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Deep Hedging 

Summary 

– Greek Hedging is a legacy approach once justified by lack of data and 
computational power 

– Statistical Hedging brings data-driven risk management but still relies 
on classic models for pricing 

– Deep Hedging defines a new data-driven “AI” reinforcement learning 
risk and pricing concept for derivatives. 
Its challenges are 

 Realistic and robust simulation of markets 

 Efficient modern Reinforcement Learning techniques for rapid 
evolution 
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Framework 

Portfolio 

– We are given an portfolio Z of securities and derivatives, all of which 
are assumed to expire before some terminal maturity T. Negative 
values represent losses. 

 We assume interest rates are deterministic, hence we may 
consider discounted variables. 

 We assume that FX transactions are cost-free, hence we may 
assume w.l.g. that all assets are denominated in the same 
currency. 

 The portfolio and all subsequent instruments are considered as 
``total return” assets. The total return of Z, i.e. the sum of all cash 
flows of Z at T is denoted by ZT. 

– We set T=tm>0 and denote by 0=t0<…<tm-1<T possible intermediate 
hedging days. 
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Framework 

Mark-to-Model 

– At each t we observe relevant market data such as spots, implied vols, rates, etc. We 
denote this set of market data by X=(X1,…,XK). 

– We assume that for each element of our portfolio we have a way to compute a “mark-
to-model” value from X. 

 Volume-weighted mid-prices for equity, FX 

 Classic derivative pricing models such as Stochastic-Local Vol for derivatives. 

– Combined, this yields a (mark-to-) model value Zt for our portfolio. 

 This  is not a tradable quantity. 

 This meta model will yield a range of classic Greeks in the form of first or higher 
order derivatives. 

Quant Finance as an Interpolation Problem 

– Classic derivative models are neither equivalent to the statistical measure Q, nor have 
they been designed to behave realistically. Their primary objective is interpolation 
between observable market data in X. 
A “good” model is measured by: 

 Quality of fit to reference market data in X, e.g. implied volatilities. 

 Speed of calibration and execution 

 Stylized dynamics such as stochastic volatility or stochastic interest rates. 
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Framework 

Hedging 
– We are given a range of liquid hedging instruments H=H1,…,Hn such as 

options, swaps, futures, ETFs, stocks, FX etc. 
– The mid-price at time t is denoted by Ht, which is a model value 

computed from Xt, for example the volume-weighted mid-price for an 
equity. It is not a tradable quantity. 

– The actual price for trading a=(a1,…an) is given by  
 
   Ht(a):=a Ht + ct(a) 
 
in terms of a non-negative and normalized cost function ct. We usually 
assume ct is convex, but there are valid examples it is not, e.g. fixed fees 
per trade. 
 Cost can depend on past trading activity to model impact. 

Research topic: consistent impact model for option prices. 
– The formal mark-to-model P&L over the period dt due to trading a in t is 

given as 
 
    a dHt - ct(a) . 
 

We note that this does not take into account unwind cost. 
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Framework 

Liquidity 

– Not all instruments are tradable at all times: 

 An exchange traded option ( Sr – k St )
+ for r>t may only be traded at times 

u[t,r), i.e. when Si is known and therefore the strike is fixed. 

 

– We denote by At the convex, non-empty set of admissible actions at time t. 

 The set At  may depend all observable market data and our historic trading 
decisions. For example, 

– Short-sell restrictions 

– Available liquidity as a function of past trading activity 

– Risk limits for our overall position (e.g. maximum Vega exposure) 

 We call p=(a0,…,am-1) with atAt a trading policy; we will usually omit the 
“At“ unless necessarily. 

 dt := a0+…+at-1 is our current position in H. 

 At time t our mark-to-market is 𝑀𝑡 ≔ 𝑍𝑡 + 𝜹𝑡𝑯𝑡. 

 

 

 

 



The End of the Greek Era 
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The End of the Greek Era 

From Greeks to Statistical Hedging 

– Before we focus on Deep Hedging, we discuss alternative 
approaches. 

