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1. Introduction

One of the most prominent and still insufficiently studied objects is the rapidly evolving world
of cryptocurrencies. The most famous representative of that world is its first successful pioneer
Bitcoin. Bitcoin was created in 2008 as an alternative to the classical financial system and as the
‘peer-to-peer version of electronic cash’ (Nakamoto 2008). Bitcoin and its underlying technology
blockchain1 swiftly gained attention from the technologically savvy community and media and
soon became one of the most debatable topics at all levels of the modern society. Over a thousand
alternative cryptocurrencies, based on the similar concept, emerged since the time Bitcoin was
invented. Some part of them became accessible for trading at various electronic venues also known
as crypto-exchanges2. In contrast to the traditional FX market, trades of cryptocurrencies happen
24 hours a day and seven days per week. Additionally, there are not many big centralised financial
institutions capable to directly influence the state of the system. This happens due to the limited
acceptance of this new financial domain by international organisations with the access to sizable
funds3. These specific facts are the reasons why the seasonality patterns prevalent in the world of
cryptocurrencies could be incomparable with the ones typical for the FX market.

Bitcoin’s trends drastic changes and their persistence do not only indicate the aggregated ex-
pectations and actual actions of all market participants but also reveal its sensitivity to exogenous
stress factors. The latter is known as liquidity and is directly related to the scale of market crashes
as well as to the periods of recovery (Gennotte and Leland 1990). Asset managers and options
seller try to foresee future risks associated with the trend changes by employing a diverse range of
risk management tools capable for estimating the probability of price disturbances.

One of the most well-known risk-factors is the probability of so-called drawups and drawdowns,
that is, of price drops and price rises between the running price maxima and running minima
respectively. Numerous research works have focused on the analysis of the size, periodicity and
the time of recovery associated with drawups and drawdowns in traditional markets. The joint
Laplace transform was utilised by Taylor (1975) for deriving the waiting time τa for a drifted
Brownian motion. The joint probability of observing a drawup of a given size after a drawdown,
during a given term, was analysed as a homogeneous diffusion process (Pospisil et al. 2009). (Zhang
2015) derived the same probability in the context of exponential time horizons (the horizons are
exponentially distributed random variables) and described the law of occupation times for both
drawup and drawdown processes. These and others theoretical findings were successfully applied
to real financial problems briefly discussed in Appendix A.

The cornerstone element of all research works on drawdowns is the first passage time τa. This
estimate, associated with market crashes of various scales, is especially useful of handling the
dynamics of high-frequency markets. The reason for it is the fact that in reality, extreme price jumps
occur more often than it should happen when the distribution of returns coincides with the normal
one. Fat-tails effect were discovered in the stock market (Jondeau and Rockinger 2003, Rachev
et al. 2005), in the Forex (Dacorogna et al. 2001, Cotter 2005) as well as in Bitcoin prices (Liu
et al. 2017). Therefore, the efficient set of forecasting techniques aimed at identifying appropriate
conditions for the future market crashes should inevitably be supplied by risk-management tools
managing sequence of drawdowns and drawups.

Existing literature on risk-management techniques primarily relies on physical time as a measure
of the length and periodicity of financial events. In other words, the existence of a universal clock
dictating the evolution of the market is assumed. This assumption results in the stochastic volatility
of historical returns computed at different scales (Müller et al. 1997). More robust techniques which
are beyond the limits of physical time applied for studying financial activity are needed to handle
this stochasticity. One of the methods capable of doing so is the concept of directional-change

1A growing list of records containing information on the ownership of all existing Bitcoins.
2Information on all cryptocurrencies and trading venues can be found at the web-resource coinmarketcap.com.
3At the moment of writing the paper Wall Street and other big financial hubs are considering trading cryptocurrencies.
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intrinsic time (Guillaume et al. 1997). This is an event-based framework where the activity of
market prices dictates the speed of the transition between different states. The universal physical
clock is replaced with an intrinsic one. The method dissects a price curve into sections characterised
by alternating trends of arbitrary defined size. The concept is closely related to the evolution of
drawdowns and drawups. One can interpret their alternating sequence as a collection of directional
changes following each other. Physical time does not play any role in the dissection procedure.
More details on the directional-change intrinsic time can be found in Appendix B.

In this research work, we investigate the connection between the observed number of alternating
drawdowns and drawups (directional-changes) and the instantaneous volatility. Non-parametric
estimation of instantaneous volatility is still a relatively new topic which, to the extent of our
knowledge, has not been studied before from the point of view of the directional-change intrinsic
time. Obtained analytical expressions are employed to reveal the seasonality structure of Bitcoin’s
instantaneous volatility. The latter is compared to the seasonality patterns of exchange rates of the
traditional FX market. Described experiments contribute to the collection of existing literature on
the seasonality properties of Bitcoin and other cryptocurrencies a brief description of which can be
found in Appendix C.

The outline of the remaining paper is as follows. Section 2 describes the data used in the ex-
periments and Section 3 outlines the way in which the number of directional changes is connected
to the instantaneous volatility. In Section 4 we present all results obtained by the traditional as
well as by the novel volatility measurement techniques and also describe the theta time applied
to remove the seasonality pattern. Section 5 concludes the main body of the paper and proposes
the potential use of the developed technique. Appendix A provides a brief overview of research
works on the properties of drawdowns and drawups. Appendix B gives detailed reasoning of the
need in the directional-change intrinsic time and contains a set of literature where the concept was
successfully applied. In Appendix C the main findings of research works on seasonality patterns of
cryptocurrencies are provided. Appendix E includes additional results of the volatility computed by
the ‘natural’ estimator and Appendix D contains results of the Monte Carlo simulation confirming
the accuracy of the model.

The fully functional code used in the project can be downloaded from the author’s GitHub
repository1.

2. Data

Bitcoin price changes observed at the Kraken crypto-exchange were downloaded from the Bitco-
incharts online platform supplying financial and technical data related to Bitcoin network2. The
studied time interval is from January 2014 to April 2018 and includes 4 778 429 ticks.

Three FX exchange rates were used in the work to compare their properties with the once
found for Bitcoin returns: EUR/USD, EUR/JPY, and EUR/GBP. The covered time interval is
from January 2011 to January 2016 and includes 109 069 357, 134 737 397, and 88 704 676 ticks
correspondingly. The source of the data is JForex trading platform developed by the Swiss bank and
marketplace Ducascopy which provide various types of the market data in the highest resolution3.

