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Forecasting High-Frequency Futures Returns Using
Online Langevin Dynamics

Hugh L. Christensen, James Murphy, and Simon J. Godsill, Member, IEEE

Abstract—Forecasting the returns of assets at high frequency is
the key challenge for high-frequency algorithmic trading strate-
gies. In this paper, we propose a jump-diffusion model for asset
price movements that models price and its trend and allows a mo-
mentum strategy to be developed. Conditional on jump times, we
derive closed-form transition densities for this model. We show how
this allows us to extract a trend from high-frequency finance data
by using a Rao–Blackwellized variable rate particle filter to filter
incoming price data. Our results show that even in the presence of
transaction costs our algorithm can achieve a Sharpe ratio above
1 when applied across a portfolio of 75 futures contracts at high
frequency.

Index Terms—Futures trading, online learning, particle filter,
quantitative finance, tracking.

I. INTRODUCTION

A LGORITHMIC trading of financial securities is big busi-
ness, with an estimated 45% of trading volume in futures

contracts from computer generated trading decisions [1].
In this paper, we propose a new trading algorithm from the

popular trend-following or momentum class of trading strate-
gies. In these an agent attempts to identify an ongoing price
trend and then to take a market position in order to benefit from
its continuation. Our algorithm is based on the ideas of physical
object tracking and uses similar Bayesian filtering techniques to
extract a trend from price observations.

Momentum strategies have been the source of much aca-
demic debate (e.g., [2]–[6]) because they appear to defy even
the weak form of the Efficient Market Hypothesis (EMH) of
[7], which states that prices should not be predictable from
analyzing their past history. This form of the EMH is consistent
with random-walk behavior of asset prices and suggests that
no form of technical analysis (price prediction based solely on
studying previous price history) can generate above average
returns without taking on above average risk [2]. However,
technical analysis remains in widespread use in public markets
[8] and various forms have been shown to have at least some
predictive power [8]–[11]. Momentum effects in particular have
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been extensively studied (e.g., [4], [12]–[16], among others)
and have been found to exist in a number of markets including
foreign exchange [15], commodities [17] and equities [14].
Proposed explanations of these effects include the non-instan-
taneous reaction of the market to news events [12], meaning
that the effects of events take place over several trading periods,
and herding behavior [18], in which, for example, investors
clamor for assets that have recently performed well, further
increasing their price. Though this herding behavior has been
termed “irrational exuberance” [18], irrationality of investors
is not required to explain momentum effects [5], [19]. Some
advocates of market efficiency contest that trading costs would
wipe out any practical benefit of momentum trading [2], [6].
We therefore aim to show that our algorithm delivers positive
performance even in the face of trading costs. Despite efficient
market objections to momentum trading, the continuing exis-
tence and profitability of momentum-based funds (for example,
AHL, the world’s largest quantitative hedge fund [20]) has led
to obvious ongoing interest.

Momentum effects have been found at a range of frequencies
from multi-monthly [4], to intraday [21], though this latter study
found them to be more profitable at higher (intraday) frequen-
cies. The algorithm we propose can be applied to observations
at any frequency (though it is likely that not all frequencies will
be profitable), and, since it does not rely on regularly spaced ob-
servations could be applied to asynchronous tick data (high-fre-
quency data listing all market transactions).

Any momentum strategy relies on its ability to determine
a trend to follow and numerous ways of doing so have been
proposed. Some profitable strategies have been as simple as
buying shares that performed well over a previous period [4].
A more sophisticated methodology (developed by practitioners
in the late 1970s) consists of filtering the price though two low-
pass filters (for example moving averages with different window
lengths), the difference enabling trend calculation and the filter
removing high-frequency noise [22]. Later work has looked at
wavelet approaches to approximating bandpass filters [23] and
replication of the payoff structures using look-back options [16].
While these methods have many common features they differ in
their step response, sensitivity to high-frequency noise and com-
putational cost.

In our algorithm, we propose obtaining trend information by
using tracking algorithms akin to those used for physical object
tracking. Such tracking algorithms are usually based around a
motion model for the target being tracked. This model must be
able to make predictions about the target motion and its accu-
racy has a substantial effect on the tracking performance [24].
The underlying dynamics of financial asset values are much
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less clear than in the physical case, despite extensive study of
the behavior of asset prices, e.g., [25]–[31]. Though the “styl-
ized facts” established in this literature can help point out short-
comings of an asset price model, they do not prescribe a spe-
cific model of asset dynamics. Numerous models have been
proposed, largely dependent on the application and their an-
alytical tractability; popular models include GARCH models
in econometrics [32], exponential Brownian motion models in
Black–Scholes option pricing [33], stochastic volatility models
to fit volatility clustering and option price smiles [34] and jump-
diffusion and Lévy process models to fit heavy tails, e.g., [35]
and [36], respectively. Such random walk models, however, do
not allow for a predictable trend in asset prices. Since it is the
aim of this work to determine such a trend we must move away
from these models above and introduce a “trend” term. The
model we describe in Section II can be seen as similar in spirit to
the “near constant velocity” physical tracking models described
in [24]. It can also be viewed as an extension of the Langevin
dynamics used in [37].

Our model also addresses the issue of trend changes, which
can cause difficulty for momentum strategies [38], by allowing
jumps in our trend process. Jumps in the trend process can model
sharp changes of sentiment in the market and allow our pre-
dictions to reflect these more quickly than models that simply
smooth the price series. Aside from the jump timings we as-
sume that the asset price and trend processes are Gaussian. By
conditioning on the jump times we can obtain an analytically
tractable model allowing for fast and accurate prediction using
the Kalman filter. The non-Gaussian jump times can be inferred
using a particle filter. This idea is similar to those in [37], [39],
and [40], which aim to track physical objects such as aircraft
capable of executing rapid, sharp manoeuvres by introducing
jumps in their acceleration process.

The remainder of the paper is structured as follows. In
Section II, we present the observation and dynamics models we
propose to use for asset prices within our tracking algorithm.
We show how these can be used to derive the observation and
state transition densities required for the Bayesian state-space
filtering techniques we wish to apply.

