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We propose an optimal dynamic pairs trading strategy model for a portfolio of cointegrated assets.
Using stochastic control techniques, we compute analytically the optimal portfolio weights and relate
our result to several other strategies commonly used by practitioners, including the static double-
threshold strategy. Finally, we apply our model to a bitcoin portfolio and conduct an out-of-sample
test with historical data from three exchanges, with two cointegrating relations.
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1. Introduction

This article generalizes the dynamic pairs trading model in
Tourin and Yan (2013) to a portfolio of cointegrated assets
of arbitrary size and applies it to bitcoin markets. The model,
which characterizes the optimal asset holdings dynamically,
can be written in vector form and solved analytically using
stochastic control techniques.

Our approach combines the model of cointegrated assets by
Duan and Pliska (2004) with the Merton portfolio selection
problem (Merton 1971). In contrast to Tourin and Yan (2013),
we include a linear trend in the cointegrating relations and make
the dynamics fully symmetric. The investor’s objective is to
maximize the expected utility derived from terminal wealth.
In this work, we choose an exponential utility function for
simplicity of calculation. Using classical stochastic control
techniques, we compute the optimal portfolio weights in closed
form and validate this result by proving a verification Theorem
which provides an upper bound on the time horizon in terms
of the parameters in the model beyond which the solution
may blow up. We also briefly explore several other alternate
strategies, including the double-threshold strategy which is
commonly used by practitioners. Finally, we illustrate the ap-
plicability of our method by conducting both an in-sample
and an out-of-sample test with market data from three bitcoin
exchanges.

The application of stochastic control to pairs trading orig-
inated in the work of Mudchanatongsuk et al. (2008). More
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recently, two articles formulated a model characterizing the
optimal entry and exit points of a pairs trading strategy. The first
one by Leung and Li (2015) also incorporates transaction costs.
The second one by Lei and Xu (2015) determines multiple entry
and exit-points during a trading period and includes a perfor-
mance study carried out on dual-listed Chinese stocks. Besides,
Ngo and Pham (2016) frame the pairs trading problem as a
regime switching model between three regimes: flat positions,
one long position on one asset and a short position on the other,
and vice versa. Portfolios in several dimensions have also been
considered: among others, a static mean-variance approach
based on the cointegration model by Duan and Pliska (2004),
has been developed by Chiu and Wong (2011) whileAvellaneda
and Lee (2010) provided an empirical study for beta-neutral
pairs trading portfolio strategies in the US equities market.
Besides, we refer to the books by Fleming and Soner (1993) and
Pham (2009) for an introduction to stochastic control and its
applications in Finance. Finally, during the preparation of this
manuscript, it came to our attention that Cartea and Jaimungal
(forthcoming) also investigated the multi-dimensional version
of the model of Tourin and Yan (2013), producing results that
complement ours.

In the second section, we present the optimal stochastic
control problem, derive its solution and present a verification
result. In section 3, we investigate several alternate formu-
lations, including the well-known double-threshold strategy.
Finally, in section 4, we show our experimental results in the
bitcoin markets.

© 2016 Informa UK Limited, trading as Taylor & Francis Group

http://www.tandfonline.com


2 P. S. Lintilhac and A. Tourin

2. The general model for a portfolio of cointegrated and
correlated assets

First of all, we present the model. Then, we compute its solution
in the second subsection. In the last subsection, we provide a
verification Theorem ensuring that the computed strategy is
the solution of the original stochastic control problem.

2.1. Problem formulation

We consider a portfolio of n cointegrated assets and model
the evolution of their log-prices as in Duan and Pliska (2004).
We allow the assets to be linearly correlated and we assume the
volatility matrix to be constant. Specifically, the asset prices are
driven by an n-dimensional standard Brownian motion Bt =
(B1

t , . . . , Bn
t ). The vector of asset prices is denoted by St =

(S1
t , . . . , Sn

t )t , and xt = (x1
t , . . . , xn

t )t = (log S1
t , . . . , log Sn

t )t

represents the vector of log-prices. We say that the assets are
cointegrated with exactly r cointegrating relations when there
is a n × r matrix β of rank r , where 0 < r < n, and r -
dimensional column vectors a, b, such that a + bt + β t xt is
an Ornstein–Uhlenbeck process. We denote the r -dimensional
spread by zt = (z1

t , . . . , zr
t )

t , i.e.

zt = a + bt + β t xt , (1)

where β t denotes the transpose matrix of β. Note that the term
bt can be used to offset the potential deterministic trend in
β t xt , in order to make zt an Ornstein–Uhlenbeck process with
long-run mean 0.

Next, the log-prices follow the dynamics

dxt =
(

μ − 1

2
D(σσ t ) + δzt

)
dt + σdBt , (2)

where μ = (μ1, . . . μn) is the n ×1 vector of drift coefficients,
σ = (σi j ) is a n × n invertible matrix, δ is a n × r matrix of
rank r , D(σσ t ) is the vector whose elements are the diagonal
of σσ t .

Moreover, it follows from (1) and (2) that zt satisfies the
dynamics

dzt =
(

b + β tμ − 1

2
β t D(σσ t ) + β tδzt

)
dt + β tσdBt ,

= −β tδ(ν − zt )dt + β tσdBt ,

where ν = −(β tδ)−1(b + β tμ − 1
2β t D(σσ t )) is the long-run

mean.
Furthermore, according to Duan and Pliska (2004), the sys-

tem (1), (2) is cointegrated if and only if

||Ir + β tδ|| < 1.