2.1. Inner price

Any collection of historical prices typically assumes two values: the best bid (buy) and the best ask
(sell) prices. Non-zero difference between them, called spread, indicates the level of markets’ liquid-
ity (Bessembinder 1994, Menkhoff et al. 2012). It also has direct connection to realized volatility

1shorturl.at/amDLM
2http://api.bitcoincharts.com/v1/csv/
3https://www.dukascopy.com/swiss/english/forex/jforex/
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(Bollerslev and Melvin 1994), and is an indicator of the transaction cost (Hartmann 1999). An-
other role of the spread is to show the extent of uncertainty the market has on the fair price of
the traded asset. The level of the uncertainty constantly changes over time together with the size
of the spread. This fact does not allow us to employ only bid or ask prices to study properties of
the whole market without missing some part of the information. The average of these two values
(mid-price) is also not the best alternative since it does not keep the knowledge on the size of the
current spread. Therefore, an alternative measure should be chosen to apply the directional-change
algorithm to real data. The concept of inner price was selected to resolve the issue. Inner price can
temporarily be equal to the bid or the ask price depending on the direction of the current trend.
According to the directional-change algorithm, one should wait for the price increase by δ percents
from the local minimum to register a new directional change if the current trend is down. In this
case, the value of the local extreme coincides with the best price on the offer side of the order
book, that is, the ask price. A new intrinsic event will tick only when the distance between the
latest bid price and the local extreme reaches the size of the chosen directional-change threshold δ.
Alternatively, the local extreme takes the value of the best bid price and the distance is measured
between the newest ask and the extreme if the current mode is upward.

3. Methods

Theoretical researchers mostly rely on the Brownian motion as the proxy for price returns of real
markets (the most famous example is the work of Black and Scholes (1973)). The motive behind
this is the analogy between historical price moves and changing coordinates of an ensemble of
molecules in thermodynamics. In the classical work Osborne (1959) the author shows that the
steady-state distribution of log-returns in the stock market is the probability distribution for a
particle in Brownian motion. It is important to emphasise that at the time of the publication
(1959) the structure and the dynamic of the market was very different from the ones typical for
our modern digital world. Instead of stone-made trading floors where all deals happened more
than a half a century ago, the present-day trading has almost completely moved to the online
space (see Harris (2003) for the historical endeavour on the evolution of trading and exchanges). In
this space, a signal can easily propagate through borders with the speed of light and the majority
of trades happen in an automated way. The evolution of price returns acquired specific dynamic
characterised by a set of stylized facts. These facts, dependent on the selected for the observation
time scale, reveal deviations of real returns from the classical Brownian motion (see Cont (2001)
for the set of stylized empirical facts). Nevertheless, in our work, the chose of Brownian motion is
justified by two reasons. First, the directional-change concept is agnostic to the flow of physical
time and is capable of revealing even weak signals hidden in a collection of prices at multiple
scales. Second, the divergence of empirical results from the properties of the selected model helps
to understand the features of the real world markets better. Therefore, we model the set of prices
{St : t ≥ 0} as an arithmetic Brownian motion with trend µ and volatility σ:

dSt = µdt+ σdBt. (1)

In terms of the directional-change intrinsic time framework, Tup(δup) denotes the time for an
upward directional change of the size δup > 0 to unfold. In other words, it is the time interval
which passes until the price increases by δup percents from the local minimum mt. Technically:

Tup(δup) = inf{t > 0 : St −mt ≥ δup}, (2)

where

mt := inf
ε∈[0,t]

Sε. (3)
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Similarly, Tdown(δdown) is the time of a downward directional change of the size δdown > 0:

Tdown(δdown) = inf{t > 0 : Mt − St ≥ δdown}, (4)

where

Mt := sup
ε∈[0,t]

Pε. (5)

Both of these equations are also known in the literature as waiting times of drawups and drawdowns
definition of which is provided by equation A3. In Landriault et al. (2015) it is shown that expected
times of a drawup δup and a drawdown δdown depend on the volatility and the trend of the drifted
Brownian motion and can be mathematically expressed as

E[Tup(δup)] =
e−

2µ

σ2
δup + 2µ

σ2 δup − 1
2µ2

σ2

, (6)

and

E[Tdown(δdown)] =
e

2µ

σ2
δdown − 2µ

σ2 δdown − 1
2µ2

σ2

. (7)

Using the Taylor expansion e±
2µ

σ2
δ = 1± 2µ

σ2 δ +
( 2µ

σ2
δ)2

2! +O(µ3) and letting µ → 0, one can recover
that in the case with no trend the equation simplifies to

E[Tup(δ)] = E[Tdown(δ)] =
δ2

σ2
. (8)

These equations establish a scaling law dependence between waiting times of a directional change,
instantaneous volatility, and the size of the directional-change threshold. In the analysis of Glat-
tfelder et al. (2011) it was empirically found that in the FX market the average expected time is
proportional to the size of the directional change threshold δ used to identify alternating trends
raised to the power of two:

〈T (δ)〉 ∼ δ2, (9)

which confirms the assumption that the evolution of real prices has similar properties to the random
walk.

Let N(δdown;σ, µ, [0, T ]) denote the number of drawdowns of the size δdown observed within the
time interval [0, T ] in Brownian motion with parameters µ and σ. Since the sequence Tdown(δdown)1,
Tdown(δdown)2,. . . is the sequence of non-negative, independent and identically distributed random
variables, the sequence {ψn;n ∈ N} where ψn = Tdown(δdown)1 + . . .+Tdown(δdown)n is the renewal
point process. Thus, N(δdown;σ, µ, [0, T ]) can be considered as the renewal counting process and
its values can be found using the waiting time equation 7 and applying the Theorem 6.1.1 of Rolski
et al. (2009) (Landriault et al. 2015):

lim
T→∞

N(δdown;σ, µ, [0, T ])−1 = E[Tdown(δdown)]−1 =
2µ2

σ2

e
2µ

σ2
δdown − 2µ

σ2 δdown − 1
. (10)
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Correspondingly, the expected number of drawups N(δup;σ, µ, [0, T ]) takes the form

lim
T→∞

N(δup;σ, µ, [0, T ])−1 = E[Tup(δup)]
−1 =

2µ2

σ2

e−
2µ

σ2
δup + 2µ

σ2 δup − 1
. (11)

Equations 10 and 11, combined together, give the estimate of the number of directional changes
consequently following each other:

E[N(δup, δdown;µ, σ, [0, T ])] =
2T 2µ2

σ2

e−
2µ

σ2
δup + e

2µ

σ2
δdown + 2µ

σ2 (δup − δdown)− 2
. (12)

In the trend-less case the expression is simplified to the following form:

E[N(δup, δdown;σ, [0, T ])] =
2Tσ2

δ2
up + δ2

down

. (13)

These theoretical dependencies between the number of directional changes and the properties of
the analyzed time series are equivalent to the empirical observations found in Guillaume et al.
(1997). There the authors mention that N(δ) ∼ δ−2 (for δ = δup = δdown).

A Monte Carlo statistical test was performed to numerically verify the accuracy of the obtained
results expressed in equations 6, 7 and 12. Results of the experiment are provided in Table D1. We
selected only positive values of µ since the equations are symmetrical to the direction of the trend.
All experiments exhibit high similarity of both empirical and theoretical values.