Section III gives details of the variable-rate particle filter al-
gorithm that we use to infer trend information from our obser-
vations of asset prices. We show how to use the output of the
algorithm to make predictions about the next observation. We
also detail how we turn these model predictions into trading
decisions.

Section IV presents the results of our algorithm applied to
both daily and intraday futures prices. We show that the algo-
rithm, in the presence of a suitable framework and simulation
methodology, manages significantly positive performance, even
after accounting for trading costs.

Section V concludes and suggests possible avenues of future
research coming from this study. We find the algorithm to be a
viable methodology for trading futures algorithmically at high
frequency.

II. MODEL COMPONENTS

The trend-following algorithm we propose uses sequential
Bayesian Monte Carlo inference to obtain information about

asset price behavior. Such inference techniques (described in
detail in Section III) require that we can model the system gener-
ating the observations as a state-space system, where the system
has some state at each point in time, with observations generated
according to the underlying system state at the observation time.
Such state-space systems require two models to define them: a
state-transition or dynamics model, which describes the evolu-
tion of the system state over time, and an observation model,
which describes how observations are generated from the cur-
rent state. Both of these models must be probabilistic, giving a
density over successor states or observations, respectively, given
the current state. These densities are the key features of our
model, so we derive them in detail below.

A. State Transition Model

The model we propose has a “value” and “trend” com-
ponent. The trend is a mean-reverting random process subject
to two different types of random innovation: Gaussian noise of
constant volatility and random jumps. The value component
is given by integrating the trend process with respect to time.
Observed prices are modeled as observations of the value
process subject to Gaussian noise.

For clarity of exposition, we first consider the process without
jump innovations. In this case, the system we propose can be
written in matrix-vector form as

(1)

where the is a Gaussian noise processes and is the
value of the process at time . We require the mean reversion
coefficient to be non-positive and the noise standard deviation

to be positive. This can be written as

(2)

where we have defined

(3)

Our model has the advantage of being analytically tractable,
while still retaining the salient features necessary to execute a
trend following strategy. For such a purpose we require some
notion of trend, excluding random walk models like Brownian
motion and geometric Brownian motion. Including mean rever-
sion in our model reflects our view that trends will fade over
time. The inclusion of jumps in the trend process allows trends
to reverse or disappear rapidly. Fig. 1 illustrates the types of
changes in trend and price that can be accommodated by such a
model.

In order to apply our tracking algorithm, we need to go from
this statement of the model to an expression for the distribution
of the system state at a future time , given its state (or state
distribution) at the current time .

The system in (2) is linear time-invariant (LTI) Gaussian,
meaning it can be solved in closed form using Itô calculus [41]
(for our model this is a well known procedure but for complete-
ness we outline the solution here as this allows us to deal with
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Fig. 1. Sketch of price dynamics that can be captured with our model, showing
(from left to right) the effect of a change in the intensity of a trend, a sharp trend
change, and a declining trend.

jumps later on). The solution (integrating from time to ) is
given by the stochastic integral

(4)

If is Gaussian distributed then is itself Gaussian
distributed because the stochastic integral is also a Gaussian
random variable. Gaussian distributions are fully determined
by their first two moments, so is fully specified by its
expectation and covariance.

Since the expectation of the stochastic integral is zero the
expectation of is

(5)

In order to find the variance-covariance of we note the in-
dependence of and , and the fact that the latter
integral has an expectation of 0 in all components, so that some
of the terms in the following expansion are equal to zero:

(6)

Substituting in the expressions for and in (4) and
(5), respectively, and, for notational convenience, defining

we get

(7)

Using a multivariate instance of the Itô isometry, applied to a
deterministic process we are able to find the required expecta-
tion to calculate :

(8)

which gives us a deterministic expression for variance-covari-
ance of . This calculation of the integral expression for

in (8) is not completely trivial but can be obtained using
matrix fraction decomposition [42] or by series expansion of
the exponential functions [37]. The series expansion is only

plausible for low dimensional systems and so while it could be
applied here to our 2-D system, we use the former method for
its generality.

Without jumps, then, the transition density we are seeking is
given by

(9)

with the conditional expectation and covariances in (9) given by
the expressions in (5) and (7), respectively, given a known value
for (so that and ).

The system in (1) can be written as a standard Langevin equa-
tion. This equation has been used to model the motion of a par-
ticle in a fluid subject to stochastic forces [43]. In this case,
has a physical interpretation as the ratio of the coefficient of
resistance to particle mass. This allows for an analogous inter-
pretation of the parameter as a trend resistance term, causing
trends to revert to 0.

We are now able to build on this model by including jump
terms, giving a governing SDE of the form

(10)

where is the jump process.
No closed form solution of the jump system exists in gen-

eral. However, by conditioning on jump times we can think of
the system as if the jump times are known a priori (though our
algorithm does include the jump times as random variables).
Then we are able to separate the system into a tractable LTI
Gaussian part (between the jumps), solved as above, and a non-
linear, non-Gaussian part (the jumps).

The jumps follow a Gauss–Poisson process, with jump times
following a Poisson arrival process and jump sizes dis-

tributed as a multivariate Gaussian, so that

(11)

exponential (12)

where is the mean jump size and is the jump size variance.
This allows us to define our jump process as

(13)

so that at (i.e., the moment just after ). Note
however that there is no necessity in our framework to limit our-
selves to an exponential inter-arrival distribution; for example,
gamma distributions were used in some earlier tracking work
[37].

In the model thus described there are six parameters: the mean
reversion coefficient , the Gaussian noise variance , the jump
rate , he jump mean , the jump size variance , and the
observation noise variance .

In the presence of jumps the calculation of the state transi-
tion density is more complicated but can be accomplished if we
condition on the jump times. Consider again the state transition
from time to . If a single jump occurs between and , e.g.,
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at time , then we can think of the transition in three
parts: the pre-jump diffusion, the jump itself and the post-jump
diffusion. By conditioning on the jump time we can think of
as a known value rather than a random variable. For cases with
no jumps or multiple jumps between and this processes can
be modified appropriately by considering a single diffusion sec-
tion from to or multiple diffusion and jump sections (e.g.,
for two jumps, diffusions from to to , and to ),
respectively [37]. Since we are trying to develop a transition
density conditional on the state at time , we will also condi-
tion on .

