Using the POSIX API
Threads, real-time and IPC




The pthread library

» In Linux, when a new process is created, it already contains a
thread, used to execute the main () function

» Additional threads can be created using the pthread library, which
is part of the C library

» Of course all threads inside a given process will share the same
address space, the same set of open files, etc.

» The pthread library also provide thread synchronization
primitives: mutexes and conditions

» This pthread library has its own header : pthread.h

» Applications using pthread function calls should be explicitly

linked with the pthread library
gcc -o app app.c -lpthread

2

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http//free-electrons.com



Creating a new thread

» The function to create a new thread is pthread_create()
int pthread create(pthread t * thread,
pthread attr t * attr,
void *(*start routine) (void *),
void * arg);
» thread is a pointer to a pthread_t structure that will be initialized
by the function. Later, this structure can be used to reference the

thread.

P Attr is a pointer to an optional structure pthread_attr t. This
structure can be manipulated using pthread attr *()
functions. It can be used to set various attributes of the threads
(detach policy, scheduling policy, etc.)

P start routine is the function that will be executed by the thread

» arg is the private data passed as argument to the start_routine

function
3

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http//free-electrons.com



Address space Address space

Process creation

using fork() Thread creation using pthread_create()

with function func() as start_routine




#include <pthread.h>

void *thread(void *data)
{
while(1l) {
printf(« Hello world from thread »);
}
}

int main(void) {
pthread t th;
pthread create(& th, NULL, thread, NULL);
return 0;

L



Joinable and detached threads

» When the main () function exits, all threads of the application are
destroyed

» The pthread join() function call can be used to suspend the
execution of a thread until another thread terminates. This
function must be called in order to release the ressources used
by the thread, otherwise it remains as zombie.

» Threads can also be detached, in which case they become
iIndependent. This can be achieved using

» Thread attributes at thread creation, using
pthread attr setdetachstate(& attr,
PTHREAD CREATE DETACHED);

» pthread detach(), passing the pthread t structure as
argument

6

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http//free-electrons.com




#include <pthread.h>

void *thread(void *data)

{
int i;
for (i = 0; i < 100; i++) {
printf(« Hello world from thread »);
}
}

int main(void) {
pthread t th;
pthread create(& th, NULL, thread, NULL);
pthread join(& th, NULL);
return 0;



@

» It is also possible to cancel a thread from another thread using the
pthread cancel() function, passing the pthread t structure of
the thread to cancel.

#include <pthread.h>

void *thread(void *data)
{
while(1l) {
printf(« Hello world from thread »);
}
}

int main(void) {
pthread t th;
pthread create(& th, NULL, thread, NULL);
sleep(l);
pthread cancel(& th);
pthread join(& th, NULL);
return 0;

o



» The pthread library provides a mutual exclusion primitive, the
pthread_mutex.

» Declaration and initialization of a pthread mutex

P Solution 1, at definition time
pthread mutex t lock = PTHREAD MUTEX INITIALIZER;

» Solution 2, at runtime
pthread mutex t lock;
pthread mutex init(& lock, NULL);

pthread mutex destroy(& lock);

» The second argument to pthread mutex init() is a set of
mutex-specific attributes, in the form of a pthread mutexattr t
structure that can be initialized and manipulated using
pthread mutexattr *() functions.

e



» Take the mutex
ret = pthread mutex lock(& lock);

» If the mutex is already taken by the calling threads, three possible
behaviours depending on the mutex type (defined at creation
time)

» Normal (« fast ») mutex : the function doesn't return, deadlock

» « Error checking » mutex : the function return with the —-EDEADLK
error

P « Recursive mutex » : the function returns with success

» Release the mutex
ret = pthread mutex unlock(& lock);

» Try to take the mutex
ret = pthread mutex trylock(& lock);

e



» Conditions can be used to suspend a thread until a condition
becomes true, as signaled by another thread.

» Initialization, static or dynamic

P pthread cond t cond = PTHREAD COND INITIALIZER;

» pthread cond t cond;
pthread cond init(& cond, NULL);

» Wait for the condition
pthread cond wait(& cond, & mutex)

The mutex will be released before waiting and taken again after
the walit

» Signaling the condition

» To one thread waiting, pthread cond signal(& cond);
» To all threads waiting, pthread cond broadcast(& cond);

11



Receiver
side

Sender
side




See http://free-electrons.com/docs/realtime/ for an introduction
C API Available through <sched.h> (see man sched.h for details)

™ sched getscheduler, sched setscheduler
Get / set the scheduling class of a process

> sched getparam, sched setparam
Get / set the priority of a process

P sched get priority max, sched get priority min
Get the maximum / minimum priorities allowed for a scheduling
class.