The meaning behind the provided equations is that the absolute size and the ratio of directional-
change thresholds used to dissect a price curve in a sequence of upward and downward trends
affect the frequency and the total number of events within a given time interval. In figure 1 we
demonstrate three heatmaps where each point corresponds to the number of directional changes
registered with a pair of thresholds {δup, δdown}. Each heatmap represents the results of a Monte
Carlo simulation where Brownian motions with different parameters are applied. From equations
10 and 11 it follows that the combination γ = µ

σ2 is the crucial factor affecting the expected number
of intrinsic events. The expression γ often appears in the intrinsic time framework and is known
in the insurance industry as ‘adjustment coefficient’ or ‘the Lundberg exponent’ (Asmussen and
Albrecher 2010). It finds its application in the ruin theory dating back to 1909 (Lundberg 1909). It
is also described as the optimal information theoretical betting size called Kelly Criterion (Kelly Jr
2011). In this work, we check three different scenarios affecting the size of γ: µ

σ2 = 0 (figure 1(a)),
µ
σ2 � 0 (figure 1(b)), and µ

σ2 � 0 (figure 1(c)).
Panel 1(a) in figure 1 corresponds to the set of experiments where the trend of the Brow-

nian Motion is equal to zero. From equation 13 it follows that in such conditions the value
E[N(δup, δdown;σ, [0, T ])] should be constant along circular contours δ2

up + δ2
down = δ2 for δ > 0.

The provided picture confirms the noted dependence. In insets 1(b) and 1(c) of figure 1 it is shown
that when the ‘adjustment coefficient’ γ = µ

σ2 is significantly smaller or bigger than zero, the cir-
cular contours transform into ellipses. This phenomenon can be interpreted in the following way:
if E[N(δup = δdown; γ = 0, [0, T ])] is the expected number of directional changes registered in the
drift-less time series of given length and fixed σ then for any γ greater or smaller then zero there
is always such a couple of non equal thresholds {δup, δdown|δup 6= δdown)} that

E[N(δup, δdown | δup 6= δdown; γ 6= 0, [0, T ])] = E[N(δup, δdown | δup = δdown; γ = 0, [0, T ])]. (14)

The property is essential for risk management techniques constructed on top of directional-change
intrinsic time: any process characterized by certain degree of persistent trend could be treated as
the one without the trend by tuning the size and the ratio of selected directional-change thresholds.
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Figure 1. Heatmap of the number of directional changes. Values coincide with the ones computed using equation
(13) and various combinations of directional-change thresholds (δup, δdown) and parameters of Brownian motion
(µ, σ).

An example of real application of this fact is provided in Golub et al. (2017) where the authors
employ it to design optimization inventory control function sensitive to the trend changes.

The clear understanding of the way how volatility changes over time is particularly important
for risk management and inventory control problems. As discussed in Section B, classical volatility
estimation methods, also called ‘natural’ estimators (Cho and Frees 1988)1, primarily rely on
physical time as the core reference for historical returns. Stochastic volatility accounted for this
fact became a cornerstone for multiple research works (for example, Andersen and Lund (1997),
Barndorff-Nielsen and Shephard (2002), Aı et al. (2007) and many others). Values, computed by
‘natural’ estimators, dominantly correspond to the integrated volatility of the studied process.
Alternative estimators, designed to reveal the size of the instantaneous volatility, mostly based on
Fourier analysis and require extensive computations (see Chapter 3 in Mancino et al. (2017)).The
directional-change concept is by design agnostic to the speed of the time flow and it automatically
adapts to the periods of changing activity. This property of the directional-change intrinsic time
together with analytical equations 12 and 13 bring the idea of a new instantaneous volatility
estimator devoid of the equidistant timestamps shortcomings. From equation 13 it follows that for
a trend-less time series the instantaneous volatility can be estimated by counting the number of
directional-changes within the time interval [0, T ]:

σDC = δ

√
N(δ)

T
. (15)

We put the superscript DC to distinguish the volatility computed through the directional-change
intrinsic time from the traditional estimators. The latter we will mark by σtrad.

Equation 15 solely computes the volatility part of the process in case of a random walk. Therefore,
it can be classified as the true estimator of the instantaneous volatility. In the current work, we
apply equation 15 to study changing dynamic of financial time series throughout one week to reveal
its seasonality pattern.

1The work Cho and Frees (1988) is particularly interesting due to the analysis the authors did to compare volatilities computed
by ‘natural’ and ‘temporal’ estimators. The latter employs time intervals measured between consequent and alternating price

moves of fixed relative size and thus is very close to the approach presented in the current paper.
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(a) (b)

Figure 2. Heat map of the number of directional changes calculated in (a) EUR/USD and (b) BTC/USD time
series. Heatmaps have different scales.

4. Results

4.1. Number of directional changes

Historical returns from real markets have properties similar to the Brownian motion used to derive
equations 12 and 13 connecting the expected number of directional changes with parameters of the
underlying process. Similar counters shown in figure 1 should be found in heatmaps depicting the
number of directional changes empirically registered in real data if the assumption of the normal
distribution of returns is true. EUR/USD and BTC/USD exchange rates were taken to verify the
statement by replicating the same experiment done with the Brownian motion before. A collection
of 40 directional-change thresholds ranging from 0.1% to 4.1% defines the scale of the heatmap
grid. Results of the experiments are presented in figure 2. Colour schemes, used for both plots,
have different scales due to the difference in EUR/USD and BTC/USD volatility. Yellow lines
indicate areas of the equal number of directional changes corresponding to δ = {1.15%, 2.8%} in
case of EUR/USD and to δ = {1.4%, 3.0%} in case of BTC/USD. Curves in figure 2(a) have almost
circular shape and are only slightly shifted towards the bigger δdown values. This shift is present
due to the downward trend experienced by the exchange rate from 2011 to 2016 (from $1.4 to $1.1
per Euro). EUR/USD time series exhibited relative stability with no noticeable regime switches
apart from this constant trend. BTC/USD exchange rate was much more unstable concerning the
dynamic of EUR/USD. The price was relatively steady and did not demonstrate any permanent
non-zero trend from 2014 to 2017. The price of Bitcoin grew with accelerating pace by more than
20 times in the second half of 2017 and then lost nearly 70% of its value at the beginning of 20182.
These significant trend changes are illustrated in figure 2(b) by yellow counters with a notable
deviation from the circular shape. This shape can be decomposed into two parts of independent
ellipses similar to the ones observed for Brownian motion with non-zero ‘adjustment coefficient’
γ (Figures 1(b) and 1(c)). The price roller-coaster caused considerable disparity of the number of
registered directional changes by any pair of thresholds before and after the pick at the end of
2017.

2It had a minimum at $230 per Bitcoin, temporary maximum at $20 000, and then a drop to $6 000.
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4.2. Realized versus instantaneous volatility

In the second experiment, we compared the annualised volatility computed by the traditional
method (equation 16) and the volatility based on the observed number of directional changes
(equation 15). Returns Rt are computed as logarithms of the ratio of consecutive prices St and
St−1 in the traditional technique. The length of the sample n depends on the selected time interval
between two measures of the returns. The whole sample is used to find the standard deviation of
the time series also knows as realised volatility σtrad:

Rt = ln (St/St−1), Ravg =

∑n
t=1Rt
n

, σtrad =

√∑n
t=1(Rt −Ravg)2

n− 1
. (16)

The directional-change method does not define the number of observations ex-ante in contrast
to the traditional approach where the length of a sample depends on the preselected time span
between consecutive returns. According to equation 15 the size of the directional-change threshold δ
determines the expected range of the number of prices used to calculate the instantaneous volatility.
This flexibility of the intrinsic time makes it possible to use the data of the highest frequency: tick-
by-tick prices.