Following the diffusion from to (where is the instant
before the jump occurs) we calculate the distribution of the state
exactly as in the non-jumping case above, giving a Gaussian
state distribution with first and second moments given by

using the formulae in (5) and (7), respectively.
Across the period of the jump, from time to (where is

the instant immediately after the jump occurs) we can calculate
the distribution by noting that we assume normally distributed
jump sizes, independent of any other innovations as in (12). This
leads to a post-jump distribution that is also Gaussian with mean
and covariance given by

Using this as a starting point, we can then use the expres-
sions in (5) and (7) to calculate the first two moments of the
state distribution following the diffusion from to . Since
the post-jump distribution is Gaussian, the state distribution at

(conditional on jump times) will also be Gaussian and so will
be fully specified by

By substitution, we can now write expressions for these mo-
ments in terms of (or its distribution), i.e., with no reference
to the state at intermediate times and . These expressions
are

(14)

and

(15)

These allow us to define the state transition density function
(conditional on knowing the jump times) as

(16)

where , the set of jump times
between times and . Given the jump times, this gives us the
state transition density we need.

The jump times on which we must condition are, however,
still unknown. To fully specify our state transition model, we
also need to specify the jump time distribution. In this work, in
the absence of any specific conditioning information on jump
times, we choose the memoryless exponential distribution. The
jump times are thus distributed as

(17)

Since this distribution is not Gaussian, these must be inferred
using a method able to cope with non-Gaussian distributions,
such as the particle filter, which we develop below for this
model.

An alternative approach would be to calculate the state tran-
sition function from time to , including jumps at unknown
times, directly. This transition function would be non-Gaussian,
as it would include the exponentially distributed (in time) jumps.
We would therefore need to apply a method able to cope with
non-Gaussian transition functions to the entire state process.
The approach outlined above, in contrast, allows much of the
state to be estimated using the computationally efficient and op-
timal Kalman filter while the unknown jump times are sampled
in a particle filter.

B. Observation Model

For our observation model, we assume that the th price ob-
servation, , observed at time , is the result of an observation
of the value process , perturbed by Gaussian noise of a fixed
variance

(18)

We assume that the observation is conditionally independent
of all other observations and elements of the state process given

.
This gives an observation density, conditional on the state at

time , of

(19)

III. INFERENCE ALGORITHM

Given a state-space model and an observation function, the
filtering problem is that of estimating the state of the underlying
model (perhaps as a probability distribution over possible states
known as a posterior filtering distribution) at time given a se-
quence of observations up to time . Since the number of obser-
vations increases with time we would like to calculate our new
state estimate sequentially using only the previous estimate and
the new observation, since then we are not required to store all
previous observations and this is likely to be computationally
efficient.

The objective of our inference algorithm is to take a series of
price observations (with the obser-
vation made at time ) and use these to infer the underlying
state at time .
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Conditional on the jump times, our model has a Gaussian dis-
tribution [(14) and (15)] that depends in a linear way on the state
at some previous time. This is a sufficient condition for us to be
able to apply the Kalman filter to obtain the state distributions
given we already know the jump times. In reality, we do not
already know the jump times so we must apply another filter
to infer these. Since their governing dynamics are not linear
Gaussian, we cannot use the Kalman filter and so opt instead
to use a particle filter, able to cope with non-Gaussian state dis-
tributions. This will give us a weighted sample-based approxi-
mation of the jump-time distribution, with each sample (or par-
ticle) being a collection of jump times. For each particle we can
then use this set of jump times as conditioning information in
order to infer a set of (Gaussian) probability distributions for
our state. Combining these state distributions according to the
sample weights then gives an approximate joint posterior fil-
tering distribution for the state and jump times. This is an ex-
ample of Rao–Blackwellization [44], [45] in which the state is
separated into a linear Gaussian portion, which can be inferred
using the Kalman filter, and a nonlinear and/or non-Gaussian
portion, inferred using an alternative method. This has great
advantages for computation speed and accuracy of the particle
filter [45].

In this section, we briefly review the Kalman and particle fil-
ters before showing how we use these in combination to do state
inference with the proposed asset price model.

A. Kalman Filter

In the case of linear state models with additive Gaussian noise
terms, the Kalman filter solves the filtering problem (in the sense
that it can be shown to be the optimal linear estimator of the
state in a mean squared error sense [46]). It can also be derived
as a Bayesian filter [47], with the previous filtering distribution
up to an observation time forming the prior for calculating
the filtering distribution at the next observation time .
This relies on the fact that the Gaussian distribution is its own
conjugate prior, meaning that the posterior filtering distributions
are always Gaussian for such models.

The model with states (with
being the state at the time corresponding to observation

) and observations can be written as

(20)

(21)

where and are the state transition and observation ma-
trices, respectively, at the th observation time, and and
are the corresponding state transition and observation covari-
ances. For our model these will be specified by the state transi-
tion and observation densities in (16) and (19), respectively, i.e.,

(22)

(23)

(24)

(25)

where , i.e., the set of jumps be-
tween times and . These give distributions for and that

match with the state transition and observation densities above
(assuming the jump-size mean is 0, though this assumption
can easily be relaxed).

Another important feature of the Kalman filter that we rely on
in this work is its ability to sequentially calculate the observation
likelihood via the prediction error decomposition (PED)
[48]. The PED gives us the observation probability for the most
recent observation, given all others up to that point:

(26)

where

(27)

(28)

Here and are the predicted mean and covari-
ance of the state distribution at the time of the th observation
given the first observations. They are obtained from the
previous step of the Kalman filter

(29)

(30)

where and are the mean and covariance
of the filtering distribution at the time of the th obser-
vation , derived from the previous “prediction” through the
“correction” step of the filter (see, e.g., [49]), given by

(31)

(32)

(33)

In order to start the filter we need a prior state distribution
specifying our belief about the underlying system state at . We
take this to be Gaussian (and this is necessary for the Kalman
filter) and can therefore specify it by its mean and covariance

, which we use in the first “predict” step of the filter ((29) and
(30)) as and , respectively.

