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Back-Running: Seeking and Hiding Fundamental
Information in Order Flows

Abstract

We model the strategic interaction between fundamental informed trading and order-flow

informed trading. Adding to a two-period Kyle (1985) model, a “back-runner” observes a

signal of the fundamental informed investor’s period-1 order after the order is filled. Learning

from past order-flow information, the back-runner competes with the fundamental investor

in period 2. If order-flow information is accurate, the fundamental investor hides her in-

formation by randomizing her period-1 trade, resulting in a mixed-strategy equilibrium. A

pure-strategy equilibrium obtains if order-flow information is inaccurate. Back-running de-

lays price discovery and reduces fundamental information acquisition. Recent evidence on

high-frequency trading supports our theoretical predictions.



1 Introduction

This paper studies the strategic interaction between fundamental informed trading and order-

flow informed trading, as well as its implications for market equilibrium outcomes. By order-

flow informed trading, we refer to strategies that begin with no innate trading motives—be

it fundamental information or liquidity needs—but instead first learn about other investors’

order flows and then act accordingly.

A primary example of order-flow informed trading is “order anticipation” strategies. Ac-

cording to the Securities and Exchange Commission (2010, p. 54–55), order anticipation

“involves any means to ascertain the existence of a large buyer (seller) that does not in-

volve violation of a duty, misappropriation of information, or other misconduct. Examples

include the employment of sophisticated pattern recognition software to ascertain from pub-

licly available information the existence of a large buyer (seller), or the sophisticated use of

orders to ‘ping’ different market centers in an attempt to locate and trade in front of large

buyers and sellers [emphasis added].”

Always been controversial,1 order anticipation strategies have recently attracted intense

attention and generated heated debates in the context of high-frequency trading (HFT). In

a colorful account of today’s U.S. equity market, Lewis (2014) argues that high-frequency

traders observe part of investors’ orders on one exchange and “front-run” the remaining

orders before they reach other exchanges.2 Although most (reluctantly) agree that such

strategies are legal in today’s regulatory framework, many investors and regulators have

expressed severe concerns that they could harm market quality and long-term investors.3

For example, in its influential Concept Release on Equity Market Structure, Securities and

Exchange Commission (2010, p. 56) asks: “Do commenters believe that order anticipation

significantly detracts from market quality and harms institutional investors?”

To address important policy questions like this, we need to first address the more fun-

1For example, Harris (2003) writes “Order anticipators are parasitic traders. They profit only when they
can prey on other traders [emphasis in original].”

2In its original sense, front-running refers to the illegal practice that a broker executes orders on his own
account before executing a customer order. In recent discussions of market structure, this term is often used
more broadly to refer to any type of trading strategy that takes advantage of order-flow information, including
some academic papers that we will discuss shortly. When discussing these papers we use “front-running” to
denote the broader meaning, as the original authors do.

3It should be noted that order anticipation strategies are not restricted to HFT; they also apply to other
market participants such as broker-dealers who have such a technology. “The successful implementation of
this strategy (order anticipation) depends less on low-latency communications than on high-quality pattern-
recognition algorithms,” remarks Harris (2013). “The order anticipation problem is thus not really an HFT
problem.”
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damental questions of market equilibrium. For example, how do order anticipators take

advantage of their superior order-flow information of fundamental investors (such as mutual

funds and hedge funds)? How do these fundamental investors, in turn, respond to potential

information leakage? How does the strategic interaction between these two types of traders

affect market equilibrium and associated market quality?

In this paper, we take up this task. Our analysis builds on a simple theoretical model

of strategic trading. We start from a standard two-period Kyle (1985) model, which has

a “fundamental investor” who is informed of the true asset value, noise traders, and a

competitive market maker. The novel part of our model is that we add a “back-runner”

who begins with no fundamental information nor liquidity needs, but who receives a signal

of the fundamental investor’s order flow after that order is executed by the market maker.

In Section 2 we provide some examples of how order-flow signals may be extracted.

The trading mechanism of this market is the same as the standard Kyle (1985) model.

In the first period, only the fundamental investor and noise traders submit market orders,

which are filled by the market maker at the market-clearing price. Only after the period-1

market clears does the back-runner observe the fundamental investor’s period-1 order flow

(with noise). In the second period, the fundamental investor, the back-runner, and noise

traders all submit market orders, which are filled at a new market-clearing price.

We emphasize that it is the fundamental investor’s order flow, not her information,4 that

is partially observed by the back-runner (otherwise, the back-runner would simply be an-

other fundamental investor); and this order-flow information is observed ex post, not ex ante.

This important feature is directly motivated by the “publicly available information” part in

the SEC’s definition above. For this reason, we believe “back-running” is a more realistic

description of order-anticipation strategies than “front-running” because “back-running” ac-

knowledges that order-flow information is not endowed instantly, but learned over time. As

we discuss in Section 5, recent evidence supports the back-running interpretation.

The risk that order flow leaks valuable information substantially changes the fundamen-

tal investor’s behavior. In particular, pure strategy equilibrium may no longer exist. To see

why, note that in the extreme case that the back-runner perfectly observes the fundamental

investor’s past order flow, a pure strategy by the fundamental investor completely reveals

her information to the back-runner. Clearly, creating a competitor in the next period harms

the fundamental investor. As long as the back-runner’s order-flow signal is sufficiently pre-

4Throughout this paper, we will use “her”/“she” to refer to the fundamental investor and use “his”/“he”
to refer to the back-runner.
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cise, playing a pure strategy is suboptimal for the fundamental investors. We show that in

those situations the unique linear equilibrium is a mixed strategy equilibrium in which the

fundamental investor adds an endogenous, normally-distributed noise order into her period-1

order flow to hide her information. This garbled order flow, in turn, makes it harder for the

back-runner to infer the asset fundamental value. In other words, if investors face a high risk

of information leakage, randomization is the best defense. This result echoes nicely Stiglitz

(2014, p. 8)’s remark on high-frequency trading: “[T]he informed, knowing that there are

those who are trying to extract information from observing (directly or indirectly) their

actions, will go to great lengths to make it difficult for others to extract such information.”

In contrast, if the back-runner’s order-flow information is sufficiently noisy, he has a hard

time inferring the fundamental investor’s information anyway. In this case, the fundamental

investor does not need to inject additional noise; she simply plays a pure strategy.

Our analysis points out a new channel—i.e., the amount of noise in the back-runner’s

signal—that determines whether a mixed strategy equilibrium or a pure strategy one should

prevail in a Kyle-type auction game. In particular, if there is less exogenous noise in the

back-runner’s signal, the fundamental investor endogenously injects more noise into her own

period-1 order flow. As a result, as the amount of noise in the back-runner’s signal increases

from 0 to ∞, the unique linear equilibrium switches from a mixed strategy equilibrium

to a pure strategy one. Characterizing the endogenous switch between a mixed strategy

equilibrium and a pure strategy one is the first, theoretical contribution of our paper.

The second, applied contribution of our paper is to investigate the implications of back-

running for market quality and traders’ welfare. The natural benchmark is a standard two-

period Kyle model without the back-runner. Our results reveal that the presence of back-

running delays price discovery. In the presence of back-running, the fundamental investor

trades less aggressively and possibly adds noise in the first period, harming price discovery.

Price discovery is improved in the second period, however, since the back-runner also has

value-relevant information and trades with the fundamental investor.

Market liquidity, measured by the inverse of Kyle’s lambda, is mixed. The first-period

liquidity is generally improved because the more cautious trading of the fundamental investor

weakens the market maker’s adverse selection problem. But the presence of back-running

can either improve or harm the second-period market liquidity. It will harm liquidity if the

back-runner’s order-flow signal is sufficiently precise, which means that his trading will inject

more private information into the second-period order flow, aggravating the market maker’s

adverse selection problem.
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Unsurprisingly, taking the two periods together, the fundamental investor suffers from the

presence of back-running, but noise traders benefit from it. Because institutional investors

like mutual funds, pension funds, and ETFs employ a wide variety of investment strategies,

they may act as either fundamental investors or liquidity (noise) traders, depending on the

context. Since the back-runner makes a positive expected profit, the net result is that the

other two trader types suffer collectively. We thus confirm the suspicion by regulators that

order-flow informed trading tends to harm institutional investors on average.

We consider endogenous information acquisition in an extension of the baseline model.

The fundamental investor chooses to acquire a certain amount of fundamental information,

and the back-runner simultaneously chooses the precision of order-flow information that he

acquires. Our prior results are robust to endogenous information acquisition. We also find

that a lower cost of acquiring order-flow information reduces the fundamental investor’s

incentive to acquire fundamental information.

The theoretical results on the behaviors of various market participants are supported

by recent studies that link the activities of (certain) high-frequency traders (HFTs) to the

execution performance of institutional investors. Relevant studies include van Kervel and

Menkveld (2015), Tong (2015), and Korajczyk and Murphy (2014). Our theoretical predic-

tion that back-running delays price discovery is directly supported by Weller (2015), and

consistent with Brogaard, Hendershott, and Riordan (2014) and Hirschey (2013). These

studies are discussed in detail in Section 5.

A practical implication of our results is that randomized execution strategies help insti-

tutional investors reduce information leakage. A simple way to implement randomization is

to overlay mean-zero random perturbations to standard execution schedules such as time-

weighted average price (TWAP) or volume-weighted average price (VWAP). Moreover, the

appearance of market manipulation—selling and then buying at lower prices, or vice versa—

could be part of an optimal execution strategy that aims to limit information leakage.

1.1 Relation to the literature

Our paper contributes to three branches of literature: theories on high-frequency trading,

mixed strategies in trading models, and order-flow informed trading.

High-frequency trading. The recent theoretical literature on HFT typically assumes

that high-frequency traders have information advantage. Relevant papers include Biais, Fou-

cault, and Moinas (2015), Foucault, Hombert, and Rosu (2015), Hoffmann (2014), Budish,

Cramton, and Shim (2015), and Jovanovic and Menkveld (2012). In those models, a high-
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frequency trader plays the dual role of being fast and being informed. In our model, the

back-runner is not as informed as the fundamental investor, but the back-runner can collect

information from the fundamental investor’s trading behavior. It is the separation between

fundamental information and order-flow information that gives rise to the interesting interac-

tions and implications observed in our model. Another connection is that we endogenize the

source of HFT’s private information—through parsing public order flows—that is commonly

assumed in existing HFT studies.

Mixed strategies in trading models. At a technical level, the model of our paper

is closest to that of Huddart, Hughes, and Levine (2001), also an extension of Kyle (1985).

Motivated by the mandatory disclosure of trades by firm insiders, they assume that the

insider’s orders are disclosed publicly and perfectly after being filled. They show that the

only equilibrium in their setting is a mixed strategy one, for otherwise the market maker

would perfectly infer the asset value, preventing any further trading profits of the insider.

In their model the mandatory public disclosure unambiguously improves price discovery and

market liquidity in each period.

Buffa (2013) studies disclosure of insider trades when the inside is risk-averse. His equi-

librium with disclosure also features mixed strategies. In contrast to Huddart, Hughes, and

Levine (2001), however, he shows that disclosing insider trades can harm price discovery by

making the risk-averse insider trade less aggressively.

Our results differ from those of Huddart, Hughes, and Levine (2001) and Buffa (2013)

in at least two important aspects. First, we identify the endogenous switching between the

mixed strategy equilibrium and the pure strategy one, depending on the precision of the

order-flow information. To the best of our knowledge, ours is the first model that presents a

pure-mix strategy equilibrium switch among many extensions of Kyle (1985).5 Second, while

their models apply to public disclosure of insider trades, our model is much more suitable

to analyze the private learning of order-flow information by proprietary firms such as HFTs.

Some may view this model difference as small and inconsequential, but bringing the model

a little closer to reality can substantially improve the applicability of the model. As we

5 A few other studies identify mixed strategy equilibria in different settings. In a continuous-time exten-
sion of Glosten and Milgrom (1985) model, Back and Baruch (2004) show that there is a mixed strategy
equilibrium in which the informed trader’s strategy is a point process with stochastic intensity. Baruch and
Glosten (2013) show that “flickering quotes” and “fleeting orders” can arise from a mixed strategy equilib-
rium in which quote providers repeatedly undercut each other. Yueshen (2015) shows that if market makers
are not perfectly competitive and the number of market makers is uncertain, then market makers who are
present use a mixed pricing strategy. These papers do not explore the question of trading on order-flow
information or a switch between pure and mixed strategy equilibria.
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have shown, private learning of order-flow information delays price discovery, opposite to

the prediction of Huddart, Hughes, and Levine (2001). As discussed in Section 5, recent

evidence from Weller (2015) supports our prediction.

Order-flow information. Among papers studying order-flow information, the one clos-

est to ours is Madrigal (1996), who also considers a two-period Kyle (1985) model with an

insider and a “(non-fundamental) speculator.” The speculator observes part of the period-

1 noise trading. Although Madrigal’s model and ours are similar, he only considers pure

strategy equilibria and does not verify the second-order condition. In fact, the second-order

condition for his pure strategy equilibrium turns out to be violated when the speculator

observes a precise signal of noise trading (hence infers the insider’s trade accurately). Con-

sequently, his result misses the mixed strategy equilibrium entirely, and hence misses how

fundamental investors counteract information leakage by adding noise to order flows.

The mixed strategy equilibrium also matters a great deal for market quality implications.

We show that when the back-runner’s information of past order flows is accurate, only the

mixed strategy equilibrium exists, and price discovery in the first period becomes worse

than the standard Kyle model. For these parameter values, if one were to apply Madrigal’s

pure strategy equilibrium, one would conclude, incorrectly, that the presence of the (non-

fundamental) speculator would improve price discovery in the first period, relative to the

standard Kyle model. As we discuss in Section 5, recent evidence from Weller (2015) supports

the prediction from our mixed strategy equilibrium.