Parameters of tools used to estimate volatility can affect the results of the experiment (Müller
et al. 1997). Therefore, four increasing time intervals ∆tk where k = {1, 2, 3, 4} were selected
to define the distance between each pair of consecutive prices St and St−1 used for the ‘natural
estimator’: ∆t1 = 1 minute, ∆t2 = 10 minutes, ∆t3 = 1 hour, and ∆t4 = 1 day. The set of
thresholds employed to investigate the directional-change approach can also be arbitrarily chosen.
However, we initially targeted the goal to compare the results of both experiments. For this reason,
we used the number of timestamps corresponding to each time interval ∆tk as the target for
the number of directional changes registered in the same data set. That is, the collection of four
thresholds δk was selected in such a way that in the given time series the number of directional
changes will be approximately equal to the number of time intervals nk of the length ∆tk. We
utilised one of the scaling properties described in Glattfelder et al. (2011) to find the precise
thresholds size. The scaling property has the name ‘Time of total-move’ scaling law (law 10 in
the article) where the total-move is composed of a directional-change (DC) and an overshoot (OS)
parts. The law connects the size of the threshold δ with the waiting time TTM (δ) between two
consecutive intrinsic events:

TTM (δ) =

(
δ

Ct,TM

)Et,TM
, (17)

The currency average scaling parameters Et,TM and Ct,TM computed in Glattfelder et al. (2011) are
2.02 and 1.65e−3, correspondingly. Putting these coefficients into equation 17 one can calculate that
thresholds reciprocal to the selected time intervals are: δ1 = 0.013%, δ2 = 0.039%, δ3 = 0.095%,
and δ4 = 0.458%. It is worth mentioning that applied scaling parameters are relevant only to the
FX market which was the object of the research in Glattfelder et al. (2011). To the extent of
our knowledge, parameters specific to Bitcoin prices were not mentioned in the scientific literature
before. Therefore, as the first step, we obtained the parameters by studying the ‘time of total-move’
scaling law of historical Bitcoin returns. In figure 3(a) the log-log plot of waiting times TTM (δ) is
provided. The red line marks BTC/USD scaling law and is shown together with black and green
lines computed for EUR/USD and Geometrical Brownian Motion (GBM). Settings of the latter
are chosen to mimic realistic returns typical for the FX market.

Scaling law parameters, obtained in the experiment, exhibit distinct resemblance of the styl-
ized properties of the traditional FX and the emerging Bitcoin markets. Scaling factors Et,TM of
EUR/USD and BTC/USD are 1.827 and 1.818 correspondingly (≈ 0.5% difference). The same
scaling factor of the GBM is 1.920 (≈ 5.6% difference with EUR/USD) which is noticeably distant
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Figure 3. (a) Total-move scaling laws computed for BTC/USD, EUR/USD, and Geometrical Brownian Motion
(GBM). GBM’s parameters are S0 = 1.3367, µ = 0, σ = 20%, T = 1 year, and 10 millions ticks in total. Scaling
parameters in the inset are provided for the BTC/USD curve. (b) Instantaneous volatility of three time series
generated by GBM with various tick frequencies and fixed volatility (15%) computed by the directional-change
approach (equation 15). Sizes of thresholds, used to calculate the values, are put on the x-axis. Red dashed line
marks the 15% level.

from the parameters of the analysed exchange rates. This divergence is present due to the non-
normal distribution of real returns at ultra-short timescales (fat tails). The effect is pronounced in
figure 3(a) as the upward bend of the curves towards the beginning of the x-axis. Linear regres-
sions, built in the range of straight parts of the curves, return scaling coefficients Et,TM of real
exchange rates which are very close to the ones observed in GBM. This evidence is an additional
confirmation of the ‘Aggregational Gaussianity’ stylized fact typical for high-frequency markets
(Cont 2001). Scaling parameters Ct,TM of EUR/USD and BTC/USD are 9.07e− 4 and 28.35e− 4
correspondingly. These values are significantly different because of the unlike scale of the Bitcoin
and EUR volatility and are not critical for the analysis.

Scaling law parameters Et,TM and Ct,TM found for BTC/USD prices were used to compute the
size of directional-change thresholds which would in an average register the number of intrinsic
events equal to the number of periods nk. Expressing the parameter δk from the equation 17 we
find that for BTC/USD the thresholds are: δ1 = 0.09%, δ2 = 0.33%, δ3 = 0.89%, δ4 = 5.13%. The
values are about 10 times bigger than the ones for the FX market because of the proportionally
larger realized volatility.

The set of selected time intervals and the corresponding thresholds for two markets were applied
to compute realized and instantaneous volatility with the traditional and the novel approach. In
Table 1 we present: average value of the realized volatility 〈σtrad〉 computed as the sum of all four
measurements with k = {1, 2, 3, 4} divided by the number of experiments; its standard deviation
σ−trad; average value of the instantaneous volatility computed by the novel approach 〈σDC〉; the
corresponding standard deviation σ−DC ; ratio of both measures 〈σtrad〉/〈σDC〉 and σ−trad/σ

−
DC . The

last column of the table demonstrates the difference in the stability of results obtained by two
measures. The gap between the sizes of the realized and the instantaneous volatility is significant
and is pronounced across all tested exchange rates. The volatility computed in the ‘natural’ way
persistently exceeds the instantaneous volatility discovered via the novel approach. The divergence
growths up to 1.40 times in case of EUR/JPY. Two types of Bitcoin’s volatility appear to be
only 5% different (column 〈σtrad〉/〈σDC〉). This phenomenon is captivating especially taking into
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Table 1. Volatility computed using the ‘traditional’ (equation 16) and the directional-change approaches (equation
15). Provided values 〈σtrad〉 and 〈σDC〉 are the average of four measurements performed with specific parameters:
in the ‘traditional’ case time intervals between observations Sn and Sn−1 are 1 minute, 10 minutes, 1 hour, and 1
day and in case of the novel approach the thresholds δ are δ1 = 0.013%, δ2 = 0.039%, δ3 = 0.095%, δ4 = 0.458%

(FX prices) and δ1 = 0.09%, δ2 = 0.33%, δ3 = 0.89%, δ4 = 5.13% (BTC prices).

Name 〈σtrad〉,% σ−trad 〈σDC〉,% σ−DC 〈σtrad〉/〈σDC〉 σ−trad/σ
−
DC

EUR/USD 9.72 0.03 7.53 1.38 1.29 0.02
EUR/JPY 11.93 0.12 8.55 2.07 1.40 0.06
EUR/GBP 8.04 0.23 5.81 1.43 1.38 0.16
BTC/USD 84.76 8.67 80.87 22.21 1.05 0.39

account that Bitcoin is particularly famous due to its oversized price activity. Its activity is clearly
pronounced in the large standard deviation of the BTC/USD pair. FX exchange rates, having
noticeably smaller realized volatility, are characterized by the wider range of the standard deviation
values. The ratio σ−trad/σ

−
DC reaches the 0.02 level computed for EUR/USD.