In the above condition, Ir is the r × r identity matrix and || · ||
is the matrix norm

||A|| = max
x �=0

|Ax |
|x | ,

where |x | is the Euclidian norm of the r -vector x .
Finally, we will remedy the over parametrization of (1), (2)

in section 4, in conjunction with the parameters estimation
procedure.

We construct a self-financing portfolio invested in the coin-
tegrated assets and a bank account. For simplicity, we assume

that the bank account’s interest rate is equal to 0. The evolution
of the wealth variable reads

dWs =
n∑

i=1

π i
s

dSi
s

Si
s

,

where πs = (π1
s , . . . , πn

s )t is a n×1 vector, whose component
π i

s represents the amount invested in the i th asset at time s.
Hence, the state variables (Ws, xs) evolve according to

dWs = π t
s ((μ + δzs)ds + σdBs) , (3)

dxs =
(

μ − 1

2
D(σσ t ) + δzs

)
ds + σdBs, (4)

Wt = w, xt = x . (5)

where zs is defined in (1). Next, we fix a finite time horizon
T > 0.

For the sake of simplicity, we treat the case of the exponential
utility function, i.e.

U (w) = −e−γw,

where γ > 0 denotes the constant risk aversion coefficient.
Avector π of controls is said to be admissible if the elements

of π are real-valued, progressively measurable, π is such that,
(1), (3)–(5) define a unique solution (Ws, xs) for every time
s ∈ [0, T ], π satisfy the integrability condition

E

∫ T

t

n∑
i=1

(π i
s )

2ds < +∞, (6)

and the family of random variables exp (−γ Ws∧τ ), where τ is
a stopping time in [t, T ], is uniformly integrable.

We denote the set of admissible controls at the initial time
of investment t , by At . Next, we define the value function
u(t, w, x) of the following stochastic control problem: the
investor seeks an admissible strategy π that maximizes the
utility he derives from his terminal wealth at time T , i.e.

u(t, w, x) = sup
π∈At

E[U (W t,w,x,π
T )], (7)

where W t,w,x,π
T denotes the solution of (3) at time T , cor-

responding to the control π , the stock log-prices x whose
dynamics are defined by (1), (4) and for the initial conditions
(5).

The value function u(t, w, x) satisfies the HJB equation

−ut − sup
π

[
{π t (μ + δz)}uw

+
(

μ − 1

2
D(σσ t ) + δz

)
· Dx u + σσ tπ · Dx uw (8)

+ 1

2
π tσσ tπuww + 1

2
tr

(
σσ t D2

x u
) ]

= 0,

for all 0 ≤ t < T, (w, x) ∈ R
n+1, where z = z(t, x) =

a + bt + β t x , and the terminal condition

u(T, w, x) = −e−γw, for all (w, x) ∈ R
n+1, (9)

2.2. The solution

In what follows, we solve explicitly the HJB equations (8),
(9). In order to factor out the wealth variable and to reduce the
number of spatial variables, we substitute the Ansatz
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u(t, w, x) = −e−γwh(t, z),

where

z = a + bt + β t x, (10)

into (8), (9), and derive the PDE characterizing h:

−ht + sup
π

[
{π t (μ + δz)}γ h − βt

(
μ − 1

2
D(σσ t ) + δz

)
· Dzh

+ γβtσσ tπ · Dzh − b · Dzh − 1

2
γ 2π tσσ tπh

− 1

2
tr

(
σσ tβ D2

zzhβt
) ]

= 0, (11)

for all 0 ≤ t < T, z ∈ R
r , coupled with

h(T, z) = 1, for all z ∈ R
r .

We solve analytically the maximization problem in (11) to
compute the controls in terms of h and its partial derivatives
in feedback form.

π∗(t, z) = 1

γ

(
(σσ t )−1(μ + δz) + 1

h(t, z)
β Dzh(t, z)

)
.

Substituting this expression back into (11), we obtain the PDE

−ht + 1

2
(μ + δz)t (σσ t )−1(μ + δz)h + 1

2
β t D(σσ t ) · Dzh

+ 1

2h
Dzhtβ tσσ tβ Dzh − b · Dzh (12)

− 1

2
tr

(
σσ tβ D2

zzhβ t
)]

= 0, for all t ∈ [0, T ), z ∈ R
r.

We get rid of the nonlinearity in (12), by making the change
of unknown function

h(t, z) = exp(−φ(t, z)),

and deriving the linear PDE satisfied by φ

−φt − 1

2
(μ + δz)t (σσ t )−1(μ + δz)

+ 1

2
β t D(σσ t ) · Dzφ − b · Dzφ

− 1

2
tr

(
σσ tβ D2

zzφβ t
)]

= 0, for all t ∈ [0, T ), z ∈ R
r,

(13)

coupled with the terminal condition

φ(T, z) = 0, for all z ∈ R
r .

