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Models in an exotic derivatives business

How are models used in an exotic derivatives business?

Pricing new trades

e Classical risk-neutral models are ubiquitous

V 3
Price v, = EQ T] Expectation under

risk-neutral measure

= Disregard any existing portfolio and price the derivative under the
assumption that perfect replication is possible

= Apply local adjustments: hedging costs (trader’s estimate), model
limitation adjustments, ...

= For larger trades, consider global adjustments depending on existing
portfolio: credit charge, concentration charge, etc.
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Models in an exotic derivatives business

How are models used in an exotic derivatives business?

Hedging
e Compute the price with the usual classical model
Vr
Vo = EC|—
.l
e Then compute “greeks”
aV,
0X

= For factors which are stochastic in the model, and parameters which aren’t
(e.g. interest rates in a local volatility model)

e Based on the greeks, decide which hedging instruments to buy/sell
= The right hedge is not just the model risk
= Traders adjust the actual traded risk with “experience/skill”

= He/she needs to be aware of transaction costs, market dynamics (such as
vol-spot correlation), concentration and liquidity risk...
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Models in an exotic derivatives business

How are models used in an exotic derivatives business?

Apply constraints
= Internal: control the risks we take, ensure efficient use of capital

= External: regulatory, legal

Examples:
= Direct risk and stress limits based on the model:
L < ad <U
0X

Vo(X) — V(X + stress) < M
= Limits on CVaR
= Capital requirements — many determining factors

= Short selling bans

e These constraints are not usually part of the valuation model
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Models in an exotic derivatives business

Beyond the classical approach

AR

e |t should include transaction
costs, lack of liquidity, and
constraints

e This means accepting that
perfect replication is
impossible...
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We want to increase
automation in the
business

The risk management
model needs to do more
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Teaching a machine to think like a trader

Trading inputs and outputs

e Risk management

Market state: prices of

o Alternative Data:
hedging instruments,

Portfolio of

News, historic trading

cost of trading, pattern

liquidity,

\%/ :

derivatives

In the real world, we
accept risk when we trade

T T T y
-0.25 -0.20 -0.15 -0.10 -0.05 0.00 0.05
PnL

Aiming to optimize
Buy/sell decision future PnL distribution
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Teaching a machine to think like a trader

Trading inputs and outputs
e Pricing

Market state: prices of

o Alternative Data:
hedging instruments,

Existing portfolio of

.. News, historic trading
derivatives

cost of trading, pattern

liquidity,

% / (" Aim to charge enough\

that the trade has a
positive impact on the
hedged portfolio’s
\_profit/loss distribution /

New trade details ‘

Pricing is subjective and
New trade price nonlinear
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Teaching a machine to think like a trader

How to compare profit/loss distributions?

e We could use classical “Markoviz” portfolio optimization

= Maximize expected return while penalizing variance
E(wr) = Elwr] — AVar[wr]

. . \ /
£R|sk-adjusted é ﬁ ﬁ A is a measure of J

value - ) , risk aversion
wy is terminal

A\
wealth

e Note that E(wy) is a function on the distribution of terminal wealth

e But mean-variance is not a good measure if terminal wealth is not
normally distributed

= EXxist on-monotone cases where X > Y but E(X) < E(Y)
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Teaching a machine to think like a trader

How to compare profit/loss distributions?

e What are sensible conditions for our risk-adjusted value function
E(wr)?

e Monotonicity
X=2Y=>EWX)=ZE®W)

More is better

e Convexity
E(eX+(1—-a)Y)Z2aEX)+ (1 —-a)E(Y),a € [0,1]

We are risk-averse

e Cash invariance
EX+c)=EX)+c

_ There is no risk adjustment for cash
-E(-) is a convex risk

measure
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Teaching a machine to think like a trader

How to compare profit/loss distributions?

e We will mostly use the entropic measure: E(X) = —%ln Ele~*X]

e Equivalent to mean-variance for small risk-aversion parameter A:

A
e Example: X~N(0,1)

1
——ln[E[e

—)lX]

e Plot risk-adjusted value '~

Bounded by the two
extreme risk-adjusted
values: risk-neutral
and worst-case
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Entropic
Expectation

Mean-variance
Worst-case

Risk aversion



Teaching a machine to think like a trader

Hedging

e \We can now express preferences on future profit/loss distributions

e Hedging is the act of buying and selling “hedging instruments” to
optimize that distribution

e A hedging strategy is a function: Liquid instruments with
observable prices

T parameterized the strategy;

e.g. as the weights of neural
networks State s; is the history of

everything including our
current book

e It tells us how much of each hedging instrument to buy or sell at
each time t, for every possible state s;

e Not all actions are possible — in general af will be subject to limits
which are also state-dependent (e.g. short-sell constraints)
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Teaching a machine to think like a trader

Hedging

e How does the hedging strategy = contribute to the terminal
profit/loss?