B. Variable Rate Particle Filter (VRPF)

Were the jump times known a priori, the Kalman filter above
would be sufficient to solve our filtering problem. However,
without known jump times our model does not have a Gaussian
state transition density. For such systems there is no longer any
guarantee that the Kalman filter will give the conditional mean
of the state distribution. We therefore require a filter that can
cope with such non-Gaussian models. Variants of the Kalman
filter algorithm such as the extended Kalman filter (EKF) and
unscented Kalman filter (UKF) offer approximate methods, but
we choose to use the theoretically appealing particle filter. This
can be shown to converge asymptotically to the correct filtering
distribution as the number of particles increases to infinity.

The standard particle filter algorithm uses importance sam-
pling to represent the posterior filtering distribution after each
observation using a collection of weighted samples (or parti-
cles). The samples are drawn from an easy-to-sample distribu-
tion over the space of interest, with weights chosen so as to
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approximate the posterior filtering distribution. In the standard
case the posterior filtering density is given by

(34)

where is the state of particle at time is the
weight of particle at time is the collection of all par-
ticles at time and is a delta function with mass 1 at the
point . This gives a sum-of-deltas approximation to the poste-
rior filtering distribution, with nonzero values at the location of
the particles . A recent survey of particle filtering is given in
[45].

The idea of Rao–Blackwellization allows us to separate our
filter into a particle filter for the inference of jump times and a
Kalman filter for the rest of the (conditionally linear Gaussian)
state inference, which uses the jump times from the particle filter
as conditioning information. Since our non-Gaussian state is
simply the collection of jump times, each particle in our filter
can be represented by a set of jump times. The distribution of
the conditionally linear Gaussian state (the values of and

in our system) corresponding to each particle can be in-
ferred by using the Kalman filter described above with each
particle’s collection of jump times as conditioning information.
The joint posterior filtering distribution (jump times and system
state) is given by the sum of jump time and state distributions
(these latter given by the Kalman filter), weighted by the particle
weights. This gives an approximate underlying state distribution
given by

(35)

where is the posterior filtering density
obtained from the Kalman filter conditioned on particle ’s set
of jump times between and , denoted . This filtering
density from the Kalman filter is Gaussian, with mean
and covariance given by (32) and (33), respectively.
This means that the approximate posterior state distribution is
a weighed sum of Gaussians, given by

(36)

Though the set of jump times are sufficient to define a par-
ticle (since the rest of the underlying state can be inferred by
running the Kalman filter over all available observations condi-
tioned on them), for efficiency we also store the current mean
and covariance of the underlying state for each particle,
and , respectively. These can then be sequentially updated
using the Kalman filtering (29)–(33). We can therefore think of
a particle as a collection of four pieces of data: the collection
of jump times , the posterior mean and covariance

of the underlying state given the jump times and all avail-
able observations up to time , and the current particle weight

. We can write this as

(37)

In what follows, we assume that we have a collection of such
particles representing the posterior filtering density at , the
time of the th observation (in the initial case where

this will be a collection of evenly weighted particles
representing our prior probability density, the jump-time sets
of which will be empty, and the state mean and covariance of
which will be set to their initial prior values, and , respec-
tively). Our aim, therefore, is to update this particle collection
to a new one that represents the posterior filtering density after
making the next observation at time . Fig. 2 shows this process
in outline for a single particle in the collection and Algorithm 1
briefly outlines the algorithm.

The first step in updating each particle is to decide the number
of successor particles (children) the particle will have in the
next generation (step 1 in Fig. 2 and Algorithm 1). This is part
of a resampling step in which some high-weighted particles
are propagated multiple times in the next generation (and low-
weighted particles might not be propagated at all). It is necessary
to combat the problem of particle weight degeneracy, which af-
flicts particle filters, whereby almost all particle weight accu-
mulates on a single particle [45]. The number of offspring of a
particle does not matter (though we want to avoid the number of
particles exploding or going to zero), as long as we divide the
weight of the parent particle between them. This requirement
means that we cannot arbitrarily select zero offspring, but must
use probabilistic resampling or require at least one offspring for
low-weighted particles. Probabilistic resampling for particles
with less than one offspring is achieved by propagating these
particles with a probability proportional to their ideal number
of offspring . Alternatively, if we require particles to have
at least one offspring, the number of offspring can be given
by

(38)

Initially, each child particle is a copy of its parent, with jumps
in the same positions from time to and we divide the
parent’s weight evenly, so that the weight of each offspring par-
ticle is

(39)

Once we have chosen the number of children a particle will
have we must sample a new proposed jump time for each
child (step 2 in Fig. 2 and Algorithm 1). We do this by sam-
pling from the jump-time distribution from our model, given that
we have arrived at time having previous jump times given
by the parent particle’s set of jump times , so that

(40)

Some of these newly sampled jump times will be before the cur-
rent observation time (e.g., those of the first and last particle
in Fig. 2); we call these particles jumping particles, since they
propose the occurrence of a jump between the previous and cur-
rent observations. The other particles have proposed jump times
beyond the current observation time; we call these non-jumping.
In fact, for jumping particles we continue to sample jumps until
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Fig. 2. Update step for a single particle of the variable rate particle filter. Gray
rectangles represent particles, which consist of collections of jump times (black
dots). Representative particle weights are illustrated along the right-hand side
by gray circles, with diameter corresponding to weight. See text for further in-
formation on numbered steps.

we propose one beyond the current observation time, allowing
for the possibility of multiple jumps from time to .

The next step (step 3 in Fig. 2 and Algorithm 1) collapses
all offspring particles with no jumps between and into a
single offspring particle. This is possible since all these non-
jumping particles are identical up to the time of the current
observation , with a set of jump times the same as that of
their parent particle. This step is different from most resam-
pling schemes (e.g., those in [50]) because in most applications
there are not large numbers of effectively identical offspring.
Here, however, this fact allows us to retain more particle diver-
sity during resampling by reducing the number of children of
highly weighted particles (meaning that, for example, requiring

at least one offspring is plausible without particle explosion).
The weight of the single particle into which all non-jumping par-
ticles is collapsed is the sum of the weight of all non-jumping
particles.