– Each of these will hedge only over a given period dt. 
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The Greek Era 

Risk-Neutral Hedging 

– We denote by 𝜹$ ≔ (𝑋1 ∙ 𝜕𝑋1,…, 𝑋𝐾 ∙ 𝜕𝑋𝐾) the first order “Cash Delta” derivative operator to 
relevant observable market parameters. We denote by G$ the respective second order “cash 
Gamma” derivatives and by Q “Theta”. 

– The risk-neutral paradigm stipulates to reduce all Delta exposure to zero, i.e. to minimize 
regardless of cost in each t 
 

sup
𝒂𝑡

: − 𝜹$𝑀𝑡 +𝒂𝑡𝜹
$𝑯𝑡          ( 𝑀𝑡≔ 𝑍𝑡 + Δ𝑡𝑯𝑡 ) 

 
 
NB: for the L2 norm this can be solved using the Pseudo-inverse of 𝜹$𝑯𝑡. 

– This formulation does not take into account trading cost. 
Ad-hoc heuristics 

sup
𝒂𝑡

:  − 𝜆 𝜹$𝑀𝑡 + 𝒂𝑡𝜹
$𝑯𝑡 2

− 𝑐𝑡 𝑎𝑡  

Pros 
– Fast 
– Needs only today’s market data. 

Cons 
– Inconsistent: 

 No sense of carry 
 Difficult to add cost to this approach as the “Cash Deltas” have only nominally a $ 

interpretation: how do we know whether spending 100k$ to hedge a nominal 1m$ vega 
position is worth it?  

– Unrealistic: does not account for “Skew Delta”. 
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The Greek Era 

Parameter Hedging 

– We assume that we are estimating a simple normal model 
𝑑𝑿𝑡

𝑿𝑡
= 𝝁𝑡(𝑿𝑡)𝑑𝑡 + 𝚺𝑡(𝑿𝑡)𝑑𝑾𝑡 

for our market parameters, e.g. simply by replaying historic data. 
This model gives rise to the operator 

𝑑(∙) = Δ$𝚺𝑡𝑑𝑾𝑡 + Δ$𝝁𝑡 +
1

2
𝚺𝑡Γ

$𝚺𝑡 + Θ 𝑑𝑡 

 

– Applying Markoviz’ mean-variance approach to 𝑀𝑡 ≔ 𝑍𝑡 + Δ𝑡𝑯𝑡 yields the intuitive “carry” 
expression 
 

sup
𝒂𝑡

: 𝒂𝑡Δ
$𝝁𝑡 +

1

2
(𝒂𝑡𝚺𝑡)′Γ

$(𝒂𝑡𝚺𝑡) + Θ 𝑑𝑡 −
𝜆

2
(𝒂𝑡Δ

$𝚺𝑡)′(𝒂𝑡Δ
$𝚺𝑡)𝑑𝑡 − 𝑐𝑡(𝒂𝑡) 

 

 
 Carry term combined 

both of Gamma-Theta 
carry and drift 

Risk term driven by 
the covariance 

matrix of X 

Implementation 
cost 
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The Greek Era 

Parameter Hedging 
 

sup
𝒂𝑡

: 𝒂𝑡𝜹
$𝝁𝑡 +

1

2
(𝒂𝑡𝚺𝑡)′Γ

$(𝒂𝑡𝚺𝑡) + Θ 𝑑𝑡 −
𝜆

2
(𝒂𝑡𝜹

$𝚺𝑡)′(𝒂𝑡𝜹
$𝚺𝑡)𝑑𝑡 − 𝑐𝑡(𝒂𝑡) 

 

 

 

Pros 

– Data-driven combination of carry and risk 

– Captures well-known effects such as “skew delta” 

– Fast 

Cons 

– Normal Approximation: 

 Does not capture strong non-linearities such as short-term barriers 

 I.e. can lead to strictly worse “hedged” portfolios 

– Hedges are only locally optimal / what is the optimal horizon dt vs. the absolute cost 
term 

– Still requires mark-to-model values for Greeks and pricing 

 

Carry term combined 
both of Gamma-Theta 

carry and drift 

Risk term driven by 
the covariance 

matrix of X 

Implementation 
cost 
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Beyond Greeks 

Statistical Hedging I – quadratic case 

– In our previous example, we effectively approximated the return of a 
derivative over dt as a normal. 