T
WT(T[;Z) =z5]nh]+zj_a]7TH]_C]n
j:]_ A

A\
VIA \ 1T, .

6]- - accumulated current ¢; : transaction
positions (“deltas”), costs incurred,
6" =6, +aj ) ¢ = c(aj,s))

h;: cashflows generated by Hf: iciaticesoligeazine

.. instruments
hedging instruments >
[ Note: all cash flows are discounted ] Z;: cashflows from our

exotic derivatives portfolio

Hans Buehler — J. P. Morgan



Teaching a machine to think like a trader

Hedging

e The terminal profit/loss is not deterministic — our task is to optimize it

e That means maximizing

J J

ﬁ _ _

We apply the value function to the O Ese Me R e

H Vs
distribution over future real-world functlor.1 o AR s el
states constraints.

[T
E[WT(T[;Z)] =F 26jﬂ-hj+zj—a”-Hj—cﬂ
j=1

Path dependency

e Two key challenges: The feasible set of allowed
o actions a;'depends on past
= How to generate the distribution decisions a” ; ... aF.

= How to optimize the hedging function
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Teaching a machine to think like a trader

Market simulators

e To generate the profit/loss distribution for a given strategy, we need to simulate future
states of the world

= Prices of available hedging instruments
= Corresponding cash flows from exotic derivatives
e We should be simulating in the real-world measure, not Q

= The real world has “statistical arbitrage”, i.e. with normal risk aversion some trades
statistically make money (e.g. shorting options, sell long-dated bonds).

= Deep Hedging will attempt to take advantage of these opportunities.
Absence of arbitrage =/=> absence of statistical arbitrage (e.g. GBM with drift)

Existence of arbitrage =/=> existence of statistical arbitrage (e.qg. if risk-aversion is very high)

e For the experiments presented here,
will use classical Q models
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Teaching a machine to think like a trader

Optimizing the hedging strategy

e \We use a deep neural network to represent the strategy a]’-T

TN TN
/4 /4
\a) Ao/

—>
—>
] ] ] 1
\\_I !

e |nputs: % Prices of all hedging instruments ]
= Current market state

Ve

= Relevant product state variables < _Harvested automatically J

\\_I

e LSTM cells to capture path dependence
= Potentially important when we have transaction costs

= Allows memory of our previous hedging decisions
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Deep Hedging

states of the world

ll

Compute risk-adjusted
value on a batch of paths
for neural network strategy

{

Update network

parameters by 0E (wy(m; 2))
following gradient oW,

[Simulate many future
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Toy model trading

Start simple

e Hedge a short at-the-money 30-day European call
zr = (St — K)*

e Generate paths in Black-Scholes

e Check the impact of transaction costs, risk aversion, and risk limits
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Toy model trading

Risk Aversion (Entropy)

Delta at day 29

12
e Vanilla Option Risk aversion | -
—5.00 .
delta 1.0{ -—— 10.00 . I
— 50.00
e 10bps cost ~—— 100.00
0.8 -
e No limits
. 0.6
e Entropic value
e Black-Scholes 0.4
simulator
0.2 -
0.0- \
\~
-0.2 (

li Ll I L] I L
0.8 0.9 1.0 11 1.2 13
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Toy model trading

Transaction costs (Entropy)

12 Delta at day 29
e Vanilla option . Transaction Costs
— (.01 \
delta 1.0 1 — 0.001 "
— (0.0001

e No limits le-10

0.8 1
e Entropic value

e Risk aversion o8]

10

0.4 -
e Black-Scholes
simulator 0.2

0.0 -

0.8 0.9 1.0 11 1.2 13
Spots

Hans Buehler — J. P. Morgan



Toy model trading

Trading limits

Delta at day 29
- - 12
e Vanilla Optlon Trading limits
w— .05
delta 1.0{ =— 0.10 \
— 0.20
e 0.01% o
proportional 0.81 0.80
cost

0.6
e Entropic value

e Risk aversion i
10

0.2 -
e Black-Scholes

simulator 0.0+

0.8 0.9 1.0 11 1.2 13
Spots
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Toy model trading

Risk measure

: : Risk Measure : Price
e Vanilla option A —— CVaR 50% : 0.031
PnL 100 —— CVaR 99% : 0.040
distribution —— Entropy 10 : 0.028
( —— Entropy 100 : 0.029
e 0.01% cost 80 —— Entropy 1000 : 0.043
e No limits
60 -
e Black-Scholes
simulator
40.
20
0.

