Multidimensional Directional-Change Intrinsic Time

Scaling Laws and Extension of One-Dimensional Approach

Vladimir Petrov with Anton Golub, James Glattfelder, and Richard Olsen

in @pv0011

University of Zurich^{UZH}

Olsen. "Patterns 4 (2011): 599-61

BigData

Finance

Directional-Change (DC) Intrinsic Time -

Physical time:

- **Too sparse**, do not capture all the available high-frequency information
- **Too dense** which results in superfluous noisy events in the final time series
 - Overshoot

- Ticks only when something **significant** happens which affects the price
 - Monitors alternating price moves of given scale δ measured from local extremes
- Stable scaling laws, connection with

2:3:4

instantaneous and realized volatility, liquidity

 $\langle \omega(\delta) \rangle = \zeta$

Multidimensional Approach

Higher dimensions:

- Dimensions are formed by several different orthogonally placed exchange rates
- Logical extrapolation to higher dimensions: definition of local extremes from point to line,

from line to surface etc.

Price 2

- As more information can be captured the **higher performance** of methods based on intrinsic time is expected
- Transition from higher to lower dimensions allows the use of techniques developed for the one-dimensional DC intrinsic time concept

Intrinsic Time Properties of 23D FX Market

Scaling laws revealed in onedimensional case are still observed when the number of dimensions is increased

Overshoot scaling law $\langle \omega(\delta) \rangle =$

DC count scaling law

- Scaling law dependencies substantially deviate from the expected linear dependence in the range of **small thresholds**
- The approach works with tick-by-tick data so no pre-processing of data is needed

This project has received funding from the European Unions Horizon 2020 research and innovation programme under the Marie Skodowska-Curie grant agreement No 675044. Oxford, 2018