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Praise for Advances in Financial Machine Learning

In his new book Advances in Financial Machine Learning, noted financial scholar
Marcos López de Prado strikes a well-aimed karate chop at the naive and often statis-
tically overfit techniques that are so prevalent in the financial world today. He points
out that not only are business-as-usual approaches largely impotent in today’s high-
tech finance, but in many cases they are actually prone to lose money. But López de
Prado does more than just expose the mathematical and statistical sins of the finance
world. Instead, he offers a technically sound roadmap for finance professionals to join
the wave ofmachine learning.What is particularly refreshing is the author’s empirical
approach—his focus is on real-world data analysis, not on purely theoretical meth-
ods that may look pretty on paper but which, in many cases, are largely ineffective in
practice. The book is geared to finance professionals who are already familiar with
statistical data analysis techniques, but it is well worth the effort for those who want
to do real state-of-the-art work in the field.”

Dr. David H. Bailey, former Complex Systems Lead,
Lawrence Berkeley National Laboratory. Co-discoverer of the

BBP spigot algorithm

“Finance has evolved from a compendium of heuristics based on historical financial
statements to a highly sophisticated scientific discipline relying on computer farms
to analyze massive data streams in real time. The recent highly impressive advances
in machine learning (ML) are fraught with both promise and peril when applied to
modern finance. While finance offers up the nonlinearities and large data sets upon
whichML thrives, it also offers up noisy data and the human element which presently
lie beyond the scope of standard ML techniques. To err is human, but if you really
want to f**k things up, use a computer. Against this background, Dr. López de Prado
has written the first comprehensive book describing the application of modern ML
to financial modeling. The book blends the latest technological developments in ML
with critical life lessons learned from the author’s decades of financial experience in
leading academic and industrial institutions. I highly recommend this exciting book
to both prospective students of financial ML and the professors and supervisors who
teach and guide them.”

Prof. Peter Carr, Chair of the Finance and Risk Engineering
Department, NYU Tandon School of Engineering

“Marcos is a visionarywhoworks tirelessly to advance the finance field. His writing is
comprehensive and masterfully connects the theory to the application. It is not often
you find a book that can cross that divide. This book is an essential read for both
practitioners and technologists working on solutions for the investment community.”

Landon Downs, President and Cofounder, 1QBit

“Academics who want to understand modern investment management need to read
this book. In it, Marcos López de Prado explains how portfolio managers use machine
learning to derive, test, and employ trading strategies. He does this from a very
unusual combination of an academic perspective and extensive experience in indus-
try, allowing him to both explain in detail what happens in industry and to explain
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how it works. I suspect that some readers will find parts of the book that they do not
understand or that they disagree with, but everyone interested in understanding the
application of machine learning to finance will benefit from reading this book.”

Prof. David Easley, Cornell University. Chair of the
NASDAQ-OMX Economic Advisory Board

“For many decades, finance has relied on overly simplistic statistical techniques
to identify patterns in data. Machine learning promises to change that by allowing
researchers to use modern nonlinear and highly dimensional techniques, similar to
those used in scientific fields like DNA analysis and astrophysics. At the same time,
applying those machine learning algorithms to model financial problems would be
dangerous. Financial problems require very distinct machine learning solutions.
Dr. López de Prado’s book is the first one to characterize what makes standard
machine learning tools fail when applied to the field of finance, and the first one to
provide practical solutions to unique challenges faced by asset managers. Everyone
who wants to understand the future of finance should read this book.”

Prof. Frank Fabozzi, EDHEC Business School. Editor of
The Journal of Portfolio Management

“This is a welcome departure from the knowledge hoarding that plagues quantitative
finance. López de Prado defines for all readers the next era of finance: industrial scale
scientific research powered by machines.”

John Fawcett, Founder and CEO, Quantopian

“Marcos has assembled in one place an invaluable set of lessons and techniques for
practitioners seeking to deploy machine learning techniques in finance. If machine
learning is a new and potentially powerful weapon in the arsenal of quantitative
finance, Marcos’s insightful book is laden with useful advice to help keep a curi-
ous practitioner from going down any number of blind alleys, or shooting oneself in
the foot.”

Ross Garon, Head of Cubist Systematic Strategies. Managing
Director, Point72 Asset Management

“The first wave of quantitative innovation in finance was led by Markowitz optimiza-
tion. Machine Learning is the second wave, and it will touch every aspect of finance.
López de Prado’s Advances in Financial Machine Learning is essential for readers
who want to be ahead of the technology rather than being replaced by it.”

Prof. Campbell Harvey, Duke University. Former President of
the American Finance Association

“How does one make sense of todays’ financial markets in which complex algo-
rithms route orders, financial data is voluminous, and trading speeds are measured
in nanoseconds? In this important book, Marcos López de Prado sets out a new
paradigm for investment management built on machine learning. Far from being a
“black box” technique, this book clearly explains the tools and process of financial
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machine learning. For academics and practitioners alike, this book fills an important
gap in our understanding of investment management in the machine age.”

Prof. Maureen O’Hara, Cornell University. Former President of
the American Finance Association

“Marcos López de Prado has produced an extremely timely and important book on
machine learning. The author’s academic and professional first-rate credentials shine
through the pages of this book—indeed, I could think of few, if any, authors better
suited to explaining both the theoretical and the practical aspects of this new and
(for most) unfamiliar subject. Both novices and experienced professionals will find
insightful ideas, and will understand how the subject can be applied in novel and use-
ful ways. The Python code will give the novice readers a running start and will allow
them to gain quickly a hands-on appreciation of the subject. Destined to become a
classic in this rapidly burgeoning field.”

Prof. Riccardo Rebonato, EDHEC Business School. Former
Global Head of Rates and FX Analytics at PIMCO

“A tour de force on practical aspects of machine learning in finance, brimming with
ideas on how to employ cutting-edge techniques, such as fractional differentiation
and quantum computers, to gain insight and competitive advantage. A useful volume
for finance and machine learning practitioners alike.”

Dr. Collin P. Williams, Head of Research, D-Wave Systems
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MARCOS LÓPEZ DE PRADO
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Dedicated to the memory of my coauthor and friend,
Professor Jonathan M. Borwein, FRSC, FAAAS,

FBAS, FAustMS, FAA, FAMS, FRSNSW
(1951–2016)
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There are very few things which we know, which are not capable of
being reduced to a mathematical reasoning. And when they cannot,
it’s a sign our knowledge of them is very small and confused. Where a
mathematical reasoning can be had, it’s as great a folly to make use of
any other, as to grope for a thing in the dark, when you have a candle
standing by you.

—Of the Laws of Chance, Preface (1692)
John Arbuthnot (1667–1735)
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CHAPTER 1

Financial Machine Learning as a
Distinct Subject

1.1 MOTIVATION

Machine learning (ML) is changing virtually every aspect of our lives. Today ML
algorithms accomplish tasks that until recently only expert humans could perform.
As it relates to finance, this is the most exciting time to adopt a disruptive technology
that will transform how everyone invests for generations. This book explains scien-
tifically sound ML tools that have worked for me over the course of two decades,
and have helped me to manage large pools of funds for some of the most demanding
institutional investors.

Books about investments largely fall in one of two categories. On one hand we
find books written by authors who have not practiced what they teach. They contain
extremely elegant mathematics that describes a world that does not exist. Just because
a theorem is true in a logical sense does not mean it is true in a physical sense. On the
other hand we find books written by authors who offer explanations absent of any
rigorous academic theory. They misuse mathematical tools to describe actual obser-
vations. Their models are overfit and fail when implemented. Academic investigation
and publication are divorced from practical application to financial markets, and
many applications in the trading/investment world are not grounded in proper science.

A first motivation for writing this book is to cross the proverbial divide that sepa-
rates academia and the industry. I have been on both sides of the rift, and I understand
how difficult it is to cross it and how easy it is to get entrenched on one side. Virtue is
in the balance. This book will not advocate a theory merely because of its mathemat-
ical beauty, and will not propose a solution just because it appears to work. My goal
is to transmit the kind of knowledge that only comes from experience, formalized in
a rigorous manner.

3
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4 FINANCIAL MACHINE LEARNING AS A DISTINCT SUBJECT

A second motivation is inspired by the desire that finance serves a purpose. Over
the years some of my articles, published in academic journals and newspapers, have
expressed my displeasure with the current role that finance plays in our society.
Investors are lured to gamble their wealth on wild hunches originated by charlatans
and encouraged bymassmedia. One day in the near future,MLwill dominate finance,
science will curtail guessing, and investing will not mean gambling. I would like the
reader to play a part in that revolution.

A third motivation is that many investors fail to grasp the complexity of ML appli-
cations to investments. This seems to be particularly true for discretionary firms mov-
ing into the “quantamental” space. I am afraid their high expectations will not be
met, not because ML failed, but because they used ML incorrectly. Over the com-
ing years, many firms will invest with off-the-shelf ML algorithms, directly imported
from academia or Silicon Valley, and my forecast is that they will lose money (to
better ML solutions). Beating the wisdom of the crowds is harder than recognizing
faces or driving cars. With this book my hope is that you will learn how to solve some
of the challenges that make finance a particularly difficult playground for ML, like
backtest overfitting. Financial ML is a subject in its own right, related to but separate
from standard ML, and this book unravels it for you.

1.2 THE MAIN REASON FINANCIAL MACHINE LEARNING
PROJECTS USUALLY FAIL

The rate of failure in quantitative finance is high, particularly so in financial ML. The
few who succeed amass a large amount of assets and deliver consistently exceptional
performance to their investors. However, that is a rare outcome, for reasons explained
in this book. Over the past two decades, I have seen many faces come and go, firms
started and shut down. In my experience, there is one critical mistake that underlies
all those failures.