Next, we use the Ansatz

φ(t, z) = zt A(t)z + B(t)z + C(t),

where A(t) is a r × r matrix, B(t) is a 1 × r matrix and
C(t) is a real number and A(T ) = 0, B(T ) = 0, C(T ) = 0.
We substitute this Ansatz into (13), and easily solve the three
Ordinary Differential Equations characterizing the coefficients
A(t), B(t), C(t). We find

A(t) = 1

2
δt (σσ t )−1δ(T − t), (14)

B(t) = μt (σσ t )−1δ(T − t)

+
(

bt − 1

2
D(σσ t )tβ

)
δt (σσ t )−1δ

(T − t)2

2
, (15)

C(t) = 1

2
μt (σσ t )−1μ(T − t)

−
(

μt (σσ t )−1δ

(
1

2
β t D(σσ t ) − b

)

− tr(σσ tβδt (σσ t )−1δβ t )

)
(T − t)2

2

+
(

1

2
D(σσ t )tβ − bt

)
δt (σσ t )−1δ

×
(

1

2
β t D(σσ t ) − b

)
(T − t)3

6
. (16)

Finally, the controls are

π∗(t, z) = 1

γ

(
(σσ t )−1(μ + δz) + β

(−2A(t)z − B(t)t)) ,

(17)

where A(t), B(t) are given in (14) and (15).

2.3. Verification result

Our verification argument is very similar to the one in Benth
and Karlsen (2005). We only need to generalize their proof
to the multi-dimensional case and adapt it to the exponential
utility function. We are able to derive a bound on the time
horizon, beyond which the closed-form solution we computed
may blow up. We present the result below, as well as the key
steps in the proof.

First of all, we define the following matrices, which are
continuous functions of the time variable,

C0(s) = δt (σσ t )−1δ
[−Ir + β tδ(T − s)

]
, (18)

C1(s) = δt (σσ t )−1 [−In + δβ t (T − s)
]
σ, (19)

where Ir and In are, respectively, the r × r and n × n identity
matrices. Next, we introduce the r ×r covariance matrix 
(s)
of the process zs at time s:


(s) =
∫ s

t
eβ t δ(s−u)β tσσ tβeδt β(s−u)du. (20)

Finally, we consider the diagonal r × r matrices, �0(s),
�1(s), containing, respectively, the sets eigenvalues of 1

2

1
2

(C0 + Ct
0)


1
2 (s) and 


1
2 C1Ct

1

1
2 (s).

We state our result below. The conditions in the Theorem
translate into an upper bound on the time step or impose re-
strictions on the risk preference parameter γ .

Theorem 2.1 Let T > 0 be the given time horizon, and
t ∈ [0, T ]. If 4 maxs∈[t,T ] ||�0(s)|| < 1 and 32 maxs∈[t,T ]
||�1(s)|| < 1, the value function of the optimal stochastic
problem is given by

u(t, w, x) = −e−γw exp{−zt A(t)z − B(t)z − C(t)}
where the functions A, B, C are given in (14)–(16), z is defined
in (10), and the optimal control is given in feedback form in
(17).
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Proof. The main point is to prove the uniform integrability of
{u(τ, W ∗

τ , xτ )}τ , where W ∗ is the wealth process correspond-
ing to the optimal control (17). Following Benth and Karlsen
(2005), this problem can be reduced to finding a real number
ε > 0 for which the following two expectations are finite

E

[
exp

{
4(1 + ε)

∫ T

t
zt

sC0(s)zsds

}]
, (21)

E

[
exp

{
32(1 + ε)2

∫ T

t
zt

sC1(s)C1(s)
t zsds

}]
(22)

Next, the cointegration process can be centred as both integrals
can be majorized by a constant multiplied, respectively, by

E

[
exp

{
4(1 + ε)

∫ T

t
z0t

s C0(s)z
0
s ds

}]
, (23)

E

[
exp

{
32(1 + ε)2

∫ T

t
z0t

s C1(s)C1(s)
t z0

s ds

}]
, (24)

where z0
s is the centred cointegration process.

We can rewrite the quadratic forms, respectively, as
yt

s�0(s)ys and yt
s�1(s)ys where ys is a r × 1 vector of in-

dependent standard normal variables.
Finally, we adapt Lemma 4.3 in Benth and Karlsen (2005):
The first expectation is majorized by

CE

[
exp

{
4(1 + ε) max

s∈[t,T ] ||�0(s)||
∫ T

t
yt

s ysds

}]
, (25)

We use the fact that yt
s ys = ∑r

i=1 y2
is is a centred chi-squared

distribution with r degrees of freedom to conclude similarly
as in Benth and Karlsen (2005). The same type of argument
yields the desired result for the second expectation.

3. Connection with other strategies

We observe that the optimal control in (17) has two com-
ponents: the first one is very similar to the standard Merton
optimal portfolio weight, except that the process z now appears
in the numerator, replacing μ by μ + δz, as the rate of return;
the second one is new and specific to the mean-reversion mech-
anism, in the sense that it contributes to building a cumulative
profit when the prices are in a mean-reverting phase.

Some of the solution’s features may be unnatural to a trader.
One such characteristic is the fact that the time horizon must
be known a priori. One might argue that this dependence on
the time horizon makes sense since, in practice, there is often
some final time at which we want to maximize our wealth, such
as the end of day, and certainly during testing there is always a
final time. However, in practice it is often difficult to determine
exactly what the final time is, and this uncertainty translates
to substantial variations in our computed solution whose sec-
ond component depends explicitly the time to maturity. For
example, we may be operating in a market that never closes
(such as FX markets or bitcoin markets, the main example
of an application discussed in this paper), or we may seek a
strategy that we can simply turn on and keep running as long
as possible. In cases like these, we might prefer a strategy that
does not depend on the time horizon.