Li (2014) models high-frequency trading “front-running,” whereby multiple HFTs with

various speeds observe the aggregate order flow ex ante with noise and front-run it before

it reaches the market maker. In his model the informed trader has one trading opportunity

and does not counter information leakage by adding noise.

Other earlier models exploring information about liquidity-driven order flows include Cao,

Evans, and Lyons (2006), Bernhardt and Taub (2008), Attari, Mello, and Ruckes (2005),

Brunnermeier and Pedersen (2005), and Carlin, Lobo, and Viswanathan (2007). Our model

differs from them in two ways: (i) the relevant information is about asset fundamentals, not

liquidity needs; and (ii) order-flow information is learned over time, not endowed instantly.

As elaborated in Section 5, these differences have distinct empirical predictions. Evidence

on HFT behaviors by van Kervel and Menkveld (2015) supports the premise and results of

our back-running model. Moreover, the fundamental investor in our model optimally injects

noise into her orders as camouflage, a feature absent in other studies in this category. Our

price-discovery implication is supported by recent evidence from Weller (2015).
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2 A Model of Back-Running

This section provides a model of back-running, based on the standard Kyle (1985) model.

For ease of reference, main model variables are tabulated and explained in Appendix A. All

proofs are in Appendix B.

2.1 Setup

There are two trading periods, t = 1 and t = 2. The timeline of the economy is described

by Figure 1. A risky asset pays a liquidation value v ∼ N (p0,Σ0) at the end of period 2,

where p0 ∈ R and Σ0 > 0. A single “fundamental investor” learns v at the start of the

first period and places market orders x1 and x2 at the start of periods 1 and 2, respectively.

Noise traders’ net demands in the two periods are u1 and u2, both distributed N(0, σ2
u), with

σu > 0. Random variables v, u1 and u2 are mutually independent. Asset prices p1 and p2

are set by a competitive market maker who observes the total order flow at each period, y1

and y2, and sets the price equal to the posterior expectation of v given public information.

The main difference from a standard Kyle model is that there is a “back-runner ” who can

extract private information from public order flows and trades on this private information

in period 2. We call this trader a back-runner instead of a “front-runner” to highlight that

his information is learned over time, not endowed instantly. Specifically, after seeing the

aggregate period-1 order flow y1, which is public information in period 2, the back-runner

observes a signal about the fundamental investor’s period-1 trades x1 as follows:

s = x1 + ε, (1)

where ε ∼ N (0, σ2
ε), where σε ∈ [0,∞], is independent of all other random variables (v, u1

and u2). Parameter σε controls the information quality of the signal s—a larger σε means

less accurate information about x1. In particular, we deliberately allow σε to take values of

0 and ∞, which respectively corresponds to the case in which s perfectly reveals x1 and the

case in which s reveals nothing about x1.

In practice, a back-runner has a number of ways to obtain the signal s, and here are

two stylized examples. First, execution algorithms used by institutional investors may leave

“footprints” that are subsequently detected by more sophisticated algorithms. As an ex-

tremely simple example, consider a “time-weighted average price” (TWAP) algorithm that

splits a large order of 50,000 shares into 500 small orders of 100 shares each and submits

one small order every second. Such an execution strategy is detectable by another algorithm

due to the regularity of the timing and quantity of the series of orders (also see Easley,
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Figure 1: Model Timeline
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This figure plots the order of events in the economy. 

  

  t = 2    t = 1  time 

 All agents see the date-1 price ݌ଵ 

 Back-runner observes ݏ ൌ ଵݔ ൅  ߝ
and submits order flow ݀ଶ 

 Fundamental investor submits 
order flow ݔଶ 

 Noise traders submit order flow ݑଶ 

 Market maker observes total order 
flow ݕଶ ൌ ଶݔ ൅ ݀ଶ ൅  ଶ and setsݑ
the price ݌ଶ 

 Payoff is realized and agents 
consume  

 Fundamental investor observes 
 ଵݔ and submits order flow	ݒ

 Noise traders submit order flow ݑଵ 

 Market maker observes total order 
flow ݕଵ ൌ ଵݔ ൅  ଵ and sets theݑ
price ݌ଵ 

de Prado, and O’Hara (2012) for a discussion of this point). The second example is that the

back-runner could take advantage of the behavior biases of individual investors to collect

order-flow information about noise trading u1, which can be translated into a signal of x1

given y1 = x1 + u1. Bhattacharya, Holden, and Jacobsen (2012) find evidence that “stock

traders focus on round numbers as cognitive reference points for value.” To the extent that

individual investors are more likely than computer algorithms to anchor on round numbers,

the clustering of trading volume or limit orders near round numbers could be a signal of the

degree of uninformed noise trading. Of course, in reality the algorithms used by back-runners

are much more complicated and less understood than those discussed here, but the intuition

is similar.

After receiving the signal s, the back-runner places a market order d2 in period 2. As a

result, the market maker receives an aggregate order flow

y2 = x2 + d2 + u2. (2)

Of course, in period 1, the aggregate order flow is

y1 = x1 + u1, (3)

since during period 1 the back-runner has no private information and does not send any

order. The weak-form-efficiency pricing rule of the market maker implies

p1 = E (v|y1) and p2 = E (v|y1, y2) . (4)
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At the end of period 2, all agents receive their payoffs and consume, and the economy ends.

As discussed in the introduction, a practical interpretation of this back-runner is that he

uses advanced technology and processes public information better than the general public,

represented by the market maker in the model. Such superior ability of processing public

information has long been recognized in the literature. For example, Kim and Verrecchia

(1994) argue that savvy market participants, such as asset managers and analysts, can pro-

cess information better than the market by converting a firm’s noisy public signals (e.g.,

earnings announcements) into more accurate information. Engelberg, Reed, and Ringgen-

berg (2012) show that a significant portion of short sellers profitability actually comes from

their skills in analyzing public information. Our objective is to explore how the presence of

the back-runner—a trader who has superior skills in processing public trading data to ex-

tract the patterns of trades—affects the trading strategies of the fundamental investor (such

as pension funds, mutual funds, or hedge funds) as well as the resulting market equilibrium

outcomes.

2.2 Equilibrium Definitions

A perfect Bayesian equilibrium of the trading game is given by a strategy profile

{x∗1 (v) , x∗2 (v, p1, x1) , d∗2 (s, p1) , p∗1 (y1) , p∗2 (y1, y2)} ,
that satisfies:

1. Profit maximization:

x∗2 ∈ arg max
x2

E [x2 (v − p2) |v, p1, x1] ,

d∗2 ∈ arg max
d2

E [d2 (v − p2) |s, p1] ,

and x∗1 ∈ arg max
x1

E [x1 (v − p1) + x∗2 (v − p2) |v] .

2. Market efficiency: p1 and p2 are determined according to equation (4).

Note that in the perfect Bayesian equilibrium, we allow mixed strategies, that is, in

principle the strategies x∗1, x∗2, and d∗2 could be probability distributions over quantities. It

turns out that in the equilibrium we characterize shortly, x1 can involve mixing, but x2 and

d2 are both pure strategies.

We will focus on linear equilibria, i.e., the trading strategies and pricing functions are

linear. Formally, a linear equilibrium is defined as a perfect Bayesian equilibrium in which

there exist constants

(βv,1, βv,2, βx1 , βy1 , δs, δy1 , λ1, λ2) ∈ R8 and σz ≥ 0,
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such that

x1 = βv,1 (v − p0) + z with z ∼ N
(
0, σ2

z

)
, (5)

x2 = βv,2 (v − p1)− βx1x1 + βy1y1, (6)

d2 = δss− δy1y1, (7)

p1 = p0 + λ1y1 with y1 = x1 + u1, (8)

p2 = p1 + λ2y2 with y2 = x2 + d2 + u2, (9)

where z is independent of all other random variables (v, u1, u2, ε).

Equations (5)–(9) are intuitive. Equations (5)–(7) simply say that the fundamental

investor and the back-runner trade on their information advantage. Importantly, our spec-

ification (5) allows the fundamental investor to play a mixed strategy in period 1. We

have followed Huddart, Hughes, and Levine (2001) and restricted attention to normally dis-

tributed z in order to maintain tractability. If σz = 0, the fundamental investor plays a

pure strategy in period 1, and we refer to the resulting linear equilibrium as a pure strategy

equilibrium. If σz > 0, the fundamental investor plays a mixed strategy in period 1, and we

refer to the resulting linear equilibrium as a mixed strategy equilibrium. As we show shortly,

by adding noise into her orders, the fundamental investor limits the back-runner’s ability to

infer x1 and hence v. To an outside observer, the endogenously added noise z may look like

exogenous noise trading.

Although in principle the fundamental investor and the back-runner can play mixed

strategies in period 2, we show later that using mixed strategies in period 2 is suboptimal in

equilibrium. Thus, the linear period-2 trading strategies specified in equations (6) and (7)

are without loss of generality. They are also the most general linear form, as each equation

spans the information set of the relevant trader in the relevant period. Note that at this

stage we do not require that βx1 , βy1 , δs or δy1 be positive, although in equilibrium they will

be positive. (One can also show that the back-runner does not wish to play a mixed strategy

in period 1.)

Equation (6) has three terms. The first term βv,2 (v − p1) captures how aggressively the

fundamental investor trades on her information advantage about v. The other two terms

−βx1x1 and βy1y1 say that the fundamental investor potentially adjusts her period-2 market

order by using lagged information x1 and y1. Because the back-runner generally uses y1 and

his signal s about x1 to form his period-2 order (see equation (7)), the fundamental investor

takes advantage of this predictive pattern by using x1 and y1 in her period-2 order as well.
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In equilibrium characterized later, the conjectured strategy in equation (7) can also be

written alternatively as:

d2 = α [E(v|s, y1)− E(v|y1)] , (10)

for some constant α > 0 (see Appendix B.1 for a proof). That is, the back-runner’s order

is proportional to his information advantage relative to the market maker’s. By the joint

normality of s and y1, this alternative form implies that d2 is linear in s and y1. We

nonetheless start with (7) because it is the most general and does not impose any structure

as (10) does. We start with equation (6) for a similar reason.

The pricing equations (8) and (9) state that the price in each period is equal to the

expected value of v before trading, adjusted by the information carried by the new order

flow. Although the conjectured p2 may in principle depend on y1, in equilibrium p1 already

incorporates all information of y1.6 Thus, we can start with (9).

2.3 Equilibrium Derivation

We now derive by backward induction all possible linear equilibria. Along the derivations,

we will see that the distinction between pure strategy and mixed strategy equilibria lies

only in the conditions characterizing the fundamental investor’s period-1 decision. Explicit

statements of the equilibria and their properties are presented in the next subsection.

Fundamental investor’s date-2 problem. In period 2, the fundamental investor has

information {v, p1, x1}. Given λ1 6= 0, which holds in equilibrium, the fundamental investor

can infer y1 from p1 by equation (8). Using equations (7) and (9), we can compute

E [x2 (v − p2) |v, p1, x1] = −λ2x
2
2 + [v − p1 − λ2 (δsx1 − δy1y1)]x2. (11)

Taking the first-order-condition (FOC) results in the solution as follows:

x2 =
v − p1

2λ2

− δs
2
x1 +

δy1
2
y1. (12)

The second-order-condition (SOC) is7

λ2 > 0. (13)

Equation (12) also implies that the fundamental investor optimally chooses to play a pure

strategy in equilibrium, which verifies our conjectured pure strategy specification (6).

6Strictly speaking the most general form is p2 = p1 + λ2 [y2 − E(y2|y1)]. But in equilibrium we can show
that E(y2|y1) = 0, so the more general form reduces to (9).

7The SOC cannot be λ2 = 0, because otherwise, we have p2 = p1 = p0 + λ1y1 = p0 + λ1 (x1 + u1), and
thus E (p2|v) = p0 +λ1x1, which means that the fundamental investor can choose x1 and x2 to make infinite
profit in period 2. Thus, in any linear equilibrium, we must have λ2 > 0.
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Comparing equation (12) with the conjectured strategy (6), we have

βv,2 =
1

2λ2

, βx1 =
δs
2

and βy1 =
δy1
2

. (14)

Let πF,2 = x2 (v − p2) denote the fundamental investor’s profit that is directly attributable

to her period-2 trade. Inserting (12) into (11) yields

E (πF,2|v, p1, x1) =
[v − p1 − λ2 (δsx1 − δy1y1)]2

4λ2

. (15)

Back-runner’s date-2 problem. In period 2, the back-runner chooses d2 to maximize

E(πB,2|s, p1), where

πB,2 = d2 (v − p2) . (16)

Using (6) and (9), we can compute the FOC, which delivers

d2 =
(1− λ2βv,2)E (v − p1|s, y1)− λ2βy1y1 + λ2βx1E (x1|s, y1)

2λ2

. (17)

The SOC is still λ2 > 0, as given by (13) in the fundamental investor’s problem. Again,

equation (17) means that the back-runner optimally chooses to play a pure strategy in a

linear equilibrium.

We then employ the projection theorem and equations (1), (3), and (5) to find out the

expressions of E (v − p1|s, y1) and E (x1|s, y1), which are in turn inserted into (17) to express

d2 as a linear function of s and y1. Finally, we compare this expression with the conjectured

strategy (7) to arrive at the following two equations:

δs =

[
(1− λ2βv,2) βv,1Σ0

β2
v,1Σ0+σ2

z
+ λ2βx1

]
σ−2
ε

(β2
v,1Σ0+σ2

z)
−1

+σ−2
ε +σ−2

u

2λ2

,

δy1 = −δs
σ−2
u

σ−2
ε

+
λ1 (1− λ2βv,2) + λ2βy1

2λ2

.