-0.02  0.00 0.02 0.04 0.06 0.08
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Toy model trading

Forward-starting options

e Increase the complexity: simulate with Heston model

e Compute optimal spot-only hedges for forward-starting options

St
Zzr =max|0,——K
N’

e 15-day forward start

e 45-day maturity

e Dalily hedging

e Entropic value with risk aversion 50

e No limits
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Toy model trading

Forward-starting options

e Impact of transaction costs on incremental and total delta

Daily Delta Amount from Ot day to Maturity

Total Delta Amount from Ref day to Maturity

58 Spot_44 Spot_44
— 00001 — 00001
— 001 12| — o001
08
10
06
08
04
06
o
o, g'
=
02 3 o4
00 W 02
-02 00
-02
-04
07 08 09 10 11 07 08 09 10 11 12
MidPrices_0 MidPrices_O/RefSpot
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Moving further into the real world

“Autocallable” note

Popular retail payoff:
= Clientis short a down-and-in put paid at maturity
= Upper knockout barrier

* Fixed coupons until KO
0.1% transaction costs
No limits
Risk aversion 20
Entropic value

Monthly hedging

Hans Buehler — J. P. Morgan
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Moving further into the real world

Portfolio of autocallables

0.9

¢ Based. on a real Risk Measure : Price
pOfthlIO 0.8 - —— Entropy 50 : 0.47

~——  Entropy 20 : 0.40
e 0.1% transaction 0.7 — Enbropy-10/:0.34
- Entropy 5 :0.30
costs - ---- Risk neutral : 0.17
e No limits
0.5
e Local volatility
simulator .
e Monthly hedging 03
0.2
0.1 [ Training convergence ]
0.0

0 500 1000 1500 2000 2500 3000 3500 4000
lterations

Hans Buehler — J. P. Morgan 36



Moving further into the real world

Market simulator

e Go beyond “classical” models — build a statistical model instead

Historical Discrete Local Vol of SX5E

14 — div_20_10%
- —_—dv_20_97.5%

— s Challenge: avoid arbitrage when
simulating options

Time Series Analysis Plots - ARMA(2,1) Model Residual

20.12 Zl'l.l 3 m‘l-l m‘15 21]‘16
Autocorrelation Partial Autocorrelation

Simulate discrete local volatilities
to avoid static arbitrage

0 5 30

QQ Plot Probability Plot
Dynamic arbitrage still a challenge 5 o ia
» i

o 1
Theaoretical Quantiles Theaoretical quantiles
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Market simulator

e How do we build a full statistical market simulator that reflects real-
world drifts but is arbitrage-free?

= Does it need to be fully arbitrage-free?
e What about rare events?
= A statistical simulator is not likely to capture these well

e In particular, we want the model to behave well in a stress scenario,
and to price in the risk appropriately

= Should we insert stress events into the market simulator?

= With what probability? Historical likelihood?
e For equities we focused on spot and volatility — there’s lots more

= Rates, spreads, FX, ...
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Conclusions

e We formalized the task of pricing and managing the risk of an exotic
derivatives portfolio

e Obtaining the optimal hedging strategy is a difficult problem
e Representing the strategy as a neural network makes it tractable

= Optimization typically takes minutes on CPU for the toy examples here
e So far it works for:

= Vanillas, cliquets, barrier options, large portfolios

= With transaction costs and risk limits

= Simulators based on classical pricing models (Black Scholes, local
volatility, Heston)
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Many more interesting challenges ahead

e Developing statistical (IP) market simulators for options

e Do we need to compute hedging strategies all the way to maturity?

= Can we come up with an efficient way to represent a portfolio of exotics
as a state?

e How do we choose our risk measure? Can we derive effective real-
world risk-measures from the choices people make?

e (o beyond equities: FX, rates, etc.

e Ultimate goal: automated pricing and hedging of exotic derivatives

AR
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