Examples of commonly used trading strategies for cointe-
grated assets are the double-threshold strategy or the relative

value strategy. In both of these cases, the rules for trading
depend only on the parameters of the model and the asset prices,
but have no explicit time-dependence. We can explain the intu-
ition behind the time-dependence in our model by illustrating
with an example. Consider a situation where there is some
significant mispricing, and the time is very far from maturity.
In this situation, it makes sense that we would be willing to
take on a larger position (along with more risk) because there is
more time for the process to potentially revert back to the mean
before the final time. In fact, if the time is long enough, it is
almost guaranteed.As the time gets closer to maturity however,
we are less willing to take on a large position because there is
a significant chance that the prices may not revert back to the
mean before maturity is reached, resulting in an unnecessary
loss.

The dependence of our solution on the time to maturity is
inherent to the fact that the dynamic programming principle
approach is backward and eliminating the need to know a
priori the time horizon would require reframing our problem.
A possible solution would be to use the approach proposed
by Musiela and Zariphopoulou (2008) consisting in applying
a forward performance criterion. This is beyond the scope of
this paper and we do not address this question herein.

In what follows, we vary slightly the assumptions in our
model and observe the effects. As a first step, we replace
the geometric Brownian motion by the arithmetic Brownian
motion for modelling the asset prices and we assume that the
price themselves are cointegrated. Secondly, we seek a control
of the form π∗ = βω where ω is a r vector, thus reducing the
number of degrees of freedom from n to r , with the goal of
investigating the commonly held opinion that an arbitrageur
should invest directly in the cointegrating process. Thirdly, we
focus exclusively on the time-independent component of the
portfolio weights and finally establish its connection to the
standard double-threshold strategy.

3.1. The arithmetic Brownian motion asset price model

In the strategy outlined in the previous section, we used a geo-
metric Brownian motion as a building block for modelling the
cointegrated prices. Furthermore, since we wanted to derive an
analytical solution while using this approach, it was necessary
for us to formulate the problem such that the cointegrated time
series are the log-prices, rather than the asset prices themselves.
Here we assume that the cointegrated processes are linear
combinations of the asset prices themselves and we replace the
geometric Brownian motion by an arithmetic Brownian motion
in the asset prices model. The derivation of the solution of the
arithmetic model is almost the same as in the log normal case
and yields

π̃∗(t, z) = 1

γ

[ (
In − βδt (T − t)

)
(σσ t )−1(μ + δz)

− βδt (σσ t )−1δb
(T − t)2

2

]
,

where π̃∗(t, z) now denotes the number of shares of these
assets held rather than the amount invested. In the remainder
of this paper, we name this second type of formulation Normal
Asset Model (NAM in short), whereas the first one is referred
to as Log Normal Asset Model (LNAM in short).
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Figure 1. Example of a buy-move-sell pair trade.

Figure 2. Example of an instantaneous pair trade.

3.2. The normal asset model with investment in the cointe-
grating process

While the strategies up to this point in the paper have left the
investor with the freedom to simply invest in an optimal way,
most strategies used in practice have the characteristic that
the positions taken are a linear combination of the vectors of
cointegrating coefficients. This may sound unfamiliar, but in
fact it is a constraint built into many pairs trading strategies and
one might ask whether this constraint would have an effect on
the optimal trading trajectory. Mathematically, this constraint
is expressed as

π∗ = βω,

where ω ∈ R
r , which represents the vector of weights for

each of the r components of the cointegrating process, must
be determined. It is easy to see that, under this restriction, the
optimal strategy takes the form

π∗(t, z) = 1

γ

[ (
β(β tσσ tβ)−1β t − βδt (σσ t )−1(T − t)

)

× (μ + δz) − βδt (σσ t )−1δb
(T − t)2

2

]
.

It is worth noting that this solution is the orthogonal projection
of the unconstrained solution (the NAM strategy) onto the r-
dimensional subspace of mean-reverting processes spanned
by the columns of β. In the rest of this paper, we use the
abbreviation NAMIC for this strategy.

3.3. Time-independent normal asset model with investment
in the cointegrating process

With the aim of relating our strategy to the double-threshold
strategy, we simply truncate the time-dependent term from the
previous NAMIC model, leading to the suboptimal strategy

π∗
0(z) = 1

γ

[
β(β tσσ tβ)−1β t (μ + δz)

]
.

This constitutes a significant simplification that brings the
problem closer to familiar territory to most traders. However,
as illustrated by the out-of-sample experiments reported in
the next section, this simplification will significantly reduce
the accumulated profit. In the remainder of this paper, we
abbreviate this strategy TINAMIC, the first two letters standing
for Time-Independent.

3.4. Connection to the classic double-threshold strategy

We show below that the classic double-threshold strategy,
which is only applicable in the case when there is a unique coin-
tegration relation (r = 1), can be viewed as a simplification or
quantization of the TINAMIC strategy. In this subsection, we
assume that r = 1 and establish this connection.

In the arithmetic model, assuming b = 0 to simplify, the
long-run mean of the process z is given by

ν̃ = −(β tδ)−1β tμ,

and the long-run volatility coefficient of z is the constant

σz = 1√
2
(−β tδ)−

1
2 ||σ tβ||.