Using (14), we can further simplify the above two equations as follows:

δs =

σ−2
ε

(β2
v,1Σ0+σ2

z)
−1

+σ−2
ε +σ−2

u

4− σ−2
ε

(β2
v,1Σ0+σ2

z)
−1

+σ−2
ε +σ−2

u

βv,1Σ0

λ2

(
β2
v,1Σ0 + σ2

z

) , (18)

δy1 =
λ1

3λ2

− δs
4σ2

ε

3σ2
u

. (19)

Market maker’s decisions. In period 1, the market maker sees the aggregate order flow

y1 and sets p1 = E (v|y1). Accordingly, we have λ1 = Cov(v,y1)
V ar(y1)

. By equation (5) and the

projection theorem, we can compute

λ1 =
Cov (v, y1)

V ar (y1)
=

βv,1Σ0

β2
v,1Σ0 + σ2

z + σ2
u

. (20)
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Similarly, in period 2, the market maker sees {y1, y2} and sets p2 = E (v|y1, y2). By equations

(6), (7), and (14) and applying the projection theorem, we have

λ2 =
Cov (v, y2|y1)

V ar (y2|y1)

=

(
1

2λ2
+ δs

2
βv,1

)
Σ0 −

βv,1Σ0

[(
1

2λ2
+ δs

2
βv,1

)
βv,1Σ0+ δs

2
σ2
z

]
β2
v,1Σ0+σ2

z+σ2
u(

1
2λ2

+ δs
2
βv,1

)2

Σ0 + δ2s
4
σ2
z + δsσ2

ε + σ2
u −

[(
1

2λ2
+ δs

2
βv,1

)
βv,1Σ0+ δs

2
σ2
z

]2
β2
v,1Σ0+σ2

z+σ2
u

. (21)

Fundamental investor’s date-1 problem. We denote by πF,1 = x1 (v − p1) the funda-

mental investor’s profit that comes from her period-1 trade. In period 1, the fundamental

investor chooses x1 to maximize

E (πF,1 + πF,2|v) = x1E (v − p1|v) + E

[
[v − p1 − λ2 (δsx1 − δy1y1)]2

4λ2

∣∣∣∣∣ v
]
,

where the equality follows from equation (15). Using (8), we can further express E (πF,1 + πF,2|v)

as follows:

E (πF,1 + πF,2|v) = −

[
λ1 −

(λ1 + λ2δs − λ2δy1)
2

4λ2

]
x2

1

+

[
1− λ1 + λ2δs − λ2δy1

2λ2

]
(v − p0)x1

+
(v − p0)2 + σ2

u (λ1 − λ2δy1)
2

4λ2

. (22)

Depending on whether the fundamental investor plays a mixed or a pure strategy (i.e.,

whether σz is equal to 0), we have two cases:

Case 1. Mixed Strategy (σz > 0)

For a mixed strategy to sustain in equilibrium, the fundamental investor has to be indif-

ferent between any realized pure strategy. This in turn means that coefficients on x2
1 and x1

in (22) are equal to zero, that is,

λ1 −
(λ1 + λ2δs − λ2δy1)

2

4λ2

= 0 and 1− λ1 + λ2δs − λ2δy1
2λ2

= 0.

These two equations, together with equation (19), imply

λ1 = λ2 and δs =
4
3

1 + 4σ2
ε

3σ2
u

. (23)

Case 2. Pure Strategy (σz = 0)

13



When the fundamental investor plays a pure strategy, z = 0 (and σz = 0) in the conjec-

tured strategy, and thus (5) degenerates to x1 = βv,1 (v − p0). The FOC of (22) yields

x1 =

(
1− λ1+λ2δs−λ2δy1

2λ2

)
2

[
λ1 −

(λ1+λ2δs−λ2δy1)
2

4λ2

] (v − p0) ,

which, compared with the conjectured pure strategy x1 = βv,1 (v − p0), implies

βv,1 =
1− λ1+λ2δs−λ2δy1

2λ2

2

[
λ1 −

(λ1+λ2δs−λ2δy1)
2

4λ2

] . (24)

The SOC is

λ1 −
(λ1 + λ2δs − λ2δy1)

2

4λ2

> 0. (25)

2.4 Equilibrium Characterization and Properties

A mixed strategy equilibrium is characterized by equations (14), (18), (19), (20), (21), and

(23), together with one SOC, λ2 > 0 (given by (13)). These conditions jointly define a

system that determine nine unknowns, σz, βv,1, βv,2, βx1 , βy1 , δs, δy1 , λ1, and λ2. The following

proposition formally characterizes a linear mixed strategy equilibrium.

Proposition 1 (Mixed Strategy Equilibrium). Let γ ≡ σε
σu

. If and only if γ <

√√
17−4

2
≈

0.175, there exists a linear mixed strategy equilibrium, and it is specified by equations (5)–(9),

where

σz = σu

√
(1 + 4γ2) (1− 32γ2 − 16γ4)

(3 + 4γ2) (13 + 40γ2 + 16γ4)
,

βv,1 =
σu√
Σ0

√
1− 4γ2 − (3 + 4γ2) σ2

z

σ2
u

3 + 4γ2
,

λ1 = λ2 =
βv,1Σ0

β2
v,1Σ0 + σ2

z + σ2
u

> 0,

βv,2 =
1

2λ2

, δs =
4

3 + 4γ2
, δy1 =

1− 4γ2δs
3

,

βx1 =
δs
2

and βy1 =
δy1
2
.

When it exists, this equilibrium is the unique linear mixed strategy equilibrium.

To illustrate the intuition of the equilibrium strategies, it is useful to explicitly decompose
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d2 as follows:

d2 = δs(x1 + ε)− δy1(x1 + u1) = (δs − δy1)x1 + δsε− δy1u1

= x1 + δsε− δy1u1 = βv,1(v − p0) + (δsε+ z)− δy1u1, (26)

where we have used the fact that δs − δy1 = 1 in equilibrium. Equation (26) says that the

back-runner’s order d2 consists of three parts. The first part is the fundamental investor’s

order x1 in period 1. The second part, δsε+ z, reflects the imprecision of his signal, caused

by both the exogenous noise ε in his signal-processing technology and the endogenous noise

z added by the fundamental investor. The third part, −δy1u1, says that the back-runner

trades against the period-1 noise demand u1, which is profitable in expectation because the

back-runner can tell x1 from u1 better than the market maker does. Note that equation (26)

should be read as purely as a decomposition but not the strategy used by the back-runner,

as v, ε, z, and u1 are not separately observable to him.

In the mixed strategy equilibrium, x1, x2, v − p0, and v − p1 need not always have the

same sign. For example, if v > p0 but z is sufficiently negative, the fundamental investor

ends up selling in period 1 (with x1 < 0), before purchasing in period 2 (x2 > 0). While

such a pattern in the data may raise red flags of potential “manipulation” (trading in the

opposite direction of the true intention), it could simply be part of an optimal execution

strategy that involves randomizing.

Proposition 1 reveals that a mixed strategy equilibrium exists if and only if the size

σε of the noise in the back-runner’s signal is sufficiently small relative to σu. This result

is natural and intuitive. A small σε implies that the back-runner can observe x1 relatively

accurately. The back-runner will in turn compete aggressively with the fundamental investor

in period 2, which reduces the fundamental investor’s profit substantially. Worried about

information leakage, the fundamental investor optimally plays a mixed strategy in period

1 by injecting an endogenous noise z into her order x1, with σz uniquely determined in

equilibrium. This garbled x1 limits the back-runner’s ability to learn about v. In other

words, if the back-runner’s order-parsing technology is accurate enough, randomization is

the fundamental investor’s best camouflage.

Conversely, if σε is sufficiently large already, the fundamental investor retains much of

her information advantage, and further obscuring x1 is unnecessary. In this case a linear

pure strategy equilibrium, characterized shortly, would be more natural.

Looked another way, all else equal, the mixed strategy equilibrium obtains if and only

if σu is sufficiently large. Traditional Kyle-type models would not generate this result, as

noise trading provides camouflage for the informed investor. In our model, however, a large
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σu confuses only the market maker, not the back-runner. Thus, more noise trading implies

a higher profit for the fundamental investor and hence a stronger incentive to retain her

proprietary information by adding noise. A natural implication of this observation is that

the exogenous noise σu reinforces the endogenous noise σz.

The threshold value for the existence of the mixed strategy equilibrium in our two-period

model is σε/σu ≈ 17.5%; whether it is large or small is an empirical question. In a model

with more periods, one would expect this threshold to increase, because the fundamental

investor has more time to trade on her information and hence has a stronger incentive to

prevent information leakage. Such N -period extension turns out to be intractable due to

the path dependence of the strategies. That said, we have solved a simpler two-period

extension in which V ar (u1) < V ar (u2), a specification that is previously used by Brunner-

meier (2005). The larger noise-trading variance in the second period is meant to represent

a longer trading interval (e.g., one hour versus one minute) or a larger market (multiple

exchanges versus a single exchange). In this extension, not reported to conserve space, we

find that mixed strategies indeed apply more often if V ar (u2) /V ar (u1) is larger. For ex-

ample, if
√
V ar (u2) /V ar (u1) = 2, the threshold for mixed strategy equilibrium satisfies

σε/
√
V ar(u1) ≈ 0.44; and if

√
V ar (u2) /V ar (u1) = 5, the threshold for mixed strategy

equilibrium satisfies σε/
√
V ar(u1) ≈ 0.49.

Now we turn to pure strategy equilibria. In a pure strategy equilibrium, we have σz = 0.

This type of equilibrium is characterized by equations (14), (18), (19), (20), (21), and (24),

together with two SOC’s, (13) and (25). These conditions jointly define a system that

determine eight unknowns, βv,1, βv,2, βx1 , βy1 , δs, δy1 , λ1, and λ2. The following proposition

formally characterizes a linear pure strategy equilibrium.

Proposition 2 (Pure Strategy Equilibrium). A linear pure strategy equilibrium is char-

acterized by equations (5)–(9) with σz = 0 as well as the following two conditions on

βv,1 ∈
(

0, σu√
Σ0

]
:

(1) β2
v,1 solves the 7th order polynomial:

f
(
β2
v,1

)
= A7β

14
v,1 + A6β

12
v,1 + A5β

10
v,1 + A4β

8
v,1 + A3β

6
v,1 + A2β

4
v,1 + A1β

2
v,1 + A0 = 0,

where the coefficients A’s are given by equations (B14)–(B21) in Appendix B; and

(2) The following SOC (i.e., (25)) is satisfied:

λ1 −
(λ1 + λ2δs − λ2δy1)

2

4λ2

> 0,
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where λ1, λ2, δs, and δy1 are expressed as functions of βv,1 as follows:

λ1 =
βv,1Σ0

β2
v,1Σ0 + σ2

u

,

λ2 =

√√√√Σ0

(2σ4
u + 4σ4

ε + 5σ2
uσ

2
ε) Σ2

0β
4
v,1 + (8σ2

uσ
4
ε + 5σ4

uσ
2
ε) Σ0β2

v,1 + 4σ4
uσ

4
ε(

β2
v,1Σ0 + σ2

u

) (
3σ2

uΣ0β2
v,1 + 4σ2

εΣ0β2
v,1 + 4σ2

uσ
2
ε

)2 ,

δs =
βv,1Σ0σ

2
u

λ2

[
(3σ2

u + 4σ2
ε) Σ0β2

v,1 + 4σ2
uσ

2
ε

] ,
δy1 =

λ1

3λ2

− 4σ2
ε

3σ2
u

δs.

Propositions 1 and 2 respectively characterize mixed strategy and pure strategy equilib-

ria. The following proposition provides sufficient conditions under which either equilibrium

prevails as the unique one among linear equilibria.

Proposition 3 (Mixed vs. Pure Strategy Equilibria). If the back-runner has a sufficiently

precise signal about x1 (i.e., σ2
ε is sufficiently small), there is no pure strategy equilibrium,

and the unique linear strategy equilibrium is the mixed strategy equilibrium characterized

by Proposition 1. If the back-runner has a sufficiently noisy signal about x1 (i.e., σ2
ε is

sufficiently large), there is no mixed strategy equilibrium, and there is a unique pure strategy

equilibrium characterized by Proposition 2.

Given Proposition 1 and the discussion of its properties, the mixed strategy part of

Proposition 3 is relatively straightforward. The existence of a pure strategy equilibrium

for a sufficiently large σε is also natural, as in this case the back-runner’s signal has little

information and does not deter the fundamental investor from using a pure strategy. In fact,

as σε ↑ ∞ our setting degenerates to a standard two-period Kyle (1985) setting, and the

unique linear equilibrium in our model indeed converges to the pure strategy equilibrium of

Kyle (1985). This result is shown in the following corollary.

Corollary 1. As σε → ∞, the linear equilibrium in the two-period economy with a back-

runner converges to the linear equilibrium in the standard two-period Kyle model.

Proposition 3 analytically proves the uniqueness of a linear equilibrium only for suf-

ficiently small or sufficiently large values of σ2
ε . It would be desirable to generalize this

uniqueness result to any value of σε, but we have not managed to do so due to the com-

plexity of the 7th order polynomial characterizing a pure strategy equilibrium in Proposition

2. In particular, given Proposition 1, a reasonable conjecture is that the boundary between
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pure and mix strategy equilibria is at σε
σu

=

√√
17−4

2
. This conjecture, albeit not formally

proven, seems to hold numerically. That is, if σε
σu

<

√√
17−4

2
, only a mixed strategy linear

equilibrium exists, and if σε
σu
≥
√√

17−4

2
, only a pure strategy linear equilibrium exists. Either

way, the linear equilibrium seems unique for all parameter values.