– In Statistical Hedging [2013] we proposed replacing this approximation with 
genuine historic returns of “the same” derivatives. 

 For each historic day, use a derivative with the then-same moneyness and 
time-to-maturity, and compute that derivative’s return over then-dt. 

– Do not use today’s fixed derivative terms. 

– Compute returns of fixed instruments. 

– For path-dependent options, keep past states consistent (e.g. past 
barrier breaches). 

 This yields genuine historic returns of both Z and H from t to t+dt. 

– In practise, we will want to adjust the drift term to take into account views on 
relevant carry: e.g. just because the S&P went up for the last years does not 
mean we wish to capture this with our model  topic of model uncertainty 
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Beyond Greeks 

Statistical Hedging I – quadratic case 

– Given returns dMt and dHt we may now solve the Markoviz problem 

sup
𝒂𝑡

: E[𝑑𝑀𝑡 + 𝒂𝑡𝑑𝑯𝑡]𝑑𝑡 −
𝜆

2
Var[𝑑𝑀𝑡 + 𝒂𝑡𝑑𝑯𝑡] − 𝑐𝑡(𝒂𝑡) 

 

 

 

– We note that if all variables are well approximated by our previous normal 
representation, then the two approaches coincide. 

 

 

Carry term derived 
from historical 

performane 

Risk term driven by 
the covariance 

matrix of X 

Implementation 
cost 
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Beyond Greeks 

What is wrong with Markoviz for Derivatives?  

__ 
Risk aversion levels manually calibrated to roughly fit between CVaR and Mean-Dispersion measure: Mean-MAD 1, Mean-Vol 1, 
CVaR 1.5, Quadratic VaR 0.5. 

Mean-Dispersion measures are not 
monotone 

 

𝑈 𝐴 ≔ E 𝐴 −
𝜆

2
𝐴 − E[𝐴] 𝑝 

 
… it makes very little sense to optimize 

over a non-monotonic objective. 

Graph shows the fair 
risk-adjusted price 
for taking on a short 
position in a digital 
call. 
The lower the strike, 
the higher the 
required 
compensation. 

NB: Mean-Variance, Mean-
Volatility, Mean-Square, … all have 

the same issue of not being 
monotone. 
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Beyond Greeks 

What is wrong with Markoviz for Derivatives?  

 Using entropy vs. mean-variance to hedge a net long butterfly position maturing tomorrow. 
Data generated with BS model, 50% vol. The same vanillas which compose the butterfly are 

available to trade for free. 

Increased Risk Aversion 

Mean-variance sells a net 
long position for positive 
cost to reduce perceived 

“variance” risk 
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Beyond Greeks 

Statistical Hedging II – Convex Risk Measures 
– Mean-Variance is not monotone; we therefore move to a systematic approach to 

measure carry/risk: we call U a risk-adjusted return if  
 U is normalized to U(0) = 0. 
 U is monotone, i.e. AB then U(A) U(B). 
 U is concave. 
 U is cash-invariant, U(A+c) = U(A) + c for all constants c. 

– We note –U is a convex risk measure. 

– A classic example is the entropy risk-adjusted return 𝑈 𝐴 ≔ −1

𝜆
log E[exp(−𝜆𝐴)]. 