The double-threshold strategy can be then described as fol-
lows: one usually sets thresholds above and below the long-
run average. The upper bound is of the form ν̃ + λσz , where
the parameter λ is typically set to 2, whereas the lower bound
is ν̃ − λσz . Each time z rises above the threshold ν̃ + λσz ,
one takes the position π0 = Kβ, where K , which dictates the
size of the position, is a parameter to be determined, and holds
this position for as long as the process z stays above the lower
bound. If z falls below the lower bound, then one takes the
opposite position π0 = −Kβ instead and holds it for as long
as z stays below the upper threshold.

Furthermore, we notice that, when z crosses one of the
thresholds, the value of the TINAMIC strategy corresponding
to that specific value of z equates the double-threshold strategy.
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Bitcoin Historical Prices (2015−06−19−−2015−07−06) before imputation
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Figure 3. Raw historical price data in us dollars for BTC-e, Bitstamp, and itBit, from 19 June 2015 to 06 July 2015.

In order to see this, we assume for instance that z crosses the
upper bound; its value at the time of the threshold-crossing
event is then

z = ν̃ + λσz .

Substituting z into the formula for the TINAMIC control yields

π∗
0(z) = 1

γ

(
β(β tσσ tβ)−1β t (μ + δz)

)

= 1

γ

[
β(β tσσ tβ)−1β t

(
μ − δ(β tδ)−1β tμ

+ λδ
1√
2
(−β tδ)−

1
2 ||σ tβ||

)]

= λ√
2γ

(β tσσ tβ)−
1
2 (−β tδ)

1
2 β

= λ

2γ σz
β.

Finally, we can equate the control computed above to the
double-threshold strategy

π∗
0 (z) = π0 = Kβ.

Solving the above equation for K yields

K = 1

2

λ

γ σz
.

We observe that the size of the position is inversely propor-
tional to both the volatility coefficient of the process z and the
risk aversion parameter.

Additionally, we include examples of live pair trades from
transaction history. In practice, there are two fundamentally
different ways of implementing a pairs trade using the double-
threshold in bitcoin markets. The more common implemen-
tation, which we refer to as buy-move-sell, involves buying
bitcoins on one exchange, sending them to the other exchange

using the blockchain network and then selling them at the
destination (see figure 1). This implementation seems attractive
to many bitcoin traders because it leverages the essentially free
withdrawals and deposits on the blockchain. A direct imple-
mentation, or in other words, an instantaneous pair trade, is
preferable, since there is no transfer period during which the
trader is exposed to currency risk. However, it is only feasible
when there are dollars and bitcoins present on all exchanges at
all times. This in turn means that the trader must have a cheap
credit line for bitcoins, which is somewhat difficult to find,
but possible using peer-to-peer bitcoin lending markets (see
figure 2). While the two legs of the instantaneous pairs trade
are not of the same size, this example demonstrates that such
spreads occurred with sufficient market depth and frequency
to allow for a round-trip pair trade using a double-threshold
in two days. By a round trip, we mean two successive pair
trades triggered by crossing over the upper threshold and then
back under the lower threshold, thereby restoring the capital
allocation to its original state.

In the section that follows, we contribute further to the study
of the applicability of our model, by backtesting it using one
set of historical data in the bitcoin markets.

4. Experiments in the bitcoin markets

We illustrate the results of the previous sections by testing
the computed optimal trading strategies in the bitcoin markets.
Clearly, this experiment does not constitute a systematic study
of the model’s performance.

The data used for the test described below are from
bitcoincharts.com, and dates from 04 January 2014 to 03 June
2016. In January 2014, a major market disaster caused unprece-
dented turmoil in the bitcoin markets which, in turn, resulted
in extreme spreads and volatility (even by bitcoin standards).

bitcoincharts.com
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Bitcoin Historical Prices (2015−06−19−−2015−07−06) after imputation
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Figure 4. Historical price data in us dollars for BTC-e , Bitstamp and itBit, after imputation with a Brownian bridge.

Table 1. In-sample estimates of model parameters.