Propositions 1 and 2 suggest the following three-step algorithm to compute all possible

linear equilibria:

Step 1: Compute all the positive root of the polynomial f
(
β2
v,1

)
= 0 in Proposition 2. Retain

the values of βv,1 ∈
(

0, σu√
Σ0

]
to serve as candidates for a pure strategy equilibrium.

Step 2: For each βv,1 retained in Step 1, check whether the SOC in Proposition 2 is satisfied.

If yes, then it is a pure strategy equilibrium; otherwise, it is not.

Step 3: If σε
σu
<

√√
17−4

2
, employ Proposition 1 to compute a mixed strategy equilibrium.

Figure 2 plots in solid lines the equilibrium trading strategies of the fundamental investor

and the back-runner as functions of σε, where we set σu = 10 and Σ0 = 100. As a comparison,

the dashed lines show corresponding strategies in the standard two-period Kyle model with-

out the back-runner. The first panel confirms that σz > 0 if and only if σε < 0.175σu = 1.75.

Also, when σε < 1.75, the equilibrium value of σz decreases with σε. That is, when there

is more exogenous noise in the back-runner’s signal, the fundamental investor endogenously

injects less noise into her own period-1 orders. This result points out a new channel—i.e.,

the amount of noise in the back-runner’s signal—that determines whether a mixed strategy

equilibrium or a pure strategy one should prevail in a Kyle-type auction game.

The other panels in Figure 2 are also intuitive. For instance, βv,1 decreases with σε in the

mixed strategy regime, but increases with σε in the pure strategy regime. This is because

in the mixed strategy regime, as σε increases, the fundamental investor adds less noise z

to her order; to avoid revealing too much information to the back-runner, she trades less

aggressively on v in period 1. In contrast, in the pure strategy equilibrium, as σε increases,

the fundamental investor knows that the back-runner will learn less from her order due to

the increased exogenous noise ε, and so she can afford to trade more aggressively in period

1. The intensity βv,1 with order-flow information is smaller than its counterpart without

order-flow information in a standard Kyle model.

An interesting observation is that βv,2 is hump-shaped in σε, but the peak obtains when

σε is substantially above σu
√√

17− 4/2. This is a combination of two effects. First, βv,2
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Figure 2: Implications for Trading Strategies
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This figure plots the implications of back-running for trading strategies of the fundamental investor and the

back-runner. In each panel, the blue solid line plots the value in the equilibrium of this paper, and the

dashed red line plots the value in a standard Kyle economy (i.e., σε =∞). The horizontal axis in each panel

is the standard deviation σε of the noise in the back-runner’s private signal about the fundamental investor’s

past order. The other parameters are: σu = 10 and Σ0 = 100.

should have a negative relation with βv,1, as the fundamental investor smoothes her trades

across the two periods. Thus, the U-shaped βv,1 leads to a hump-shaped βv,2. Second,

the fundamental investor also faces competition from the back-runner in the second period,

and as σε increases, this competition is less intense, so that the fundamental investor can

afford to trade more aggressively on her private information. The second competition effect,

adding to the first smoothing effect, implies that the hump-shaped βv,2 achieves its peak

above σu
√√

17− 4/2.

It is straightforward to understand that δs decreases with σε: A higher value of σε means

that the back-runner’s private information s is less precise, and so he trades less aggressively
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on this information.

3 Implications of Back-Running for Market Quality

and Welfare

In this section we discuss the positive and normative implications of back-running, including

price discovery, market liquidity, and the trading profits (or losses) of various trader types.

Because these measures are proxies for market quality and welfare, our analysis generates

important policy implications regarding the use of order-flow informed trading strategies.

We first examine the behavior of positive variables that represent market quality. In

the microstructure literature, two leading positive variables are price discovery and market

liquidity.8 Price discovery measures how much information about the asset value v is revealed

in prices p1 and p2. Given price functions (8) and (9), prices are linear transformations of

aggregate order flows y1 and y2, and thus the literature has measured price discovery by the

market maker’s posterior variances of v in periods 1 and 2:

Σ1 ≡ V ar (v|y1) and Σ2 ≡ V ar (v|y1, y2) .

A lower Σt implies a more informative period-t price about v, for t ∈ {1, 2}. Price discovery

is important because it helps allocation efficiency by conveying information that is useful for

real decisions (see, for example, O’Hara (2003) and Bond, Edmans, and Goldstein (2012)).

In Kyle-type models (including ours), market liquidity is measured by the inverse of Kyle’s

lambda (λ1 and λ2), which are price impacts of trading. A lower λt means that the period-t

market is deeper and more liquid. One important reason to care about market liquidity is

that it is related to the welfare of noise traders, who can be interpreted as investors trading

for non-informational, liquidity or hedging reasons that are decided outside the financial

markets. In general, noise traders are better off in a more liquid market, because their

expected trading loss is (λ1 + λ2)σ2
u in our economy.

Next, the normative variables are the payoffs of each group of players in the economy, that

is, the expected profit E (πF,1 + πF,2) of the fundamental investor, the expected profit E(πB,2)

of the back-runner, and the expected loss (λ1 + λ2)σ2
u of noise traders. This approach allows

us to discuss who wins and who loses as a result of a particular policy. In practice, investors’

trading motives range from fundamental analysis to liquidity shocks (e.g., client withdrawal

from mutual funds or hedge funds). Our fundamental investor can be viewed as investors

8For example, O’Hara (2003) states that “Markets have two important functions—liquidity and price
discovery—and these functions are important for asset pricing.”
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trading for informational reasons, and noise traders as those trading for liquidity reasons.

The back-runner is more in line with broker-dealers or HFTs who employ sophisticated

trading technology and may possess superior order-flow information. If the regulator wishes

to protect liquidity-driven traders, the welfare of noise traders would be the relevant measure.

If the regulator wishes to protect investors who acquire fundamental information, then the

informed profit E (πF,1 + πF,2) would be a relevant measure.

The following proposition gives a comparison between two “extreme” economies: the

economy with σε = 0 and the one with σε =∞ (i.e. the standard Kyle setting). For instance,

the first economy corresponds to one in which back-runners are able to extract very precise

information about the past orders submitted by large institutions. The second economy may

represent one in which institutional investors manage to hide order-flow information almost

completely (or an economy in which back-runners do not participate in the market, due to

high technological costs or strict regulations). In the proposition, we have used superscripts

“0” and “Kyle” to indicate these two economies.

Proposition 4 (Perfect Order-Flow Information vs. Standard Kyle). In the two-period

setting, the following orderings apply:

Σ0
1 > ΣKyle

1 ,Σ0
2 < ΣKyle

2 ,

λ0
1 < λKyle1 , λ0

2 > λKyle2 ,

E
(
π0
F,1

)
< E

(
πKyleF,1

)
, E
(
π0
F,2

)
< E

(
πKyleF,2

)
and(

λ0
1 + λ0

2

)
σ2
u <

(
λKyle1 + λKyle2

)
σ2
u.

The positive implications in Proposition 4 are in sharp contrast to those presented by

Huddart, Hughes, and Levine (2001), although both studies consider a comparison between

an economy featuring a mixed strategy equilibrium and a standard Kyle economy. In Hud-

dart, Hughes, and Levine (2001), the market maker perfectly observes the past order placed

by an informed trader. They find that market liquidity and price discovery unambiguously

improve in both periods of their economy relative to a standard Kyle setting (i.e., their

λ1, λ2, Σ1, and Σ2 are all smaller than the Kyle setting counterparts). In contrast, in our

setting, the market maker does not observe the informed fundamental investor’s past trade

x1; it is the back-runner who does, with some noise. As a result of the endogenous noise z

placed by the fundamental investor in the mixed strategy and her more cautious trading on

fundamental information (i.e., a smaller βv,1), the first-period price discovery is harmed by

back-running in our setting (i.e., Σ0
1 > ΣKyle

1 ). The presence of perfect information about

past order flows also worsens the second period market liquidity relative to the standard
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Figure 3: Implications for Positive Variables
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This figure plots the market quality implications of back-running. In each panel, the blue solid line plots the

value in the equilibrium of this paper, and the dashed red line plots the value in a standard Kyle economy

(i.e., σε = ∞). The horizontal axis in each panel is the standard deviation σε of the noise in the back-

runner’s private signal about the fundamental investor’s past order. The other parameters are: σu = 10 and

Σ0 = 100.

Kyle setting (i.e., λ0
2 > λKyle2 ). This is again opposite to the effect of publicly revealing the

informed orders in period 1, as in Huddart, Hughes, and Levine (2001).

Figures 3 and 4 respectively plot in solid lines the positive and normative implications

as we continuously increase σε from 0 to ∞. The other two exogenous parameters are the

same as those in Figure 2 (σu = 10 and Σ0 = 100). The dashed lines plot the corresponding

variables in a standard two-period Kyle model without the back-runner.

In Figure 3, we see that Σ1 is hump-shaped in σε, with the peak at the cutoff σε =

σu
√√

17− 4/2. The intuition is as follows. In the first period, only the fundamental in-
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vestor’s trade brings information about v into the market. Since her trading sensitivity βv,1

on fundamental information is U-shaped in σε (see Figure 2), Σ1 should have the opposite

pattern, i.e., hump-shaped. By contrast, Σ2 monotonically increases with σε in Figure 3.

This is because in period 2, both the fundamental investor and the back-runner trade on

value-relevant information, and as σε increases, the back-runner’s order brings less informa-

tion about v into the price. Comparing the solid lines to dashed lines, we see that adding

the back-runner harms price discovery in period 1 but improves price discovery in period 2.

The illiquidity measures in both periods, λ1 and λ2, first decrease and then increase with

σε. Since adverse selection from the fundamental investor is the sole source of price impact

in period 1, it is rather intuitive that λ1 has a similar U-shape as βv,1 (see equation (20)).

The period-2 illiquidity measure λ2 is also U-shaped and opposite to the humped-shaped

βv,2, by the first-order condition in period 2 (i.e., λ2 = 1
2βv,2

by (14)).

Comparing the solid lines to dashed lines, we find that back-running generally improves

the first-period market liquidity because the fundamental investor trades less aggressively on

her private information, but its impact on the second-period market liquidity is ambiguous.

Consistent with Proposition 4, back-running worsens the second-period liquidity relative to

the standard Kyle setting, if and only if the back-runner’s order-flow information is suffi-

ciently precise. (In the neighborhood of σε = 0, the solid line is strictly above the dashed

line in the plot for λ2.) This is due to a combination of two effects. First, adding the

back-runner introduces competition, which makes the period-2 aggregate order flow reflect

more of the fundamental than noise trading. This tends to reduce λ2. Second, back-running

also increases the amount of private information, which makes the adverse selection problem

faced by the market maker more severe. This generally tends to increase λ2. When σε is

small, the back-runner has very precise private information and the second effect dominates,

so that λ2 is higher than its counterpart in a standard Kyle setting.

The top two panels of Figure 4 plot the fundamental investor’s expected profits in the

two periods, E (πF,1) and E (πF,2). We observe that E (πF,2) monotonically increases with

σε. This result is intuitive: A higher σε means that the fundamental investor faces a less

competitive back-runner in period 2, so her period-2 profit is higher on average. The period-

1 profit E (πF,1) first decreases with σε (in the mixed strategy regime) and then increases

with σε (in the pure strategy regime). This U-shaped profit pattern is natural given the

U-shaped βv,1 pattern in Figure 2. Comparing the solid lines to dashed lines, we clearly see

that back-running lowers the profit of the fundamental investor.

The bottom three panels of Figure 4 present the total profit E (πF,1 + πF,2) of the funda-
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Figure 4: Implications for Normative Variables
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This figure plots the profits of various groups of traders. In each panel, the blue solid line plots the value

in the equilibrium of this paper, and the dashed red line plots the value in a standard Kyle economy (i.e.,

σε = ∞). The horizontal axis in each panel is the standard deviation σε of the noise in the back-runner’s

private signal about the fundamental investor’s past order. The other parameters are: σu = 10 and Σ0 = 100.

mental investor, the total loss (λ1 + λ2)σ2
u of noise traders, and the expected profit E(πB,2)

of the back-runner. All the results are as expected. As σε increases, the back-runner has

less precise private information, and thus E(πB,2) decreases. Meanwhile, a higher σε also

implies that the fundamental investor faces less competition from the back-runner, and

E (πF,1 + πF,2) increases. The U-shaped total loss (λ1 + λ2)σ2
u of noise traders is a direct

result of the U-shaped λ1 and λ2 in Figure 3. In general, back-running reduces the loss of

noise traders (the entire solid line of (λ1 + λ2)σ2
u lies below the dashed line).
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4 Information Acquisition

So far, we have taken the information of the fundamental investor and the back-runner as

given. In this section, we explicitly model information acquisition. Besides showing the

robustness of our earlier results, this additional step sheds light on questions like “Does

back-running discourage acquisition of fundamental information?”

