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Abstract

Modeling financial time series by stochastic processes is a challenging
task and a central area of research in financial mathematics. In this paper,
we break through this barrier and present Quant GANs, a data-driven
model which is inspired by the recent success of generative adversarial
networks (GANs). Quant GANs consist of a generator and discrimina-
tor function which utilize temporal convolutional networks (TCNs) and
thereby achieve to capture longer-ranging dependencies such as the pres-
ence of volatility clusters. Furthermore, the generator function is explicitly
constructed such that the induced stochastic process allows a transition to
its risk-neutral distribution. Our numerical results highlight that distri-
butional properties for small and large lags are in an excellent agreement
and dependence properties such as volatility clusters, leverage effects, and
serial autocorrelations can be generated by the generator function of Quant
GANs, demonstrably in high fidelity.

1 Introduction

Since the ground-breaking results of AlexNet [27] at the ImageNet competition
deep neural networks excel in various areas [13, 18, 31, 36], even surpassing
human-level performance [19, 35]. While applications in image analysis have
already become standard practice, the usage of deep neural nets in finance is
still in early stages. To cite a few examples, neural networks are used to hedge
large portfolios of derivatives [6], solve optimal stopping problems [2] or detect
anomalies in accounting data [34].
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In this paper, we shall look at the task of simulating stock price evolutions
by introducing Quant GANs. Quant GANs are based on the application of
generative adversarial networks (GANs) and located between pure data-based
approaches, such as historical simulation, and model-driven methods such as
Monte Carlo simulation assuming an underlying stock price model like the Black
Scholes model, the Heston stochastic volatility model or Lévy process based
modeling.

Applying the GAN concept to time series modeling comes with several
potential pitfalls. Most importantly, the question regarding a reasonable network
architecture has to be answered. There exist promising approaches in the
literature aiming at applying the GAN idea to time series [12], recently also
with a focus on financial time series, see [26, 37, 42, 43]. However, our numerical
analysis suggests that the architectures do not work as well as the proposed
Quant GAN model constructed in the present paper. We believe that our paper
contributes to increasing the popularity of generative models as a potential
substitute for Monte Carlo simulations in various contexts, specifically related
to applications in a financial setting.

0 500 1000 1500 2000

0

0.2

0.4

0.6

0.8

1

1.2

T (number of days)

Lo
g 
pa
th

(a) S&P 500 log path
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(b) Generated log paths of a Quant GAN

Figure 1: Comparison of a S&P 500 log path (a) with generated log paths of a
calibrated Quant GAN (b).

Using two different neural networks as opponents is the fundamental principle
of GANs. While one neural network, the so-called generator, is responsible for
the generation of stock price paths, the second one, the discriminator, has to
judge if the generated paths are artificial or seem to be generated from the same
underlying distribution as the data (i.e. the past prices). Training both networks
simultaneously is the main challenge of this concept and recent advances in
GAN optimization allow the generator to nicely approximate the underlying
data distribution [5, 29].

In contrast to the classic approach [3, 4, 20] where the financial time series is
modeled by assuming that the log spot price inherits the dynamics of a designated
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stochastic process, we directly try to learn the characteristics from the data.
This is a fundamental difference as only very weak modeling assumptions are
required.

In the spirit of GARCH processes, the generator framework used in Quant
GANs is called Stochastic Volatility Neural Network (SVNN) and consists of a
volatility, drift and an innovation network. The volatility and drift network is
represented by a temporal convolutional network (TCN) which is particularly
suited for modeling long-range dependencies and allows for parallelization. More-
over, SVNNs are constructed such that the generated paths can be evaluated
under their risk-neutral distribution and, as a special case, constrained to exhibit
conditionally normal log returns.
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Figure 2: Fifty daily log paths without drift generated by a Quant GAN calibrated
on the daily log returns of the S&P 500 index from 3. June 2009 to 2. January
2019. Distributional and dependence properties can be closely approximated.

One of our main contributions is the rigorous mathematical definition of TCNs
for the first time in the literature. As this definition requires the use of heavy
notation, we will illustrate it by simple examples and graphical representations.
This should help to make the definition accessible for mathematicians that are
not familiar with the specialized language of neural nets.

Another task is the pre- and postprocessing of raw financial data in order
to train the discriminator. For this, we will describe a detailed pipeline making
training possible. An innovative use of the Lambert W transform will play an
essential role for generating heavy tailed stock price returns by using methods
for normalized Gaussian data.

Finally, we demonstrate the usefulness of Quant GANs by applying it to real
S&P-500 data.
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2 Structure

In Section 3 the main contributions of this paper will be summarized. In the
following Section 4 an overview of the stylized facts of asset returns is given.
Afterward, the required neural network topologies used to construct SVNNs, such
as the multilayer perceptron (MLP) and the TCN, are introduced in Section 5.
In Section 6, we define GANs rigorously for random variables and then extend
them to the setting of stochastic processes by using TCNs as the underlying
generator and discriminator.

With sufficient background knowledge on neural nets and stylized facts, we
will turn to the problem of generating log returns by using SVNNs in Section 7
and prove theoretical results for the proposed model. After having introduced
SVNNs we define our preprocessing pipeline in Section 8 in order train the
proposed model with a log return series. Last, Section 9 provides numerical
results that demonstrate that Quant GANs achieve to approximate distributional
as well as dependence properties of the S&P 500 closely.

3 Main Contributions

In this paper we provide formal definitions of a novel neural network architecture
carefully tailored for the task of learning the underlying dynamics of stationary
stochastic processes. Furthermore, we will introduce the Quant GAN, a TCN
based log return model trained using the GAN formalism, for which an explicit
transition to its risk-neutral distribution will be derived as well as theoretical
results regarding the generation of unbounded moments which relates to current
work on modeling tails with generative networks [40]. Moreover, we will motivate
how this model naturally extends well-known stochastic volatility models. Finally,
in a numerical study we will demonstrate that the generation of daily log return
series by Quant GANs outperform classical approaches like GARCH -models.
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Figure 3: Figures (a) and (b) display a comparison of the generated Quant GAN
(blue) and empirical S&P 500 (orange) samples.