4.3. Discrete price impact

The standard deviation computed for four different directional-change thresholds has extremely
high value. This indicates that in contrast to the realised volatility the instantaneous one does not
scale together with time. The cause of the detected aspect is the price discontinuity typical for all
real markets. Conventional exchange architecture restricts the price quotations to be a multiple of
some constant, for example, 0.001 of a USD. This fact caused substantial debates in the scientific
literature with regards to the accuracy of the ‘natural’ estimators and on the extent to which they
overestimate the actual volatility (Gottlieb and Kalay 1985, French and Roll 1986). Equation 15
is built around the continuous Brownian motion and connects the number of directional changes
with the instantaneous volatility. It has no adjustment factors to the discreteness of the analysed
process. The directional-change intrinsic time does not precisely tick at the level where the size of
the return is equal to the size of the threshold δ if the size of a price step is relatively big. Instead, in
most cases, a new directional-change event becomes registered when the price has already jumped
over the expected level (slippage). That is, two factors contribute to the size of the instantaneous
volatility computed by the novel approach: the scale of the selected threshold δ and the tick size
in the given data sample (discreteness).

We performed the following experiment to estimate the impact of the price discreteness and the
threshold size δ on the computed instantaneous volatility. Three time series were generated by
GBM with the various density of ticks per period of time. Variation of the number of price changes
in the simulation is equivalent to changing the simulated tick size having fixed a one-year time
interval and volatility of the generated process equal to 15%. Forty directional-change thresholds
with fixed increment starting from 0.01% and ending at 0.29% were applied to all three GBMs. We
provide computed instantaneous volatility of simulated time series in figure 3(b). Two particular
properties can be noticed. First, one brings the generated time series closer to the continuous process
by making the size of a tick smaller (increasing the number of price changes in the sample). In
this case, the values of the estimated instantaneous volatility σDC become closer to the volatility σ
embedded in the model. Second, bigger thresholds are less sensitive to the discreetness of the given
set of prices. The slippage effect becomes less pronounced and the obtained result also approaches
the value σ when the tick size represents a small fraction of the directional-change thresholds. Both
effects emphasise the dissimilarity of realised and instantaneous volatilities. A more comprehensive
analysis should be performed to bridge the gap between these two measures.
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Figure 4. Instantaneous volatility seasonality of three FX exchange rates computed using equation 15. Applied
directional-change threshold is δ = 0.01%. The whole week is devided by equally spaced time intervals T = 10
minutes (1008 bins in total).

4.4. Volatility seasonality

The seasonality of realised volatility in the traditional markets is a relatively well-studied topic.
Dacorogna et al. (1993) presented a weekly seasonality pattern of price activity in the FX market.
Their analysis depends on the assumption that trading happens at various time zones and within
specific trading hours. Such a physical distribution of traders is embodied in geographical compo-
nents of the market activity. We do not build on a similar assumption in our work. The collection
of observed historical returns is treated as the only source of available for the analysis information.

We divide a whole week into a set of 10-minute time intervals (bins) for each of which the average
number of directional changes will be computed to find the seasonality pattern of instantaneous
volatility typical for Bitcoin prices and FX exchange rates. There are 1008 equally spaced points
located on the fixed distance from the beginning of each week in total. This is significantly large
number than the one used in the work Dacorogna et al. (1993) (168 points). We can afford this de-
creased granularity thanks to the more detailed historical time series employed for the experiment:
instead of 12 million ticks for 26 exchange rates, we have in average 100 million ticks for each FX
pair.

For the first experiment with FX exchange rates, we select the threshold δ = 0.01%. The average
number of directional changes in a week registered by a threshold of this size is approximately equal
to the number of bins in it. The computation of the seasonality pattern is done in the following
steps. First, we run all historical tick-by-tick prices through the directional-change algorithm with
the specified threshold δ. As soon as a new intrinsic event becomes registered we check within
which bin it happened and add +1 to the number of directional changes corresponding to this time
interval. When there are no prices left in the historical time series, we find the average number of
intrinsic events per each bin and apply equation 15 to compute the corresponding instantaneous
volatility. Considering the five-year-long historical data, the obtained average is based on nearly
250 observations. Calculated values should be later normalised by the number of years to get the
annualised volatility.

The reconstructed instantaneous volatility seasonality pattern of the FX pairs is shown in figure 4.
The pattern is notably stable across all tested exchange rates and is similar to the one demonstrated
in Dacorogna et al. (1993). This similarity confirms the idea that the seasonality of instantaneous
volatility is subject to the geographical distributing of the trading centres across the world.

We provide results of the same experiment where the ‘traditional’ volatility estimator (equation
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Figure 5. Instantaneous volatility seasonality of BTC/USD compared to the seasonality pattern of EUR/USD
computed using equation 15. Directional-change threshold δ = 0.01% is used in both experiments. Each time
interval T = 10 minutes. 1008 bins in total.

16) was employed to reveal the seasonality patterns of the FX exchange rates in Appendix E. The
‘traditional’ pattern is less affected by the source of the given time series. The average difference be-
tween the realized volatility of the most active pair (EUR/JPY) and the least active (EUR/GBP)1

is equal to 46%. The difference in the volatility computed by the novel approach rises to 56%.
The vertical distance between EUR/USD and EUR/GBP curves also becomes less pronounced
computed by the ‘natural’ estimator. At the same time, this estimator demonstrates more rapid
changes between values of each couple of consecutive bins. Local maximums at the beginning and
the end of a day are considerably abrupt. The reason of this is that the directional-change intrinsic
time captures the part of the volatility free of the noise component of the underlying process. The
exact form and scale of this part is a topic for the future research work.

Assets traded in the crypto market have several specific properties which make them noticeably
distinct from the traditional financial instruments such as FX exchange rates. Among the charac-
teristics are open trading within weekends and holidays; the absence of isolated physical trading
centres where working hours are fixed; still low acceptance of the emerging market among pro-
fessional traders. We explored the seasonality pattern of Bitcoin instantaneous volatility to check
whether these specialities have any considerable impact on its shape behaviour. The seasonality
pattern is presented in figure 5. We apply the same threshold size δ = 0.01% used in the previous
experiment to compare the seasonality patterns of Bitcoin and EUR. In contrast to EUR/USD,
the periodical shape of Bitcoin’s curve is much less pronounced. Its standard deviation computed
within a week is 0.5% which is roughly four times smaller than the standard deviation of the
EUR/USD pattern equal to 1.9%. Surprisingly, the intra-day maximums and minimums do not
precisely coincide with those observed in the traditional markets. They are shifted towards the
time intervals where European and American markets contribute the most to the geographical
pattern disclosed in Dacorogna et al. (1993). This observation confirms the one provided in Eross
et al. (2017). Realized volatility over weekends is slightly lower than the middle part of the week
and is practically equal to the Monday’s activity. We attribute the observed facts to the mentioned
above non-traditional characteristic of the cryptocurrency market.