1.2.1 The Sisyphus Paradigm

Discretionary portfolio managers (PMs) make investment decisions that do not fol-
low a particular theory or rationale (if there were one, they would be systematic PMs).
They consume raw news and analyses, but mostly rely on their judgment or intu-
ition. They may rationalize those decisions based on some story, but there is always
a story for every decision. Because nobody fully understands the logic behind their
bets, investment firms ask them to work independently from one another, in silos, to
ensure diversification. If you have ever attended a meeting of discretionary PMs, you
probably noticed how long and aimless they can be. Each attendee seems obsessed
about one particular piece of anecdotal information, and giant argumentative leaps
are made without fact-based, empirical evidence. This does not mean that discre-
tionary PMs cannot be successful. On the contrary, a few of them are. The point is,
they cannot naturally work as a team. Bring 50 discretionary PMs together, and they
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THE MAIN REASON FINANCIAL MACHINE LEARNING PROJECTS USUALLY FAIL 5

will influence one another until eventually you are paying 50 salaries for the work of
one. Thus it makes sense for them to work in silos so they interact as little as possible.

Wherever I have seen that formula applied to quantitative or ML projects, it has
led to disaster. The boardroom’s mentality is, let us do with quants what has worked
with discretionary PMs. Let us hire 50 PhDs and demand that each of them produce an
investment strategy within six months. This approach always backfires, because each
PhD will frantically search for investment opportunities and eventually settle for (1)
a false positive that looks great in an overfit backtest or (2) standard factor investing,
which is an overcrowded strategy with a low Sharpe ratio, but at least has academic
support. Both outcomes will disappoint the investment board, and the project will
be cancelled. Even if 5 of those PhDs identified a true discovery, the profits would
not suffice to cover for the expenses of 50, so those 5 will relocate somewhere else,
searching for a proper reward.

1.2.2 The Meta-Strategy Paradigm

If you have been asked to develop ML strategies on your own, the odds are stacked
against you. It takes almost as much effort to produce one true investment strategy
as to produce a hundred, and the complexities are overwhelming: data curation and
processing, HPC infrastructure, software development, feature analysis, execution
simulators, backtesting, etc. Even if the firm provides you with shared services in
those areas, you are like a worker at a BMW factory who has been asked to build an
entire car by using all the workshops around you. One week you need to be a master
welder, another week an electrician, another week a mechanical engineer, another
week a painter . . . You will try, fail, and circle back to welding. How does that
make sense?

Every successful quantitative firm I am aware of applies the meta-strategy
paradigm (López de Prado [2014]). Accordingly, this book was written as a research
manual for teams, not for individuals. Through its chapters you will learn how to set
up a research factory, as well as the various stations of the assembly line. The role of
each quant is to specialize in a particular task, to become the best there is at it, while
having a holistic view of the entire process. This book outlines the factory plan,
where teamwork yields discoveries at a predictable rate, with no reliance on lucky
strikes. This is how Berkeley Lab and other U.S. National Laboratories routinely
make scientific discoveries, such as adding 16 elements to the periodic table, or
laying out the groundwork for MRIs and PET scans.1 No particular individual is
responsible for these discoveries, as they are the outcome of team efforts where
everyone contributes. Of course, setting up these financial laboratories takes time,
and requires people who know what they are doing and have done it before. But
what do you think has a higher chance of success, this proven paradigm of organized
collaboration or the Sisyphean alternative of having every single quant rolling their
immense boulder up the mountain?

1 Berkeley Lab, http://www.lbl.gov/about.
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6 FINANCIAL MACHINE LEARNING AS A DISTINCT SUBJECT

1.3 BOOK STRUCTURE

This book disentangles a web of interconnected topics and presents them in an
ordered fashion. Each chapter assumes that you have read the previous ones. Part
1 will help you structure your financial data in a way that is amenable to ML algo-
rithms. Part 2 discusses how to do research with ML algorithms on that data. Here
the emphasis is on doing research and making an actual discovery through a scien-
tific process, as opposed to searching aimlessly until some serendipitous (likely false)
result pops up. Part 3 explains how to backtest your discovery and evaluate the prob-
ability that it is false.

These three parts give an overview of the entire process, from data analysis to
model research to discovery evaluation. With that knowledge, Part 4 goes back to the
data and explains innovative ways to extract informative features. Finally, much of
this work requires a lot of computational power, so Part 5 wraps up the book with
some useful HPC recipes.

1.3.1 Structure by Production Chain

Mining gold or silver was a relatively straightforward endeavor during the 16th and
17th centuries. In less than a hundred years, the Spanish treasure fleet quadrupled
the amount of precious metals in circulation throughout Europe. Those times are
long gone, and today prospectors must deploy complex industrial methods to extract
microscopic bullion particles out of tons of earth. That does not mean that gold
production is at historical lows. On the contrary, nowadays miners extract 2,500
metric tons of microscopic gold every year, compared to the average annual 1.54
metric tons taken by the Spanish conquistadors throughout the entire 16th century!2

Visible gold is an infinitesimal portion of the overall amount of gold on Earth. El
Dorado was always there . . . if only Pizarro could have exchanged the sword for a
microscope.

The discovery of investment strategies has undergone a similar evolution. If a
decade ago it was relatively common for an individual to discover macroscopic alpha
(i.e., using simplemathematical tools like econometrics), currently the chances of that
happening are quickly converging to zero. Individuals searching nowadays for macro-
scopic alpha, regardless of their experience or knowledge, are fighting overwhelming
odds. The only true alpha left is microscopic, and finding it requires capital-intensive
industrial methods. Just like with gold, microscopic alpha does not mean smaller
overall profits. Microscopic alpha today is much more abundant than macroscopic
alpha has ever been in history. There is a lot of money to be made, but you will need
to use heavy ML tools.

Let us review some of the stations involved in the chain of production within a
modern asset manager.

2 http://www.numbersleuth.org/worlds-gold/.
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BOOK STRUCTURE 7

1.3.1.1 Data Curators
This is the station responsible for collecting, cleaning, indexing, storing, adjusting,
and delivering all data to the production chain. The values could be tabulated or
hierarchical, aligned or misaligned, historical or real-time feeds, etc. Team mem-
bers are experts in market microstructure and data protocols such as FIX. They must
develop the data handlers needed to understand the context in which that data arises.
For example, was a quote cancelled and replaced at a different level, or cancelled
without replacement? Each asset class has its own nuances. For instance, bonds are
routinely exchanged or recalled; stocks are subjected to splits, reverse-splits, voting
rights, etc.; futures and options must be rolled; currencies are not traded in a central-
ized order book. The degree of specialization involved in this station is beyond the
scope of this book, and Chapter 1 will discuss only a few aspects of data curation.

1.3.1.2 Feature Analysts
This is the station responsible for transforming raw data into informative signals.
These informative signals have some predictive power over financial variables. Team
members are experts in information theory, signal extraction and processing, visual-
ization, labeling, weighting, classifiers, and feature importance techniques. For exam-
ple, feature analysts may discover that the probability of a sell-off is particularly high
when: (1) quoted offers are cancelled-replaced with market sell orders, and (2) quoted
buy orders are cancelled-replaced with limit buy orders deeper in the book. Such a
finding is not an investment strategy on its own, and can be used in alternative ways:
execution, monitoring of liquidity risk, market making, position taking, etc. A com-
mon error is to believe that feature analysts develop strategies. Instead, feature ana-
lysts collect and catalogue libraries of findings that can be useful to a multiplicity of
stations. Chapters 2–9 and 17–19 are dedicated to this all-important station.

1.3.1.3 Strategists
In this station, informative features are transformed into actual investment algorithms.
A strategist will parse through the libraries of features looking for ideas to develop
an investment strategy. These features were discovered by different analysts studying
a wide range of instruments and asset classes. The goal of the strategist is to make
sense of all these observations and to formulate a general theory that explains them.
Therefore, the strategy is merely the experiment designed to test the validity of this
theory. Team members are data scientists with a deep knowledge of financial mar-
kets and the economy. Remember, the theory needs to explain a large collection of
important features. In particular, a theory must identify the economic mechanism that
causes an agent to lose money to us. Is it a behavioral bias? Asymmetric information?
Regulatory constraints? Features may be discovered by a black box, but the strategy
is developed in a white box. Gluing together a number of catalogued features does not
constitute a theory. Once a strategy is finalized, the strategists will prepare code that
utilizes the full algorithm and submit that prototype to the backtesting team described
below. Chapters 10 and 16 are dedicated to this station, with the understanding that
it would be unreasonable for a book to reveal specific investment strategies.
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8 FINANCIAL MACHINE LEARNING AS A DISTINCT SUBJECT

1.3.1.4 Backtesters
This station assesses the profitability of an investment strategy under various sce-
narios. One of the scenarios of interest is how the strategy would perform if history
repeated itself. However, the historical path is merely one of the possible outcomes of
a stochastic process, and not necessarily the most likely going forward. Alternative
scenarios must be evaluated, consistent with the knowledge of the weaknesses and
strengths of a proposed strategy. Teammembers are data scientists with a deep under-
standing of empirical and experimental techniques. A good backtester incorporates
in his analysis meta-information regarding how the strategy came about. In partic-
ular, his analysis must evaluate the probability of backtest overfitting by taking into
account the number of trials it took to distill the strategy. The results of this evaluation
will not be reused by other stations, for reasons that will become apparent in Chapter
11. Instead, backtest results are communicated to management and not shared with
anyone else. Chapters 11–16 discuss the analyses carried out by this station.