4



4 Background on Financial Time Series

For investment decisions or option pricing purposes the absolute stock price
is of minor importance. It is the relative return – either in form of Rt =
(St − St−1)/St−1 or as log return Rt = log(St/St−1) – that is used to evaluate
the performance of a stock over a certain period (here for a day, a month or
a year, depending on the used time scale). Therefore, the generation of asset
returns is the main objective of this paper.

The characteristic properties of asset returns are well-studied. The most
important such properties are called their stylized facts. These properties will
also be used later to judge the quality of the generated asset returns. A list of
the most important stylized facts include (see e.g. [7, 10]):

– asset returns admit heavier tails than the normal distribution,

– the distribution of asset returns seems to be more peaked than the normal
one,

– asset returns admit phases of high activity and low activity in terms of
price changes, an effect which is called volatility clustering,

– the volatility of asset returns is negatively correlated with the return
process, an effect named leverage effect,

– empirical asset returns are considered to be uncorrelated but not indepen-
dent.

All those stylized facts are not shared by the classic Black-Scholes model, which
is based on the assumption of normally distributed log returns.

5 Neural Network Topologies

In this section we introduce neural network topologies that are essential to
construct stochastic volatility neural networks. We begin with the most basic
model used in deep learning, namely the multilayer perceptron (MLP). Afterward,
we provide a formal definition of temporal convolutional networks (TCNs) which
are also known as WaveNets [31]. TCNs are convolutional architectures that
achieve state-of-the-art results in the sequence domain for processing time series
with long ranging dependencies [1]. Roughly speaking, TCNs are an approach
that aims to replace Recurrent Neural Networks (RNNs) by using Convolutional
Neural Networks (CNNs) and prove to be more powerful for our purpose.

5.1 Multilayer Perceptrons

The MLP lies at the core of deep learning models and is constructed by composing
affine transformations with so-called activation functions. Figure 4 depicts the
construction of an MLP with 2 hidden layers where the inputs are 3-dimensional
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and the output is 1-dimensional. We begin with the activation function as the
crucial ingredient and then define the MLP formally.

Definition 5.1 (Activation Function). A function φ : R→ R that is Lipschitz
continuous, monotonic and satisfies φ(0) = 0 is called activation function.

Remark 5.2. Definition 5.1 comprises a large class of functions used in the deep
learning literature. Examples of activation functions in the sense of Definition 5.1
include rectifier linear units (ReLUs) [30], parametric ReLUs (PReLUs) [19],
MaxOut [17] and a vast amount of other functions in the literature [9, 25, 28, 41].
Note that the property φ(0) = 0 is desirable during stochastic gradient descent
(cf. [24]).

Definition 5.3 (Multilayer Perceptron). Let L,N0, . . . , NL+1 ∈ N, φ an acti-
vation function, Θ an Euclidean vector space and for any l ∈ {1, . . . , L + 1}
let al : RNl−1 → RNl be an affine mapping. A function f : RN0 ×Θ→ RNL+1 ,
defined by

f(x, θ) = aL+1 ◦ fL ◦ · · · ◦ f1(x),

where ◦ denotes the composition operator and

fl = φ ◦ al for all l ∈ {1, . . . , L}

and φ being applied component-wise, is called a multilayer perceptron with
L hidden layers. In this setting N0 represents the input dimension, NL+1

the output dimension, N1, . . . , NL the hidden dimensions and aL+1 the output
layer. Furthermore, for any l ∈ {1, . . . , L + 1} the function al takes the form
al : x 7→W (l)x+b(l) for some weight matrix W (l) ∈ RNl×Nl−1 and bias b(l) ∈ RNl .
With this representation, the MLP’s parameters are defined by

θ :=
(
W (1), . . . ,W (L+1), b(1), . . . , b(L+1)

)
∈ Θ.

We denote the class of MLPs with L hidden layers mapping from Rd0 to Rd1 by
MLPd0,d1,L.

Remark 5.4. In future derivations we will call a function f : Rd0 ×Θ→ Rd1 with
parameter space Θ a network if it is Lipschitz continuous.

A well-known theorem that justifies the high applicability of multilayer percep-
trons is the so-called universal approximation theorem of one-layer perceptrons.
For completeness, we state Theorem 1 and Theorem 2 from [22] in the form as
is given in [6, Theorem 4.2].

Theorem 5.5 (Universal Approximation Theorem). Assume the activation
function φ to be bounded and non-constant. The following statements hold:

– For any finite measure µ on
(
Rd0 ,B

(
Rd0
))

and 1 ≤ p < ∞, the set

MLPd0,1,1 is dense in Lp
(
Rd0 , µ

)
.

– If φ is additionally continuous, the set MLPd0,1,1 is dense in C
(
Rd0
)

with
respect to the topology of uniform convergence on compact sets.

Note that this easily carries over to the case of MLPs with output dimension
d1 > 1 and more than one hidden layer.
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Figure 4: 2-layer MLP with input dimension N0 = 3, output dimension N3 = 1
and hidden dimensions N1 = N2 = 11.

5.2 Temporal Convolutional Networks

It is a stylized fact that the autocorrelation function of absolute returns decays
slowly as a function of the time lag, which indicates the presence of long range
dependencies. For this reason, the log return process is often decomposed into a
stochastic volatility and an innovations process. In order to model stochastic
volatility, we propose the use of TCNs.

