7213 is attained. This is however
a minor improvement of only 0,4% and could be the effect of many factors including
sheer luck.
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Figure 3.4 shows the positive recalls for the weights 5,4 and 6,2. In combination
with figure 3.3 one sees a dramatic effect taking place around the negative-positive-
ratio. In regions for primarily small C the positive recall goes from zero to one
for small variations of the weight. This is likely a result of the weights impact on
the primal optimization problem. For weights up to the ratio the solution changes
slightly, with little effect on the separating hyperplane. However at this threshold
the sudden emergence of an entirely new more optimal solution strongly affects the
shape of the hyperplane, which results in an entirely different classifier.

4.1.3 Ramping 0.3%

There is a region in figure 3.5 represented by white spots where the calculations
were not completed within the time limit of 40 minutes. For some reason the
optimization converged slower here. This does however not affect the peaks of the
accuracy measurements since they are expected to occur in regions far from the
canceled points.

For this alert type and the weight 72,7 for the positive class the F-Score and
MCC peaks do not coincide, although they are close. The recalls are as expected
even more in favor of the negative class, since the class ratio is much larger for this
alert type.

The balanced accuracy peaks at a region of large C (65536) which is the equiv-
alent of a large cost of misclassification and thus a stiffer classification boundary.
This point would render a correct classification of almost one positive data point
(0, 83) while only 17 out of 99 negative points would be misclassified in a dataset
of 100 points with the same class ratio.

Table 3.6 shows the BAC peak for different weights around the class ratio weight.
One sees that the maximum peak BAC occurs at the weight 73.3, which is somewhat
higher than the expected. This is once again a minor improvement and could be
due to a different class ratio emerging after the randomly selected shrink of the
dataset, as pointed in the results. This was however not investigated further.

4.1.4 Trade to Trade 2%

Figure 3.6 shows the grid-search results for the "Trade to Trade" subtype. One can
see that even though this alarm type was shrunken to approximately the same size
as the Ramping 0,3% dataset and given more computational time (60 minutes com-
pared to 40 minutes) a lot of points where not completed. The obvious explanation
is that this dataset was harder to separate. This could of course result in grid-search
points with better accuracy being missed. But despite this fact the accuracy values
presented in table 3.7 and 3.8 shows quite good results. A positive and negative
recall of 0.44 and 0.75 was achieved, respectively, at peak BAC.
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4.1.5 Computational time

One of the main drawbacks with SVM is the huge computational time. To begin
with the main task is to solve a quadratic optimization problem where the complex-
ity increases with the size of the dataset.

Moreover you have to find the optimal parameters which means you have to
perform a grid-search. This is normally a 30-by-30 to 50-by-50 which corresponds
to solving the problem between 900 and 2500 times.

Finally, to prevent over-fitting the standard tool is cross-validation which almost
increase the complexity by a factor corresponding to the number of folds.

Unless you have a lot of computer power you are most likely forced to train on
subsets, do a smaller grid-search and/or decrease the number of folds. These actions
combined makes it more difficult to train a good classifier but it is unfortunately a
price one might have to pay.

4.1.6 Data Handling

When starting this project we did not foresee the huge amounts of data handling
we would have to do before even training a single classifier. The problems we en-
countered and how they were overcome or circumvented is discussed in the following
section.

Labelling the Data

One of the uncertainties of this project from the start is that the data we had to
work with was unlabelled as described in Section 2.1.5. Using this method we were
able to label 92% of the data.

If the remaining 8% of the data is positive or negative is very hard to asses.
This could have an impact on the results, for instance if many of them are positives.
However, it is reasonably that this effect is rather limited, probably even negligible,
due to the amount of "good" data already provided.

Subselection of Data

At first attempts were made to classify large parts of our dataset but the results
where unsatisfactory. A decision was made to focus on smaller parts of the data,
such as Ramping and TradeToTrade. The results were decent, but when examining
the data closer we could see that what triggered an alert in one subgroup would not
trigger in the others. This lead us to divide the data even further based on trigger
parameter, which improved the results further.

Why did splitting the data into smaller groups effect the performance? Think
of it this way: classifying if an apple is ripe or not based on its colour is almost
impossible. Some apples are ripe when they are green, some when they are red and
others anything in between. But if you focus on a particular sort almost every apple
would have the same colour when ripe and the classification becomes much easier.
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Effects of Outliers

As discussed in Section 3.2 the data contains some outliers. Several test were made
both with and without the outliers but no improvement was made leading us to
believe that the outliers were to few to significantly disturb the data.

4.2 Summary
First and foremost one must realize that classification through machine learning will
always require an human operator to verify it’s result when concerned with such
important task as to detect money laundering and other illegal activities. We have
been able to train an SVM that correctly classify 65-75% of the alerts and this can
definitely be useful to ease the burden of operators.

To understand how to use the results obtained one must consider the versatility
of the Scila software and how the different clients use it. Some customers want to
trigger alerts constantly to observe the market while others only ever want alerts
to trigger when something illegal is done. This means that operators for one client
would like to focus on finding all positives, i.e. high positive recall. Operators who
are flooded with false alerts however might instead go for a high negative recall to
rule them out and focus on the remaining. Either way an SVM classifier would
be useful for dividing a list of alerts into high and low priority lists. This way the
operators can focus there attention where true alerts are most likely to occur.

However, to make this practically viable the process of training and updating
classifiers must be more or less autonomous. This includes finding parameters and
tweaking weights. Most effective is likely to train an SVM for each alert rule, such
as Ramping 3 Ticks, and varying the weights around the NP-ratio as seen in Table
[ref weight table]. The operators might then have to select parameters to use based
on their preferences as mentioned above. When a significant amount of new data
is collected it is possible to re-train the classifier in order to stay up to date with
current alerts.

4.2.1 Future research
Even though quite impressive results were obtained using SVM, it would be inter-
esting to try other methods such as neural network to find other patterns in the
data.

The other possible approach is time-series evaluation. When using normal clas-
sifiers you group all your data and do not concern yourself with when the events
took place. This might be especially interesting in this case as different alerts might
trigger at different times of day or year in a regular pattern. A difficulty with
this is to be able to handle when major events take place such as a large company
bankrupting or a revolution in a country which influence trade in a region.

Unfortunately both of these approaches are outside the scope of this project and
more research is needed.
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