» sched rr get interval
Get the current timeslice of the SCHED RR process

» sched yield
Yield execution to another process.

Can also be manipulated from scripts with the chrt command.

e


http://free-electrons.com/docs/realtime/

A great way to communicate between processes
without going through expensive system calls.

» Open a shared memory object:
shm fd = shm open(“acme”, O CREAT | O RDWR, 0666);
A zero size /dev/shm/acme file appears.

» Set the shared memory object size
ftruncate(shm fd, SHM SIZE);

/dev/shm/acme is now listed with the specified size.

» If the object has already been sized by another process,
you can get its size with the £stat function.




» Map the shared memory in process address space:
addr = mmap (0, SHM SIZE, PROT WRITE,
MAP SHARED, shm fd, 0);
Now we have a memory area we can use!

» Lock the shared memory in RAM (best for real-time tasks):
mlock(addr, SHM SIZE);

» Use the shared memory object!
Other processes can use it too.




Exiting

» Unmap the shared memory object:
munmap (addr, SHM SIZE);

This automatically unlocks it too.

» Close it:
close (shm fd);

» Remove the shared memory object:
shm unlink (“acme”);

The object is effectively deleted after the last call to shm unlink.

More details in man shm open.

e



Deterministic and efficient IPC. See man mgueue.h.
Advantages for real-time applications:

» Preallocated message buffers

» Messages with priority.
A message with a higher priority is always received first.

» Send and receive functions are synchronous by default.
Possibility to set a wait timeout to avoid non-determinism.

» Support asynchronous delivery notifications.




» Declare queue attributes:

queue attr.mg maxmsg = 16;
/* max number of messages in queue */
queue attr.mg msgsize = 128;

/* max message size */

» Open a queue:
gd = mg_open(

“/msg_queue”, /* queue name * /
OCREAT | O RDWR, /* opening mode */
0600, /* permissions */

&queue_ attr);

e



» Posting a message:
#define PRIORITY 3
char msg[] = “Goodbye Bill”;
mgsend(qd, msg, strlen(msg), PRIORITY);

» Closing the queue:
mg close(qd);

Caution: simplistic example code. Should check return values.




From another application:

» Opening the shared message queue:
gd = mg open(”/msg _queue”, O RDWR,
0600, NULL);

» Waiting for a message:
mg receive(qd, text, buf, buf size, &prio);

» Close the queue:
mg close(qgd);

» Destroy the queue:
mg unlink(*”/msg queue”);

L



Resources for sharing resources between threads or
processes. See man semaphore.h.

» Named semaphores:
can be used between unrelated processes.

» Unnamed semaphores: can be used between threads from
the same process, or by related processes (parent / child).




@

P sem open
Open and / or create
a named semaphore.

P sem close
Close a named semaphore

P sem unlink
Destroy a named semaphore
P sem init
Initialize an unnamed semaphore

P sem destroy
Destroy an unnamed semaphore

P sem getvalue
Get current semaphore count

P sem wait
Try to lock the semaphore.
Wait otherwise.

P sem trywait
Just tries to lock the semaphore,
but gives up if the semaphore is
already locked.

P sem post
Release the semaphore.




» Signals are a mechanism to notify a process that an event
occured : expiration of a timer, completion of an asynchronous
|/O operation, or any kind of event specific to your application

» Signals are also used internally by the system to tell a process
that it must be suspended, restarted, stopped, that is has done
an invalid memory reference, etc.

» Each signal is identified by a number : SIGSEGV, SIGKILL,
SIGUSR1, etc.

» An APl is available to catch signals, wait for signals, mask
signals, etc.

» See signal(7) for a general description of the signal
mechanism

L



» A signal handler can be registered using

P sighandler t signal(int signum, sighandler t
handler);

P The handler has the following prototype : void handler(int
signum)

P int sigaction(int signum, const struct sigaction
*act, struct sigaction *oldact);

P The sigaction structure contains the reference to the handler
P The handler can have two different prototypes

P void handler(int signum)

P void handler(int signum, siginfo t *info, void
*data)

» Inside the handler code, only some functions can be used : only
the async-signal-safe functions, as documented by signal(7).