Once we have obtained our reduced particle set (containing
a number of jumping particles and at most one non-jumping
particle), we can re-weight it in light of our observation at
(step 4 in Fig. 2 and Algorithm 1). The standard particle filter
weight update equation is

(41)
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where is the complete system state at for particle , and
is the proposal function for the state at

given that at . In our case, thanks to Rao–Blackwellization
we only need to consider the non-Gaussian part of the state, the
jump times. This gives us the weight update equation

(42)

where is the set of jump times of particle between times
and , and is the jump time distri-

bution, given we are at time with the set of jumps .
The denominator here is the proposal density for the jump times
given in (40). Since we choose the jump time proposal function
to be equal to the conditional jump time distribution in the nu-
merator we get a bootstrap particle filter and can simplify our
weight update equation to

(43)

The term is the observation likelihood
given the jump time collection and can be obtained from the
PED of the Kalman filter as given in (26). This filter also infers
the underlying state distributions for the particle (i.e., condi-
tional on its particular set of jump times) at the observation
times, which are used in our prediction step, below. So, in
order to update the weights of our offspring particles in light
of the latest observation , we calculate the likelihood of
the new observation using the Kalman filter conditioned on
the particle’s set of jump times and then multiply this by the
previous particle weight (from the resampling step).

Once this has been done for all offspring particles, they can be
added to the new particle collection for time (step 5 in Fig. 2
and Algorithm 1).

After doing this for all particles in the original particle collec-
tion we will obtain a complete new particle collection for time

. Because the particle weight update in (43) is a proportion-
ality relationship rather than an equality, the particle collection
thus formed will have particle weights that do not sum to 1 as
required. They can be made correct, however, by normalizing
them so that they do (step 6 in Fig. 2 and Algorithm 1). This
particle collection is now a particle representation of the poste-
rior filtering distribution at time . We can repeat this process
for each new observation received.

In order to generate a trading signal, we use the expected
value of our posterior estimate of the underlying processes ,
which we denote . This can be calculated by taking the ex-
pectation of the posterior filtering density for the state in (36).
Since this is a weighted sum of Gaussians, the expected value is
just a weighted sum of their means, so

(44)

The expected values of the price and trend processes are then
just the first and second components, respectively, of the
vector, which we denote and .

IV. EXPERIMENTS AND RESULTS

A. Jump Time Estimation

To illustrate the detection of jumps in the trend process, the
variable rate filter was run on synthetic data, generated from the
filter’s model with known jump times. Fig. 3 shows the result of
running the filter on this data, with the trend process and the fil-
tering density shown in the upper graph and the jump detection
shown in the lower graph. This latter shows the total proportion
of particle weight held by particles having a jump between ad-
jacent observation times. Since the particle filter targets the pos-
terior density of at it acts as a (fairly crude) smoother
at fixed lags and thus a smoothed state estimate (including jump
times) at lag is given by the marginal posterior distribution of

at time . This allows the smoothed total jumping weight
to be calculated for various lags; Fig. 3 shows this for the fil-
tering distribution (zero lag) and for a lag of ten observation
periods. As expected the total jumping weight is much more
sharply peaked for the lagged case, with many periods having
nearly zero or nearly one total jumping weight indicating no or
all significant particles jumping, respectively. In the filter case,
the total jumping weight is frequently around 0.15 for periods
with no jump (and significantly higher at jumps). This shows
many jumps are being proposed and considered (some of which
might have small amplitude). With the arrival of more observa-
tions the presence of a jump is either confirmed or refuted and so
the lagged jumping weights are more sharply defined (though at
long lags the degenerate histories of particles will also be partly
responsible; there may only be one ancestor particle). In this
example all strong jumps and almost all of the weaker ones are
detected (in that they are deemed probable in the smoothed es-
timate). Some weaker jumps are not detected but these are also
difficult to distinguish by eye from standard diffusion moves.
Where jumps happened roughly midway between observations
the jumping weight is often split between two neighboring ob-
servations.

B. Real Data

In order to evaluate our approach in a realistic scenario we use
time series data for 75 of the world’s most liquid futures con-
tracts for the period 01 January 2006 to 01 January 2011, where
a liquid security is one which can be traded without causing sig-
nificant price movements. The data used is detailed in [51].

Owing to the very large size of these evaluation datasets, prior
to particle filtering we first resample the asynchronous high-fre-
quency data onto regular time grids. This is carried out by using
the most recent available price in each asynchronous time se-
ries as the next data-point on the regular time grid. It is worth
noting though that for very liquid markets (such as the U.S.
10-year note), the mean number of contracts traded is
per minute, and peak rates can be several multiples greater than
this [52]. Our continuous-discrete time filtering methods from
previous sections are of course valid for any time discretization
and could also be applied directly to the asynchronous raw data
(see also [37]); this is a development that we will study in future
work on this topic.

Various discretization rates are evaluated. We carry out
testing on daily data for the full 5-year data set, which forms a
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Fig. 3. Jump time detection in synthetic data. The upper graph shows the trend process (red line) and the filter distribution obtained (grey shading) using around
400 particles. The lower graph shows the proportion of particle weight held by jumping particles at each observation time. The light gray bars show the filter weight
(no observation lag) and the black bars show the weight at a lag of ten observations. Background shading (red) indicates the presence of a jump with the magnitude
of a jump being indicated by the intensity of the shading, with larger jumps being darker.

lower frequency performance baseline to compare with results
for 15 minute (min15), 5 minute (min5), and 1 minute (min1),
each on smaller subsets of the total data set. This is done
because, while we would like to present long-run simulation
results for all discretization rates, we are restricted by lack of
computational power (though we note that particle filtering is
well suited to parallel processing, and indeed each of the 75
contract streams may be filtered independently on different
nodes). Once on a discrete time grid the data observation times
are defined as , where is the regular time difference
between observations (e.g., for min15 s, etc.).

Three other data sets are also required for this study: static
data for the futures contracts, costs data, and spot Foreign Ex-
change rate (FX) data. We define static data as data that is spe-
cific to a particular contract time series and is required to ef-
fectively trade that contract—for example contract size, cur-
rency of the contract, contract margin. Static data is required
to move from our trading signal to the number of contracts to
buy/sell. Costs data has multiple components including techni-
calities such as bid/ask spread and slippage and is essential in
order to model trading in a realistic way. Spot FX data is re-
quired to carry out any currency conversion to the USD base
currency of the fund as we have implemented it.