Strat Exchange Order β δ a b μ γ

LNAM bitstampUSD 1st order 1.00E+00 −1.59E−01 8.62E−04 1.14E−06 7.92E−05 1.04E+02
LNAM bitstampUSD 2nd order 0.00E+00 2.17E−02 2.58E−02 −2.41E−06 7.92E−05 1.04E+02
LNAM btceUSD 1st order −6.94E−18 2.93E−03 8.62E−04 1.14E−06 7.52E−05 1.04E+02
LNAM btceUSD 2nd order 1.00E+00 −9.22E−02 2.58E−02 −2.41E−06 7.52E−05 1.04E+02
LNAM itbitUSD 1st order −1.00E+00 1.35E−01 8.62E−04 1.14E−06 6.10E−05 1.04E+02
LNAM itbitUSD 2nd order −1.00E+00 1.58E−02 2.58E−02 −2.41E−06 6.10E−05 1.04E+02
NAM bitstampUSD 1st order 1.00E+00 −1.27E−01 −1.77E+00 5.57E−04 −1.68E−02 3.54E+01
NAM bitstampUSD 2nd order 0.00E+00 2.87E−02 2.28E+00 −9.67E−04 −1.68E−02 3.54E+01
NAM btceUSD 1st order 0.00E+00 3.86E−02 −1.77E+00 5.57E−04 −1.69E−02 3.54E+01
NAM btceUSD 2nd order 1.00E+00 −1.09E−01 2.28E+00 −9.67E−04 −1.69E−02 3.54E+01
NAM itbitUSD 1st order −9.99E−01 1.46E−01 −1.77E+00 5.57E−04 −1.63E−02 3.54E+01
NAM itbitUSD 2nd order −9.91E−01 1.95E−02 2.28E+00 −9.67E−04 −1.63E−02 3.54E+01
NAMIC bitstampUSD 1st order 1.00E+00 −1.27E−01 −1.77E+00 5.57E−04 −1.68E−02 3.54E+01
NAMIC bitstampUSD 2nd order 0.00E+00 2.87E−02 2.28E+00 −9.67E−04 −1.68E−02 3.54E+01
NAMIC btceUSD 1st order 0.00E+00 3.86E−02 −1.77E+00 5.57E−04 −1.69E−02 3.54E+01
NAMIC btceUSD 2nd order 1.00E+00 −1.09E−01 2.28E+00 −9.67E−04 −1.69E−02 3.54E+01
NAMIC itbitUSD 1st order −9.99E−01 1.46E−01 −1.77E+00 5.57E−04 −1.63E−02 3.54E+01
NAMIC itbitUSD 2nd order −9.91E−01 1.95E−02 2.28E+00 −9.67E−04 −1.63E−02 3.54E+01
TINAMIC bitstampUSD 1st order 1.00E+00 −1.27E−01 −1.77E+00 5.57E−04 −1.68E−02 6.76E−02
TINAMIC bitstampUSD 2nd order 0.00E+00 2.87E−02 2.28E+00 −9.67E−04 −1.68E−02 6.76E−02
TINAMIC btceUSD 1st order 0.00E+00 3.86E−02 −1.77E+00 5.57E−04 −1.69E−02 6.76E−02
TINAMIC btceUSD 2nd order 1.00E+00 −1.09E−01 2.28E+00 −9.67E−04 −1.69E−02 6.76E−02
TINAMIC itbitUSD 1st order −9.99E−01 1.46E−01 −1.77E+00 5.57E−04 −1.63E−02 6.76E−02
TINAMIC itbitUSD 2nd order −9.91E−01 1.95E−02 2.28E+00 −9.67E−04 −1.63E−02 6.76E−02

The markets during this period were also highly illiquid, and
therefore since extremely high transaction costs would likely
distort results, this period and any history before then were
excluded from the analysis. The trade prices in US dollars on
the three exchanges BTC-e, Bitstamp and itBit are downloaded
from this website.

Next, we have to select a sensible sampling frequency ac-
counting for the presence of microstructure noise in the data.
Note that the microstructure noise was not incorporated in the

stochastic problem proposed in section 2 and that we simply
assumed that the variables x representing the log-prices were
observable. First of all, our raw data-set, which contains all the
trade prices, exhibits some significant serial autocorrelations.
These become insignificant if the time interval between two
adjacent samples is greater or equal to 1000 s. Besides, we
apply formula (19) in Ait-Sahalia et al. (2005) providing the
optimal sampling frequency of an asset, given an estimate of
the standard variation of the microstructure noise, of the asset
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Figure 5. The positions (in BTC) in the three exchanges over time for the four trading strategies in an in-sample test. Note that the positions
for all strategies are normalized so that their maximum positions over the testing interval are equal.

Profit and Loss (in−sample)
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Figure 6. Profit and Loss (PnL) generated by in-sample backtesting of the four strategies. Note that the NAM trajectory is barely visible due
to its overlap with the NAMIC trajectory.

volatility and of the length of the time-interval used for estimat-
ing the volatility. To this end, we compute an estimate of the
standard deviation of the microstructure noise a in the follow-
ing manner: to simplify, we assume that the bid-ask spread s is

the sole source of noise and set a to s/2. On the three exchanges
we consider, the bid-ask spread rarely reaches up to 2% of the
asset price. Considering this as a three sigma event yields the
estimate a = 0.3%. Given that the annualized volatility is
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Table 2. In-sample estimate of the covariance matrix of the log-
returns for 16, 000 s intervals (main model).

Bitstamp BTC-e itBit

Bitstamp 0.0002363 0.0002067 0.0001868
BTC-e 0.0002067 0.0002275 0.0001717
itBit 0.0001868 0.0001717 0.0001979

about 0.7, and using a 40-day rolling window for the estima-
tion, (19) yields an interval of about 16 000 s. Consequently, the
data we use in the tests we present below are sampled at 16 000
s intervals. It is worth mentioning that we also conducted addi-
tional out-of-sample experiments at various sampling frequen-
cies, namely for 1000, 5000, 8000, 16 0000, 40 000 s intervals,
and although, the results differed somewhat, they all yielded a
positive profit.

When dealing with any markets that are inefficient enough
to apply this kind of analysis, it is practical to expect that
there may be limitations in the quality of the data. The data
from bitcoincharts had a major issue: some of the exchanges
would have occasional extended periods with no price change,
whether because of technical problems, extended Distributed
Denial of Service attacks or simply because of low volume.
This has a drastic effect on the spreads of the exchanges, and
can cause spikes in the estimates of the matrix β, which are then
amplified by spikes in the process z, thus creating large dis-
continuities in the optimal trading trajectory. In order to solve
this problem, the time series for each exchange were processed
through a filter that identified extended periods without a price
change and then imputed these areas with a series of Brownian
bridges. In the data-set used, there were only two such extended
periods without any price change, with the longest one on
Bitstamp lasting one week (see figures 3 and 4 below).