24



@

#include <signal.h>
#include <assert.h>
#include <unistd.h>
#include <stdio.h>

void myhandler (int signum)

{
printf("Signal catched!\n");
}
int main(void)
{
int ret;
struct sigaction action = {
.sa _handler = myhandler,
}i
ret = sigaction(SIGUSR1l, & action, NULL);
assert(ret == 0);
while(1l);
return 0;
}

From the command
line, the signal can then

be sent using
kill -USR1 PID

L



» From the command line, with the famous kill command,
specifying the PID of the process to which the signal should be
sent

» By default, kill will send SIGTERM
» Another signal can be sent using kill -USR1

» POSIX provides a function to send a signal to a process
»int kill(pid t pid, int sig);

» In a multithread program, the signal will be delivered to an arbitrary
thread. Use tkill () to send the signal to a specific thread.

L



> A type sigset_t is defined by POSIX, to hold a set of signals
» This type is manipulated through different functions

P sigemptyset () to empty the set of signals

P sigaddset () to add a signal to a set

P sigdelset () to remove a signal from a set

P sigfillset () to fill the set of signals with all signals

» Signals can then be blocked or unblocked using

sigprocmask(int how, const sigset t *set, sigset t *oldset);

P sigset_t are also used in many other functions

P sigaction() to give the list of signals that must be blocked during
execution of the handler

P sigpending() to get the list of pending signals

27



2 ways of waiting for signals:

P sigwaitinfo() and sigtimedwait () to wait for blocked
signals (signals which remain pending until they are processed by
a thread waiting for them.)

P sigsuspend() to register a signal handler and suspend the
thread until the delivery of an unblocked signal (which are
delivered without waiting for a thread to wait for them).




Reqular signals

P Just 2 applications-specific signals:

SIGUSR1 and SIGUSR2
» No signal priorities

P Signals can't carry any extra
information.

P Signals can be lost. When a signal
is sent multiple times, the receiver
will just process one instance.

POSIX signals

» Whole range of application specific
signals: SIGRTMIN to SIGRTMAX

P Priorities available.
Top priority signals delivered first.

P Possible to carry extra information
in a signal.

> Signals are queued. All pending
signals are processed: no signal is
lost.




Compared to standard (BSD) timers in Linux
» Possibility to have more than 1 timer per process.
» Increased precision, up to nanosecond accuracy

» Timer expiration can be notified
either with a signal or with a thread.

» Several clocks available.




Defined in /usr/include/linux/time.h

» CLOCK REALTIME
System-wide clock measuring the time in seconds and
nanoseconds since Jan 1, 1970, 00:00. Can be modified.
Accuracy: 1/HZ (1 to 10 ms)

» CLOCK MONOTONIC
System-wide clock measuring the time in seconds and
nanoseconds since system boot. Cannot be modified,
SO can be used for accurate time measurement.
Accuracy: 1/HZ

e



» CLOCK_PROCESS CPUTIME ID
Measures process uptime. 1/HZ accuracy. Can be changed.

» CLOCK THREAD CPUTIME ID
Same, but only for the current thread.




Functions defined in time.h

» clock settime
Set the specified clock to a value

» clock gettime
Read the value of a given clock

» clock getres
Get the resolution of a given clock.

See man time.h and the manual of each of these functions.




Functions also defined in time.h

» clock nanosleep
Suspend the current thread for the specified time,
using a specified clock.

» nanosleep
Same as clock _nanosleep,
using the CLOCK REALTIME clock.




» timer create
Create a timer based on a given clock.

» timer delete
Delete a timer

P timer settime
Arm a timer.

» timer gettime
Access the current value of a timer.




» Available in Linux since 2.6.21 (on x86).
Now available on most supported platforms.

» Depending on the hardware capabilities,
this feature gives microsecond or nanosecond accuracy to the
regular clocks (CLOCK REALTIME, CLOCK MONOTONIC).

» No need to recompile your applications!




» Helpful to implement non-blocking 1/0O.

» Allows to overlap compute tasks with I/O processing,
to increase determinism.

» Supported functionality:
» Send multiple I/O requests at once from different sources
» Cancel ongoing I/O requests
» Wait for request completion

» Inquire the status of a request: completed, failed, or in
progress.

» APl available in aio.h (man aio.h for details)

S



» Includes: nothing special to do.
Available in the standard path.