C. Implementation of the Particle Filter

Here we describe the parameter settings used for the
Langevin model and the particle filter. For each contract an
initial state prior and covariance and must be assigned,
see Section III. In order not to bias the filter unduly, these are
initialized as and , where is the first
observed price for each contract and is a number significantly
larger than the typical price variation.

The scale of the transition and observation process must re-
semble the scale of the observed real life price process. To this
end some of our model parameters are dependent on the scale of
the price process. These values are set at run-time and we define
them in our parameter table as a percentage of their initial price
(“SF()’), since absolute security prices vary widely and this is a
convenient approximation of their scale. Process scale will also
vary between sectors, with equities, for example, being more
volatile than interest rates. Since the scale factors are only ap-
proximate and the price level can vary much more widely than
volatilities, we do use the price level to define the scale factors,
not the volatilities.

The scale factors used for parameter values were optimized
manually, based on measurements of the Sharpe ratio on earlier
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TABLE I
ALGORITHM PARAMETER VALUES

time periods of data of data. The Sharpe ratio is the ratio of
returns to standard deviation [53] and so is a measure of risk-
adjusted return and is the dominant performance metric used in
the industry. We calculate the ratio as , where

is the mean strategy return, is the strategy return volatility
and is the risk free rate.

Table I presents the values chosen, based on data from all
75 contracts and for daily data. We do this for jumps turned on
(“J on”) and for jumps turned off (“J off”). Further optimiza-
tion at sector-specific level is likely to improve performance in
future work. Parameter values and thus performance might be
improved by more sophisticated estimation methods (see [54],
[55]).

D. Signal Generation

Sections II and III describe in detail how the proposed
Langevin model is defined, and how to carry out Bayesian
sequential inference in that model. The output of that sequential
inference is a Monte Carlo estimate of the posterior density
and posterior means for the hidden state given all of the
observed data up to the current observation time. The flexible
form of the Bayesian Monte Carlo scheme allows many other
posterior inferences to be made, including predictions of future
price and smoothed state estimates. These all come in the form
of probability densities and can in principle be carried forward
into optimal decision-making processes about whether to buy
or sell particular commodities (“contracts”). This will be a
complex process, however, for the large numbers of contracts
that we are considering simultaneously within our evaluations.
Hence we adopt a somewhat simplistic approach in which a
particle filter is run for each of 75 contract time series, split
into eight different market sectors. We then generate buy and
sell decisions (or “signals” in trading terminology) using the
posterior mean outputs from each of the 75 particle filters
[see (44)].

A number of processing steps are carried out in order to gen-
erate a reliable set of ‘signals’ across the portfolio. For reasons
of computational simplicity as before we use the expected value
of the price as a point estimate for ‘signal’ generation, i.e., we
use the Monte Carlo estimate of , as pre-
sented in Section III. Other forms of output from the particle
filter were experimented with, but this was found to be simple
and reliable when combined with the signal generation process
below. Full details of the signal processing operations required
in order to go from a set of particle filter estimates (one for
each contract) to a set of buy or sell “signals” for each contract
are given in the supporting document [51], since these are fairly
standard operations in many trading systems. Briefly, though,
the steps are as follows:

1) Differencing and Smoothing. For each contract we
use the sign of the time-differenced price estimate

as an instantaneous esti-
mate of the predicted price change. This binary signal is
then smoothed with a four-step FIR smoothing filter in
order to measure the persistence of any momentum effect,
leading to a continuous-valued momentum indicator .

2) Transfer Function. An empirical nonlinear function is ap-
plied to each as follows:
where is the measured sample standard deviation of
from the recent past [56]. In the case of a momentum-based
model, such a transfer function has an understandable eco-
nomic basis, implying that momentum has a linear effect
on price around the origin (for small values of ) but at
high signal levels the effect tails off, since mean-reversion
effects tend to kick-in when trends become too severely up
or down.

3) Signal Volatility Scaling. The volatility for each contract
time series is determined using an IGARCH(1,1) model
[57] and the rescaled for each contract by dividing
by its estimated volatility. This attempts to normalize the
volatility of the signals within each of the eight market sec-
tors [58].

The volatility-scaled signals for each contract are then used
to determine a desired position for each contract, i.e., how many
“lots” (items) of each contract should be present in the portfolio,
and hence how many need to be bought or sold at the current
time step. This includes targeting a desired value at risk (VaR)
level by gearing the fund accordingly [59]. In dynamically con-
trolling risk in this way, by being able to take a view on where we
are in the volatility space, we are able to optimally lever the fund
and increase its Sharpe ratio [60]. The effect of such a step is that
as market volatility rises, the position sizes taken by the algo-
rithm get smaller, and so the impact of the volatility is muted,
while the realized volatility is constant [61].

In summary, the size of the position held in any single given
security is primarily a function of the value of the signal for that
security and the correlation matrix of the portfolio returns.

E. Simulation Methodology

In this section, we describe how the performance of our com-
plete trading algorithm is tested on a large set of past data—the
process known as backtesting. Our system attempts to keep the
process as simple as possible while at the same time capturing
real-life features.

As for signal generation, more complete details of the sim-
ulation methodology from this section are covered in the sup-
porting document [51].

In order to backtest the algorithm, a notional fund of $1 bil-
lion is constructed, having eight equally weighted sectors, and
with the securities in each sector being also equally weighted.
This results in $12.5M being placed in each of the 75 securities,
which is consistent with the large average daily transaction vol-
umes of these liquid contracts. Evaluation is carried out in terms
of the profit and loss (PnL) across the entire fund, calculated on
a daily basis at 1800 h GMT, and then using the FX spot x-rates
to convert to U.S. Dollars (USD), which is then aggregated to
give annualized figures.
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Realistic representation of execution (the actual process of
buying or selling a contract, often done by placing an “order”
in a simple queuing system (the “order book”) is perhaps the
most difficult part of HF simulation, since it is likely that large
trades would have significantly impacted the market (a feedback
effect), an effect that cannot be replicated without real trading in
a real market. At low trading frequencies, for liquid securities,
it is quite accurate to assume a zero feedback model, whereby
transactions do not significantly affect the rest of the system; at
high frequency, however, this is not necessarily the case, since
any trades will cause the system to change significantly, an effect
that should ideally be accounted for in simulation. This is very
hard to do given a fixed set of historical data and presents an
additional inference problem [62]. For the sake of simplicity,
we assume a static slippage model where the slippage incurred
is a fixed percentage of the dollar size of the transaction.