Another important example is (the negative of) CVaR. 
– Boundary cases for most reasonable U’s: E 𝐴 ≥ 𝑈 𝐴 ≥ −inf (𝐴) 
– We now solve the local problem 

 
sup
𝒂𝑡

: U 𝑑𝑀𝑡 + 𝒂𝑡𝑑𝑯𝑡 − 𝑐𝑡 𝒂𝑡  

which we may also write in terms of the associated dispersion risk measure 
𝜌 𝐴 ≔ −𝑈(𝐴 − 𝐸 𝐴 ) as 
 

sup
𝒂𝑡

: E 𝑑𝑀𝑡 + 𝒂𝑡𝑑𝑯𝑡 − 𝜌(𝑑𝑀𝑡 + 𝒂𝑡𝑑𝑯𝑡) − 𝑐𝑡(𝒂𝑡) 

 
This resembles the previous carry-risk-cost representation. 
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Beyond Greeks 

Cost vs. Risk Aversion – Quadratic CVaR Example 

Increased Risk Aversion 

In
creased

  C
o

st 

Super-Hedging 
under extreme 

risk aversion 

Hedge 
only spot 

Here we see less 
hedging vs. cash 

injection: trading is 
more expensive 

than injecting more 
cash 

𝑈 𝐴 ≔ −inf
𝑤

𝑤 + 1 + 𝜆 𝐴 + 𝑤 −
2   
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Beyond Greeks 

Statistical Hedging 
 

sup
𝒂𝑡

: U(𝑑𝑀𝑡 + 𝒂𝑡𝑑𝑯𝑡) − 𝑐𝑡(𝒂𝑡) 

 

Pros 

– Data-driven combination of carry and risk which captures non-linearities 

– Captures well-known effects such as “skew delta” 

– Monotone, convex hedged portfolios. 

Cons 

– Hedges are only locally optimal / what is the optimal horizon dt vs. the 
absolute cost term 

– Still requires mark-to-model values for return computation and pricing 

– Compute intensive 
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The End of the Greek Era 

Summary 

– Classic Greek Hedging is unsuitable for data-driven risk management 

– Parametric Hedging works for very smooth portfolios 

– Statistical Hedging expands this to strong non-linear features 

 

Challenges 

– Future hedging cost for the now-optimal portfolio are not taken into account: 
tomorrow’s mark-to-model value is assumed to be realizable. 

– Pricing relies on classic model prices, possibly with some ad-hoc adjustment 
due to immediate hedging cost. 

 

Deep Hedging 

– Simulate the market to maturity and then solve the generic problem 
 

sup
𝒂0…𝒂𝑇−1

: U 𝑍𝑇 + 𝜹𝑡𝑑𝑯𝑡

𝑇−1

𝑡=0
− 𝑐𝑡 𝒂𝑡

𝑇−1

𝑡=0
 



Deep Hedging 
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Deep Hedging 

Deep Hedging 

– Simulate the market to maturity and then solve the generic problem 
 

sup
𝒂0…𝒂𝑇−1

: U 𝑍𝑇 + 𝜹𝑡𝑑𝑯𝑡

𝑇−1

𝑡=0
− 𝑐𝑡 𝒂𝑡

𝑇−1

𝑡=0
 

 

– Classic “hedging under market frictions” problem. 

 

Challenges 

– Theory 

– Numerical implementation 

– Market dynamics 
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Theory 

Deep Hedging 

𝑣∗ 𝑍 ≔ sup
𝜋=𝒂0…𝒂𝑇−1

: U 𝑍𝑇 + 𝜹𝑡𝑑𝑯𝑡

𝑇−1

𝑡=0
− 𝑐𝑡 𝒂𝑡

𝑇−1

𝑡=0
 

 
Statistical Arbitrage 

– We say the market has statistical arbitrage if 𝑣∗ 0 > 0. 
 This does not imply presence of strict arbitrage. 

Example: Black & Scholes model with positive drift. 
 Strictly speaking, presence of strict arbitrage also does not imply presence of 

statistical arbitrage. 
Example: market has 100 scenarios, in 6 of which the asset returns 0%. In all 
other scenarios the asset returns 1%. Under CVaR@95%, 𝑣∗ 0 = 0. 

– Statistical Arbitrage is real – it means there are opportunities in the market, 
depending on one’s risk aversion. 
 Example: realized-implied vol carry; rates curve carry etc. 