TCNs are convolutional architectures which have recently shown to be com-
petitive on many sequence-related modeling tasks [1]. In particular, empirical
results suggest that TCNs are able to capture long range dependencies in se-
quences more effectively than well-known recurrent architectures [15, Chapter
10] such as the LSTM [21] or the GRU [8]. One of the main advantages of TCNs
compared to RNNs is the absence of exponentially vanishing and exploding gra-
dients through time [32], which is one of the main issues why RNNs are difficult
to optimize. Although LSTMs address this issue by using gated activations,
empirical studies show that TCNs are comparatively more capable [1]. Last, in
the context of stochastic process generation TCNs are beneficial as they can be
used to approximate stationary processes very efficiently.
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The construction of TCNs is simple. The crucial ingredient are so-called
dilated causal convolutions. Causal convolutions are convolutions, where the
output only depends on past sequence elements. Dilated convolutions, also
known as atrous convolutions, are convolutions “with holes”. Figure 6 illustrates
a TCN with 4 hidden layers, kernel size K = 2 and dilation factor D = 1 and
Figure 7 depicts a TCN with K = D = 2, where the dilation increases in every
layer by a factor of two. Comparing both networks it becomes clear that the use
of increasing dilations in each layer makes it possible to model longer sequences
and hence longer ranging dependencies.

In what follows, we define the TCN as well as related concepts formally. For
the rest of this section, let NI , NO,K,D, T ∈ N. Let us begin by defining the
convolution of a time series and a weight matrix with dilation D.

Definition 5.6 (∗D Operator). Let X ∈ RT×NI be an NI -variate sequence of
length T and W ∈ RK×NI×NO a tensor. Then for t ∈ {D(K − 1) + 1, . . . , T}
and m ∈ {1 . . . , NO} the operator ∗D, defined by

(W ∗D X)t,m :=

K∑
i=1

NI∑
j=1

Wi,j,m ·Xt−D(K−i),j ,

is called dilated causal convolutional operator with dilation D and kernel size K.

A visualization of the operator for different dilations and kernel sizes is given
in Figure 5.

(a) K = D = 1 (b) K = 2, D = 1 (c) K = D = 2

Figure 5: Dilated causal convolutional operator for different dilations D and
kernel sizes K

By using the notation from above we can immediately define a causal convo-
lutional layer with dilation D.

Definition 5.7 (Causal Convolutional Layer). Let W be as in Definition 5.6
and b ∈ RNO . A function

w : RT×NI → R(T−D(K−1))×NO

defined for t ∈ {D(K − 1) + 1, . . . , T} and m ∈ {1, ..., NO} by

w(X)t,m := (W ∗D X)t,m + bm

is called causal convolutional layer with dilation D.
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Remark 5.8. The quadruple (NI , NO,K,D) will be called the arguments of
a causal convolution w and represent the input dimension, output dimension,
kernel size, and dilation, respectively.

Input Layer

Hidden Layer

Hidden Layer

Hidden Layer

Hidden Layer

Output Layer

Figure 6: Vanilla TCN with 4 hidden layers, kernel size K = 2 and dilation
factor D = 1 (cf. [31]).

Example 5.9 (1 × 1 convolutional layer). Let X ∈ RT×NI be an NI -variate
sequence and w : RT×NI → RT×NO a causal convolutional layer with arguments
(NI , NO, 1, 1). We call such a layer a 1× 1 convolutional layer.1

In the previous section we constructed MLPs by composing affine transforma-
tions with activation functions. The vanilla TCN construction follows a similar
approach: causal convolutional layers are composed with activation functions. In
order to allow for more expressive transformations we will generalize the vanilla
TCN construction by introducing block modules.

Definition 5.10 (Block Module). Let S ∈ N. A function ψ : RT×NI →
R(T−S)×NO that is Lipschitz continuous is called block module with arguments
(NI , NO, S).

With the above definitions the TCN and vanilla TCN can be defined formally.
The TCN follows a general block module construction, whereas the vanilla TCN
is constructed similarly to the MLP by composing dilated causal convolutions
with activation functions. For completeness, both definitions are given below.

Definition 5.11 (Temporal Convolutional Network). Let T0, L,N0, . . . , NL+1 ∈
N. Moreover, for l ∈ {1, . . . , L} let Sl ∈ N such that

∑L
l=1 Sl ≤ T0 − 1. Hence,

for Tl := Tl−1 − Sl it holds

TL = T0 −
L∑
l=1

Sl ≥ 1 . (1)

1Note that using a 1 × 1 convolution is equivalent to applying an affine transformation
along the time (first) dimension of X.
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Furthermore, let ψl : RTl−1×Nl−1 → RTl×Nl for l ∈ {1, . . . , L} represent block
modules and w : RTL×NL → RTL×NL+1 a 1× 1 convolutional layer. A function
f : RT0×N0 ×Θ→ RTL×NL+1 , defined by

f(X, θ) := w ◦ ψL ◦ · · · ◦ ψ1(X) ,

is called temporal convolutional network with L hidden layers. The class of TCNs
with L hidden layers mapping from Rd0 to Rd1 will be denoted by TCNd0,d1,L

(d0 = N0, d1 = NL+1).

Definition 5.12 (Vanilla TCN). Let f ∈ TCNN0,NL+1,L such that for all
l ∈ {1, . . . , L} each block module ψl is defined as a composition of a causal con-
volutional layer wl with arguments (Nl−1, Nl,Kl, Dl) and an activation function
φ, i.e. ψl = φ ◦ wl. Then we call f : RT0×N0 ×Θ → RTL×NL+1 a vanilla TCN.
Moreover, if Dl = Dl−1 for all l ∈ {1, . . . , L}, we call f a vanilla TCN with
dilation factor D. Whenever Kl = K for all l ∈ {1, . . . , L}, we say that f has
kernel size K.