4.1 Setup

We add one period, t = 0, before the two-period economy considered in previous sections. At

t = 0, the fundamental investor decides the amount of fundamental information she acquires,

and the back-runner decides the precision of order-flow information he acquires. Specifically,

for the fundamental trader, we follow Admati and Pfleiderer (1989), Madrigal (1996), and

Bond, Goldstein, and Prescott (2010) and assume that the fundamental investor can pay

a cost CF (φ) upfront to observe the fundamental value v with probability φ ∈ (0, 1). For

the back-runner, we follow Verrecchia (1982) and Vives (2008) and assume that the back-

runner can pay a cost CB

(
1
σ2
ε

)
upfront to observe a signal s of x1 with precision 1

σ2
ε
. These

information-acquisition decisions are simultaneous. After time 0, the choices of φ and σε

become public information. In reality, investment in fundamental research, such as hiring

analysts, and investment in advanced trading technology, such as high-speed connections to

exchanges, are usually observable.

To ensure interior solutions of σ2
ε and φ, we make the standard technical assumptions:

(i) CB (·) and CF (·) are increasing and convex; and (ii) CB (0) = C ′B (0) = 0, CB (∞) =

C ′B (∞) =∞, CF (0) = C ′F (0) = 0, and CF (1) = C ′F (1) =∞.

For simplicity, we assume that at the beginning of period 1, it becomes public knowledge

whether the fundamental investor has successfully observed v. It is a standard assumption

in Kyle-type models whether such an (fundamentally) informed investor exists. Then, the

subsequent game has two possible outcomes:

1. If the fundamental investor observes v, then the economy is the one that we analyzed

in the previous two sections.

2. If the fundamental investor does not observe v, then as an uninformed investor she

will not trade in either period. As a result, the back-runner will not trade in period 2,

either, despite receiving the signal of the fundamental investor’s (zero) order flow. In

this case, only noise traders submit orders, and so the price is p1 = p2 = E (v) = p0.
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4.2 Analysis and Results

Our objective is to find the equilibrium levels of φ and σε. They are determined jointly by

the period-0 maximization problems of the fundamental investor and the back-runner.

Recall that πF,1 and πF,2 denote the realized profits of the fundamental investor in dates

1 and 2, respectively. The fundamental investor’s period-0 expected net profit is:

ΠF,0 ≡ φE (πF,1 + πF,2)− CF (φ) ,

and her problem is to chose φ to maximize ΠF,0, taking her conjectured equilibrium value of σε

as given. Because E (πF,1 + πF,2) does not depend on φ, and given the technical assumption

on CF (φ), we know that the solution to the fundamental investor’s problem is characterized

by the first-order condition:

E (πF,1 + πF,2) = C ′F (φ) .

Now we consider the back-runner’s information acquisition problem. Recall that

πB,2 ≡ (v − p2) d2

is the back-runner’s realized period-2 profit. So, his period-0 expected net profit of acquiring

order-flow information is:

ΠB,0 ≡ φE (πB,2)− CB
(

1

σ2
ε

)
.

The back-runner takes the equilibrium value φ as given and chooses σε to maximize ΠB
0 .

The back-runner’s choice of σε affects E (πB,2) through its effect on the equilibrium

strategies, σz, βv,1, βv,2, βx1 , βy1 , δs, δy1 , λ1 and λ2. Specifically, we can compute

E (πB,2) = λ2

[
(δs − δy1)

2 β2
v,1Σ0 + (δs − δy1)

2 σ2
z + δ2

sσ
2
ε + δ2

y1
σ2
u

]
,

and hence

ΠB,0 = φλ2

[
(δs − δy1)

2 β2
v,1Σ0 + (δs − δy1)

2 σ2
z + δ2

sσ
2
ε + δ2

y1
σ2
u

]
− CB

(
1

σ2
ε

)
.

There is an important complication in the solution to the back-runner’s information-

acquisition problem. Although this problem has an interior solution, as ensured by the cost

function CB(·), the optimal choice of σε cannot in general be guaranteed by setting the first-

order derivative to zero. This is because whether the equilibrium has a mixed strategy or a

pure strategy (used by the fundamental investor) depends on σε. As σε decreases and drops

below the threshold value of (
√√

17− 4/2)σu, the equilibrium switches from pure strategy

to mixed strategy, giving rise to a kink in E (πB,2). If the optimal value of σε occurs at the

kink, the first-order condition is characterized by two inequalities rather than an equality.

(This complication does not apply to the fundamental investor’s problem.)

To solve the equilibrium explicitly and numerically, we need explicit functional forms of
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CB and CF . Following Vives (2008), we choose the following parametrization:

CB

(
1

σ2
ε

)
= kB

(
1

σ2
ε

)hB
= kBσ

−2hB
ε ,

CF (φ) = kF

(
φ

1− φ

)hF
,

where

kB > 0, kF > 0, hB > 1 and hF > 1.

We will conduct comparative statics with respect to parameter kB, which is taken as a proxy

for the cost of acquiring order-flow information. A larger kB means a higher cost.

In order to gain better intuition of the comparative statics, it is useful to first illustrate

the kink in ΠB,0. Figure 5 plots the profit function ΠB,0 against σε, for kB ∈ {1, 8, 15}, in the

three panels. In each panel, φ is set to its equilibrium value corresponding to the particular

kB and does not vary with σε, since this value of φ is the belief of the back-runner at the

information-acquisition stage. But for each σε, other equilibrium variables in periods 1 and

2 are determined according to Propositions 1 and 2 for this particular σε (and the fixed

equilibrium value of φ), because at the information-acquisition stage, the back-runner takes

into account how the fundamental investor and the market maker react in future periods.

As in earlier figures, we set σu = 10 and Σ0 = 100. We also set kF = 1 and hF = hB = 2.

In Panel (a), where kB = 8, the optimal σε occurs exactly at the kink. In Panels (b1)

and (b2), where kB = 1 and kB = 15 respectively, the optimal values of σε are found in the

smooth regions. Intuitively, if the information-acquisition cost kB is very high or very low,

the unconstrained optimal σε—the solution without considering the equilibrium switch—is

sufficiently far away from the threshold (
√√

17− 4/2)σu, so the switch in equilibrium does

not bind, as in Panels (b1) and (b2). If, however, kB takes an intermediary value, the nature

of equilibrium depends heavily on σε. In the mixed strategy region of Panel (a), i.e. if

σε < (
√√

17− 4/2)σu, the back-runner prefers to acquire less precise information because

the fundamental investor injects noise anyway; but in the pure strategy region of Panel (a),

i.e. if σε ≥ (
√√

17− 4/2)σu, the back-runner prefers more precise information because the

fundamental investor does not inject any noise. The result is that the unique maximum of

ΠB,0 is obtained when σε is exactly at the threshold (
√√

17− 4/2)σu. As we see shortly, this

corner solution leads to the stickiness in the responses of equilibrium outcomes to changes

in kB.

Now we proceed with describing the comparatives statics. The variables of interest

include:
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Figure 5: Illustration of Possible Kink in ΠB,0
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This figure plots ΠB,0 against σε for three values of kB . In each panel, φ is set to its equilibrium value

corresponding to the particular kB and does not vary with σε. For each σε, other equilibrium variables in

periods 1 and 2 are optimized to this particular σε. The red dot is the global maximum. Other parameters:

σu = 10,Σ0 = 100, kF = 1, and hF = hB = 2.

• Equilibrium values of φ, σε, σz, βv,1, βv,2, βx1 , βy1 , δs, δy1 , λ1 and λ2;

• Equilibrium profits: ΠF,0 and ΠB,0, and the expected cost of noise traders ΠF,0 + ΠB,0;

• Price discovery: φΣ1 + (1− φ) Σ0 for period 1 and φΣ2 + (1− φ) Σ0 for period 2;

• Illiquidity: φλ1 + (1− φ) 0 = φλ1 for period 1 and φλ2 + (1− φ) 0 = φλ2 for period 2.

Here, we follow the literature and measure average price discovery and illiquidity, where λ1

and λ2 are defined in Propositions 1 and 2, and Σ1 and Σ2 are defined at the beginning of

Section 3.

Figure 6 plots the implications of changes in information acquisition cost kB for information-

acquisition decisions, profits of various groups of traders, price discovery, and market illiq-
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Figure 6: Equilibrium Strategies and Implications of Information Acquisition

0 5 10 15

k
B

0.5

1

1.5

2
<
0

0 5 10 15

k
B

0.719

0.72

0.721

?

0 5 10 15

k
B

10

12

14

&
B

,0

0 5 10 15

k
B

40

40.5

41

41.5

&
F

,0

0 5 10 15

k
B

59.5

59.6

59.7

59.8

?
(6

1+
6

2)<
u2

0 5 10 15

k
B

83.5

84

84.5

?
'

1+
(1

-?
)'

0

0 5 10 15

k
B

47.5

48

48.5

?
'

2+
(1

-?
)'

0

0 5 10 15

k
B

0.2975

0.298

0.2985

0.299

?
6

1

0 5 10 15

k
B

0.2975

0.298

0.2985

0.299

?
6

2

This figure plots the equilibrium levels of information acquisition, expected profits of various parties, price

discovery, and market illiquidity, as functions of kB . Other parameters: σu = 10,Σ0 = 100, kF = 1, and

hF = hB = 2.

uidity.

An interesting and salient pattern is that all but one of these variables are entirely

irresponsive to changes in kB when kB is in an intermediate range. As discussed earlier, in

this range, the optimal σε is always equal to (
√√

17− 4/2)σu regardless of kB. As a result,
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the equilibrium has zero sensitivity to kB, leading to the flat parts of equilibrium variables.

Moreover, we observe that a lower kB weakly reduces φ, which implies that technology

improvement in processing order-flow information reduces investment in fundamental infor-

mation (top row of Figure 6). A lower cost of acquiring order-flow information leads to a

higher profit of the back-runner but a lower profit of the fundamental investor. The loss

of noise traders, the period-1 price discovery, and the period-1 market liquidity are all non-

monotone in kB. This last result mirrors the patterns in Figures 3 and 4 that these variables

are also non-monotone in σε.

Overall, results of the previous sections are robust to information acquisition. A unique

and novel prediction with information acquisition is that equilibrium outcomes can be in-

sensitive to the cost of order-flow information. This insensitivity is the consequence of the

switch between a pure strategy equilibrium and a mixed strategy one.

5 Empirical Relevance

This section discusses how our theory helps interpret recent evidence on the behavior of high-

frequency traders (HFTs). Although back-running is not conducted exclusively by HFTs,

HFTs stand out as the most relevant application in today’s markets. Mapping the model into

reality, we can approximately view the fundamental investor as (some) institutional investors,

the back-runner as order-anticipating HFTs, the market maker as a mix of market-making

HFTs and human traders posting limit orders, and the noise trader as a mix of retail and

other institutional investors. To be conservative, we shall use the weaker “correlation,”

rather than “causality,” interpretation of evidence discussed in this section.

5.1 HFT and Institutional Investors

van Kervel and Menkveld (2015) study the trading behaviors of HFTs when large institu-

tion investors execute orders in the Swedish equity market. Data from NASDAQ-OMX,

the main equity exchange in Nordic markets, disclose the identifiers of exchange members,

including HFTs. In addition, they use a proprietary dataset that contains the detailed trans-

action records of four institutional investors. Institutions typically split large orders into

smaller pieces and execute them over time. Matching these two data sources, van Kervel

and Menkveld (2015) investigate whether HFTs take the opposite side of institutional in-

vestor order flows (“lean against the wind”) or trade in the same direction (“go with the

wind”).
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van Kervel and Menkveld (2015) find that HFTs lean against the wind for the first six

hours of institutional buy orders and for the first two hours of institutional sell orders.

This initial behavior is consistent with the market-making activity of HFTs. Going back to

our model, the first period can be viewed as an abstraction of this initial phase when the

back-runner does not trade and when order flows are handled by the market maker (e.g.

market-making HFT strategies and human traders).

Interestingly, HFTs reverse course and trade in the same direction as the institutional

order if the order lasts more than six hours for buys and more than two hours for sells. For

those orders HFTs’ inventories eventually end up in the same direction as the institutions.

This behavior is precisely predicted by our theory: HFTs learn valuable information from

institutions’ past order flows and eventually compete with them. Moreover, van Kervel and

Menkveld (2015) find that institutions’ implementation shortfall9 is higher if HFTs go in

the same direction as institutions than if HFTs go opposite with institutions. Again, this

piece of evidence supports our theory that once the back-runner starts to compete with the

fundamental investor, the price converges to the fundamental value faster on average; this

faster convergence is manifested as a higher effective transaction cost for the (informed)

fundamental investor.

Furthermore, van Kervel and Menkveld (2015) test our theory of back-running against

the predatory-trading theory of Brunnermeier and Pedersen (2005). In Brunnermeier and

Pedersen (2005), the predator starts trading at the same time as the prey in the same

direction, before reversing course, and the price impact is transitory because the prey’s

trades are liquidity-driven. In our theory, the back-runner starts by learning from order-flow

information, and the eventual price impact is permanent because the institution’s trades

are information-driven. As van Kervel and Menkveld (2015) point out, the fact that HFTs

behave like market makers for hours before reversing course directly supports our theory.

While the Swedish data are the most transparent, HFT studies in U.S. and Canada find

broadly similar results. Using the NASDAQ HFT data, Tong (2015) finds that an increase

in HFT activities is associated with a higher implementation-shortfall cost of institutions.

In the Canadian equity market, Korajczyk and Murphy (2014) find that implementation

shortfalls are higher if HFTs take more liquidity, controlling for the level of activities of

9The implementation shortfall measures the extent to which the average transaction price of a large order
is worse than the price at the start of the execution. For example, if an institution’s average purchase price
is $10.05 and the price at the beginning of execution is $10.00, the implementation shortfall is 50 basis
points (10.05/10.00− 1 = 0.5%). In Kyle-type models, the implementation shortfall of the informed trader
is positive in expectation because his trades gradually reveal information and push the price in the adverse
direction (for the informed trader).
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HFTs and designated market makers.