– However, it can pollute the question of risk management: just as in classic cash 
portfolio optimization the estimation of “alpha” is much more involved. 
 We may therefore separate the estimation of carry from the estimation of the 

higher moments of the distribution of our instruments. 
– We call a trade a static arbitrage opportunity if the return is non-negative under 

any market dynamics (e.g. violation of butterfly or calendar arb). 
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Theory 

Deep Hedging 

𝑣∗ 𝑍 ≔ sup
𝜋=𝒂0…𝒂𝑇−1

: U 𝑍𝑇 + 𝜹𝑡𝑑𝑯𝑡

𝑇−1

𝑡=0
− 𝑐𝑡 𝒂𝑡

𝑇−1

𝑡=0
 

 

Pricing 

– Consider a current position of Z. 
The price of selling a derivative Y to a customer is given by the marginal cost 

 
𝑝(𝑌) ≔ 𝑣∗ 𝑍 − 𝑌 − 𝑣∗ 𝑍  

 

 Of course, 𝑣∗ 𝑍 − 𝑌 + 𝑝(𝑌) = 0. 

 Reflects naturally a bid/ask spread. 

 The model-price is no longer used. 
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Theory 

Deep Hedging 

𝑣∗ 𝑍 ≔ sup
𝜋=𝒂0…𝒂𝑇−1

: U 𝑍𝑇 + 𝜹𝑡𝑑𝑯𝑡

𝑇−1

𝑡=0
− 𝑐𝑡 𝒂𝑡

𝑇−1

𝑡=0
 

 

Hamilton-Jacobi-Bellman 

– One of the biggest short comings of the approach presented here is that Z is 
fixed and not a part of the “state” of the market. 

– The Bellman form of the problem can be written as follows: 

 Denote by Mt all future cash flows of our portfolio on and after t, and by 
mt the cashflow arising from holding Mt at t. 
This gives the classic HJB reward form 

 
𝑉∗ 𝑀𝑡|𝑺𝑡 = sup

𝑎𝑡

: 𝑈  𝑉∗ 𝑀𝑡+1 + 𝒂𝑡𝐻
𝑡+1 |𝑺𝑡 − 𝑐 𝒂𝑡|𝑺𝑡 +𝑚𝑡 

 Research topics: 
– Find a representation for a portfolio of derivatives which is efficient for this to 

be applicable. 

– Under what conditions does this equation have a fixed point for all combined 
states (Mt,St). 
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Theory 

Deep Hedging 

𝑣∗ 𝑍 ≔ sup
𝜋=𝒂0…𝒂𝑇−1

: U 𝑍𝑇 + 𝜹𝑡𝑑𝑯𝑡

𝑇−1

𝑡=0
− 𝑐𝑡 𝒂𝑡

𝑇−1

𝑡=0
 

 

Pricing 

– Consider a current position of Z. 
The price of selling a derivative Y to a customer is given by the marginal cost 

 
𝑝(𝑌) ≔ 𝑣∗ 𝑍 − 𝑌 − 𝑣∗ 𝑍  

 

 Of course, 𝑣∗ 𝑍 − 𝑌 + 𝑝(𝑌) = 0. 

 Reflects naturally a bid/ask spread. 

 The model-price is no longer used. 
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Numerical Implementation 

Deep Hedging 

sup
𝜋=𝒂0…𝒂𝑇−1

: U 𝑍𝑇 + 𝜹𝑡𝑑𝑯𝑡

𝑇−1

𝑡=0
− 𝑐𝑡 𝒂𝑡

𝑇−1

𝑡=0
 

 
Structure of the Problem 

– The problem above is convex in p. 
– We will solve this over a fixed set of paths, and therefore fixed set of terminal payoffs. 
– Path-dependency of the problem enters due to transaction cost and from path-dependent 

restrictions on liquidity. 
 
Reinforcement Learning 

– Parameterize at as a neural network, with the result of the previous step feeding into the next 
step. 