1.3.1.5 Deployment Team
The deployment team is tasked with integrating the strategy code into the production
line. Some components may be reused by multiple strategies, especially when they
share common features. Team members are algorithm specialists and hardcore
mathematical programmers. Part of their job is to ensure that the deployed solution
is logically identical to the prototype they received. It is also the deployment team’s
responsibility to optimize the implementation sufficiently, such that production
latency is minimized. As production calculations often are time sensitive, this team
will rely heavily on process schedulers, automation servers (Jenkins), vectoriza-
tion, multithreading, multiprocessing, graphics processing unit (GPU-NVIDIA),
distributed computing (Hadoop), high-performance computing (Slurm), and par-
allel computing techniques in general. Chapters 20–22 touch on various aspects
interesting to this station, as they relate to financial ML.

1.3.1.6 Portfolio Oversight
Once a strategy is deployed, it follows a cursus honorum, which entails the following
stages or lifecycle:

1. Embargo: Initially, the strategy is run on data observed after the end date of the
backtest. Such a period may have been reserved by the backtesters, or it may
be the result of implementation delays. If embargoed performance is consistent
with backtest results, the strategy is promoted to the next stage.

2. Paper trading:At this point, the strategy is run on a live, real-time feed. In this
way, performance will account for data parsing latencies, calculation latencies,
execution delays, and other time lapses between observation and positioning.
Paper trading will take place for as long as it is needed to gather enough evi-
dence that the strategy performs as expected.

3. Graduation:At this stage, the strategy manages a real position, whether in iso-
lation or as part of an ensemble. Performance is evaluated precisely, including
attributed risk, returns, and costs.
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BOOK STRUCTURE 9

4. Re-allocation: Based on the production performance, the allocation to gradu-
ated strategies is re-assessed frequently and automatically in the context of a
diversified portfolio. In general, a strategy’s allocation follows a concave func-
tion. The initial allocation (at graduation) is small. As time passes, and the strat-
egy performs as expected, the allocation is increased. Over time, performance
decays, and allocations become gradually smaller.

5. Decommission: Eventually, all strategies are discontinued. This happens when
they perform below expectations for a sufficiently extended period of time to
conclude that the supporting theory is no longer backed by empirical evidence.

In general, it is preferable to release new variations of a strategy and run them in
parallel with old versions. Each version will go through the above lifecycle, and old
strategies will receive smaller allocations as a matter of diversification, while taking
into account the degree of confidence derived from their longer track record.

1.3.2 Structure by Strategy Component

Many investment managers believe that the secret to riches is to implement an
extremely complex ML algorithm. They are setting themselves up for a disappoint-
ment. If it was as easy as coding a state-of-the art classifier, most people in Silicon
Valley would be billionaires. A successful investment strategy is the result of mul-
tiple factors. Table 1.1 summarizes what chapters will help you address each of the
challenges involved in developing a successful investment strategy.

Throughout the book, you will find many references to journal articles I have
published over the years. Rather than repeating myself, I will often refer you to
one of them, where you will find a detailed analysis of the subject at hand. All of
my cited papers can be downloaded for free, in pre-print format, from my website:
www.QuantResearch.org.

1.3.2.1 Data
� Problem: Garbage in, garbage out.
� Solution: Work with unique, hard-to-manipulate data. If you are the only user
of this data, whatever its value, it is all for you.

� How:
◦ Chapter 2: Structure your data correctly.
◦ Chapter 3: Produce informative labels.
◦ Chapters 4 and 5: Model non-IID series properly.
◦ Chapters 17–19: Find predictive features.

1.3.2.2 Software
� Problem: A specialized task requires customized tools.
� Solution: Develop your own classes. Using popular libraries means more com-
petitors tapping the same well.
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10 FINANCIAL MACHINE LEARNING AS A DISTINCT SUBJECT

TABLE 1.1 Overview of the Challenges Addressed by Every Chapter

Part Chapter Fin. data Software Hardware Math Meta-Strat Overfitting

1 2 X X
1 3 X X
1 4 X X
1 5 X X X

2 6 X
2 7 X X X
2 8 X X
2 9 X X

3 10 X X
3 11 X X X
3 12 X X X
3 13 X X X
3 14 X X X
3 15 X X X
3 16 X X X X

4 17 X X X
4 18 X X X
4 19 X X

5 20 X X X
5 21 X X X
5 22 X X X

� How:
◦ Chapters 2–22: Throughout the book, for each chapter, we develop our own
functions. For your particular problems, you will have to do the same, fol-
lowing the examples in the book.

1.3.2.3 Hardware
� Problem: ML involves some of the most computationally intensive tasks in all
of mathematics.

� Solution: Become an HPC expert. If possible, partner with a National Labora-
tory to build a supercomputer.

� How:
◦ Chapters 20 and 22: Learn how to think in terms of multiprocessing architec-
tures. Whenever you code a library, structure it in such a way that functions
can be called in parallel. You will find plenty of examples in the book.

◦ Chapter 21: Develop algorithms for quantum computers.

1.3.2.4 Math
� Problem: Mathematical proofs can take years, decades, and centuries. No
investor will wait that long.
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BOOK STRUCTURE 11

� Solution: Use experimental math. Solve hard, intractable problems, not by proof
but by experiment. For example, Bailey, Borwein, and Plouffe [1997] found a
spigot algorithm for 𝜋 (pi) without proof, against the prior perception that such
mathematical finding would not be possible.

� How:
◦ Chapter 5: Familiarize yourself with memory-preserving data transforma-
tions.

◦ Chapters 11–15: There are experimental methods to assess the value of your
strategy, with greater reliability than a historical simulation.

◦ Chapter 16: An algorithm that is optimal in-sample can perform poorly out-
of-sample. There is no mathematical proof for investment success. Rely on
experimental methods to lead your research.

◦ Chapters 17 and 18: Apply methods to detect structural breaks, and quantify
the amount of information carried by financial series.

◦ Chapter 20: Learn queuing methods for distributed computing so that you
can break apart complex tasks and speed up calculations.

◦ Chapter 21: Become familiar with discrete methods, used among others by
quantum computers, to solve intractable problems.

1.3.2.5 Meta-Strategies
� Problem: Amateurs develop individual strategies, believing that there is such a
thing as a magical formula for riches. In contrast, professionals develop meth-
ods to mass-produce strategies. Themoney is not in making a car, it is in making
a car factory.

� Solution: Think like a business. Your goal is to run a research lab like a factory,
where true discoveries are not born out of inspiration, but out of methodic hard
work. That was the philosophy of physicist Ernest Lawrence, the founder of the
first U.S. National Laboratory.

� How:
◦ Chapters 7–9: Build a research process that identifies features relevant
across asset classes, while dealing with multi-collinearity of financial
features.

◦ Chapter 10: Combine multiple predictions into a single bet.
◦ Chapter 16: Allocate funds to strategies using a robust method that performs
well out-of-sample.

1.3.2.6 Overfitting
� Problem: Standard cross-validation methods fail in finance. Most discoveries in
finance are false, due to multiple testing and selection bias.

� Solution:
◦ Whatever you do, always ask yourself in what way youmay be overfitting. Be
skeptical about your own work, and constantly challenge yourself to prove
that you are adding value.
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12 FINANCIAL MACHINE LEARNING AS A DISTINCT SUBJECT

◦ Overfitting is unethical. It leads to promising outcomes that cannot be deliv-
ered. When done knowingly, overfitting is outright scientific fraud. The fact
that many academics do it does not make it right: They are not risking any-
one’s wealth, not even theirs.

◦ It is also a waste of your time, resources, and opportunities. Besides, the
industry only pays for out-of-sample returns. You will only succeed after
you have created substantial wealth for your investors.

� How:
◦ Chapters 11–15: There are three backtesting paradigms, of which historical
simulation is only one. Each backtest is always overfit to some extent, and it
is critical to learn to quantify by how much.

◦ Chapter 16: Learn robust techniques for asset allocation that do not overfit
in-sample signals at the expense of out-of-sample performance.

1.3.3 Structure by Common Pitfall

Despite its many advantages, ML is no panacea. The flexibility and power of ML
techniques have a dark side. When misused, ML algorithms will confuse statisti-
cal flukes with patterns. This fact, combined with the low signal-to-noise ratio that
characterizes finance, all but ensures that careless users will produce false discov-
eries at an ever-greater speed. This book exposes some of the most pervasive errors
made by ML experts when they apply their techniques on financial datasets. Some of
these pitfalls are listed in Table 1.2, with solutions that are explained in the indicated
chapters.

1.4 TARGET AUDIENCE

This book presents advanced ML methods specifically designed to address the chal-
lenges posed by financial datasets. By “advanced” I do not mean extremely difficult to
grasp, or explaining the latest reincarnation of deep, recurrent, or convolutional neu-
ral networks. Instead, the book answers questions that senior researchers, who have
experience applying ML algorithms to financial problems, will recognize as critical.
If you are new to ML, and you do not have experience working with complex algo-
rithms, this book may not be for you (yet). Unless you have confronted in practice the
problems discussed in these chapters, you may have difficulty understanding the util-
ity of solving them. Before reading this book, youmay want to study several excellent
introductory ML books published in recent years. I have listed a few of them in the
references section.

The core audience of this book is investment professionals with a strongML back-
ground. My goals are that you monetize what you learn in this book, help us mod-
ernize finance, and deliver actual value for investors.

This book also targets data scientists who have successfully implemented ML
algorithms in a variety of fields outside finance. If you have worked at Google and
have applied deep neural networks to face recognition, but things do not seem to

(c
) 2

01
8 

by
 M

ar
co

s L
op

ez
 d

e 
Pr

ad
o.

 R
ep

rin
te

d 
w

ith
 p

er
m

iss
io

n.
 A

ll 
rig

ht
s r

es
er

ve
d.