Costs (i.e., those in addition to notional value of a contract)
are an important part of trading and thus we incorporate a
three-part cost model comprising slippage (as above), transac-
tion costs and bid-ask spread. The transaction costs we use are
typical figures from a prime broker futures direct market access
(DMA) desk and cover the cost of exchange fees and brokerage
fees etc. The bid-ask spread is charged twice for every round
trip (buy and sell) trade. Exact values used are specified in [51].

The full trading system is then run, generating particle filter
estimates for all contracts, trading signals and updated portfolio
positions at each time. The overall PnL values can then be com-
puted at the end of each day, including realistic cost estimates
as above.

In order to evaluate these PnL values we focus on the Sharpe
ratio. As we are trading futures, interest is earned at the risk free
rate on the short positions, which means we do not need to in-
clude a risk free rate when calculating Sharpe. Interest paying
long positions are balanced with interest receiving short posi-
tions, as the signal is zero mean for each asset.

While no performance metric is able to tell the whole story,
the Sharpe ratio avoids some of the serious drawbacks associ-
ated with metrics such as performance relative to a benchmark
(such as “long-only” or “constant proportion rebalancing”) as a
benchmark must consist of comparable risk factors (a variable
associated with an increased risk of losses) and many risk fac-
tors from hedge fund style strategies are very hard to replicate
in benchmark form [58].

F. Real Data Results

First, we illustrate that the signals generated by the proposed
method are correlated with the actual returns, and hence that
the method has some predictive power. This is carried out by
looking at the signals generated by step 1. of the signal gener-
ation procedure (i.e., just prior to application of the nonlinear
transfer function). Actual realized returns for the contract are
plotted in risk-adjusted form, i.e., by normalizing for volatility
(estimated as before using an IGARCH(1,1) model): such an
adjustment allows clear representation of returns independent
of market volatility. The result of a bootstrapping procedure is
shown, in which the mean and 95% confidence intervals are
shown for expected returns corresponding to particular values
of our proposed signal. Bootstrapping is a resampling method,

Fig. 4. Testing for statistical significance by bootstrapping. For the short term
interest rate future, EURIBOR, we see our algorithm is able to separate between
bands of returns. The “mid” of each bar is the mean with the “spread” repre-
senting the 95th percentiles. (NERO: Nonlinear Evolving Rao–Blackwellized
Online algorithm).

which allows the calculation of the sample distribution of al-
most any statistic [11], [63]. We use bootstrapping to inspect the
relationship of our predictive signal to the risk-adjusted market
returns by bootstrapping the mean at the 95th percentile. We im-
plement the procedure by histograming the data and then sam-
pling with replacement 1000 times and calculating the mean and
the confidence intervals of the distribution of the means. For sig-
nals which have clear predictive power over the market returns
we would expect to see a high degree of correlation between
signal and returns, and also good separation between means for
different signal values. Fig. 4 demonstrates for a typical con-
tract that the signal has the predictive power we are looking for,
while supporting the hypothesis of the nonlinearity of strategy
returns.

Having illustrated that there is a strong relationship between
the market returns and the proposed signal, we look to see if we
can profitably exploit it, taking costs into account. We start with
a simulation at daily frequency, using all 75 contracts over the
period 1st January 1996 to 1st January 2011. While we do not
consider this to be “high-frequency,” as noted in Section IV-B,
we do not have the computational power available to us to run
such a full simulation with high-frequency data. Additionally,
knowing the performance at a daily frequency will then also
allow us to compare performance at higher frequencies.

The fundamental law of forecasting [64], [65] describes an
ex-ante relationship between expected performance and the as-
sumed information coefficient, IC, of the forecasting process.
Expected performance is measured by the ex-ante information
ratio IR (equivalent to Sharpe ratio in our case)

(45)

where is the number of independent “bets” in the portfolio.
The law tells us that Sharpe is proportional to the breadth of the
application, as well as the quality of the signal. Grinold states
the law “gives us only an upper bound on the value we can add”
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Fig. 5. Long run fund performance (75 futures contracts) using daily frequency
data (post-cost). The use of daily frequency data allows a comparison of the
algorithm to commercial hedge fund products [67].

and thus while theoretically Sharpe scales proportionally to fre-
quency, this does not account for issues such as transaction cost
and so we do not expect to see a direct scaling between fre-
quency and Sharpe.

Equation (45) is not saying that the size of the expected re-
turns and their volatility remains constant despite changing the
holding period, it saying that unless you have a good reason to
believe otherwise, the information content of a certain effect will
be constant across the frequency spectrum.

The results of this daily simulation give an annualized post-
cost Sharpe ratio of , while the cumulative returns are
shown in Fig. 5. When compared to major hedge funds which
also trade momentum strategies using daily frequency data, we
see our algorithm’s performance is similar, with losses in early
2010, which suggests to us that we are to some degree success-
fully extracting momentum information from the market [66],
[67].

Looking at the breakdown of the returns by year and sector
(Figs. 6 and 7), we see that the sectors with the highest transac-
tion costs (as per [51]) have the worst performance and that for
any given sector, the annualized Sharpe ratio varies widely over
time. These observations would suggest that portfolio construc-
tion could be improved by a constrained mean-variance process
(as opposed to the current equal weighting scheme) allowing
more weight to be given to better performing sectors, condi-
tional on transaction costs [58], but this is not explored here.

We next turn the jump estimation part of the algorithm off (as
per Table I) and reevaluate performance. With jumps turned off
(and hence estimation is done solely using the Kalman filter), we
see that there is a 25% drop in the Sharpe ratio to about 1.37 on
daily data. When analyzed using bootstrap statistics [68], [69],
at the 95th percentile, the decrease in performance is shown to
be statistically significant (Fig. 8). This result confirms our hy-
pothesis that the underlying returns process is better modeled
by jump-diffusion than just a pure diffusion process.