The computed instantaneous volatility by the novel approach directly depends on the size of
the selected δ (figure 3(b)). To examine the impact of the threshold size we arbitrary selected

1According to the Table 1.
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Figure 6. Volatility seasonality of EUR/USD computed using the novel approach (eq. 15) and three different
thresholds: δ = {0.01%, 0.04%, 0.10%}. The size of a bin is 10 minutes, 1008 bins in a week.

the following set of values δ = {0.01%, 0.04%, 0.10%}. The same algorithm described above was
applied to reconstruct the volatility seasonality pattern for the FX pair with the highest daily
trading volume: EUR/USD (BIS 2016). The seasonality patterns shift toward higher volatility
values when the size of the threshold is bigger which is in line with the results of the experiments
on GBM (figure 3(b)). Average values of the seasonality curves computed with thresholds δ equal
to 0.10% and 0.04% are 1.71 and 1.57 times higher than the values computed with δ = 0.01%.
The difference in the amplitude of all patterns is even more pronounced: the seasonality curve
constructed with the smallest in the set threshold is much sleeker (less wander) than the rest of the
curves. This phenomenon should urge researchers and practitioners to select threshold according
to their needs very carefully employing the directional-change technique.

According to Table 1, realised volatility of Bitcoin returns computed in the ‘traditional’ way
is about nine times bigger than the analogous volatility of the FX exchange rates. Besides, the
retrieved sample of historical BTC/USD prices has 1.2 million ticks per year which is 16.7 times
smaller than the number of ticks per year in the EUR/USD case (about 20 millions). As a result,
the choice of the directional-change threshold δ has a much more significant effect on the average
value of the BTC/USD instantaneous volatility. We demonstrate results of four experiments with
different threshold sizes in figure 7. The same δ = 0.01% is used as the reference for the set of
all thresholds: δ = {0.01%, 0.03%, 0.10%, 0.20%}. As it can be seen from figure 7, the increase in
the size of δ causes the corresponding increase in the volatility level around which the seasonality
pattern oscillates. The levels of the seasonality distribution for δ = {0.03%, 0.10%, 0.20%} are 1.5,
4.0, and 11.1 times bigger than the value corresponding to the smallest threshold δ = 0.01%. The
biggest δ = 0.20% lifts the value up to the level of 68.5% (which is still smaller than the realized
volatility presented in Table 1 (84.76%)).

4.5. Autocorrelation and theta-time

Persistent seasonality patterns of the instantaneous volatility computed for the FX exchange rates
have a shape which changes with clear daily periodicity. This observation suggests that there
should be a strong autocorrelation of the instantaneous volatility or, in other words, of the number
of directional changes. To check this statement, we examined the autocorrelation function (ACF)
of the number of directional changes observed within each bin of a week. Results of the experiment
made for the FX exchange rates are provided in figure 8. It is not wrong to say that figure 8 also
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Figure 7. Instantaneous volatility seasonality of BTC/USD returns computed using the directional-change ap-
proach (equation 15). Applied thresholds: δ = {0.20%, 0.10%, 0.03%, 0.01%}. Bin size T = 10 minutes in all cases
(1008 bins in a week). The dashed lines and the numbers over them represent the average level of each seasonality
pattern.

indicates the ACF of the volatility since the number of directional changes is directly related to the
instantaneous volatility through the equation 15. The same size of the directional-change threshold
used to reveal the seasonality distribution δ = 0.01% was employed. A remarkably stable pattern
was found where daily and weekly seasonality is easily recognisable. Although the ACF function of
FX exchange rates discovered in our work is highly similar to results provided by Dacorogna et al.
(1993), there are clear differences between the two patterns. The ACF of the number of directional
changes computed through time lags defined in physical time does not cross the zero level for a
much more extended period and is consistently positive with lags even greater than several weeks.
The curve representing the ACF of EUR/JPY has the smallest amplitude (smallest variability). In
contrast, curves of EUR/USD together with EUR/GBP invariably follow the same pattern shifted
up in the case of EUR/USD.

The BTC/USD exchange rate characterized by much less pronounced seasonality pattern of
the instantaneous volatility has also been tested by the autocorrelation function. The results are
presented in figure 8. The main difference between the values computed for two markets is the
amplitude of the ACF curves: the variability of the BTC/USD curve is 10 times lower than the
variability of the EUR/USD curve. We note that significantly bigger thresholds have also been
tested, but they reveal less accurate patterns due to insufficiently frequent data for the statistical
analysis.

It can be seen from figure 8 that the ACF of the FX exchange rates exhibits a certain level of
decline. The large seasonal peaks of the autocorrelation functions in physical time do not allow
to measure its decay precisely. A measure capable of converting the price evolution process to
the stationary one should be applied to better estimate the level of the downturn. We removed
the seasonality pattern by employing the concept of theta time (Θ-time) proposed by Dacorogna
et al. (1993). Θ-time is designed to eliminate the periodicity pattern by defining a set of non-
equal intervals within which the measure should be performed. The length of each interval in
Θ-time depends on the historical activity of the market rather than on equally spaced periods
of the homogeneous physical time. Therefore, the cumulative price activity (volatility) between
each consecutive couple of Θ steps is constant. The distance between Θ timestamps, measured
in physical time, is dictated by the shape of the volatility seasonality pattern and, in contrast to
physical time initially used to reveal the pattern, is not a fixed value. Periods of high activity are
equivalent to shrinking the speed of physical time and the frequency of Θ stamps increases. In
contrast, periods of low activity are identical to stretching the flow of the physical time and the
lower number of Θ intervals appears. Active parts of the seasonality pattern have the higher density
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Figure 8. Autocorrelation function of the number of directional changes per a bin in physical time. The bin size
T = 10 minutes. Vertical dashed lines label weekly intervals. Applied threshold δ = 0.01%.

of Θ timestamps per a unite of the physical time than the standstill sections. Mathematically:

Θ(t) =

∫ t

t0

σ(t′)dt′, (18)

where t0 and t are the beginning and the end of the considered period of physical time and σ(t′) is
the value of the instantaneous volatility corresponding to each moment of the interval. Equation
18 transforms into the sum of elements σ∆t′ between the beginning and the end of the observed
interval ∆t0 and ∆t in case of non-continuous seasonality pattern where the values are discretely
defined in periods ∆t (as in our experiment):

Θ(t) =

∆t∑
∆t0

σ∆t′ . (19)

It should be noted that the number of bins in a week is always constant in both physical and Θ
times. This is achieved through the assumption that the integral (or the sum) of the weekly activity
is the constant value.