 F
ul

l v
er

sio
n 

av
ai

la
bl

e 
at

 h
ttp

s:/
/g

oo
.g

l/w
6g

M
dq



REQUISITES 13

TABLE 1.2 Common Pitfalls in Financial ML

# Category Pitfall Solution Chapter

1 Epistemological The Sisyphus paradigm The meta-strategy
paradigm

1

2 Epistemological Research through
backtesting

Feature importance
analysis

8

3 Data processing Chronological
sampling

The volume clock 2

4 Data processing Integer differentiation Fractional
differentiation

5

5 Classification Fixed-time horizon
labeling

The triple-barrier
method

3

6 Classification Learning side and size
simultaneously

Meta-labeling 3

7 Classification Weighting of non-IID
samples

Uniqueness weighting;
sequential
bootstrapping

4

8 Evaluation Cross-validation
leakage

Purging and
embargoing

7,9

9 Evaluation Walk-forward
(historical) backtesting

Combinatorial purged
cross-validation

11,12

10 Evaluation Backtest overfitting Backtesting on
synthetic data; the
deflated Sharpe ratio

10–16

work so well when you run your algorithms on financial data, this book will help
you. Sometimes you may not understand the financial rationale behind some struc-
tures (e.g., meta-labeling, the triple-barrier method, fracdiff), but bear with me: Once
you have managed an investment portfolio long enough, the rules of the game will
become clearer to you, along with the meaning of these chapters.

1.5 REQUISITES

Investment management is one of the most multi-disciplinary areas of research, and
this book reflects that fact. Understanding the various sections requires a practical
knowledge of ML, market microstructure, portfolio management, mathematical
finance, statistics, econometrics, linear algebra, convex optimization, discrete
math, signal processing, information theory, object-oriented programming, parallel
processing, and supercomputing.

Python has become the de facto standard language for ML, and I have to assume
that you are an experienced developer. You must be familiar with scikit-learn
(sklearn), pandas, numpy, scipy, multiprocessing, matplotlib and a few other libraries.
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14 FINANCIAL MACHINE LEARNING AS A DISTINCT SUBJECT

Code snippets invoke functions from these libraries using their conventional prefix,
pd for pandas, np for numpy, mpl for matplotlib, etc. There are numerous books on
each of these libraries, and you cannot know enough about the specifics of each one.
Throughout the book we will discuss some issues with their implementation, includ-
ing unresolved bugs to keep in mind.

1.6 FAQs

How can ML algorithms be useful in finance?

Many financial operations require making decisions based on pre-defined rules, like
option pricing, algorithmic execution, or risk monitoring. This is where the bulk of
automation has taken place so far, transforming the financial markets into ultra-fast,
hyper-connected networks for exchanging information. In performing these tasks,
machines were asked to follow the rules as fast as possible. High-frequency trading
is a prime example. See Easley, López de Prado, and O’Hara [2013] for a detailed
treatment of the subject.

The algorithmization of finance is unstoppable. Between June 12, 1968, and
December 31, 1968, the NYSEwas closed everyWednesday, so that back office could
catch up with paperwork. Can you imagine that? We live in a different world today,
and in 10 years things will be even better. Because the next wave of automation does
not involve following rules, but making judgment calls. As emotional beings, subject
to fears, hopes, and agendas, humans are not particularly good at making fact-based
decisions, particularly when those decisions involve conflicts of interest. In those sit-
uations, investors are better served when a machine makes the calls, based on facts
learned from hard data. This not only applies to investment strategy development, but
to virtually every area of financial advice: granting a loan, rating a bond, classifying
a company, recruiting talent, predicting earnings, forecasting inflation, etc. Further-
more, machines will comply with the law, always, when programmed to do so. If a
dubious decision is made, investors can go back to the logs and understand exactly
what happened. It is much easier to improve an algorithmic investment process than
one relying entirely on humans.

How can ML algorithms beat humans at investing?

Do you remember when people were certain that computers would never beat humans
at chess? Or Jeopardy!? Poker? Go? Millions of years of evolution (a genetic algo-
rithm) have fine-tuned our ape brains to survive in a hostile 3-dimensional world
where the laws of nature are static. Now, when it comes to identifying subtle patterns
in a high-dimensional world, where the rules of the game change every day, all
that fine-tuning turns out to be detrimental. An ML algorithm can spot patterns in a
100-dimensional world as easily as in our familiar 3-dimensional one. And while we
all laugh when we see an algorithm make a silly mistake, keep in mind, algorithms
have been around only a fraction of our millions of years. Every day they get better
at this, we do not. Humans are slow learners, which puts us at a disadvantage in a
fast-changing world like finance.
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FAQs 15

Does that mean that there is no space left for human investors?

Not at all. No human is better at chess than a computer. And no computer is better
at chess than a human supported by a computer. Discretionary PMs are at a disad-
vantage when betting against an ML algorithm, but it is possible that the best results
are achieved by combining discretionary PMs with ML algorithms. This is what has
come to be known as the “quantamental” way. Throughout the book you will find
techniques that can be used by quantamental teams, that is, methods that allow you
to combine human guesses (inspired by fundamental variables) with mathematical
forecasts. In particular, Chapter 3 introduces a new technique called meta-labeling,
which allows you to add an ML layer on top of a discretionary one.

How does financial ML differ from econometrics?

Econometrics is the application of classical statistical methods to economic and finan-
cial series. The essential tool of econometrics is multivariate linear regression, an
18th-century technology that was already mastered by Gauss before 1794 (Stigler
[1981]). Standard econometric models do not learn. It is hard to believe that some-
thing as complex as 21st-century finance could be grasped by something as simple
as inverting a covariance matrix.

Every empirical science must build theories based on observation. If the statistical
toolbox used to model these observations is linear regression, the researcher will fail
to recognize the complexity of the data, and the theories will be awfully simplistic,
useless. I have no doubt in my mind, econometrics is a primary reason economics
and finance have not experienced meaningful progress over the past 70 years (Calkin
and López de Prado [2014a, 2014b]).

For centuries, medieval astronomers made observations and developed theo-
ries about celestial mechanics. These theories never considered non-circular orbits,
because theywere deemed unholy and beneathGod’s plan. The prediction errors were
so gross, that ever more complex theories had to be devised to account for them. It was
not until Kepler had the temerity to consider non-circular (elliptical) orbits that all of
the sudden a much simpler general model was able to predict the position of the plan-
ets with astonishing accuracy. What if astronomers had never considered non-circular
orbits? Well . . . what if economists finally started to consider non-linear functions?
Where is our Kepler? Finance does not have a Principia because no Kepler means no
Newton.

Financial ML methods do not replace theory. They guide it. An ML algorithm
learns patterns in a high-dimensional space without being specifically directed. Once
we understand what features are predictive of a phenomenon, we can build a theo-
retical explanation, which can be tested on an independent dataset. Students of eco-
nomics and finance would do well enrolling in ML courses, rather than econometrics.
Econometrics may be good enough to succeed in financial academia (for now), but
succeeding in business requires ML.

What do you say to people who dismiss ML algorithms as black boxes?

If you are reading this book, chances are ML algorithms are white boxes to you.
They are transparent, well-defined, crystal-clear, pattern-recognition functions. Most
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16 FINANCIAL MACHINE LEARNING AS A DISTINCT SUBJECT

people do not have your knowledge, and to themML is like a magician’s box: “Where
did that rabbit come from?How are you tricking us, witch?” Peoplemistrust what they
do not understand. Their prejudices are rooted in ignorance, for which the Socratic
remedy is simple: education. Besides, some of us enjoy using our brains, even though
neuroscientists still have not figured out exactly how they work (a black box in itself).

From time to time you will encounter Luddites, who are beyond redemption. Ned
Ludd was a weaver from Leicester, England, who in 1779 smashed two knitting
frames in an outrage. With the advent of the industrial revolution, mobs infuriated by
mechanization sabotaged and destroyed all machinery they could find. Textile work-
ers ruined so much industrial equipment that Parliament had to pass laws making
“machine breaking” a capital crime. Between 1811 and 1816, large parts of Eng-
land were in open rebellion, to the point that there were more British troops fighting
Luddites than there were fighting Napoleon on the Iberian Peninsula. The Luddite
rebellion ended with brutal suppression through military force. Let us hope that the
black box movement does not come to that.

Why don’t you discuss specific ML algorithms?

The book is agnostic with regards to the particular ML algorithm you choose.
Whether you use convolutional neural networks, AdaBoost, RFs, SVMs, and so on,
there are many shared generic problems you will face: data structuring, label-
ing, weighting, stationary transformations, cross-validation, feature selection, fea-
ture importance, overfitting, backtesting, etc. In the context of financial modeling,
answering these questions is non-trivial, and framework-specific approaches need to
be developed. That is the focus of this book.

What other books do you recommend on this subject?

Tomy knowledge, this is the first book to provide a complete and systematic treatment
of MLmethods specific for finance: starting with a chapter dedicated to financial data
structures, another chapter for labeling of financial series, another for sample weight-
ing, time series differentiation, . . . all the way to a full part devoted to the proper back-
testing of investment strategies. To be sure, there are a handful of prior publications
(mostly journal articles) that have applied standard ML to financial series, but that
is not what this book offers. My goal has been to address the unique nuisances that
make financial ML modeling particularly challenging. Like any new subject, it is fast
evolving, and the book will be updated as major advances take place. Please contact
me at mldp@quantresearch.org if there is any particular topic you would like to see
treated in future editions. I will gladly add those chapters, while acknowledging the
names of those readers who suggested them.

I do not understand some of the sections and chapters. What should I do?