Input Layer

Hidden Layer

Hidden Layer

Hidden Layer

Hidden Layer

Output Layer

Figure 7: Vanilla TCN with 4 hidden layers, kernel size K = 2 and dilation
factor D = 2 (cf. [31]).

TCN’s ability to model long range dependencies becomes ultimately apparent
when comparing the two vanilla TCNs displayed in Figure 6 and Figure 7. In
Figure 6, the network is a function of 5 sequence elements, whereas the network
in Figure 7 has 16 sequence elements as input. We call the number of sequence
elements that the TCN can capture the receptive field size and give a formal
definition below:

Definition 5.13 (Receptive Field Size). Let f ∈ TCNd0,d1,L and let S1, . . . , SL
be as in Definition 5.11. The constant

R := 1 +

L∑
l=1

Sl

10



is called receptive field size (RFS ).

Remark 5.14. For vanilla TCNs with kernel size K and dilation factor D > 1, the
RFS R can be computed using the formula for the sum of a geometric sequence
with finite length:

R = 1 + (K − 1) ·
(
DL − 1

D − 1

)
.

Therefore, the RFS R is the minimum initial time dimension T0 of an input
X ∈ RT0×N0 such that the sequence X can be inferred (compare Equation 1).

Remark 5.15. Note that an MLP can be seen as a vanilla TCN in which each
causal convolution is a 1× 1 convolution. Thus, MLPs are a subclass of TCNs
with an RFS equal to 1.

The idea of residual connections can also be utilized.

Definition 5.16 (TCN with Skip Connections). Assume the notation from
Definition 5.11 and for Nskip ∈ N let

γl : RTl−l×Nl−1 → RTl×Nl × RTL×Nskip for l ∈ {1, . . . , L}

denote block modules. Moreover, let γ be a block module with arguments
(Nskip, NL+1, 0). If the output Y ∈ RTL×NL+1 of a TCN f : RT0×N0 × Θ →
RTL×NL+1 is defined recursively by(

X(l), H(l)
)

= γl

(
X(l−1)

)
for l ∈ {1, . . . , L}

Y = γ

(
L∑
l=1

H(l)

)
,

where X(0) ∈ RT0×N0 , then f is called a temporal convolutional network with
skip connections.

+

Figure 8: Vanilla TCN with skip connections and a 1× 1 convolutional layer.
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One of the downsides of TCNs is that the length of time series to be processed
is restricted to the TCN’s receptive field size. Hence, in order to model long range
dependencies we require a RFS R � 1 leading to computational bottlenecks.
Furthermore, it becomes questionable if such large networks can be trained
to model something meaningful and if sufficient data is available. Although
interesting extensions to TCNs with skip modules exist to model long range
dependencies, we leave it as future work to develop these methods.

The neural network topologies introduced in this section are the core com-
ponents used to achieve the results presented in Section 9. In order to train
these networks to generate time series we now formulate GANs in the setting of
random variables and stochastic processes.

6 Generative Adversarial Networks

Generative adversarial networks (GANs) [16] are a relatively new class of al-
gorithms to learn the distribution of a realization of a random variable, i.e. a
dataset or the distribution of a random variable itself. GANs were originally for-
mulated from a game-theoretic perspective. Prior to introducing the adversarial
modeling framework, let us introduce some notation and concepts for clarity.

Notation 6.1. Throughout this chapter let NZ , NX ∈ N such that NZ ≤ NX
and Z := RNZ and X := RNX represent two Euclidean vector spaces. If not
stated otherwise, the used norm will be clear by context. Moreover, throughout
this section let (Ω,F ,P) be a probability space and (Z,Z) and (X ,X) be two
measurable spaces. Furthermore, assume that X and Z are X and Z-valued
random variables respectively. The distribution of a random variable Y will be
denoted by PY .

6.1 Formulation for Random Variables

In the context of GANs, (Z,Z) and (X ,X) are called the latent and data measure
space, respectively. The random variable Z represents the noise prior and X
the targeted (or data) random variable. The goal of GANs is to train a network
g : Z×Θ(g) → X such that the induced random variable gθ(Z) := gθ ◦Z for some
parameter θ ∈ Θ(g) and the targeted random variable X are equal in distribution,

i.e. gθ(Z)
d
= X. In order to achieve this, Goodfellow et al. proposed the

adversarial modeling framework for deep neural networks and introduced the
generator and discriminator as follows:

Definition 6.2 (Generator). Let g : Z×Θ(g) → X be a network with parameter
space Θ(g). The random variable X̃, defined by

X̃ : Ω×Θ(g) → X
(ω, θ) 7→ gθ(Z(ω)) ,
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is called the generated random variable. Furthermore, the network g is called
generator and X̃θ the generated random variable with parameter θ.2

Definition 6.3 (Discriminator). Let d̃ : X × Θ(d) → R be a network with
parameters η ∈ Θ(d) and σ : R → [0, 1] : x 7→ 1

1+e−x be the sigmoid function.

A function d : X × Θ(d) → [0, 1] defined as d : (x, η) 7→ σ ◦ d̃η(x) is called a
discriminator.

Notation 6.4. Throughout this section we assume the notation used in Defini-
tion 6.2 and Definition 6.3. A batch (set) of M ∈ N realizations of a random
variable Y will be denoted by

{yi}Mi=1 := {Y (ωi)}Mi=1

for ω1, . . . , ωM ∈ Ω.

In the adversarial modeling framework two agents, the generator and the
discriminator (also referred to as the adversary), are contesting with each other
in a game-theoretic zero-sum game. Roughly speaking, the generator aims at
generating samples {x̃θ,i}Mi=1 such that the discriminator can not distinguish
whether the realizations were sampled from the target or generator distribution.
In other words, the discriminator dη : X → [0, 1] acts as a classifier, trying to
approximate the probability that a sample x ∈ X comes from the generator or
the dataset.