The autocorrelation function of the number of directional changes computed in Θ-time is shown
in Figures 9(a) and 9(b) in normal and log-log scales. Curves on the log-log plot outline the first
100 bins and are approximated by straight lines corresponding to the scaling law with coefficients
EACF and CACF provided in Table 2. Major weekly fluctuations of the volatility seasonality patter
have been successfully eliminated. Nevertheless, the picture has several peculiar properties which
should be discussed. First, Θ-time does not completely remove the seasonality shape of ACF in
the same way it happened in the work Dacorogna et al. (1993): noticeable peaks are still present
in the final part of each business day. The similar phenomenon, observed in the original paper,
was explained by the non-optimal setup of the chosen model: it assumed the same activity for
all working days, which is, indeed, not fully correct (see figure 4). However, we do not use any
analytical expression postulating the equal daily activity to describe the seasonality pattern. In-
stead, components σ∆t′ of real empirically found volatility seasonality patterns depicted in Figures
4 and 5 were utilized to define the timestamps in Θ-time. Therefore, we eliminate the inefficiency
connected to the assumption mentioned above which means an alternative interpretation for the
remained seasonality should be provided.
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Figure 9. (a) Autocorrelation function (ACF) of the number of directional changes per a bin in Θ-time. Vertical
dashed line labels one week interval. Its location coincides with the location of the vertical line depicted in figure
8. (b) The same ACF on the log-log plot for the beginning of a week.

Table 2. Parameters of the scaling law describing the exponential decay of the ACF of the number of directional
changes in Θ-time (figure 9(b)).

Name CACF EACF R
BTC/USD 0.038 -0.045 -0.990
EUR/USD 0.026 -0.057 -0.975
EUR/JPY 0.011 -0.067 -0.943
EUR/GBP 0.001 -0.059 -0.953

We attribute the remained fluctuations to the algorithm of the price dissection into a collection of
alternating trends. We also claim that the choice of the number of bins in the experiment affects the
shape of the autocorrelation function in theta time. The dissection procedure has to be initialised
only once and then performs unsupervised. The evolution of the price curve dictates the sequence
of intrinsic events. This fact leads to the certain dilemma: to which bin of a week the intrinsic
event should be assigned? A couple of prices, at which two subsequent directional changes become
registered, could belong to a different bins. Let us say these are the intervals ∆tn−1 and ∆tn. This
means that the beginning of the price move that eventually reached the level of the latest intrinsic
event had started within ∆tn−1. The end of this price trajectory finishes within the interval ∆tn.
The crucial point is at what part of the ∆t this beginning and end are located. In the extreme case,
the whole price trajectory before the directional change could be fully placed inside of the interval
∆tn−1. The latest tick that eventually triggered the new directional-change event can be at the
very beginning of ∆tn. Should such an event be assigned to the bin ∆tn−1 or to ∆tn? The answer to
this question is particularly important considering the effect shown in figure 6. The inconsistency
affects the seasonality pattern by not only changing its average amplitude but also by providing
slightly different regions of low and high instantaneous volatility (see, for example, the curves for
δ = 0.01% and δ = 0.10%).

A better way of associating locations of intrinsic events with bins of a week is another question
related to the transition from the physical to intrinsic time and vice versa. This topic should be
discussed in more details in further research works. Until then, a potential strategy to resolve the
localisation problem is the use of smaller thresholds and bigger time intervals.
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5. Concluding remarks

Analytical solutions presented in this paper translate the language of traditional risk-management
tools based on drawdowns and drawups into the language of the directional-change intrinsic time.
This connection makes it possible to interpret the evolution of a price curve as a sequence of
alternating trends of the given scale. The observed number of directional changes for a period of time
has been connected to the properties of the studied time series characterised by the instantaneous
volatility σDC and the trend µ. The choice of directional-change thresholds δup and δdown used to
dissect the historical price curve is arbitrary but affects the results of the experiment. Equations
12, 6, and 7 have been confirmed by a Monte Carlo simulation which demonstrates the robustness
and accuracy of the obtained analytical expressions.

We extended the work of Dacorogna et al. (1993) through discovering the weekly seasonality
pattern of the instantaneous volatility of Bitcoin prices as well as of three FX exchange rates. The
connection of the number of directional-change intrinsic events to the instantaneous volatility has
been employed to perform the computation. Similar patterns of the realised and the instantaneous
volatilities were obtained. Several noticeable differences between the results demonstrated in the
work Dacorogna et al. (1993) and the ones presented in the current paper have been highlighted.
First, the novel method significantly simplifies the construction of the instantaneous volatility
seasonality pattern using tick-by-tick prices. Second, the autocorrelation function of the number
of directional changes computed in physical time stays positive for a notably long period of time.
Third, the beginning of the autocorrelation function computed in Θ-time can be approximated by
the exponential function when the rest of it declines linearly.

The number of directional changes, directly connected to the instantaneous volatility of the
given discrete time series, reveals the differences between scales of measures utilised to study the
evolution of the price curve. The proposed framework represents a novel conceptual paradigm
where measures are independent of the flow of physical time. We argue that this characteristic has
significant advantages over ‘natural’ volatility estimators and has to be considered as the primary
tool in the set of classical risk management techniques.

The insights provided within this paper underline the relevance of the proposed directional-change
framework as a valuable alternative to the traditional time-series analysis tools. The directional-
change intrinsic time has the remarkable ability to efficiently deal with fat-tailed distribution of
returns and is more efficient in capturing periods of changing price activity. Results of the provided
research extend the set of risk management tools constructed to evaluate the statistical properties
of traditional and emerging financial markets.
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Appendix A: Drawdowns and drawups

Probabilities of drawdowns and drawups were extensively studied by Carr et al. (2011) to propose
a new insurance technique against unexpected price moves and a novel way of hedging liabilities
associated with these risks. Zhang and Hadjiliadis (2012) employed drawdowns as an estimate of
the stock default risk and also provided a risk-management mechanism affecting the investor’s
optimal cancellation timing. In Schuhmacher and Eling (2011) drawdowns are considered as one of
14 reward-to-risk ratios alternative to the widely known performance measure such as the Sharpe
ratio. Properties of drawdowns can be applied as an estimate of the portfolio optimisation problem
(Grossman and Zhou 1993, Chekhlov et al. 2005). The latter can be personalised to match traders’
or investors’ expectations and the tolerance to the size and the length of the market disruption.

Drawdowns Dt and drawups Ut, also called rallies (Hadjiliadis and Večeř 2006), registered by the
moment of time t depend on the running price maxima Pt and the running price minima Pt (Zhang
and Hadjiliadis 2012, Mijatović and Pistorius 2012, Landriault et al. 2015). These reference points
hinge on the set of historical prices Ps and are mathematically defined in the following way:

Pt = sup{Ps : 0 ≤ s ≤ t} and Pt = inf{Ps : 0 ≤ s ≤ t}, (A1)

where t ≥ 0 and the interval [0, t] is fixed. Drawdowns and drawups are the differences between
the final price of the given time interval Pt and the registered local maxima and minima:

Dt = Pt − Pt and Ut = Pt − Pt. (A2)

Once a price curve experiences a drawdown Dt of the size a, the waiting time τDa is registered.
Similarly, for a drawup the waiting time associated with the size a is τUa . In details:

τDa = inf{Dt ≥ a : t ≥ 0} and τUa = inf{Ut ≥ a : t ≥ 0}. (A3)

Appendix B: Intrinsic time

All relevant to the performance of the financial system events such as political decisions, natu-
ral disasters, or economic reports rarely happen synchronously or are equally spaced in time. A
sequence of them has a non-homogeneous nature and is not characterized by any vital autocorre-
lation function. Ultimately, the change of days and nights, as well as seasons, is dictated by the
natural structure of the physical world which is barely connected with the flow of financial activity.
Human minds with the whole diversity of peculiar and indescribable characteristics are primal
engines of all market’s evolutionary shifts. The global market, where the majority of transactions
happen online and where traders, dealers, and market makers are distributed all around the world,
is completely blind and deaf to the periodicity of days and nights as well as to the climate factors
of any standalone region of the Earth.