It should be stressed that the above evidence does not conflict with earlier research

findings that “HFT and automated, competing trading venues have substantially improved

market liquidity and reduced trading costs for all investors” (see Jones (2013), who provides

a detailed survey of HFT studies up to March 2013). To see this, note that many HFTs

enter as more efficient market makers than human ones, and the resulting competition re-

duces investors’ transaction costs, especially for small orders. It is the largest institutional

orders that are exposed to back-running strategies. It is our understanding that all HFT

studies, including those suggesting a negative impact of HFT on institutional execution per-

formance, fully acknowledge that transaction costs have declined substantially in the past

ten years when HFTs have been playing an increasingly important role in equity markets.

Similarly, many proponents of HFTs acknowledge that not all HFT strategies help investors.

Back-running merits an in-depth study because it is a salient example of controversial HFT

practice.

5.2 HFT and Price Discovery

An important implication from our analysis of market quality is that the fundamental in-

vestor’s reduced trading intensity and camouflage by injecting noise into order flows delay

price discovery. Recent evidence from Weller (2015) supports this prediction. Using data

from SEC’s Market Information Data Analytics System (MIDAS), Weller (2015) links prox-

ies of algorithmic trading to measures of price discovery before earnings announcements.

His proxies to algorithmic trading include odd lots, trade-to-order ratio, cancellation-to-

trade ratio, and trade size. His measure of price discovery is defined as the “jump ratio”

∆p(T−1,T+2)/∆pT−22,T+2, where T is the earnings announcement date and ∆p(k1,k2) is the

stock return from day k1 to day k2 after adjusting for Fama-French three factors. A larger

jump ratio means that a smaller fraction of price change happens before earnings announce-

ment, i.e., a worse price discovery.

The main finding of Weller (2015) is that more active algorithmic trading is associated

with a larger jump ratio, hence worse price discovery before earnings announcements. This

evidence supports our model prediction that back-running delays price discovery.

We emphasize that the theoretical prediction that back-running delays price discovery

is not inconsistent with the existing literature on HFT and price discovery. For example,

Brogaard, Hendershott, and Riordan (2014) find that HFTs “facilitate price efficiency by

trading in the direction of permanent price changes and in the opposite direction of tran-
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sitory pricing errors,” although HFTs’ information advantage lasts only for a few seconds.

The directions of HFT trades are correlated with public information such as macroeconomic

data releases and limit order book imbalances. Their evidence suggests that HFTs’ infor-

mation advantage could come from their superior ability to process various kinds of public

information. Since the back-runner in our model parses public order flows better than others,

the back-runner’s behavior in our theory is in fact highly consistent with the evidence from

Brogaard, Hendershott, and Riordan (2014). Precisely because HFTs are good at parsing

public information, including order flows, the fundamental investor in our model releases less

information to prices.

Separately, Hirschey (2013) documents that aggressive HFT orders predict non-HFT

orders in the immediate future, and he interprets this result as consistent with the hypothesis

that HFTs make money partly “by identifying patterns in trade and order data that allow

them to anticipate and trade ahead of other investors’ order flow”—which, again, is precisely

back-running.

6 Conclusion

Order-flow informed trading is a salient part of modern financial markets. This type of

trading strategies, such as order anticipation, often starts with no innate trading motive,

but instead seeks and exploits information from other investors’ past order flows. We refer

to such strategies as back-running. While back-running has long existed in financial markets,

its latest incarnation in certain high-frequency trading strategies caused renewed and severe

concerns among investors and regulators.

In this paper we study the strategic interaction between back-runners and fundamental

informed investors. In our two-period model, which is based on Kyle (1985), a back-runner

observes, ex post and potentially with noise, the executed trades of the informed investor

in period 1. The informed order flow thus provides a signal to the back-runner regarding

the asset fundamental value. Using this information, the back-runner competes with the

informed investor in period 2. While simple, this model structure parsimoniously captures

the key idea of back-running.

If the back-runner’s signal is sufficiently precise, the fundamental investor hides her infor-

mation by endogenously adding noise into her period-1 order flow, leading to a mixed strategy

equilibrium. The more precise is the order-flow signal, the more volatile is the added noise.

As the back-runner’s signal becomes sufficiently imprecise, the equilibrium switches to a pure
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strategy one, in which the fundamental investor adds no endogenous noise in her order flows.

We prove uniqueness of equilibrium under natural conditions. The characterization of the

equilibria, in particular the endogenous switch between a mixed strategy equilibrium and a

pure strategy one, is the first main contribution of this paper.

Our second main contribution is to identify the effects of back-running on market quality.

Because the fundamental investor trades more cautiously and potentially adds noise into her

period-1 orders, the presence of the back-runner harms price discovery in the first period. In

the second period, however, price discovery is improved because of competition. Effects on

market liquidity, measured by the inverse of Kyle’s lambda, are mixed: Liquidity improves

in the first period but can either improve or worsen in the second period.

Our main results are robust to endogenous information acquisition. Additionally, we

find that a lower cost of acquiring order-flow information reduces the fundamental investor’s

incentive to acquire fundamental information.

Recent evidence on high-frequency trading supports our theoretical results. Since back-

running is one of high-frequency trading strategies, our results should not be interpreted as

a one-size-fits-all characterization of all HFTs, especially market-making HFTs. That said,

our results are still highly relevant because back-running is arguably the most controversial

HFT practice and continues to cause concerns among investors and regulators.

While our model is made as simple and parsimonious as possible, a couple of extensions

could be entertained. First, one could allow multiple informed investors and multiple back-

runners. We expect that the additional informed investors create a free-riding problem and

weaken the incentives to add noise to their period-1 strategies, but the additional back-

runners increase the risk of information leakage for informed investors and encourage them

to add more noise in the first period. A second possible extension is to write a dynamic

back-running model with more than two periods. A challenge of this extension is history-

dependence, that is, strategies in period t can potentially depend on variables in periods 1,

2, ..., t− 1. These extensions, while potentially interesting, are unlikely to change our main

results, and we leave them for future research.
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Appendix

A List of Model Variables

Variables Description
Random Variables
v Asset liquidation value at the end of period 2, N (p0,Σ0)
x1, x2 Orders placed by the fundamental investor in periods 1 and 2
z Noise component in the period-1 order x1 of the fundamental investor
d2 Order placed by the back-runner in period 2
s, ε Signal observed by the back-runner, and its noise component
u1, u2 Noise trading in periods 1 and 2
y1, y2 Aggregate order flows in periods 1 and 2
p1, p2 Asset prices in periods 1 and 2
πF,1, πF,2 Fundamental investor’s profits attributable to trades in periods 1 and 2
πB,2 Back-runner’s profit in period 2
σε Noise in back-runner’s signal of x1

φ Fundamental investor’s probability of observing v (only in Section 4)
ΠF,0 φE (πF,1 + πF,2)− CF (φ) (only in Section 4)

ΠB,0 φE (πB,2)− CB
(

1
σ2
ε

)
(only in Section 4)

Deterministic Variables
p0,Σ0 Prior mean and variance of the asset value
σ2
u Variance of noise trading in periods 1 and 2
σz Standard deviation of the noise component z in the period-1 order x1

placed by the fundamental investor
Σ1,Σ2 Posterior variance of the asset value in periods 1 and 2 (i.e., V ar (v|y1)

and V ar (v|y1, y2))
CF (φ) Fundamental investor’s cost to observe v with probability φ
CB(1/σ2

ε) Back-runner’s cost of observing a signal of x1 with precision 1/σ2
ε

Strategy Summary
βv,1 x1 = βv,1(v − p) + z
βv,2, βx1 , βy1 x2 = βv,2(v − p)− βx1x1 + βy1y1

δs, δy1 d2 = δss− δy1y1

λ1 p1 = p0 + λ1y1, with y1 = x1 + u1

λ2 p2 = p1 + λ2y2, with y2 = x2 + d2 + u2
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B Proofs

B.1 Proof of Equation (10)

Define σ2
x ≡ V ar (x1) = β2

v,1Σ0 + σ2
z . Direct computation shows

E (v|s, y1)− E (v|y1) =
βv,1Σ0σ

−2
ε

σ2
x (σ−2

x + σ−2
ε + σ−2

u )

(
s− σ2

x

σ2
u + σ2

x

y1

)
.

Thus, it suffices to show that
δy1
δs

=
σ2
x

σ2
u + σ2

x

(B1)

holds in equilibrium, in order for d2 in equation (7) to admit a form given by equation (10).
By equation (18), we have:

βv,1Σ0

δsλ2

=
σ2
x [4 (σ−2

x + σ−2
ε + σ−2

u )− σ−2
ε ]

σ−2
ε

. (B2)

Plugging the expression of λ1 = βv,1Σ0

σ2
x+σ2

u
(i.e. equation (20)) into equation (19) yields

δy1
δs

=
βv,1Σ0

δsλ2

1

3 (σ2
x + σ2

u)
− 4σ2

ε

3σ2
u

. (B3)

Inserting equation (B2) into (B3) and simplifying, we have equation (B1).

B.2 Proof of Proposition 1

A mixed strategy equilibrium is characterized by nine parameters, σz, βv,1, βv,2, βy1 , βx1 , δy1 , δs,
λ1, and λ2. These parameters are jointly determined by a system consisting of nine equa-
tions (given by (14), (18), (19), (20), (21), and (23)) as well as one SOC (λ2 > 0 given by
(13)). Note that by equation (23), δs is already known, and also λ1 = λ2 degenerates to
one parameter, denoted by λ. So, the system characterizing a mixed strategy equilibrium
essentially has six unknowns. To solve this system, we first simplify it to a 3-equation system
in terms of (λ, βv,1, σz) and then solve this new system analytically.

Given that δs is known, parameter δy1 is also known by (19). Also, once λ is solved, the
three equations in (14) will yield solutions of βv,2, βx1 , and βy1 . Thus, the three equations left
to compute (λ, βv,1, σz) are given by equations (18), (20) and (21). To solve this 3-equation
system, we first express βv,1 and λ as functions of σz, and then solve the single equation of
σz.
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By (18) and noting that λ ≡ λ1 = λ2, we have

λ =
1

δs

σ−2
ε

(β2
v,1Σ0+σ2

z)
−1

+σ−2
ε +σ−2

u

4− σ−2
ε

(β2
v,1Σ0+σ2

z)
−1

+σ−2
ε +σ−2

u

βv,1Σ0

β2
v,1Σ0 + σ2

z

.

Combining the above equation with (20) and the expression δs =
4
3

1+
4σ2ε
3σ2u

, we can compute

β2
v,1 =

σ4
u − 3σ2

uσ
2
z − 4σ2

uσ
2
ε − 4σ2

zσ
2
ε

3Σ0σ2
u + 4Σ0σ2

ε

. (B4)

Equation (B4) puts an restriction on the endogenous value of σz, i.e., σ4
u − 3σ2

uσ
2
z − 4σ2

uσ
2
ε −

4σ2
zσ

2
ε > 0, which can be shown to hold in equilibrium.

By (20) and (B4), we can express λ2 as a function of σ2
z as follows:

λ2 =

σ4
u−3σ2

uσ
2
z−4σ2

uσ
2
ε−4σ2

zσ
2
ε

3Σ0σ2
u+4Σ0σ2

ε
Σ2

0(
σ4
u−3σ2

uσ
2
z−4σ2

uσ
2
ε−4σ2

zσ
2
ε

3Σ0σ2
u+4Σ0σ2

ε
Σ0 + σ2

z + σ2
u

)2 . (B5)

Inserting δs =
4
3

1+
4σ2ε
3σ2u

into equation (21) and further simplification yield(
(52Σ0σ

6
u + 160Σ0σ

4
uσ

2
ε + 64Σ0σ

2
uσ

4
ε) β

2
v,1

+ (36σ8
u + 52σ6

uσ
2
z + 160σ6

uσ
2
ε + 160σ4

uσ
2
zσ

2
ε + 64σ4

uσ
4
ε + 64σ2

uσ
2
zσ

4
ε)

)
λ2

= (9Σ0σ
6
u + 9Σ0σ

4
uσ

2
z + 24Σ0σ

4
uσ

2
ε + 24Σ0σ

2
uσ

2
zσ

2
ε + 16Σ0σ

2
uσ

4
ε + 16Σ0σ

2
zσ

4
ε) .

Inserting equations (B4) and (B5) into the above equation, we can compute

σ2
z =

σ2
u (σ2

u + 4σ2
ε) (σ4

u − 16σ4
ε − 32σ2

uσ
2
ε)

(3σ2
u + 4σ2

ε) (13σ4
u + 16σ4

ε + 40σ2
uσ

2
ε)
, (B6)

which gives the expression of σz in Proposition 1.
In order for equation (B6) to indeed construct a mixed strategy equilibrium, we need

σ2
z =

σ2
u (σ2

u + 4σ2
ε) (σ4

u − 16σ4
ε − 32σ2

uσ
2
ε)

(3σ2
u + 4σ2

ε) (13σ4
u + 16σ4

ε + 40σ2
uσ

2
ε)
> 0⇔ σ2

ε

σ2
u

<

√
17

4
− 1.

Also, inserting equation (B6) into equation (B4), we see that (B4) is always positive. Finally,
by equation (20) and λ2 = λ1, we know λ2 > 0, i.e., the SOC is satisfied. Thus, when
σ2
ε

σ2
u
<
√

17
4
− 1, the expression of σ2

z in equation (B6) indeed constructs a mixed strategy
equilibrium.