– This is called “model-based policy search” in the ML literature. 
– Theoretical result [DH’18]: neural networks approximate any policy arbitrarily well with 

increasing depth and width. 
– Practical choices: 

 Each at has its own network  rather deep network 
 Share network across t  LSTM to capture path  

– Example code in Karas is just about a page of code 
https://people.math.ethz.ch/~jteichma/deep_portfolio_optimization_keras.html 

– Efficient, scalable, model-independent implementation. 

https://people.math.ethz.ch/~jteichma/deep_portfolio_optimization_keras.html
https://people.math.ethz.ch/~jteichma/deep_portfolio_optimization_keras.html
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Numerical Implementation 

Deep Hedging 

– We show the efficiency and impact of the algorithm for classic 
derivative model dynamics. 

– Used to validate convergence of the numerical scheme against 
(the few) analytically available results. 

– Even here, we are able to compute previously inaccessible 
problems for entire portfolios of derivatives 
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Deep Hedging 

Comparison with theory: vanilla option with Heston dynamics 

– Hedge an ATM 30-day call with spot and var swap 

– No costs, no limits, 50% CVaR value function 

 

PnL distribution 

Spot hedge 

Spot price Var swap price 
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Deep Hedging 

Comparison with theory: Heston dynamics with cost 

– We have asymptotic results for small transaction cost for classic 
one-factor models such as Black Scholes. 

– There are no analytic results for higher order models. We show 
that the same asymptotics hold using our numerical scheme 

Black-Scholes for 
which we know 

theoretical results 

Heston 
No theoretical results but 

we plot the 1-factor 
expected behaviour 
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Deep Hedging 

– 30-day ATM 
call option 

– Plot shows 
spot hedge 
(“Delta”) 

– No limits 

– Entropic 
value 

– Risk aversion 
10 

– Black-Scholes 
simulator 

Vanilla option: impact of transaction costs 
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Deep Hedging 

Forward starting option: impact of transaction costs 

Daily Delta Amount from 0th day to Maturity 

– 30-day ATM call starting in 15 days 

– Heston simulator, no limits, entropic value, risk aversion 50 

– Hedge with spot only 

Incremental delta 
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Deep Hedging 

Forward starting option: impact of transaction costs 

Total Delta Amount from Ref day to Maturity 

– 30-day ATM call starting in 15 days 

– Heston simulator, no limits, entropic value, risk aversion 50 

– Hedge with spot only 

 

Total delta 



Q
 U

 A
 N

 T
 I 

T 
A

 T
 I 

V
 E

  R
 E

 S
 E

 A
 R

 C
 H

 

34 

Deep Hedging 

Popular retail payoff: 

– Client is short a down-and-in 
put paid at maturity  

– Upper knockout barrier 

– Fixed coupons until KO 

Market 

– 0.1% transaction costs 

– No limits 

– Risk aversion 20 

– Entropic value 

– Monthly hedging 

– Local volatility simulator 

Total delta Incremental delta 

Sample paths 

Depending on the state 
(barrier breached) future 

delta changes 
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Deep Hedging 

Deep Hedging with Classic Derivatives Generators 

– Useful for assessing liquidity and cost impact at scale 

 Straightforward with TensorFlow 

 Inherently parallelizable since risk-adjusted returns tend to be expectation 
based. 

 Speed independent of number of instruments in portfolio 

 Asset-class agnostic: discounting, FX, own callability etc all no problem 

 Client-callability: master thesis under way @ ETH 

 

…. shouldn’t we use the real market to train our model? 



Market Dynamics 
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Market Dynamics 

Challenges 

– Sparse data set vs. large number of instruments. 

– Non-stationarity and robustness 
Idea: solve a robust version of our problem, 
 

       inf
𝑄
: sup
𝜋=𝒂0…𝒂𝑇−1

: U𝑄 𝑍𝑇 +  𝜹𝑡𝑑𝑯𝑡
𝑇−1
𝑡=0 −  𝑐𝑡 𝒂𝑡

𝑇−1
𝑡=0  

 

– Avoid static arbitrage 
A possible approach is parameterizing the implied vol in “discrete local 
vol” (see also Wissel) which is an arb-free parameterization.  