Guillaume et al. (1997) provided the concept of alternating directional changes capable to connect
the continuous flow of physical time with the evolution of price returns. In this event-based space,
only a sequence of prices at which directional changes of the given size become observed and
corresponding local extremes describe changes of the system’s states. Thus, the set of intrinsic
events is decoupled from the flow of physical time. An example of a price curve dissected by
the directional-change algorithm is provided in figure B1. The density of intrinsic events depends
only on the evolution of the price curve. The latter is pronounced in different number of events
registered within intervals of equal length. Thus, only the end of the section 1 is located in the
period T1 while T2 contains ends of three sections, 2, 3, 4, and T3 holds ends of two sections, 5
and 6. This property of directional-change intrinsic time allows to efficiently capture the most
relevant to risk management information: tipping points of trend changes. At the same time, it
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Figure B1. A price curve (grey curve) dissected into a set of directional-changes (grey squares) using a directional-
change threshold δ. Grey circles mark local extremes between two consecutive directional changes. Vertical distance
between each directional-change and preceding extreme price is bigger or equal to the size of the threshold δ.
Vertical dashed lines indicate the end of each trend section (identified only after the next event becomes observed).
The line below contains equal time intervals T1, T2, T3 and length of each directional-change section in intrinsic
time T1(δ), . . . , T6(δ).

possesses properties of a filtering technique by ignoring price changes between directional changes.
In contrast, equally spaced through periods T1, T2 and T3 prices extracted from the same curve
do not contain information on its extreme activity located in T2. This disability of the traditional
techniques over stochasticity of market’s speed develops into too stiff volatility estimators.

Specific properties of historical prices can be described studding a collection of directional
changes. Guillaume et al. (1997) was the first researcher to uncover a scaling law1 relating the
expected number of directional-changes N(δ) to the size of the threshold δ. Mathematically:

N(δ) =

(
δ

CN,DC

)EN,DC
, (B1)

where CN,DC and EN,DC are the scaling law coefficients. Later, Glattfelder et al. (2011) employed
the framework to discover 12 independent scaling laws which hold across three orders of magnitude
and are present in 13 currency exchange rates. The persistence of revealed scaling laws became the
base elements for the tools designed to monitor market’s liquidity at multiple scales (Golub et al.
2014). Later Golub et al. (2014) described a successful trading strategy exploiting a collection of
tools build upon the directional-change intrinsic time and characterized by the annual Sharp ratio
greater than 3.0.

1A basic polynomial functional relationship where a change in input results in a proportional change in output.
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Appendix C: Bitcoin seasonality

Despite the relatively young age of the blockchain technology, there are already a few research
works concern the statistical properties of cryptocurrencies. Sapuric and Kokkinaki (2014) analysed
realised volatility of Bitcoin returns within 4-years time interval to understand what are the prime
characteristics of its price activity. They confirmed Bitcoin’s high volatility, but emphasized that
traded volume is a remarkable fact which should be taking into account computing the realized
volatility2. The authors compare Bitcoin with conventional financial instruments, including gold,
and several national currencies and demonstrate that the calculated volatility significantly decreases
when the traded volumes are included in the model.

Haferkorn and Diaz (2014) studied seasonality patterns of the number of payments performed in
three cryptocurrencies: Bitcoin (classified as a worldwide payment system), Litecoin (open source
software project), and Namecoin (decentralised name system). Their research confirmed that in
contrast to the traditional equity and FX markets, the monthly or yearly seasonality is not typical
for the crypto market. The only robust weekly pattern was fund in Bitcoin prices while Litecoin
and Namecoin had weak or no patterns at all. The authors state that there is also no significant
correlation between the returns of observed exchange rates. Authors speculate that the reason for
this is the fact that although these cryptocurrencies have similar core architecture, they all have
been created to serve quite specific needs.

JE de Vries and Aalborg (2017) made another attempt to discover seasonality patterns of Bitcoin
prices analysing daily traded volume, daily transaction volume, and Google trends (the number of
searches for the word ‘bitcoin’). The author also inspected the seasonality of the number of transac-
tions performed from and to individual blockchain accounts. All of the measurements demonstrated
no particular periodicity.

Eross et al. (2017) gave a more affirmative answer on the existence of the intraday seasonality
of Bitcoin prices. The authors investigated Bitcoin returns, volume, realised volatility, and bid-
ask spreads to reveal several intraday stylized facts. A significant negative correlation was found
between returns and volatility, while volume and volatility have a considerably positive correlation.
The authors attribute such patterns to the European and North American traders as well as to
the lack of market makers in the whole crypto space.

Appendix D: Monte Carlo waiting times

Appendix E: ‘Traditional’ volatility seasonality

2According to the Bank for International Settlements the daily average FX trading volume in April 2016 was $5.1 trillion (BIS

2016) when the highest registered volume in the crypto market is only $45.8 billion (https://coinmarketcap.com/charts/).
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Table D1. Waiting times and number of directional changes in a Monte Carlo simulation. µ and σ are parameters
of the Brownian motion used for the test. 109 ticks in the simulated time series. NMC

DC , 〈TMC
up 〉, and 〈TMC

down〉 are the
number of directional changes and the average waiting times registered in the Monte Carlo simulation. E[NDC ],
E[Tup], and E[Tdown] are theoretical values dictated by equations 12, 6, and 7 correspondingly. Values σ−

TMCup
and

σ−
TMC
down

are standard deviations of empirical and theoretical waiting times.

µ, % σ, % NMC
DC /E[NDC ] 〈TMC

up 〉/E[Tup] σ−TMCup
〈TMC
down〉/E[Tdown] σ−

TMCdown

1

10 1.028 0.968 2.54e-05 1.019 2.53e-06

20 1.009 0.989 2.78e-06 1.012 3.32e-07

30 1.001 0.995 8.79e-07 1.033 9.58e-08

6

10 1.021 0.971 2.29e-05 1.043 2.59e-06

20 1.005 0.993 2.94e-06 1.019 3.29e-07

30 0.987 1.011 8.84e-07 1.034 9.98e-08

11

10 1.029 0.968 2.20e-05 1.011 2.78e-06

20 0.994 1.006 2.72e-06 0.997 3.30e-07

30 0.986 1.014 8.82e-07 1.017 1.02e-07
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Figure E1. Realized volatility seasonality patterns of three FX exchange rates computed using the traditional
approach (equation 16). 1 minute intervals have been used to calculate returns. The size of each bin is 10 minutes,
1008 bins in total.
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Figure E2. Realized volatility seasonality patterns of BTC/USD and EUR/USD exchange rates computed using
the traditional approach (equation 16). 1 minute intervals have been used to calculate returns. The size of each
bin is 10 minutes, 1008 bins in total.
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