The optimization of GANs is formulated in two steps. First, the discrimina-
tor’s parameters η ∈ Θ(d) are optimized to maximize the probability of correctly
classifying real and generated samples. Hence, maximizing the function

L(θ, η) := E [log(dη(X))] + E [log(1− dη(gθ(Z)))]

= E [log(dη(X))] + E
[
log(1− dη(X̃θ))

]
.

In the second step, the generator’s parameters θ ∈ Θ(g) are trained to minimize
the probability of generated samples being identified as such and not from the
data distribution. In summary, we receive the min-max game

min
θ∈Θ(g)

max
η∈Θ(d)

L(θ, η) ,

which we will refer to as the GAN objective.

Training The generator’s and discriminator’s parameters (θ, η) are trained by
alternating the computation of their stochastic gradients∇ηL(θ, η) and∇θL(θ, η)
and updating their respective parameters. To get a close approximation of the
optimal discriminator d∗ [16, Proposition 1] it is common to compute the
discriminators stochastic gradient multiple times and ascent the parameters η.
Algorithm 1 describes the procedure in detail.

2The subscript θ of X̃θ represents the dependency with respect to the neural operator’s
parameters θ.
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Algorithm 1 Stochastic gradient optimization of a generative adversarial net-
work (cf. [16]).

INPUT: generator g, discriminator d, mini-batch size M ∈ N, generator learning
rate αg, discriminator learning rate αd, number of discriminator optimization
steps k
OUTPUT: parameters (θ, η)

while not converged do
for k steps do

Sample M samples from X̃θ: {x̃θ,i}Mi=1 .

Sample M samples from X: {xi}Mi=1 .
Compute and store the gradient

∆η ← ∇η
1

M

M∑
i=1

log(d(xi)) + log(1− d(x̃θ,i)) .

Ascent the discriminator’s parameters: η ← η + αd ·∆η .
end for
Sample M samples from X̃θ: {x̃θ,i}Mi=1 .
Compute and store the gradient

∆θ ← ∇θ
1

m

m∑
i=1

log(d(x̃θ,i)) .

Descent the generator’s parameters: θ ← θ − αg ·∆θ .
end while

6.2 Formulation for Stochastic Processes

We now consider the formulation of GANs in the context of stochastic process
generation by using TCNs as it turns out that the properties of TCNs are quiet
intriguing for this. The following notation is used for brevity.

Notation 6.5. Consider a stochastic process (Xt)t∈Z parametrized by some
θ ∈ Θ. For s, t ∈ Z, s ≤ t, we write

Xs:t,θ := (Xs,θ, . . . , Xt,θ)

and for an ω-realization

Xs:t,θ(ω) := (Xs,θ(ω), . . . , Xt,θ(ω)) ∈ X t−s+1.

We can now introduce the concept of neural (stochastic) processes.
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Definition 6.6 (Neural Process). Let (Zt)t∈Z be an i.i.d. noise process with

values in Z and g : ZT (g) × Θ(g) → X a TCN with RFS T (g) and parameters
θ ∈ Θ(g). A stochastic process X̃, defined by

X̃ : Ω× Z×Θ(g) → X
(ω, t, θ) 7→ gθ(Zt−(T (g)−1):t(ω))

such that X̃t,θ : Ω → X is a F − X measurable mapping for all t ∈ Z and

θ ∈ Θ(g), is called neural process and will be denoted by X̃θ := (X̃t,θ)t∈Z.

In the context of GANs the i.i.d. noise process Z = (Zt)t∈Z from Definition 6.6
represents the noise prior. Throughout this paper we assume for simplicity that
for all t ∈ Z the random variable Zt follows a multivariate standard normal
distribution, i.e. Zt ∼ N (0, I). In particular, the neural process X̃θ = (X̃t,θ)t∈Z
is obtained by inferring Z through the TCN generator g.

Since Z is i.i.d. noise, we conclude that the neural process X̃θ is stationary.
Therefore, the targeted process can only be approximated if it obeys the following
assumption:

Assumption 6.7. The targeted process X = (Xt)t∈N is stationary.

However, this is not a restriction when trying to approximate the log return
process as it is generally considered to be stationary.

In our GAN framework for stochastic processes the discriminator is similarly

represented by a TCN d : X T (d) × Θ(d) → [0, 1] with RFS T (d). With these
modifications to the original GAN setting for random variables, the GAN
objective for stochastic processes can be formulated as

min
θ∈Θ(g)

max
η∈Θ(d)

L(θ, η) ,

where
L(θ, η) := E [log(dη (X1:T (d)))] + E

[
log(1− dη(X̃1:T (d),θ))

]
and X1:T (d) and X̃1:T (d),θ denote the real and generated process respectively.
Hence, analogue to the GAN setting for random variables the discriminator is
trained to distinguish real from generated sequences, whereas the generator aims
at simulating sequences which the discriminator can not distinguish from the
real ones.

In order to train the generator and discriminator we proceed in a similar
fashion as in the case of random variables. We sample from the generated neural

process and from the target distribution M -sized batches {x̃(i)

1:T (d),θ
}Mi=1 and

{x(i)

1:T (d)}Mi=1. Each element of the batch is then inferred into the discriminator
to generate a [0, 1]-valued output (the classifications), which are then averaged
batch-wise to give a Monte Carlo estimate of the discriminator loss.
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7 The Model

After having introduced the main neural network topologies in Section 5 and
defined GANs in the context of stochastic process generation via TCNs in
Section 6, we will now turn to the problem of generating financial time series and
define the generator architecture of Quant GANs. As we have mentioned in the
introduction, orthogonal to the conventional approaches of assuming pre-defined
dynamics for the price processes, we learn the generating mechanism of the series
by using a highly parametrized neural network. Moreover, contrary to typical
recursive models, there is no burn-in period necessary.