My advice is that you start by reading the references listed at the end of the chapter.
When I wrote the book, I had to assume the reader was familiar with the existing
literature, or this book would lose its focus. If after reading those references the sec-
tions still do not make sense, the likely reason is that they are related to a problem
well understood by investment professionals (even if there is no mention of it in the
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FAQs 17

literature). For example, Chapter 2 will discuss effective methods to adjust futures
prices for the roll, a problem known to most practitioners, even though it is rarely
addressed in textbooks. I would encourage you to attend one of my regular seminars,
and ask me your question at the end of my talk.

Why is the book so fixated on backtest overfitting?

There are two reasons. First, backtest overfitting is arguably the most important open
problem in all of mathematical finance. It is our equivalent to “P versus NP” in com-
puter science. If there was a precise method to prevent backtest overfitting, we would
be able to take backtests to the bank. A backtest would be almost as good as cash,
rather than a sales pitch. Hedge funds would allocate funds to portfolio managers
with confidence. Investors would risk less, and would be willing to pay higher fees.
Regulators would grant licenses to hedge fund managers on the basis of reliable evi-
dence of skill and knowledge, leaving no space for charlatans. In my opinion, an
investments book that does not address this issue is not worth your time. Why would
you read a book that deals with CAPM, APT, asset allocation techniques, risk man-
agement, etc. when the empirical results that support those arguments were selected
without determining their false discovery probabilities?

The second reason is that ML is a great weapon in your research arsenal, and a
dangerous one to be sure. If backtest overfitting is an issue in econometric analysis,
the flexibility of ML makes it a constant threat to your work. This is particularly the
case in finance, because our datasets are shorter, with lower signal-to-noise ratio, and
we do not have laboratories where we can conduct experiments while controlling
for all environmental variables (López de Prado [2015]). An ML book that does not
tackle these concerns can be more detrimental than beneficial to your career.

What is the mathematical nomenclature of the book?

When I started to write this book, I thought about assigning one symbol to each math-
ematical variable or function through all the chapters. That would work well if this
book dealt with a single subject, like stochastic optimal control. However this book
deals with a wide range of mathematical subjects, each with its own conventions.
Readers would find it harder to consult references unless I also followed literature
standards, which means that sometimes we must re-use symbols. To prevent any
confusion, every chapter explains the nomenclature as it is being used. Most of the
math is accompanied by a code snippet, so in case of doubt, please always follow
the code.

Who wrote Chapter 22?

A popular perception is that ML is a new fascinating technology invented or perfected
at IBM,Google, Facebook, Amazon, Netflix, Tesla, etc. It is true that technology firms
have become heavy users of ML, especially in recent years. Those firms sponsored
some of the most publicized recent ML achievements (like Jeopardy! or Go), which
may have reinforced that perception.

However, the reader may be surprised to learn that, in fact, U.S. National Labo-
ratories are among the research centers with the longest track record and experience
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18 FINANCIAL MACHINE LEARNING AS A DISTINCT SUBJECT

in using ML. These centers utilized ML before it was cool, and they applied it suc-
cessfully for many decades to produce astounding scientific discoveries. If predicting
what movies Netflix should recommend you to watch next is a worthy endeavor, so it
is to understand the rate of expansion of the universe, or forecasting what coastlines
will be most impacted by global warming, or preventing a cataclysmic failure of our
national power grid. These are just some of the amazing questions that institutions
like Berkeley Lab work on every day, quietly but tirelessly, with the help of ML.

In Chapter 22, Drs. Horst Simon and KeshengWu offer the perspective of a deputy
director and a project leader at a major U.S. National Laboratory specializing in large-
scale scientific research involving big data, high-performance computing, and ML.
Unlike traditional university settings, National Laboratories achieve scientific break-
throughs by putting together interdisciplinary teams that follow well-devised proce-
dures, with strong division of labor and responsibilities. That kind of research model
by production chain was born at Berkeley Lab almost 90 years ago and inspired the
meta-strategy paradigm explained in Sections 1.2.2 and 1.3.1.

1.7 ACKNOWLEDGMENTS
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Laboratory, accepted to co-author Chapter 22 with Dr. Kesheng Wu, who leads
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Prof. Riccardo Rebonato was the first to read this manuscript and encouraged me
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Over the past two decades, I have published nearly a hundred works on this book’s
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Prof. Maureen O’Hara (8 articles), and Prof. Jonathan M. Borwein (6 articles). This
book is to a great extent also theirs, for it would not have been possible without their
support, insights, and continuous exchange of ideas over the years. It would take too
long to give them proper credit, so instead I have published the following link where
you can find our collective effort: http://www.quantresearch.org/Co-authors.htm.

Last but not least, I would like to thank some of my research team members for
proofreading the book and helping me produce some of the figures: Diego Aparicio,

3 http://www.nersc.gov/about.
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EXERCISES 19

Dr. Lee Cohn, Dr. Michael Lewis, Dr. Michael Lock, Dr. Yaxiong Zeng, and
Dr. Zhibai Zhang.

EXERCISES

1.1 Are you aware of firms that have attempted to transition from discretionary
investments to ML-led investments, or blending them into what they call “quan-
tamental” funds?

(a) Have they succeeded?

(b) What are the cultural difficulties involved in this transition?

1.2 What is the most important open problem in mathematical finance? If this prob-
lem was resolved, how could:

(a) regulators use it to grant investment management licenses?

(b) investors use it to allocate funds?

(c) firms use it to reward researchers?

1.3 According to Institutional Investor, only 17% of hedge fund assets are managed
by quantitative firms. That is about $500 billion allocated in total across all
quantitative funds as of June 2017, compared to $386 billion a year earlier.
What do you think is driving this massive reallocation of assets?

1.4 According to Institutional Investor’s Rich List, how many quantitative invest-
ment firms are placed within the top 10 most profitable firms? How does that
compare to the proportion of assets managed by quantitative funds?

1.5 What is the key difference between econometric methods and ML? How would
economics and finance benefit from updating their statistical toolkit?

1.6 Science has a veryminimal understanding of how the human brain (or any brain)
works. In this sense, the brain is an absolute black box. What do you think
causes critics of financial ML to disregard it as a black box, while embracing
discretionary investing?

1.7 You read a journal article that describes an investment strategy. In a backtest, it
achieves an annualized Sharpe ratio in excess of 2, with a confidence level of
95%.Using their dataset, you are able to reproduce their result in an independent
backtest. Why is this discovery likely to be false?

1.8 Investment advisors are plagued with conflicts of interest while making deci-
sions on behalf of their investors.

(a) ML algorithms can manage investments without conflict of interests. Why?

(b) Suppose that an ML algorithm makes a decision that leads to a loss. The
algorithm did what it was programmed to do, and the investor agreed to the
terms of the program, as verified by forensic examination of the computer
logs. In what sense is this situation better for the investor, compared to a
loss caused by a discretionary PM’s poor judgment? What is the investor’s
recourse in each instance?

(c) Would it make sense for financial advisors to benchmark their decisions
against the decisions made by such neutral agents?
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20 FINANCIAL MACHINE LEARNING AS A DISTINCT SUBJECT
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Index

Page numbers followed by f or t refer to figure or table, respectively.

Absolute return attribution method,
68–69

Accounting data, 23, 169
Accuracy
binary classification problems and,
52, 52f

measurement of, 206
AdaBoost implementation, 100, 100f
Adaptable I/O System (ADIOS),

336–337, 339, 340
Alternative data, 24t, 25
Amihud’s lambda, 288–289, 289f
Analytics, 24t, 25
Annualized Sharpe ratio, 205
Annualized turnover, in backtesting, 196
Asset allocation
classical areas of mathematics used
in, 223–224

covariance matrix in, 223, 224, 225f,
229, 231f, 232, 234

diversification in, 4, 9, 222, 224, 234,
238

Markowitz’s approach to, 221–222
Monte Carlo simulations for,
234–236, 235f–236f, 242–244

numerical example of, 231–233, 232f,
233f, 233t

practical problems in, 222–223, 223f
quasi-diagonalization in, 224, 229,
233f

recursive bisection in, 224, 229–231
risk-based, 222. See also Risk-based
asset allocation approaches

tree clustering approaches to,
224–229, 225f, 228f, 232f

Attribution, 207–208
Augmented Dickey-Fuller (ADF) test,

253, 254, 256. See also Supremum
augmented Dickey-Fuller (SADF)
test

Average holding period, in backtesting,
196

Average slippage per turnover, 202

Backfilled data, 24, 152
Backtesters, 8
Backtesting, 139–244
bet sizing in, 141–148
common errors in, 151–157

353
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354 INDEX

Backtesting (Continued)
combinatorial purged cross-validation
(CPCV) method in, 163–167

cross-validation (CV) for, 104,
162–163

customization of, 161
definition of, 151
“false discovery” probability and,
205

flawless completion as daunting task
in, 152–153, 161

general recommendations on,
153–154

machine learning asset allocation and,
223–244

purpose of, 153
as research tool, 153, 154
strategy risk and, 211–218
strategy selection in, 155–156, 157f
synthetic data in, 169–192
uses of results of, 161
walk-forward (WF) method of,
161–162