At the higher frequencies of fifteen minutes ( , Fig. 9)
and one minute ( , Fig. 10), evaluated over a much

Fig. 6. Sector performance in the fund, annualized (Sharpe). When the perfor-
mance is broken down over time and sector, we see there is a large amount of
variation in each sector. This undesirable characteristic is negated by trading a
large, diversified portfolio.

Fig. 7. Sector performance in the fund, overall (Sharpe). By breaking down the
fund performance, we can see some sectors tend to perform better than others.
This may be partially explained by the poor performing sectors (such as agri-
culturals) having higher transaction costs. Note that the fund Sharpe is greater
than the individual sector Sharpe’s, explained by the effect of diversification on
the portfolio.

shorter period of one calendar month, for computational rea-
sons, we find that the results are in agreement with those using
daily data in terms of absolute returns, but show a significant
post-cost Sharpe ratio greater than that for the daily data, which
is in agreement with (45).

We are not surprised that the higher frequency results seem to
mimic the effect seen at lower frequency, albeit with better per-
formance. If an effect exists in the financial markets, we would
expect it to exist throughout the frequency spectrum. For ex-
ample, momentum effects exist in the market due to the ac-
tions of different classes of traders. A low-frequency trader, such
as a pension fund, moves money over a long period of time
and has a long holding period. At the other end of the spec-
trum are high-frequency algorithmic hedge funds, who move
very quickly. In between them is a near-continuous spectrum
of classes of investors, who operate at different frequencies. If
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Fig. 8. Algorithm with jumps versus no jumps. Bootstrapping allows compar-
ison of the two strategies [69]. The presence of jump detection improves the
algorithms performance, suggesting the futures markets are well modeled by a
jump-diffusion process.

Fig. 9. Fifteen-minute frequency. 15 July 2008–15 Sept. 2008. Whole fund (75
futures contracts). The annualized Sharpe is greater than the lower frequency
daily data by nearly 10%.

other traders exploit momentum more at some frequencies than
others, then we would not expect to see our algorithm perfor-
mance scale exactly as per the fundamental law of forecasting,
as the effect will have been arbitraged away.

G. Failure Case

For any single trading strategy, there will be market condi-
tions under which the strategy fails to perform well. We see
three principal failure cases for the algorithm. These are sea-
sonal variation, high-frequency noise and cyclic (non-trending)
behavior. We briefly look at seasonality and cyclic behavior,
while high-frequency noise is generically accounted for by our
Gaussian observation noise model (albeit with a performance
degradation when high-frequency noise is predominant).

Fig. 11 shows price for the FTSE100 and the strategy return
in mid 2010 and is an example of losses related to non-trending

Fig. 10. One minute frequency. 15 July 2008–15 Sept. 2008. Four equity index
contracts only. We estimate this to be the maximum frequency at which the
algorithm in its current form can operate profitably, due to the fact the market
orders it places need to cross the bid-ask spread.

Fig. 11. Failure Case: cyclic behavior causes negative performance. What ap-
pears to be a trend at a high frequency will be cyclic at another, lower, frequency.
The inherent lag in the filter (for a given set of filter parameters) means that the
change points cannot be detected across all frequencies.

behavior. The FTSE reaches a local maximum on 15th April
2010 and moves to a local minimum on 5th July 2010, but in
between displays cyclic behavior. For this period, the algorithm
performs negatively because the filter can take some time to
react to turning points in the data, leading to a forecast signal
with the wrong sign and in the worst case, being in anti-phase
with the price. This behavior could be improved upon by an
improved signal generation mechanism in which the particle
filter’s output is not smoothed so extensively, though this could
be at the cost of stability in more persistently trending markets.

The existence of seasonality is well established in financial
data, and occurs on the intraday timescale too [70]. Such pat-
terns occur over the space of the trading day, for example on
morning-afternoon and inter-hour timescales. The presence of
seasonalities may act to obscure the underlying low-frequency
dynamics by decreasing the autocorrelation function [71]. In
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order to prevent such cyclic patterns masking the momentum
effect we could attempt to preprocess our data by removing
these harmful frequencies [72] while leaving the underlying in-
herent nonseasonal structure intact. Once the core momentum
signal has been calculated on the preprocessed data, the season-
ality time series could be added back into the signal prior to the
transform function—alternatively a more elaborate state-space
model that includes intra-day seasonal components as well as
our Langevin dynamics could help here.

V. CONCLUSION AND FURTHER WORK

In this paper, we have proposed a specialized jump-diffusion
model of asset prices and shown how we can use this to extract
a price trend from high-frequency asset data. By conditioning
on jump times we were able to derive closed-form expressions
for the transition densities in our model and this has allowed us
to apply an efficient Rao–Blackwellized variable rate particle
filter algorithm in order to extract the state of the underlying
model, including timings of jumps. Results have been evalu-
ated in quite a realistic way by constructing a signal genera-
tion system around the particle filter outputs and a performance
metric based on simulated PnL and Sharpe ratio.

The results seem quite successful when applied to an ex-
tensive and recent data set of the world’s most liquid futures
contracts. The daily frequency momentum signal generated by
our algorithm has a high correlation to the returns generated by
major trend-following hedge funds, suggesting that we are in-
deed capturing momentum. With the average major momentum
hedge fund returning a Sharpe ratio of around 1.0 [73], our
model seems to compare well in terms of absolute performance.
We have found experimental evidence that suggests the under-
lying price dynamics of futures contracts are better modeled a
jump-diffusion process than by a pure diffusion process.

Whilst the level of sophistication of algorithms in the finan-
cial services industry is still quite basic, this work suggests that
more sophisticated approaches might find real application in
this area, even given its high computational complexity, which
presents new software and hardware challenges.

Our current work in the area is seeking accurate and adap-
tive parameter estimation techniques for these classes of model.
We are also constructing optimal decision-theoretic methods
which incorporate the full Bayesian state distribution (rather
than simple point estimators) and appropriate utility functions
that account for costs and returns in a realistic way. In future
work we also hope to be able to perform out of sample testing
by paper trading the algorithm via an API such as that provided
by www.interactivebrokers.co.uk. Such paper trading is iden-
tical in every detail to real trading, except that the orders are
not executed on the exchange and simulated fills are provided
instead. In this way we hope to achieve greater realism in the
evaluation of the algorithms.
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