» Libraries: link with 1ibrt

» Example:
gce -1lrt -o rttest rttest.c




POSIX manual pages

POSIX manual pages may not be installed on your system

» On Debian Linux, based systems,
to find the names of the corresponding packages:
apt-cache search posix

Then, install these packages as follows:
apt-get install manpages-posix manpages-posix-dev

» Other distributions should have similar package names.

» These manual pages are also available on-line:
http://www.opengroup.org/onlinepubs/009695399/idx/realtime.htm|

You can almost consider these manual pages as specifications.
The standard can also be accessed on
http://www.unix.org/online.html (registration required).

39_

Free Electrons. Kernel, drivers and embedded Linux development, consulting, training and support. http//free-electrons.com



http://www.opengroup.org/onlinepubs/009695399/idx/realtime.html
http://www.unix.org/online.html

» The POSIX manual pages

» Embedded Linux System Design and Development
P. Raghavan, A. Lad, S. Neelakandan, Auerbach, Dec. 2005.
http://free-electrons.com/redirect/elsdd-book.html
Very nice and clear coverage on real-time programming
with the POSIX interface. Nice and useful examples.

» Guide to real-time programming
http://www.phys.uu.nl/DU/unix/HTML/APS33DTE/TITLE.HTM

A 11-year old document, with some Digital Unix specifics,
but still up to date (thanks to standards).



http://free-electrons.com/redirect/elsdd-book.html
http://www.phys.uu.nl/DU/unix/HTML/APS33DTE/TITLE.HTM

Free Electrons

Embedded Freedom

Recent blog posts

ELC Europe in Grenohle Maost of the below documents are presentations used in our t

conferences.

s, ar in technical

Free Electrons at ELC
License
Linux kernel 2.6.29 - New

features for embedded ShareAlike 3.0 license. This essentially means that you are free to download, distribute

@ All our documents are available under the terms of the Creative Commaons Attribution-

and even modify

them, provided you mention us as the original authors and that you

users -
share these documents under the same conditions.

The Buildroot project Linux kernel

begins a new life

Embedded Linux kernel and driver development
6 (since 2.6.10)

New features in Linux 2

FOSDEM 2009 videos

« Kernel initialization
USE-Ethernet device for . hardware
» Power management in Linux

Linusx

Frogram far Embedded Block device drivers

Linux Conference 2008

documents

announced

Public session changes

Real hardware in our
Embedded Linux system development
training sessions
« Embedded Linux system development
Call for presentations for = Real time in embedded Linux systems
Elack filesystems

the LSM embedded track

Free software development tools
r
+ The GRUE hootloader
+ The biok boatloader

Introduction to uClinux

Embedded Linux aptimizations
= Audio in embedded Linux systems

= Multimedia in embedded Linux systems
= Embedded Linux From Scratch... in 40 minutes!

. embedded Linux systams with Buildroot
Developing embedded distributions with OpenEmbedded
= The Scratchbox development environment

Miscellaneous

= Introduction to the Unix command line

wirtualization solutions (with an embedded perspectivel
= Advantages of Free Software and Open Source in embedded systems
= Introduction to GNU/Linux and Free Software

All our technical presentations
on http://free-electrons.com/docs

» Linux kernel

» Device drivers

» Architecture specifics

» Embedded Linux system development



http://free-electrons.com/docs

You can help us to improve and maintain this document...

» By sending corrections, suggestions, contributions and
translations

» By asking your organization to order development, consulting
and training services performed by the authors of these
documents (see http://free-electrons.com/).

» By sharing this document with your friends, colleagues
and with the local Free Software community.

» By adding links on your website to our on-line materials,
to increase their visibility in search engine results.



http://free-electrons.com/

Linux kernel

Linux device drivers

Board support code
Mainstreaming kernel code
Kernel debugging

Embedded Linux Training
All materials released with a free license!

Unix and GNU/Linux basics

Linux kernel and drivers development
Real-time Linux, uClinux

Development and profiling tools
Lightweight tools for embedded systems
Root filesystem creation

Audio and multimedia

System optimization

Free Electrons

Our services

Custom Development

System integration

Embedded Linux demos and prototypes
System optimization

Application and interface development

Consulting and technical support

Help in decision making

System architecture

System design and performance review
Development tool and application support
Investigating issues and fixing tool bugs

. .’ Free Electrons

Embedded Linux Experts