The presence of cointegration was tested using the Johansen
test implemented in the R library tsDyn. The cointegration
matrices δ and β t , as well as the parameters a, b in the cointe-
grating relations, were also estimated with the package tsDyn.
The columns of β are ordered in decreasing magnitude of their
corresponding eigenvalue. So the first element of z, associated
with the first column of β, also corresponds to the largest
eigenvalue, while the second element of z corresponds to the
second largest eigenvalue. In the discussion and the figures that
follow, we refer to the elements of z as first- and second-order
components of z. Finally, the other parameters in the model
were estimated using the maximum likelihood method.

We implemented the four strategies derived from our model,
namely LNAM, NAM, NAMIC and TINAMIC, and conducted
both in-sample and out-of-sample tests for all of these. This ne-
cessitates estimating all the parameters in the model numerous
times, once for the in-sample test on the whole time frame, and
in all the successive time windows for the out-of-sample test.
For the sake of brevity, we only show here the estimated in-
sample parameters in tables 1 and 2. We observe that the value
of b turns out to be very small for this data-set when the whole
time interval is used. For the out-of-sample tests, we update
the parameters regularly using a 40-day look-back window.
As explained above, the choice of the sampling frequency is
consistent with a length of 40 days for the sliding window.

Since we are using the exponential utility function for con-
venience, the initial capital is irrelevant as it factors out of the
value function. In other words, the initial wealth is arbitrary and

the rate of return cannot be computed. For instance, the initial
capital can be simply taken equal to 0. For each application
of the model, we compute here the resulting cumulative profit
and loss in US Dollars.

Besides, as we can see in (14)–(17), the size of each position
is inversely proportional to the risk aversion parameter γ . In
order to standardize the graphs among the various strategies,
the values of γ were chosen such that the maximum position for
all of the strategies over the displayed time period is the same.
While this choice is important for visualization purposes, we
also take into account the average daily trading volume of the
strategy when choosing γ . Thus, the maximum position was
set to 10 BTC so that the average daily trading volume by all
of our models stays below 0.1% of the average daily volume
of the least liquid market. In summary, the strategies are first
run in order to determine their maximum position over the
time period, and then the values of γ , position sizes, and PnL
curves are adjusted so that these constraints on visualization
and market impact costs are reflected. For instance, for the
in-sample test for the LNAM strategy to achieve a maximum
position of 10 BTC yields a value of γ equal to 103.59 as
seen in table 1. Table 3 shows that for the LNAM strategy
corresponding to this choice of γ , the average daily trading
volume on Bitstamp, BTC-e and itBit are, respectively, equal to
2.73 BTC, 0.465 BTC and 2.42 BTC. Note that the maximum
daily trading volume over the testing period got as high as
31.9 BTC on Bitstamp, which is roughly 1% of average daily
volume on that exchange. In practice, the calibration of γ

would likely be done iteratively using a running optimization,
but the appropriate implementation of this calibration is a much
larger topic and beyond the scope of this paper.

Next, in the out-of-sample test, we apply the model in a
consecutive series of intervals, rebalancing our positions with
the same frequency as the chosen sampling frequency, that is,
every 16 000 s. In each application, the parameters are set to
the estimates obtained for the data in the previous window, the
initial time is set to the beginning of the current interval and
the final time horizon is taken to be the last date in the data-set.
Note that the first 40-day window is only used for estimating
the first set of parameters and that we do not start trading until
the beginning of the second window. Since all of the out-of-
sample tests are disjoint from each other in time, we depict the
results in a single chart.

Finally, we subtract an estimated transaction fee and bid-
ask slippage from the profit and loss. We assume that the
transaction fee is proportional to the volume traded. We show
in table 4, the numerical values of the constant proportional
transaction fees and the bid-ask spread expressed as a percent-
age of the price for the three exchanges.

Figures 5 and 6 are graphs describing the in-sample per-
formance of the four strategies, so that all market parameters
are estimated over the entire period and held constant. Figures
7 and 8 shows the in-sample process z and matrix of cointegra-
tion coefficients β for the NAM strategy. The out-of-sample
positions and cumulative profits and losses for each of the four
strategies are given in figures 9 and 10. The out-of-sample
process z and the matrix of cointegration parameters β for the
NAM strategy are given, respectively, in figures 11 and 12.

We observe that the in-sample and out-of-sample tests yield
similar results. Indeed, in both in-sample and out-of-sample
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Cointegrating Process (in−sample)
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Figure 7. The first- and second-order components of z over time, estimated in-sample, for the arithmetic model.