Therefore, our proposed model makes no assumptions on the dynamics
themselves (such as the GARCH or the Heston model), except the one that an
optimal parameter vector θ ∈ Θ exists such that the generated neural process
represents the log return process:

Assumption 7.1. The spot log returns R := (Rt)t∈N can be represented by a
log return neural process Rθ := (Rt,θ)t∈N for some θ ∈ Θ.

We start by defining the log return neural process (log return NP) in the
first part of this section. The remainder of this section is devoted to answering
the following questions:

– Section 7.2: How heavy are the tails generated by a log returns NP?

– Section 7.3: Can the risk-neutral distribution of log return NPs be derived?

– Section 7.4: Can log return NPs be seen as a natural extension of already
existing time-series models?

7.1 Log Return Neural Processes

Log return NPs are motivated by the volatility-innovation decomposition of vari-
ous stochastic volatility models used in practice [4, 10, 20, 38]. The construction
consists of three main components:

– the latent process Z := (Zt)t∈Z, Z-valued i.i.d. Gaussian noise,

– the volatility and drift TCN g(σ,µ) : ZT (g) ×Θ(σ,µ) → X 2 with receptive
field size T (g),

– and the innovation network g(ε) : Z ×Θ(ε) → X .

The volatility and drift TCN receives T (g) latent variables Z(t−1)−(T (g)−1):(t−1)

from the past whereas the innovation network receives the latent variable Zt.
The outputs are then combined element-wise. The network which induces a
log return NP will be called stochastic volatility neural network (SVNN) and is
defined below. Figure 9 illustrates the architecture.
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Definition 7.2 (Log Return Neural Process). Let Z = (Zt)t∈Z be Z-valued

i.i.d. Gaussian noise, g(σ,µ) : ZT (g) ×Θ(σ,µ) → X 2 a TCN with RFS T (g) and
parameters ν ∈ Θ(σ,µ). Moreover, let g(ε) : Z × Θ(ε) → X be a network with
parameters γ ∈ Θ(ε). A stochastic process R, defined by

R : Ω× Z×Θ→ X
(ω, t, θ) 7→ [σt,ν � εt,γ + µt,ν ] (ω) ,

where � denotes the Hadamard product and(
σt,ν
µt,ν

)
:=

(∣∣∣g(σ,µ)
ν

(
Z(t−1)−(T (g)−1):(t−1)

)
1

∣∣∣
g

(σ,µ)
ν

(
Z(t−1)−(T (g)−1):(t−1)

)
2

)

εt,γ := g(ε)
γ (Zt) ,

is called log return neural process (log return NP). Furthermore, the NPs σν :=
(σt,ν)t∈Z and µν := (µt,ν)t∈Z obtained by inducing the latent process through
g(σ,µ) are called volatility and drift NP, respectively. εγ := (εt,γ)t∈Z is called
innovation NP. The generator architecture defining the log return NP is called
stochastic volatility neural network (SVNN).

(σt,θ, µt,θ)

Zt−1Zt−2Zt−3Zt−4Zt−5Zt−6Zt−7Zt−8

εt,θ

Zt

Figure 9: Structure of the SVNN architecture. The volatility and drift process
are generated by inferring the latent process Zt−8:t−1 through the TCN, whereas
the innovation is generated by inferring Zt.

Remark 7.3. For simplicity, we will in the following not distinguish the different
NP parameters and just write θ.

Denote with (FZt )t∈Z the natural filtration of the latent process Z. By
construction, σt,θ and µt,θ are FZt−1-measurable and εt,θ is FZt -measurable. In
particular, the log return NP Rt,θ is FZt -measurable. Moreover, the random
variables (σt,θ, µt,θ) and εt,θ are independent for all t ∈ Z, since Z is i.i.d. noise.
As it turns out, the proposed construction is convenient when deriving the
transition to the risk-neutral distribution in Section 7.3.
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7.2 Lp-Space Characterization of Rθ

It is a stylized fact that asset log returns R have heavy-tails. We inspect next
whether this property can be captured by the log return NP. We first prove a
result concerning generative networks in general and then conclude a Corollary
for the log return NP.

Proposition 7.4 (Lp-Characterization of Neural Nets). Let p ∈ N, Z ∈ Lp(Z)
and g : Z ×Θ→ X a network with parameters θ ∈ Θ. Then, gθ(Z) ∈ Lp(X ).

Proof. Observe that for any Lipschitz continuous function f : Rn → Rm there
exists a suitable constant L > 0 such that

‖f(x)− f(0)‖ ≤ L ‖x‖ ⇒ ‖f(x)‖ ≤ L ‖x‖+ ‖f(0)‖ (2)

as ‖x‖ − ‖y‖ ≤ ‖x− y‖ for x, y ∈ Rn. Now, using the Lipschitz property of
neural networks (cf. Remark 5.4), we can apply Equation 2 and as Z ∈ Lp(Z)
we obtain

E [‖gθ(Z)‖p] ≤ E [(L ‖Z‖+ ‖gθ(0)‖)p]

=

p∑
k=0

(
p

k

)
LkE

[
‖Z‖k

]
‖gθ(0)‖p−k

<∞ ,

where L is the networks Lipschitz constant and 0 ∈ Z the zero vector. This
proves the statement.

Since we assume that our latent process Z is Gaussian i.i.d. noise and thus
square-integrable, we conclude from Proposition 7.4 that mean and variance of
the volatility, drift and innovation NPs are finite. Additionally, these properties
carry over to the log return NP as the following Corollary proves.

Corollary 7.5. Let Rθ be a log return NP parametrized by some θ ∈ Θ. Then,
for all t ∈ Z and p ∈ N the random variable Rt,θ is an element of the space
Lp(X ).