Backtest overfitting, 4
backtesters’ evaluation of probability
of, 8

bagging to reduce, 94–95, 100
combinatorial purged cross-validation
(CPCV) method for, 166–167

concerns about risk of, 17, 119
cross-validation (CV) method and,
103, 155

decision trees and proneness to, 97
definition of, 153–154, 171
discretionary portfolio managers
(PMs) and, 5

estimating extent of, 154
features stacking to reduce, 121–122
general recommendations on, 154
historical simulations in trading rules
and, 170–172, 178–179, 187

hyper-parameter tuning and, 129
need for skepticism, 11–12
optimal trading rule (OTR)
framework for, 173–176

probability of. See Probability of
backtest overfitting (PBO)

random forest (RF) method to reduce,
98, 99

selection bias and, 153–154
support vector machines (SVMs) and,
101

trading rules and, 171–172
walk-forward (WF) method and, 155,
162

Backtest statistics, 195–207
classification measurements in,
206–207

drawdown (DD) and time under water
(TuW) in, 201, 202f

efficiency measurements in, 203–206
general description of, 196–197
holding period estimator in, 197
implementation shortfall in, 202–203
performance attribution and, 207–208
performance measurements in, 198
returns concentration in, 199–201
runs in, 199
run measurements in, 201–202
time-weighted rate of returns
(TWRR) in, 198–199

timing of bets from series of target
positions in, 197

types of, 195
Bagging, 94–97, 123
accuracy improvement using, 95–96,
97f

boosting compared with, 99–100
leakage reduction using, 105
observation redundancy and, 96–97
overfitting reduction and, 154
random forest (RF) method compared
with, 98

scalability using, 101
variance reduction using, 94–95, 95f

Bars (table rows), 25–32
categories of, 26
dollar bars, 27–28, 28f, 44
dollar imbalance bars, 29–30
dollar runs bars, 31–32
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INDEX 355

information-driven bars, 26, 29–32
standard bars, 26–28
tick bars, 26–27
tick imbalance bars, 29–30
tick runs bars, 31
time bars, 26, 43–44
volume bars, 27, 44
volume imbalance bars, 30–31
volume runs bars, 31–32

Becker-Parkinson volatility algorithm,
285–286

Bet sizing, 141–148
average active bets approach in, 144
bet concurrency calculation in,
141–142

budgeting approach to, 142
dynamic bet sizes and limit prices in,
145–148

holding periods and, 144
investment strategies and, 141
meta-labeling approach to, 142
performance attribution and, 207–208
predicted probabilities and, 142–144,
143f

runs and increase in, 199
size discretization in, 144–145, 145f
strategy-independent approaches to,
141–142

strategy’s capacity and, 196
Bet timing, deriving, 197
Betting frequency
backtesting and, 196
computing, 215–216, 216f
implied precision computation and,
214–215, 215f

investment strategy with trade-off
between precision and, 212–213,
212f

strategy risk and, 211, 215
targeting Sharpe ratio for, 212–213
trade size and, 293

Bias, 93, 94, 100
Bid-ask spread estimator, 284–286
Bid wanted in competition (BWIC), 24,

286

big data analysis, 18, 236, 237f, 330,
331–332, 340

Bloomberg, 23, 36
Boosting, 99–100
AdaBoost implementation of, 100,
100f

bagging compared with, 99–100
implementation of, 99
main advantage of, 100
variance and bias reduction using,
100

Bootstrap aggregation. See Bagging
Bootstraps, sequential, 63–66
Box-Jenkins analysis, 88
Broker fees per turnover, 202
Brown-Durbin-Evans CUSUM test, 250

Cancellation rates, 293–294
Capacity, in backtesting, 196
Chow-type Dickey-Fuller test, 251–252
Chu-Stinchcombe-White CUSUM test,

251
Classification models, 281–282
Classification problems
class weights for underrepresented
labels in, 71–72

generating synthetic dataset for, 122
meta-labeling and, 51–52, 142,
206–207

Classification statistics, 206–207
Class weights
decision trees using, 99
functionality for handling, 71–72
underrepresented label correction
using, 71

Cloud systems, 330–331, 334–335
Combinatorially symmetric

cross-validation (CSCV) method,
155–156

Combinatorial purged cross-validation
(CPCV) method, 163–167

algorithm steps in, 165
backtest overfitting and, 166–167
combinatorial splits in, 164–165, 164f
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356 INDEX

Combinatorial purged cross-validation
(CPCV) method (Continued)

definition of, 163
examples of, 165–166

Compressed markets, 275
Computational Intelligence and

Forecasting Technologies (CIFT)
project, 329

Adaptable I/O System (ADIOS) and,
337

business applications developed by,
349–350

Flash Crash of 2010 response and,
341–343

mission of, 330, 331, 337
Conditional augmented Dickey-Fuller

(CADF) test, 256, 256f, 257f
Correlation to underlying, in

backtesting, 196
Corwin-Schultz algorithm, 284–286
Critical Line Algorithm (CLA), 221
description of, 222
Markowitz’s development of, 222
Monte Carlo simulations using,
234–236, 235f–236f, 242–244

numerical example with, 231–233,
232f, 233f, 233t

open-source implementation of, 222
practical problems with, 222–223,
223f

Cross-entropy loss (log loss) scoring,
133–134, 135f

Cross-validation (CV), 103–110
backtesting through, 104, 162–163
combinatorial purged cross-validation
(CPCV) method in, 163–167

embargo on training observations in,
107–108, 108f

failures in finance using, 104
goal of, 103
hyper-parameter tuning with,
129–135

k-fold, 103–109, 104f
leakage in, 104–105
model development and, 104

overlapping training observations in,
109

purpose of, 103
purging process in training set for
leakage reduction in, 105–106,
107f

sklearn bugs in, 109–110
CUSUM filter, 38–40, 40f
CUSUM tests, 249, 250–251
CV. See Cross-validation

Data analysis, 21–90
financial data structures and, 23–40
fractionally differentiated features
and, 75–88

labeling and, 43–55
sample weights and, 59–72

Data curators, 7
Data mining and data snooping, 152
Decision trees, 97–99
Decompressed markets, 275
Deflated Sharpe ratio (DSR), 204, 205f
Deployment team, 8
Dickey-Fuller test
Chow type, 251–252
supremum augmented (SADF),
252–259, 253f, 257f

Discretionary portfolio managers
(PMs), 4–5, 15

Discretization of bet size, 144–145,
145f

Diversification, 4, 9, 222, 224, 234,
238

Dollar bars, 27–28, 28f, 44
Dollar imbalance bars (DIBs), 29–30
Dollar performance per turnover, 202
Dollar runs bars (DRBs), 31–32
Downsampling, 38
Drawdown (DD)
definition of, 201
deriving, 201
example of, 202f
run measurements using, 202

Dynamic bet sizes, 145–148
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INDEX 357

Econometrics, 14, 85
financial Big Data analysis and, 236
financial machine learning versus, 15
HRP approach compared with, 236,
237f

investment strategies based in, 6
paradigms used in, 88
substitution effects and, 114
trading rules and, 169

Efficiency measurements, 203–206
annualized Sharpe ratio and, 205
deflated Sharpe ratio (DSR) and, 204,
205f

information ratio and, 205
probabilistic Sharpe ratio (PSR) and,
203–204, 204f, 205–206, 218

Sharpe ratio (SR) definition in, 203
Efficient frontier, 222
Electricity consumption analysis,

340–341, 342f–343f
Engle-Granger analysis, 88
Ensemble methods, 93–101
boosting and, 99–100
bootstrap aggregation (bagging) and,
94–97, 101

random forest (RF) method and,
97–99

Entropy features, 263–277
encoding schemes in estimates of,
269–271

financial applications of, 275–277
generalized mean and, 271–275,
274f

Lempel-Ziv (LZ) estimator in,
265–269

maximum likelihood estimator in,
264–265

Shannon’s approach to, 263–264
ETF trick, 33–34, 84, 253
Event-based sampling, 38–40, 40f
Excess returns, in information ratio,

205
Execution costs, 202–203
Expanding window method, 80–82, 81f
Explosiveness tests, 249, 251–259

Chow-type Dickey-Fuller test,
251–252

supremum augmented Dickey-Fuller
(SADF) test, 252–259, 253f, 257f

Factory plan, 5, 11
Feature analysts, 7
Feature importance, 113–127
features stacking approach to,
121–122

importance of, 113–114
mean decrease accuracy (MDA) and,
116–117

mean decrease impurity (MDI) and,
114–116

orthogonal features and, 118–119
parallelized approach to, 121
plotting function for, 124–125
random forest (RF) method and, 98
as research tool, 153
single feature importance (SFI) and,
117–118

synthetic data experiments with,
122–124

weighted Kendall’s tau computation
in, 120–121

without substitution effects, 117–121
with substitution effects, 114–117

Features stacking importance, 121–122
Filter trading strategy, 39
Finance
algorithmization of, 14
human investors’ abilities in, 4, 14
purpose and role of, 4
usefulness of ML algorithms in, 4,
14

Financial data
alternative, 25
analytics and, 25
essential types of, 23, 24t
fundamental, 23–24
market, 24–25

Financial data structures, 23–40
bars (table rows) in, 25–32
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358 INDEX

Financial data structures (Continued)
multi-product series in, 32–37
sampling features in, 38–40
unstructured, raw data as starting
point for, 23

Financial Information eXchange (FIX)
messages, 7, 24, 25, 281

Financial machine learning
econometrics versus, 15
prejudices about use of, 16
standard machine learning separate
from, 4

Financial machine learning projects
reasons for failure of, 4–5
structure by strategy component in,
9–12

Fixed-time horizon labeling method,
43–44

Fixed-width window fracdiff (FFD)
method, 82–84, 83f

Flash crashes, 296
class weights for predicting, 71
“early warning” indicators in,
345

high performance computing (HPC)
tools and, 347–348

signs of emerging illiquidity events
and, 331

Flash Crash of 2010, 296, 329–330,
341–345

F1 scores
measurement of, 206
meta-labeling and, 52–53

Fractional differentiation
data transformation method for
stationarity in, 77–78

earlier methods of, 76–77
expanding window method for,
80–82, 81f

fixed-width window fracdiff (FFD)
method for, 82–84, 83f

maximum memory preservation in,
84–85, 84f, 86t–87t

Frequency. See Betting frequency

Fundamental data, 23–24, 24t
Fusion collaboration project, 338–340,

339f
Futures
dollar bars and, 28
ETF trick with, 33–34
non-negative rolled price series and,
37

single futures roll method with, 36–37
volume bars and, 27

Gaps series, in single future roll method,
36–37

Global Investment Performance
Standards (GIPS), 161, 195, 198

Graph theory, 221, 224
Grid search cross-validation, 129–131

Hasbrouck’s lambda, 289, 290f
Hedging weights, 35
Herfindahl-Hirschman Index (HHI)

concentration, 200, 201
HHI indexes
on negative returns, 202
on positive returns, 201
on time between bets, 202