Model Challenges 

– Statistical arbitrage. 

 Robustify the estimator. 

 Find the closest risk-neutral measure without drift. 
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GAMeD 

Generative Adversarial Market Dynamics 
– We want to solve 

 

𝑝Q(Z) ≔ sup
𝜋=𝒂0…𝒂𝑇−1

: U𝑄 𝑍𝑇 + 𝜹𝑡𝑑𝑯𝑡

𝑇−1

𝑡=0
− 𝑐𝑡 𝒂𝑡

𝑇−1

𝑡=0
 

– However, we are not sure about Q since we only observe samples 𝑄 .  
Classic robust approach [Follmer, Schied: Stochastic Finance: An Introduction in 
Discrete Time, 2011]: define set of reasonable measures “close” to 𝑄  and a 
distance d to 𝑄  and solve for 𝛼 ↑ ∞: 
 

𝑝 𝐹(𝑍) ≔ sup
𝜋
 inf
𝑄

𝛼𝑈𝑄 𝐺 𝜋𝑡; 𝑍𝑇
+
+𝑑(Q, Q )   

 
– Machine Learning interpretation [Generative Adversarial Networks, Goodfellow 

2014]:   
 Generator Q tries to fit the target distribution and take away money 
 Adversary 𝜋 tries to make money 

 
– We use unconditional Wasserstein distance 𝑊1 as our metric using a fast stochastic 

algorithm c.f, [Stochastic Optimization for Large-scale Optimal Transport, 2016, 
Genevay / Cuturi /Peyré /Bach] 
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GAMeD 

STOXX50 Dataset 

– We obtain historical spot and option prices for last 10 years of data ~ 2000 
historical data points 

– Option Grid with relative strikes 
𝐾 = {0.8, 0.85, 0.9, 0.95, 1.0, 1.05, 1.1, 1.15, 1.2}, and maturities of 
𝑇 = {20, 40, 60, 80, 100, 120} days 

– 𝑯𝑡 = 109-dimensional vector = 1 Spot + 54 Calls + 54 Puts 

– At every time step, 𝑯𝑡 = generated prices for the grid of options + spot 

– Each simulation time step = 20 days to match the maturities 

 

K 

T 

K 

T 
𝑯0 𝑯1 

K 

T 
𝑯𝑡  

Day 0 Day 20 
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GAMeD 

Setup and Training  

– Generator network: 2 layer LSTM of size 64, 𝑓 ~62K parameters 

– Hedger network: 2 layer LSTM of size 64, 𝜋 ~112K parameters 

– Use 2% transaction costs to regularize the hedger network 

– Training: 

 Train with batch sizes of 32K to minimize noise, RMS Prop with a learning 
rate of 1e-4 

 Dropout of 25% between state-to-state LSTM connections to regularize 
training 

 50 K updates with a batch size of 32K takes 10hrs to train on Tesla V100 
GPU 
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GAMeD 

Results 
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GAMeD 

Results 

Histogram of generated 
spot prices compared to 
historical data 
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GAMeD 

Results 

Histogram of  
generated call option 
prices at t = 3 
compared to 
historical data 

In
creasin

g  M
atu

rity 

Increasing Strike 
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GAMeD 

Results 

K = 0.95 

K = 0.90 

K = 0.85 

K = 0.80 

K = 1.05 

K = 1.10 

K = 1.15 

K = 1.20 

Graphs show the time series of 
option prices from simulated by 
LSTM based generator 
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What Next  

Next steps 

– Define conditional version of GAMeD 

– Use distance metric which reflects use case, i.e. DH itself 

– Move to recursive version of DH. 

– Formalize theoretical relationship between adversarial learning 
and robust statistics 
 
 
 
Thank you very much for your attention 