Proof. The latent process Z is Gaussian i.i.d. noise. Hence, Proposition 7.4
yields σt,θ, εt,θ, µt,θ ∈ Lp(X ). As it holds

‖Rt,θ‖p = ‖σt,θ � εt,θ + µt,θ‖p ≤ (‖σt,θ � εt,θ‖+ ‖µt,θ‖)p ,

we obtain using the binomial identity

‖Rt,θ‖pp = E[‖Rt,θ‖p]

≤
p∑
k=0

(
p

k

)
E[‖σt,θ � εt,θ‖k ‖µt,θ‖p−k]

≤
p∑
k=0

(
p

k

)(
E
[
‖σt,θ � εt,θ‖2k

]
E
[
‖µt,θ‖2(p−k)

]) 1
2
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where the last inequality derives from Cauchy-Schwarz. Using the independence
and the Lp-property of the volatility and innovation NP, we obtain for arbitrary
q ∈ N

E [‖σt,θ � εt,θ‖q] = E

[
NX∑
i=1

|σt,θ,i · εt,θ,i|q
]

=

NX∑
i=1

E [|σt,θ,i|q]E [|εt,θ,i|q] <∞

Due to the existence of all moments, we present in Section 8 a heuristic
that works well to achieve empirically heavy tails. Although it remains an open
question how to generate certain tail asymptotics with deep neural nets, we
found that this heuristic works well when applied to TCNs.

Lastly, we motivate the choice of the latent process. We give a proof for the
MLP which can be naturally extended to the setting of TCNs and especially
SVNNs. The statement demonstrates that choosing the latent process as i.i.d.
Gaussian noise benefits stability during optimization, i.e. back-propagation and
parameter updates. Furthermore, the generated distribution is not necessarily
bounded, as would be the case for uniform i.i.d. noise.

Corollary 7.6. Under the assumptions of Proposition 7.4 the random variable
of back-propagated gradients ∇θgθ(Z) is an element of the space Lp(Θ).

Proof. Without loss of generality assume that X = R. Using the notation from
Definition 5.3 and that gθ has L hidden layers, the gradient of gθ(z) with respect
to the hidden weight matrix W (k), k ≤ L+ 1, is defined for z ∈ Z by

∇W (k)gθ(z) =

(
L∏
l=k

D(l)(z)W (l+1)T

)
⊗ g1:k−1,θ(z)

where ⊗ denotes the outer product, g1:k−1,θ := gk−1,θ ◦ · · · ◦ g1,θ and D(l)(z) =
diag(φ′(W (l)g1:l−1,θ(z))) (compare [15, Chapter 6.5]). Since the MLP is defined
as a composition of Lipschitz functions Proposition 7.4 yields g1:k,θ(Z) ∈ Lp(RNk)
for all k ≤ L. Similarly, the boundedness of φ′ implies that for an induced
matrix norm the random variable

∥∥D(l)(Z)
∥∥ is P-almost surely bounded by some

constant A > 0 for all l ≤ L. By applying both properties we obtain

E [‖∇W (k)gθ(Z)‖p] ≤ Bk E [‖g1:k−1,θ(Z)‖p] <∞

with

Bk := Ap(L−k+1)

 L∏
l=k

‖W (l+1)T ‖

p

.

With a similar argument one can show that the random gradients with respect
to the biases b(k), k = 1, . . . , L + 1 are also an element of Lp, thus concluding
the proof.
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7.3 Risk-Neutral representation of Rθ

At this point we cannot evaluate options under a log return NP as we do not
know a transition to its risk-neutral distribution. That aspect will be addressed
in this section. To this end, consider a one-dimensional log return NP

Rt,θ = σt,θ · εt,θ + µt,θ .

The spot prices are then defined recursively by

St,θ = St−1,θ · exp(Rt,θ) for all t ∈ N ,

where S0,θ = S0 denotes the current price of the underlying. Moreover, assume

a constant interest rate r and define the discounted stock price process (S̃t,θ)t∈N
by

S̃t,θ :=
St,θ

exp(rt)
.

In particular, the discounted price process fulfils the recursion

S̃t,θ = S̃t−1,θ · exp(Rt,θ − r) .

In its risk-neutral representation, the discounted stock price process has to be a
martingale. Therefore, we can used that S̃t−1,θ is FZt−1-measurable and get

E[S̃t,θ|FZt−1] = E[S̃t−1,θ · exp(Rt,θ − r)|FZt−1]

= S̃t−1,θ · exp(−r) · E[exp(σt,θ · εt,θ + µt,θ)|FZt−1] .

Hence, to obtain a martingale we have to correct for the corresponding term.
Therefore, let us consider the conditional expectation in more detail. As the
volatility and drift NPs are FZt−1-measurable and εt,θ is independent of FZt−1, we
can write

E[exp(σt,θ · εt,θ + µt,θ)|FZt−1] = E[exp(σ · εt,θ + µ)]σ=σt,θ
µ=µt,θ

=: h(σt,θ, µt,θ) .

Depending on the innovation NP εt,θ, the function h might be given explicitly
or has to be estimated using a Monte Carlo estimator.

As a result, we can define the risk-neutral log return Neural Process RMt,θ as

RMt,θ := Rt,θ − log(h(σt,θ, µt,θ)) + r

which is a corrected log return NP. The corresponding discounted risk-neutral
spot price process is then given by the recursion

S̃Mt,θ = S̃Mt−1,θ · exp(RMt,θ − r) = S̃Mt−1,θ · exp(Rt,θ − log(h(σt,θ, µt,θ)))

and defines a martingale.
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In particular, this recursion can be solved to obtain an explicit formula for
the (discounted) risk-neutral spot price process

S̃Mt,θ = S0 · exp

(
t∑

s=1

[Rs,θ − log(h(σs,θ, µs,θ))]

)

SMt,θ = S0 · exp

(
t∑

s=1

[Rs,θ − log(h(σs,θ, µs,θ))] + rt

)
It remains the problem of inferring the parameters of the underlying model.