Clearly, if σ2
ε

σ2
u
≥
√

17
4
− 1, then the solved σ2

z would be non-positive in (B6), which implies
the non-existence of a linear mixed strategy equilibrium.
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B.3 Proof of Proposition 2

For a pure strategy equilibrium, we have σz = 0 and need to compute eight parameters,
βv,1, βv,2, βy1 , βx1 , δs, δy1 , λ1, and λ2. These parameters are determined by equations (14),
(18), (19), (20), (21), and (24), together with two SOC’s, (13) and (25). In particular, after
setting σz = 0, we can simplify equations (18), (20), and (21) as follows:

δs =

σ−2
ε

(β2
v,1Σ0)

−1
+σ−2

ε +σ−2
u

4− σ−2
ε

(β2
v,1Σ0)

−1
+σ−2

ε +σ−2
u

1

λ2βv,1
, (B7)

λ1 =
βv,1Σ0

β2
v,1Σ0 + σ2

u

, (B8)

λ2 =

(
1

2λ2
+ δs

2
βv,1

)
1

Σ−1
0 +β2

v,1σ
−2
u(

1
2λ2

+ δs
2
βv,1

)2
1

Σ−1
0 +β2

v,1σ
−2
u

+ δ2
sσ

2
ε + σ2

u

. (B9)

Note that equation (B8) is the expression of λ1 in Proposition 2.
The idea to compute the system characterizing a pure strategy equilibrium is to simplify

it to a system in terms of (λ1, λ2, βv,1, δs) and then characterize this simplified system as a
single equation of βv,1.

If we know (λ1, λ2, δs), then δy1 is known by equation (19), and βy1 , βv,2, and βx1 are
known by equation (14). Thus, the four unknowns (λ1, λ2, βv,1, δs) are determined by the
remaining four equations, (24) and (B7)–(B9), and the two SOC’s, (13) and (25).

Now, we simplify this four-equation system as a single equation of βv,1. The idea is to
express λ1, λ2δs and λ2 as functions of βv,1, and then insert these expressions into equation
(24). By (B7),

λ2δs =
βv,1σ

2
uΣ0

4σ2
uσ

2
ε + 3β2

v,1Σ0σ2
u + 4β2

v,1Σ0σ2
ε

. (B10)

By (B9),

λ2 = σ−1
u

√(
1

2
+
λ2δs

2
βv,1

)
1

Σ−1
0 + β2

v,1σ
−2
u

−
(

1

2
+
λ2δs

2
βv,1

)2
1

Σ−1
0 + β2

v,1σ
−2
u

− (λ2δs)
2 σ2

ε .

Inserting (B10) into the above expression, we obtain

λ2
2 = Σ0

(2σ4
u + 4σ4

ε + 5σ2
uσ

2
ε) Σ2

0β
4
v,1 + (8σ2

uσ
4
ε + 5σ4

uσ
2
ε) Σ0β

2
v,1 + 4σ4

uσ
4
ε(

β2
v,1Σ0 + σ2

u

) (
3σ2

uΣ0β2
v,1 + 4σ2

εΣ0β2
v,1 + 4σ2

uσ
2
ε

)2 , (B11)

which gives the expression of λ2 in Proposition 2.
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We can rewrite equation (24) as

2λ2 (2βv,1λ1 − 1) =

[
βv,1

(
2

3
λ1 + λ2δs

(
1 +

4σ2
ε

3σ2
u

))
− 1

]
×
[

2

3
λ1 + λ2δs

(
1 +

4σ2
ε

3σ2
u

)]
.

(B12)
We then want to take square on both sides of (B12) in order to use (B11) to substitute λ2

2.

Doing this requires that the terms 2βv,1λ1 − 1 and βv,1

(
2
3
λ1 + λ2δs

(
1 + 4σ2

ε

3σ2
u

))
− 1 have the

same sign, that is,

(2βv,1λ1 − 1)

[
βv,1

(
2

3
λ1 + λ2δs

(
1 +

4σ2
ε

3σ2
u

))
− 1

]
≥ 0.

Inserting the expression of λ1 and λ2δs in (B8) and (B10) into the above condition, we find
that the above inequality is equivalent to requiring

βv,1 ≤
σu√
Σ0

.

Thus, given βv,1 ≤ σu√
Σ0

, we can take square of (B12), and set

4λ2
2 (2βv,1λ1 − 1)2 −

[
βv,1

(
2

3
λ1 + λ2δs

(
1 +

4σ2
ε

3σ2
u

))
− 1

]2

×
[

2

3
λ1 + λ2δs

(
1 +

4σ2
ε

3σ2
u

)]2

= 0.

Inserting the expression of λ1, λ2δs and λ2
2 in (B8), (B10), and (B11) into the above equation,

we have the 7th order polynomial of β2
v,1 as follows:

f
(
β2
v,1

)
= A7β

14
v,1 + A6β

12
v,1 + A5β

10
v,1 + A4β

8
v,1 + A3β

6
v,1 + A2β

4
v,1 + A1β

2
v,1 + A0 = 0, (B13)

where

A7 = Σ7
0

(
2σ4

u + 4σ4
ε + 5σ2

uσ
2
ε

) (
3σ2

u + 4σ2
ε

)2
, (B14)

A6 = 2Σ6
0σ

2
u

(
4σ2

ε − σ2
u

) (
3σ2

u + 4σ2
ε

) (
3σ4

u + 6σ4
ε + 8σ2

uσ
2
ε

)
, (B15)

A5 = −Σ5
0σ

6
u

(
27σ6

u + 336σ6
ε + 524σ2

uσ
4
ε + 246σ4

uσ
2
ε

)
, (B16)

A4 = 4Σ4
0σ

6
u

(
3σ8

u − 144σ8
ε − 304σ2

uσ
6
ε − 182σ4

uσ
4
ε − 23σ6

uσ
2
ε

)
, (B17)

A3 = −Σ3
0σ

8
u

(
σ8
u + 704σ8

ε + 752σ2
uσ

6
ε + 76σ4

uσ
4
ε − 57σ6

uσ
2
ε

)
, (B18)

A2 = −4Σ2
0σ

10
u σ

2
ε

(
σ6
u + 48σ6

ε − 24σ2
uσ

4
ε − 31σ4

uσ
2
ε

)
, (B19)

A1 = −4Σ0σ
12
u σ

4
ε

(
σ4
u − 32σ4

ε − 36σ2
uσ

2
ε

)
, (B20)

A0 = 64σ14
u σ

8
ε . (B21)

The final requirement is to ensure that a root to the polynomial also satisfies the two
SOC’s, (13) and (25). Given the expression of λ2 in Proposition 2, (13) is redundant. Also,
(25) implies βv,1 > 0, because (25) implies λ1 > 0, which by (B8), in turn implies βv,1 > 0.
So, the final constraint on βv,1 is 0 < βv,1 ≤ σu√

Σ0
and condition (25).
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B.4 Proof of Proposition 3

When σε is small: By Proposition 1, when σε is small, there is a mixed strategy equilib-
rium. The task is to show that there is no pure strategy equilibrium. By (24) and the fact
βv,1 > 0 in a pure strategy equilibrium, we have

βv,1 =
1− λ1+λ2δs−λ2δy1

2λ2

2

[
λ1 −

(λ1+λ2δs−λ2δy1)
2

4λ2

] > 0. (B22)

Note that the denominator is the SOC in (25), which is positive. So, we must have

1− λ1 + λ2δs − λ2δy1
2λ2

> 0⇒ 4λ2
2 − (λ1 + λ2δs − λ2δy1)

2 > 0.

Using (19) we can rewrite the above inequality as follows:

4λ2
2 −

(
2

3
λ1 + λ2δs

(
1 +

4σ2
ε

3σ2
u

))2

> 0. (B23)

Plugging the expression of λ1, λ2δs, and λ2
2 in (B8), (B10), and (B11) into the left-hand-

side (LHS) of (B23), we find that (B23) is equivalent to(
16β4

v,1Σ2
0 + 32β2

v,1Σ0σ
2
u + 16σ4

u

)
σ4
ε +

(
8β4

v,1Σ2
0σ

2
u − 4β6

v,1Σ3
0 + 12β2

v,1Σ0σ
4
u

)
σ2
ε

−β2
v,1Σ0σ

2
u

(
β2
v,1Σ0 − σ2

u

)2
> 0. (B24)

We prove that the above condition is not satisfied in a pure strategy equilibrium, as

σε → 0. Proposition 2 implies that in a pure strategy equilibrium, β2
v,1 ∈

(
0, σ

2
u

Σ0

]
. So, as

σε → 0, the first two terms of the LHS of (B24) go to 0. Thus, if as σε → 0, β2
v,1 does not go

to 0 or σ2
u

Σ0
in a pure strategy equilibrium, then the third term of the LHS of (B24) is strictly

negative, which proves our statement.

Now we consider the two cases that β2
v,1 converges to 0 or to σ2

u

Σ0
as σε → 0. We will show

that both lead to contradictions to a pure strategy equilibrium.

Note that if σε = 0, the polynomial (B13) is negative at σ2
u

Σ0
; that is, f

(
σ2
u

Σ0

)
= −16σ22

u < 0

if σε = 0. Thus, if for any sequence of σε → 0, we have β2
v,1 →

σ2
u

Σ0
in a pure strategy

equilibrium, then we must have f
(
β2
v,1

)
→ −16σ22

u < 0, which contradicts with Proposition

2 which says that f
(
β2
v,1

)
≡ 0 in a pure strategy equilibrium. Thus, β2

v,1 6→
σ2
u

Σ0
as σε → 0.

Suppose β2
v,1 → 0 in a pure strategy equilibrium for some sequence of σ2

ε → 0. By (24),
we have (

2

3
λ1 + λ2δs

(
1 +

4σ2
ε

3σ2
u

))2

>

(
1− 2

β1Σ0

β2
1Σ0 + σ2

u

β1

)2

4λ2
2.
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Combining the above condition with condition (B23), we know
(

2
3
λ1 + λ2δs

(
1 + 4σ2

ε

3σ2
u

))2

has

the same order as λ2
2:

O

((
2

3
λ1 + λ2δs

(
1 +

4σ2
ε

3σ2
u

))2
)

= O
(
λ2

2

)
.

Substituting into the above equation the expression of λ1, λ2δs, and λ2
2 from (B8), (B10),

and (B11) and matching the highest-order terms, we can show that β2
v,1 has the same order

as σ4
ε . As a result, by (B8), λ1 → 0; by (B10), λ2δs goes to a positive finite number; and by

(B11), λ2 goes to a positive finite number. This in turn implies the SOC (25) is violated.
Specifically, by (19), the SOC is equivalent to

λ1 −

(
2
3
λ1 + λ2δs

(
1 + 4σ2

ε

3σ2
u

))2

4λ2

> 0. (B25)

However, as σ2
ε → 0, we have λ1 −

(
2
3
λ1+λ2δs

(
1+

4σ2ε
3σ2u

))2

4λ2
→ − (λ2δs)

2

4λ2
< 0, a contradiction.

When σε is large: By Proposition 1, when σε is sufficiently large, there is no mixed
strategy equilibrium. The task is to show that a linear pure strategy equilibrium exists and
is unique.

By equations (B14)–(B21), we have A7 > 0, A6 > 0, A5 < 0, A4 < 0, A3 < 0, A2 < 0,
A1 > 0, and A0 > 0, when σ2

ε is sufficiently large. Thus, by Descartes’ Rule of Signs, there
are at most two positive roots of β2

v,1.
By equation (B13), we have

f (0) = 64σ14
u σ

8
ε > 0,

lim
β2
v,1→∞

f
(
β2
v,1

)
∝ Σ7

0

(
2σ4

u + 4σ4
ε + 5σ2

uσ
2
ε

) (
3σ2

u + 4σ2
ε

)2 ×∞ > 0.

In addition, as σ2
ε → ∞, f

(
σ2
u

Σ0

)
∝ −1024σ14

u σ
8
ε < 0. So, there is exactly one root of β2

v,1 in

the range of
(

0, σ
2
u

Σ0

)
and one root in the range of

(
σ2
u

Σ0
,∞
)

. Given that in a pure strategy

equilibrium, we require 0 < β2
v,1 ≤ σu

Σ0
by Proposition 2, only the small root is a possible

equilibrium candidate (which is indeed an equilibrium if the SOC is also satisfied).

Finally, we can show that the small root of β2
v,1 ∈

(
0, σ

2
u

Σ0

)
satisfies the SOC as σ2

ε →∞.

Specifically, by (B25), the SOC is

λ1 −

(
2
3
λ1 + λ2δs

(
1 + 4σ2

ε

3σ2
u

))2

4λ2

> 0⇔
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16λ2
2λ

2
1 −

(
2

3
λ1 + λ2δs

(
1 +

4σ2
ε

3σ2
u

))4

> 0.