Hierarchical Data Format 5 (HDF5),
336

Hierarchical Risk Parity (HRP)
approach

econometric regression compared
with, 236, 237f

full implementation of, 240–242
Monte Carlo simulations using,
234–236, 235f–236f, 242–244

numerical example of, 231–233, 232f,
233f, 233t

practical application of, 221
quasi-diagonalization in, 224, 229
recursive bisection in, 224, 229–231
standard approaches compared with,
221, 236–238
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INDEX 359

traditional risk parity approach
compared with, 231–232, 233t,
234, 235f

tree clustering approaches to,
224–229, 225f, 228f, 232f

High-frequency trading, 14, 196, 212
High-low volatility estimator, 283–284
High-performance computing (HPC),

301–349
ADIOS and, 336–337, 339, 340
atoms and molecules in
parallelization and, 306–309

CIFT business applications and,
349–350

cloud systems compared with,
334–335

combinatorial optimization and,
319–320

electricity consumption analysis
using, 340–341, 342f–343f

Flash Crash of 2010 response and,
329–330, 341–345

fusion collaboration project using,
338–340, 339f

global dynamic optimal trajectory
and, 325–327

hardware for, 331–335, 332f, 333f,
334f

integer optimization approach and,
321–325, 322f

multiprocessing and, 304–306,
309–316

objective function and, 320–321
pattern-finding capability in, 330–331
software for, 335–337
streaming data analysis using, 329
supernova hunting using, 337–338,
338f

use cases for, 337–349
vectorization and, 303–304

Holding periods
backtesting and, 196
bet sizing and, 144
estimating in strategy, 196, 197

optimal trading rule (OTR) algorithm
with, 174, 175

triple-period labeling method and,
46

Hyper-parameter tuning, 129–135
grid search cross-validation and,
129–131

log loss scoring used with, 133–134,
135f

randomized search cross-validation
and, 131–133

Implementation shortfall statistics,
202–203

Implied betting frequency, 215–216,
216f

Implied precision computation,
214–215, 215f

Indicator matrix, 64–65, 66, 67
Information-driven bars (table rows),

26, 29–32
dollar imbalance bars, 29–30
dollar runs bars, 31–32
purpose of, 29
tick imbalance bars, 29–30
tick runs bars, 31
volume imbalance bars, 30–31
volume runs bars, 31–32

Information ratio, 205
Inverse-Variance Portfolio (IVP)
asset allocation numerical example of,
231–233, 232f, 233f, 233t

Monte Carlo simulations using,
234–236, 235f–236f, 242–244

Investment strategies
algorithmization of, 14
bet sizing in, 141
evolution of, 6
exit conditions in, 211
human investors’ abilities and, 4, 14
log loss scoring used with
hyper-parameter tuning in,
134–135, 135f
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360 INDEX

Investment strategies (Continued)
profit-taking and stop-loss limits in,
170–171, 172, 211

risk in. See Strategy risk
structural breaks and, 249
trade-off between precision and
frequency in, 212–213, 212f

trading rules and algorithms in,
169–170

Investment strategy failure probability,
216–218

algorithm in, 217
implementation of algorithm in,
217–218

probabilistic Sharpe ratio (PSR)
similarity to, 218

strategy risk and, 216–217

K-fold cross-validation (CV), 103–109
description of, 103–104, 104f
embargo on training observations in,
107–108, 108f

leakage in, 104–105
mean decrease accuracy (MDA)
feature with, 116

overlapping training observations in,
109

purging process in training set for
leakage reduction in, 105–106,
107f

when used, 104
Kyle’s lambda, 286–288, 288f

Labeling, 43–55
daily volatility at intraday estimation
for, 44–45

dropping unnecessary or
under-populated labels in, 54–55

fixed-time horizon labeling method
for, 43–44

learning side and size in, 48–50
meta-labeling and, 50–53
quantamental approach using, 53–54

triple-barrier labeling method for,
45–46, 47f

Labels
average uniqueness over lifespan of,
61–62, 61f

class weights for underrepresented
labels, 71–72

estimating uniqueness of, 60–61
Lawrence Berkeley National Laboratory

(LBNL, Berkeley Lab), 18, 329,
331

Leakage, and cross-validation (CV),
104–105

Leakage reduction
bagging for, 105
purging process in training set for,
105–106, 107f

sequential bootstraps for, 105
walk-forward timefolds method for,
155

Lempel-Ziv (LZ) estimator, 265–269
Leverage, in backtesting, 196
Limit prices, in bet sizing, 145–148
Log loss scoring, in hyper-parameter

tuning, 133–134, 135f
Log-uniform distribution, 132–133
Look-ahead bias, 152

Machine learning (ML), 3
finance and, 4, 14
financial machine learning separate
from, 4

HRP approach using, 221, 224
human investors and, 4, 14
prejudices about use of, 16

Machine learning asset allocation,
223–244. See also Hierarchical
Risk Parity (HRP) approach

Monte Carlo simulations for,
234–236, 235f–236f, 242–244

numerical example of, 231–233, 232f,
233f, 233t

quasi-diagonalization in, 224, 229,
233f
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INDEX 361

recursive bisection in, 224, 229–231
tree clustering approaches to,
224–229, 225f, 228f, 232f

Market data, 24–25, 24t
Markowitz, Harry, 221–222
Maximum dollar position size, in

backtesting, 196
Maximum likelihood estimator, in

entropy, 264–265
Mean decrease accuracy (MDA) feature

importance, 116–117
computed on synthetic dataset,
125–126, 126f

considerations in working with,
116

implementation of, 116–117
single feature importance (SFI) and,
127

Mean decrease impurity (MDI) feature
importance, 114–116

computed on synthetic dataset, 125,
125f

considerations in working with, 115
implementation of, 115–116
single feature importance (SFI) and,
127

Message Passing Interface (MPI), 335
Meta-labeling, 50–55
bet sizing using, 142
code enhancements for, 50–51
description of, 50, 127
dropping unnecessary or
under-populated labels in, 54–55

how to use, 51–53
quantamental approach using, 53–54

Meta-strategy paradigm, 5, 6, 11, 18
Microstructural features, 281–296
alternative features of, 293–295
Amihud’s lambda and, 288–289, 289f
bid-ask spread estimator
(Corwin-Schultz algorithm) and,
284–286

Hasbrouck’s lambda and, 289, 290f
high-low volatility estimator and,
283–284

Kyle’s lambda and, 286–288, 288f
microstructural information definition
and, 295–296

probability of informed trading and,
290–292

Roll model and, 282–283
sequential trade models and, 290
strategic trade models and, 286
tick rule and, 282
volume-synchronized probability of
informed trading (VPIN) and, 292

Mixture of Gaussians (EF3M),
141–142, 149, 217–219

Model development
cross-validation (CV) for, 104,
108–109

overfitting reduction and, 154
single feature importance method
and, 117

Modelling, 91–135
applications of entropy to, 275
backtesting in, 153
cross-validation in, 103–110
econometrics and, 15
ensemble methods in, 93–101
entropy features in, 275–277
feature importance in, 113–127
hyper-parameter tuning with
cross-validation in, 129–135

market microstructure theories and,
281–282

three sources of errors in, 93
Monte Carlo simulations
machine learning asset allocation and,
234–236, 235f–236f, 242–244

sequential bootstraps evaluation
using, 66–68, 68f

Multi-product series, 32–37
ETF trick for, 33–34
PCA weights for, 35–36, 35f
single future roll in, 36–37

National laboratories, 5, 10, 18
Negative (neg) log loss scores
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362 INDEX

Negative (neg) log loss scores
(Continued)

hyper-parameter tuning using,
133–134, 135f

measurement of, 207
Noise, causes of, 93
Non-negative rolled price series, 37

Optimal trading rule (OTR) framework,
173–176

algorithm steps in, 173–174
cases with negative long-run
equilibrium in, 182–187, 186f,
187f–191f

cases with positive long-run
equilibrium in, 180–182, 181f,
182f, 183f–186f

cases with zero long-run equilibrium
in, 177–180, 177f, 178f, 179f

experimental results using simulation
in, 176–191

implementation of, 174–176
overfitting and, 172
profit-taking and stop-loss limits in,
173–208, 176–177, 192

synthetic data for determination of,
192

Options markets, 295
Ornstein-Uhlenbeck (O-U) process,

172–173
Orthogonal features, 118–119
benefits of, 119
computation of, 119
implementation of, 118–119

Outliers, in quantitative investing, 152
Overfitting. See Backtest overfitting

Parallelized feature importance, 121
PCA (see Principal components

analysis)
Performance attribution, 207–208
Plotting function for feature importance,

124–125

PnL (mark-to-market profits and losses)
ETF trick and, 33
performance attribution using,
207–208

as performance measurement, 198
rolled prices for simulating, 37

PnL from long positions, 198
Portfolio construction. See also

Hierarchical Risk Parity (HRP)
approach

classical areas of mathematics used
in, 223–224

covariance matrix in, 223, 224, 225f,
229, 231f, 232, 234

diversification in, 4, 9, 222, 224, 234,
238

entropy and concentration in,
275–276

Markowitz’s approach to, 221–222
Monte Carlo simulations for,
234–236, 235f–236f, 242–244

numerical example of, 231–233, 232f,
233f, 233t

practical problems in, 222–223, 223f
tree clustering approaches to,
224–229, 225f, 228f, 232f