Cointegration Vectors (in−sample)

date

β

−1.0

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

2014−07−01 00:00:00 2015−07−01 00:00:00

1−th order

2014−07−01 00:00:00 2015−07−01 00:00:00

2−th order

Bitstamp BTC−e itBit

Figure 8. The first- and second-order cointegration vectors over time, estimated in-sample (columns of β), for the arithmetic model. Note
that since we estimate the parameters only once for the entire sample, these vectors are constant over time.

tests, the trading trajectories follow either a pattern that is either
roughly decreasing (LNAM, NAM and NAMIC), or constant
(TINAMIC) (see figures 5 and 9). This is consistent with the

fact that the TINAMIC strategy is the only one whose positions
do not increase with time to maturity. One consequence of
this is that while the TINAMIC strategy performs poorly to
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Figure 9. The positions (in BTC) in the three exchanges over time for the four strategies in an out-of-time test. Note that since the positions
are generated only using a 40-day rolling window of historical data, we are not able to include the first 40 days in the tests as this window is
used for the initial estimation of parameters.
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Figure 10. Profit and Loss (PnL) generated by out-of-time backtesting of the four strategies.

moderately towards the beginning of the trading period, it
tends to outperform the other strategies towards the end, since
it maintains positions of high magnitude even as the time
approaches maturity, ignoring the fact that the prices may not
revert back before the end of the trading period. Conversely, the
other strategies have PnL curves that flatten as they approach

maturity, because their positions shrink in magnitude as they
approach the time horizon (see figures 6 and 10). In addition,
it is clear that the NAM and NAMIC strategies are nearly
(though not exactly) identical. This supports the intuition that
the investor can make the simplifying assumption that she
should consider the cointegrating processes to be the assets



12 P. S. Lintilhac and A. Tourin

Table 3. Trading volume for each strategy on the three exchanges in BTC.

strategy exchange maxDailyTrade avgDailyTrade biggestTrade avgTrade

LNAM Bitstamp 3.19E+01 2.73E+00 8.25E+00 1.90E−01
LNAM BTC-e 5.11E+00 4.65E−01 1.80E+00 3.30E−02
LNAM itBit 2.87E+01 2.42E+00 6.01E+00 1.68E−01
NAM Bitstamp 3.83E+01 2.76E+00 1.01E+01 1.81E−01
NAM BTC-e 1.11E+01 8.55E−01 4.52E+00 5.73E−02
NAM itBit 3.28E+01 2.29E+00 9.54E+00 1.48E−01
NAMIC Bitstamp 3.83E+01 2.76E+00 1.01E+01 1.81E−01
NAMIC BTC-e 1.11E+01 8.55E−01 4.52E+00 5.73E−02
NAMIC itBit 3.28E+01 2.29E+00 9.54E+00 1.48E−01
TINAMIC Bitstamp 5.46E+01 4.59E+00 1.03E+01 3.18E−01
TINAMIC BTC-e 3.18E+01 2.83E+00 1.09E+01 1.99E−01
TINAMIC itBit 4.18E+01 3.20E+00 9.96E+00 2.15E−01
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Figure 11. The first- and second-order components of z over time, using a rolling out-of-time window for estimation, for the arithmetic
model.

Table 4. Transaction fee and bid-ask spread.

Bitstamp BTC-e itBit

Transaction fees (per number of Bitcoins traded) 0.0025 0.002 0.002
Bid-ask spread (as a fraction of the price in USD) 0.005 0.005 0.01

unto themselves, so that all positions are linear combinations
of these cointegration vectors. In the case of two assets with a
cointegrating vector close to (−1, 1), this intuition means that
the investor can and should trade the spread.

5. Conclusion

We proposed a pairs trading model for a portfolio of cointe-
grated assets, derived the optimal trading strategies in closed-
form and proved a verification result. We tested the effects of
assuming normal asset dynamics, constraining the positions

to be linear combinations of the cointegrating processes and
truncating the terms that depend explicitly on the time-to-
maturity. We then draw a mathematical connection to the clas-
sical double-threshold strategy and spend some time discussing
the implementation of such a strategy, using live trading ex-
amples. Finally, in order to better understand the model, we
performed an out-of-sample test in the bitcoin markets.

While pairs trading in bitcoin markets have certainly been
possible historically, this paper is in no way suggesting that the
reader go out and implement one of these strategies today using
a large amount of capital. Despite the care taken to avoid certain
pitfalls in backtesting such as bid/ask slippage, transaction
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Figure 12. The first- and second-order cointegration vectors over time, using a rolling out-of-time window for estimation, for the arithmetic
model.

costs and market impact costs, there are still some significant
assumptions being made that could distort the tests results.
There are major operational risks involved in implementing
an automated trading strategy, including but not limited to
latency risk. Secondly, there are times when limited liquidity
and market depth could cause significant market impact costs
to the trader, even using the limits on maximum position that
we have deemed appropriate, and especially using much more
capital. These effects would particularly distort the profit and
loss at times when the cointegrating process has a very large
magnitude, as the liquidity at these times is likely to be low, and
the price is likely to be moving very fast, which could easily
turn a profitable trade during testing into a real loss.

Notably, the LNAM model has a quadratic dependence on
the time-to-maturity because of the convexity adjustment in the
lognormal asset dynamics. However, the three strategies that
are exact solutions to stochastic control problems—LNAM,
NAM and NAMIC—all have at least a linear dependence on
the time-to-maturity, which is a more fundamental feature of
the problem’s formulation.As discussed in section 3, we cannot
remedy this dependence by simply taking the limiting case of
an infinite horizon, since it causes the value function to become
unbounded. In the future, we are planning to investigate the
applicability of the forward performance criterion developed in
Musiela and Zariphopoulou (2008) to our pairs trading model
to eliminate the need to fix the time horizon.
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