Plugging the expression of λ1, λ2δs, and λ2
2 in (B8), (B10) and (B11) into the LHS of the

above condition, we can show that the above condition holds if and only if

B4σ
8
ε +B3σ

6
ε +B2σ

4
ε +B1σ

2
ε +B0 > 0, (B26)

where,

B4 = 768β10
v,1Σ5

0 + 4096β8
v,1Σ4

0σ
2
u + 8704β6

v,1Σ3
0σ

4
u + 9216β4

v,1Σ2
0σ

6
u + 4864β2

v,1Σ0σ
8
u + 1024σ10

u ,

B3 = 2048β10
v,1Σ5

0σ
2
u + 8704β8

v,1Σ4
0σ

4
u + 13824β6

v,1Σ3
0σ

6
u + 9728β4

v,1Σ2
0σ

8
u + 2560β2

v,1Σ0σ
10
u ,

B2 = 2144β10
v,1Σ5

0σ
4
u + 6720β8

v,1Σ4
0σ

6
u + 6912β6

v,1Σ3
0σ

8
u + 2240β4

v,1Σ2
0σ

10
u − 96β2

v,1Σ0σ
12
u ,

B1 = 1056β10
v,1Σ5

0σ
6
u + 2112β8

v,1Σ4
0σ

8
u + 912β6

v,1Σ3
0σ

10
u − 160β4

v,1Σ2
0σ

12
u − 16β2

v,1Σ0σ
14
u ,

B0 = 207β10
v,1Σ5

0σ
8
u + 180β8

v,1Σ4
0σ

10
u − 54β6

v,1Σ3
0σ

12
u − 12β4

v,1Σ2
0σ

14
u − β2

v,1Σ0σ
16
u .

Given that βv,1 is bounded, we have that as σ2
ε is large, the LHS of condition (B26) is

determined by B4σ
8
ε , which is always positive: B4σ

8
ε > 1024σ10

u σ
8
ε > 0.

B.5 Proof of Corollary 1

Now suppose σε → ∞. By Proposition 3, as σε is large, there is a unique linear equilib-
rium, which is a pure strategy equilibrium. In a pure strategy equilibrium, we always have
f
(
β2
v,1

)
= 0. If we rewrite the polynomial f as a polynomial in terms of σε, we must have

that as σε → ∞, the coefficients on the highest order of σε goes to 0. This exercise yields
the following condition that as σε →∞, we have

64Σ7
0β

14
v,1+192Σ6

0σ
2
uβ

12
v,1−576Σ4

0σ
6
uβ

8
v,1−704Σ3

0σ
8
uβ

6
v,1−192Σ2

0σ
10
u β

4
v,1+128Σ0σ

12
u β

2
v,1+64σ14

u → 0.
(B27)

Define x ≡ β2
v,1

Σ0

σ2
u
∈ [0, 1] in a pure strategy equilibrium. Condition (B27) becomes

− 2x− x2 + x3 + 1→ 0, as σε →∞. (B28)

That is, as σε →∞, we must have that (B28) holds.
In a standard Kyle setting, the unique equilibrium is defined by

− 2x∗ − x∗2 + x∗3 + 1 = 0. (B29)

Specifically, Proposition 1 of Huddart, Hughes, and Levine (2001) characterizes the equilib-
rium in a two-period Kyle model by a cubic in terms of K,

8K3 − 4K2 − 4K + 1 = 0. (B30)
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By the expressions of β1 = 2K−1
4K−1

1
λ1

and λ1 =

√
2K(2K−1)

4K−1

√
Σ0

σu
in Proposition 1 of Huddart,

Hughes, and Levine (2001), we have K = 1
2(1−x∗)

, where x∗ = β2
1

Σ0

σ2
u
. Then, equation (B30)

is equivalent to equation (B29). Given that −2x− x2 + x3 + 1 is monotone and continuous
in the range of [0, 1], we have x→ x∗ as σε →∞, by conditions (B28) and (B29).

B.6 Proof of Proposition 4

We here give the expression of the variables in the proposition. The comparison follows from
setting σε = 0 and σε =∞ in these expressions and from straightforward computations.

Setting σε = 0 in Proposition 1 yields σz =
√

1
39
σu and βv,1 = 2√

13
σu√
Σ0

. Plugging these

two expressions of σz and βv,1 into the expressions of λ1 and λ2 in Proposition 1 gives λ0
1 and

λ0
2. In a pure strategy equilibrium, λ1 and λ2 are given by Proposition 2. Setting σε = ∞

yields the expressions of λKyle1 and λKyle2 .
Direct computation shows that in a mixed strategy equilibrium, the price discovery vari-

ables are given by

Σmixed
1 =

(σ2
z + σ2

u) Σ0

β2
v,1Σ0 + σ2

z + σ2
u

,

Σmixed
2 =

(4σ4
u + 4σ2

uσ
2
z + σ2

uδ
2
sσ

2
z + 4σ2

uδ
2
sσ

2
ε + 4δ2

sσ
2
zσ

2
ε)λ

2
2Σ0(

(Σ0λ
2
2σ

2
uδ

2
s + 4Σ0λ

2
2σ

2
u + 4Σ0λ

2
2δ

2
sσ

2
ε) β

2
v,1 + 2λ2Σ0σ

2
uδsβv,1

+λ2
2 (4σ4

u + 4σ2
uσ

2
z + σ2

uδ
2
sσ

2
z + 4σ2

uδ
2
sσ

2
ε + 4δ2

sσ
2
zσ

2
ε) + Σ0 (σ2

u + σ2
z)

) .
Plugging σε = 0, σz =

√
1
39
σu, and βv,1 = 2√

13
σu√
Σ0

into the above expressions yields Σ0
1 and

Σ0
2. In a pure strategy equilibrium, we can compute

Σpure
1 =

σ2
uΣ0

σ2
u + β2

v,1Σ0

,

Σpure
2 =

1

Σ−1
0 + β2

v,1σ
−2
u +

(
1

2λ2
+ δs

2
βv,1

)2

(δ2
sσ

2
ε + σ2

u)
−1
.

Setting σε =∞ in Proposition 2, computing βv,1, λ2 and δs, and inserting these expressions

into the above expressions, we have the expressions of ΣKyle
1 and ΣKyle

2 .
Finally, we present the profit expressions. By (15), the fundamental investor’s ex-ante

expected period-2 profit is

E (πF,2) =
E [v − p1 − λ2 (−δyy1 + δsx1)]2

4λ2

.
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Using equations (5) and (8), we can show

E (πF,2) =
[1− (λ1 − λ2δy + λ2δs) βv,1]2 Σ0 + (λ1 − λ2δy)

2 σ2
u + (λ1 − λ2δy + λ2δs)

2 σ2
z

4λ2

.

For E
(
π0
F,2

)
, we set σε = 0, compute σz, βv,1, λ1, λ2, δs, and δy in Proposition 1, and insert

these expressions into the above equation. For E
(
πKyleF,2

)
, we set σε = ∞ in Proposition 2

and compute the relevant parameters accordingly.
To give the expression of E (πF,1), we first compute E (πF,1 + πF,2), and then use the

above computed E (πF,2) to compute E (πF,1) = E (πF,1 + πF,2) − E (πF,2). Using equation
(22), we can show that in a mixed strategy equilibrium,

E
(
πmixedF,1 + πmixedF,2

)
=

Σ0 + σ2
uλ

2 (1− δy)2

4λ

while in a pure strategy equilibrium

E
(
πpureF,1 + πpureF,2

)
=

(
1− λ1+λ2δs−λ2δy

2λ2

)2

4
(
λ1 − (λ1+λ2δs−λ2δy)2

4λ2

)Σ0 +
Σ0 + σ2

u (λ1 − λ2δy)
2

4λ2

.

Then, setting σε = 0 and σε = ∞ in the above two expressions gives E
(
π0
F,1 + π0

F,2

)
and

E
(
πKyleF,1 + πKyleF,2

)
, respectively.

44



References

Admati, A. and P. Pfleiderer (1989): “Divide and conquer: A theory of intraday and
day-of-the-week mean effects.” Review of Financial Studies, 2, 189–223.

Attari, M., A. S. Mello, and M. E. Ruckes (2005): “Arbitraging Arbitrageurs,”
Journal of Finance, 60, 2471–2511.

Back, K. and S. Baruch (2004): “Information in Securities Markets: Kyle Meets Glosten
and Milgrom,” Econometrica, 72, 433–465.

Baruch, S. and L. R. Glosten (2013): “Fleeting Orders,” Working paper.

Bernhardt, D. and B. Taub (2008): “Front-Running Dynamics,” Journal of Economic
Theory, 138, 288–296.

Bhattacharya, U., C. W. Holden, and S. Jacobsen (2012): “Penny Wise, Dollar
Foolish: Buy-Sell Imbalances On and Around Round Numbers,” Management Science, 58,
413–431.

Biais, B., T. Foucault, and S. Moinas (2015): “Equilibrium Fast Trading,” Journal
of Financial Economics, 116, 292–313.

Bond, P., A. Edmans, and I. Goldstein (2012): “The Real Effects of Financial Mar-
kets,” Annual Reviews of Financial Economics, 4, 339–360.

Bond, P., I. Goldstein, and E. S. Prescott (2010): “Market-Based Corrective Ac-
tions,” Review of Financial Studies, 23, 781–820.

Brogaard, J., T. Hendershott, and R. Riordan (2014): “High-Frequency Trading
and Price Discovery,” Review of Financial Studies, 27, 2267–2306.

Brunnermeier, M. K. (2005): “Information Leakage and Market Efficiency,” Review of
Financial Studies, 18, 417–457.

Brunnermeier, M. K. and L. H. Pedersen (2005): “Predatory Trading,” Journal of
Finance, 60, 1825–1863.

Budish, E., P. Cramton, and J. Shim (2015): “The High-Frequency Trading Arms Race:
Frequent Batch Auctions as a Market Design Response,” Quarterly Journal of Economics
(Forthcoming).

Buffa, A. (2013): “Insider Trade Disclosure, Market Efficiency, and Liquidity,” Working
paper.

Cao, H. H., M. D. Evans, and R. K. Lyons (2006): “Inventory Information,” Journal
of Business, 79, 325–364.

45



Carlin, B. I., M. S. Lobo, and S. Viswanathan (2007): “Episodic Liquidity Crisis:
Cooperative and Predatory Trading,” Journal of Finance, 62, 2235–2274.

Easley, D., M. M. L. de Prado, and M. O’Hara (2012): “The Volume Clock: Insights
into the High-Frequency Paradigm,” Journal of Portfolio Management, 39, 19–29.

Engelberg, J. E., A. V. Reed, and M. C. Ringgenberg (2012): “How are Shorts
Informed? Short Sellers, News, and Information Processing,” Journal of Financial Eco-
nomics, 105, 260–278.

Foucault, T., J. Hombert, and I. Rosu (2015): “News Trading and Speed,” Journal
of Finance (Forthcoming).

Glosten, L. R. and P. R. Milgrom (1985): “Bid, Ask and Transaction Prices in a Spe-
cialist Market with Heterogeneously Informed Traders,” Journal of Financial Economics,
14, 71–100.

Harris, L. (2003): Trading and Exchanges: Market Microstructure for Practitioners, Ox-
ford University Press.

——— (2013): “What to Do about High-Frequency Trading,” Financial Analyst Journal,
69, 6–9.

Hirschey, N. (2013): “Do High-Frequency Traders Anticipate Buying and Selling Pres-
sure?” Working paper.

Hoffmann, P. (2014): “A dynamic limit order market with fast and slow traders,” Journal
of Financial Economics, 113, 156–169.

Huddart, S., J. S. Hughes, and C. B. Levine (2001): “Public Disclosure and Dissim-
ulation of Insider Trades,” Econometrica, 69, 665–681.

Jones, C. (2013): “What do we know about high-frequency trading?” Working paper.

Jovanovic, B. and A. J. Menkveld (2012): “Middlemen in Limit-Order Markets,”
Working paper.

Kim, O. and R. E. Verrecchia (1994): “Market Liquidity and Volume around Earnings
Announcements,” Journal of Accounting and Economics, 17, 41–67.

Korajczyk, R. and D. Murphy (2014): “High Frequency Market Making to Large
Institutional Trades,” Working paper.

Kyle, A. S. (1985): “Continuous Auctions and Insider Trading,” Econometrica, 53, 1315–
1335.

Lewis, M. (2014): Flash Boys, Norton.

46



Li, W. (2014): “High Frequency Trading with Speed Hierarchies,” Working paper.

Madrigal, V. (1996): “Non-Fundamental Speculation,” Journal of Finance, 51, 553–578.

O’Hara, M. (2003): “Presidential Address: Liquidity and Price Discovery,” Journal of
Finance, 58, 1335–1354.

Securities and Exchange Commission (2010): “Concept Release on Equity Market
Structure,” Technical report.

Stiglitz, J. (2014): “Tapping the Brakes: Are Less Active Markets Safer and Better for
the Economy?” Speech at the 2014 Financial Markets Conference at the Federal Reserve
Bank of Atlanta.

Tong, L. (2015): “A Blessing or a Curse? The Impact of High Frequency Trading on
Institutional Investors,” Working paper.

van Kervel, V. and A. Menkveld (2015): “High-Frequency Trading around Large
Institutional Orders,” Working paper.

Verrecchia, R. E. (1982): “Information Acquisition in a Noisy Rational Expectations
Economy,” Econometrica, 50, 1415–1430.

Vives, X. (2008): Information and Learning in Markets: The Impact of Market Microstruc-
ture, Princeton University Press, Princeton and Oxford.

Weller, B. (2015): “Efficient Prices at Any Cost: Does Algorithmic Trading Deter Infor-
mation Acquisition?” Working paper.

Yueshen, B. Z. (2015): “Uncertain Market Making,” Working paper.

47


	Introduction
	Relation to the literature

	A Model of Back-Running
	Setup
	Equilibrium Definitions
	Equilibrium Derivation
	Equilibrium Characterization and Properties

	Implications of Back-Running for Market Quality and Welfare
	Information Acquisition
	Setup
	Analysis and Results

	Empirical Relevance
	HFT and Institutional Investors
	HFT and Price Discovery

	Conclusion
	List of Model Variables
	Proofs
	Proof of Equation (10)
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Proposition 3
	Proof of Corollary 1
	Proof of Proposition 4