Portfolio oversight, 8–9
Portfolio risk. See also Hierarchical

Risk Parity (HRP) approach; Risk;
Strategy risk

portfolio decisions based on, 221–222
probability of strategy failure and,
217

strategy risk differentiated from,
217

Portfolio turnover costs, 202–203
Precision
binary classification problems and,
52–53, 52f

investment strategy with trade-off
between frequency and, 212–213,
212f

measurement of, 206
Predicted probabilities, in bet sizing,

142–144, 143f
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INDEX 363

Principal components analysis (PCA)
hedging weights using, 35–36,
35f

linear substitution effects and, 118,
119–121

Probabilistic Sharpe ratio (PSR)
calculation of, 203–204, 204f
as efficiency statistic, 203, 205–206
probability of strategy failure,
similarity to, 218

Probability of backtest overfitting (PBO)
backtest overfitting evaluation using,
171–172

combinatorially symmetric
cross-validation (CSCV) method
for, 155–156

strategy selection based on estimation
of, 155–156, 157f, 171

Probability of informed trading (PIN),
276, 290–292

Probability of strategy failure, 216–218
algorithm in, 217
implementation of algorithm in,
217–218

probabilistic Sharpe ratio (PSR),
similarity to, 218

strategy risk and, 216–217
Profit-taking, and investment strategy

exit, 211
Profit-taking limits
asymmetric payoff dilemma and,
178–180

cases with negative long-run
equilibrium and, 182–187, 186f,
187f–191f

cases with positive long-run
equilibrium and, 180–182, 181f,
182f, 183f–186f

cases with zero long-run equilibrium
and, 177–180, 177f, 178f, 179f

daily volatility at intraday estimation
points computation and, 44–45

investment strategies using, 170–171,
172

learning side and size and, 48

optimal trading rule (OTR) algorithm
for, 173–174, 176–177, 192

strategy risk and, 211
triple-barrier labeling method for,
45–46, 47f

Purged K-fold cross-validation (CV)
grid search cross-validation and,
129–131

hyper-parameter tuning with,
129–135

implementation of, 105–106, 107f
randomized search cross-validation
and, 131–133

Python, 14

Quantamental approach, 4, 15, 53–54
Quantamental funds, 19
Quantitative investing
backtest overfitting in, 113, 154
failure rate in, 4
meta-strategy paradigm in, 5
quantamental approach in, 53
seven sins of, 152, 153

Quantum computing, 319–328

Random forest (RF) method, 97–99
alternative ways of setting up,
98–99

bagging compared with, 98
bet sizing using, 142

Randomized search cross-validation,
131–133

Recall
binary classification problems and,
52, 52f

measurement of, 206
Reinstated value, 24
Return attribution method, 68–69
Return on execution costs, 203
Returns concentration, 199–201
RF. See Random forest (RF)

method
Right-tail unit-root tests, 250
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364 INDEX

Risk. See also Hierarchical Risk Parity
(HRP) approach; Strategy risk

backtest statistics for uncovering, 195
entropy application to portfolio
concentration and, 276

liquidity and, 7, 286
ML algorithms for monitoring, 14
PCA weights and, 35–36, 35f
portfolio oversight and, 8
profit taking and stop-loss limits and,
44

structural breaks and, 249
walk-forward (WF) approach and,
161

Risk-based asset allocation approaches,
222

HRP approach comparisons in,
236–238

structural breaks and, 249
Risk parity, 222. See also Hierarchical

Risk Parity (HRP) approach
HRP approach compared with
traditional approach to, 231–232,
233t, 234, 235f

Rolled prices, 37
Roll model, 282–283

Sample weights, 59–72
average uniqueness of labels over
lifespan and, 61–62, 61f

bagging classifiers and uniqueness
and, 62–63

indicator matrix for, 64–65
mean decrease accuracy (MDA)
feature importance with, 116

number of concurrent labels and,
60–61

overlapping outcomes and, 59–60
return attribution method and, 68–69
sequential bootstrap and, 63–68
time-decay factors and, 70–71, 72f

Sampling features, 38–40
downsampling and, 38
event-based sampling and, 38–40, 40f

Scalability
bagging for, 101
sample size in ML algorithms and,
38, 101

Scikit-learn (sklearn)
class weights in, 71
cross-validation (CV) bugs in,
109–110

grid search cross-validation in,
129–130

labels and bug in, 55, 72, 94
mean decrease impurity (MDI) and,
115

neg log loss as scoring statistic and
bug in, 134

observation redundancy and bagging
classifiers in, 97

random forest (RF) overfitting and,
98–99

support vector machine (SVM)
implementation in, 101

synthetic dataset generation in, 122
walk-forward timefolds method in,
155

Selection bias, 153–154, 167
Sequential bootstraps, 63–68
description of, 63–64
implementation of, 64–65
leakage reduction using, 105
Monte Carlo experiments evaluating,
66–68, 68f

numerical example of, 65–66
Shannon, Claude, 263–264
Sharpe ratio (SR) in efficiency

measurements
annualized, 205
definition of, 203
deflated (DSR), 204, 205f
information ratio and, 205
probabilistic (PSR), 203–204, 204f,
205–206, 218

purpose of, 203
targeting, for various betting
frequencies, 212–213

Shorting, in quantitative investing, 152
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INDEX 365

Signal order flows, 295
Simulations, overfitting of, 154
Single feature importance (SFI),

117–118, 125–127, 126f
Single future roll, 36–37
Sklearn. See Scikit-learn
Stacked feature importance, 121–122
Standard bars (table rows), 26–28
dollar bars, 27–28, 28f, 44
purpose of, 26
tick bars, 26–27
time bars, 26, 43–44
volume bars, 27, 44

Stationarity
data transformation method to ensure,
77–78

fractional differentiation applied to,
76–77

fractional differentiation
implementation methods for,
80–84

integer transformation for, 76
maximum memory preservation for,
84–85, 84f, 86t–87t

memory loss dilemma and, 75–76
Stop-loss, and investment strategy exit,

211
Stop-loss limits
asymmetric payoff dilemma and,
178–180

cases with negative long-run
equilibrium and, 182–187, 186f,
187f–191f

cases with positive long-run
equilibrium and, 180–182, 181f,
182f, 183f–186f

cases with zero long-run equilibrium
and, 177–180, 177f, 178f, 179f

daily volatility computation and,
44–45

fixed-time horizon labeling method
and, 44

investment strategies using, 170–171,
172, 211

learning side and size and, 48

optimal trading rule (OTR) algorithm
for, 173–174, 176–177, 192

strategy risk and, 211
triple-barrier labeling method for,
45–46, 47f

Storytelling, 162
Strategists, 7
Strategy risk, 211–218
asymmetric payouts and, 213–216
calculating, 217, 218
implied betting frequency and,
215–216, 216f

implied precision and, 214–215,
215f

investment strategies and
understanding of, 211

portfolio risk differentiated from,
217

probabilistic Sharpe ratio (PSR)
similarity to, 218

strategy failure probability and,
216–218

symmetric payouts and, 211–213,
212f

Structural breaks, 249–261
CUSUM tests in, 250–251
explosiveness tests in, 249, 251–259
sub- and super-martingale tests in,
259–261

types of tests in, 249–250
Sub- and super-martingale tests, 250,

259–261
Supernova research, 337–338, 338f
Support vector machines (SVMs), 38,

101
Supremum augmented Dickey-Fuller

(SADF) test, 252–259, 253f, 257f
conditional ADF, 256, 256f,
257f

implementation of, 258–259
quantile ADF, 255–256

Survivorship bias, 152
SymPy Live, 214
Synthetic data
backtesting using, 169–192
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366 INDEX

Synthetic data (Continued)
experimental results using simulation
combinations with, 176–191

optimal trading rule (OTR)
framework using, 173–176

Tick bars, 26–27
Tick imbalance bars (TIBs), 29–30
Tick rule, 282
Tick runs bars (TRBs), 31
Time bars
description of, 26
fixed-time horizon labeling method
using, 43–44

Time-decay factors, and sample
weights, 70–71, 72f

Time period, in backtesting, 196
Time series
fractional differentiation applied to,
76

integer transformation for stationarity
in, 76

stationarity vs. memory loss dilemma
in, 75–76

Time under water (TuW)
definition of, 201
deriving, 201
example of, 202f
run measurements using, 202

Time-weighted average price (TWAP),
24, 294

Time-weighted rate of returns (TWRR),
198–199

Trading rules
investment strategies and algorithms
in, 169–170

optimal trading rule (OTR)
framework for, 173–176

overfitting in, 171–172
Transaction costs, in quantitative

investing, 152
Tree clustering approaches, in asset

allocation, 224–229, 225f, 228f,
232f

Triple-barrier labeling method, 45–46,
47f, 145

Turnover costs, 202–203

Variance
boosting to reduce, 100
causes of, 93
ensemble methods to reduce, 94
random forest (RF) method for, 97–98

Vectorization, 303–304
Volume bars, 27, 44
Volume imbalance bars (VIBs), 30–31
Volume runs bars (VRBs), 31–32
Volume-synchronized probability of

informed trading (VPIN), 276, 282,
292

Walk-forward (WF) method
backtesting using, 161–162
overfitting in, 155, 162
pitfalls of, 162
Sharpe ratio estimation in, 166
two key advantages of, 161–162

Walk-forward timefolds method, 155
Weighted Kendall’s tau, 120–121
Weights. See Class weights; Sample

weights
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