In the case of financial time series, the discriminator is used to distinguish
between generated and real (observable) financial time series. What is different
here is that risk-neutral asset paths are not observable. Therefore, we can not
train the generator-discriminator pair in the same way as for financial time series.
An approach would be a classical least square calibration by option prices, where
we would use Monte Carlo of the generated risk-neutral paths as an estimate of
the models option price. We leave this as future work.

7.4 Constrained Log Return Neural Process

An interesting application is to constrain either the volatility or the innovations
NP to satisfy certain conditions. We exemplify this for the one-dimensional case,
i.e dim(X ) = 1, where the innovations NP is constrained to represent a standard
normal distributed random variable

εt,θ ∼ N (0, 1) for all t ∈ Z .

In this case, the risk-neutral dynamics can be simplified, since the conditional
expectation h(σt,θ, µt,θ) can be calculated explicitly:

h(σt,θ, µt,θ) = E[exp(σ · εt,θ + µ︸ ︷︷ ︸
∼ N (µ, σ2)

)]σ=σt,θ
µ=µt,θ

= exp

(
µt,θ +

σ2
t,θ

2

)
.

Hence, the risk-neutral log return NP is given by

RMt,θ = σt,θ · εt,θ −
σ2
t,θ

2
+ r

and the discounted risk-neutral price process solves the recursion

S̃Mt,θ = S̃Mt−1,θ · exp

(
σt,θ · εt,θ −

σ2
t,θ

2

)
.

In particular, solving the recursion gives the explicit representations

S̃Mt,θ = S0 · exp

(
t∑

s=1

(
σs,θ · εs,θ −

σ2
s,θ

2

))
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SMt,θ = S0 · exp

(
t∑

s=1

[
σs,θ · εs,θ −

σ2
s,θ

2

]
+ rt

)
.

Remark 7.7 (Comparison to Black-Scholes model). In the one-dimensional Black-
Scholes model, the risk-neutral distribution of the price process is given by

SQ,BSt = S0 · exp

((
r − 1

2
σ2

)
t+ σWQ

t

)
= S0 · exp

(
σWQ

t −
1

2
σ2t+ rt

)
.

The similarities to the price process given by the risk-neutral log return NP
are clearly visible. Most importantly, in contrast to Black-Scholes, the model
presented here does not assume a constant volatility and instead models it using
the volatility generator.

In the same way, the volatility NP can be constrained to represent a known
stochastic process such as the CIR process or the variance process of the
GARCH(p, q) model. Both settings allow us to generate insights of the la-
tent dynamics of the stochastic process at hand and thereby enable to validate
modeling assumptions.

8 Pre- and Postprocessing

Prior to passing a realization of a financial time series s0:T ∈ X T+1 to the
discriminator, the series has to be preprocessed. The applied pipeline is displayed
in Figure 10. We will briefly explain each of the steps taken. Note that all of
the used transformations, excluding the rolling window, are invertible and thus,
allow a series sampled from a log return NP to be post-processed by inverting
the steps 1-4 to obtain the desired form.

Time
Series s0:T

Step 1:
Log Re-

turns r1:T

Step 2:
Normalize

Step 3:
Inverse

Lambert W
Transform

Step 4:
Normalize

Step 5:
Rolling
Window

Cast to
PyTorch

Preprocessed
Series

Figure 10: Condensed representation of the preprocessing pipeline.

Step 1: Log returns r1:T

Calculate the log return series

rt = log

(
st
st−1

)
for all t ∈ {1, ..., T}
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Step 2 & 4: Normalize

For numerical reasons, we normalize the data in order to obtain a series with
zero mean and unit variance, which is thoroughly derived in [28].

Step 3: Inverse Lambert W transform

Since financial time series are generally considered to exhibit heavy-tails and an
unbounded p-th moment for some p ∈ (2, 5] (cf. [10]), we utilize the Lambert W
probability transform, as mentioned in [14], for being able to generate heavier
tails. The Lambert W probability transform of an R-valued random variable is
defined as follows.

Definition 8.1 (Lambert W×FX). Let δ ∈ R and X be an R-valued random
variable with mean µ, standard deviation σ and cumulative distribution function
FX . The location-scale Lambert W×FX transformed random variable Y is
defined by

Y = U exp

(
δ

2
U2

)
σ + µ , (3)

where U :=
X − µ
σ

is the normalizing transform.

For δ ∈ [0,∞) the transformation used in (3) is of special interest as it is
guaranteed to be bijective and differentiable. Hence, the transformations specific
parameters γ = (µ, σ, δ) can be estimated via maximum likelihood. Moreover,
for δ > 0 the Lambert W × FX transformed random variable has heavier tails
than X.
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(b) Lambert W x Log Returns

Figure 11: (A) The original S&P 500 log returns and the fitted probability
density function of a Lambert W x Gaussian random variable. (B) The inverse
Lambert W transformed log returns and the probability density function of a
Gaussian random variable.

In particular, when applying the Lambert W transform to a normally dis-
tributed random variable, a Lambert W × Gaussian random variable with
positive excess kurtosis is obtained. By assuming that the log returns r1:T are
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approximately Lambert W × Gaussian distributed, the quasi maximum likeli-
hood principle can be employed to estimate the parameters (µ, σ) of the normal
distribution and the transformation specific parameter δ (cf. [14, Section 4.1]).
Hence, using the estimated parameters the inverse Lambert W transform can be
applied to the log returns to yield a sequence of approximately normal distributed
random variables with mean µ and standard deviation σ.

The suggested transformation applied to the log returns of the S&P 500 is
displayed in Figure 11. It shows the standardized original distribution of the S&P
500 log returns and the Lambert W inverse transformed log return distribution.
Observe that the transformed standardized log return distribution in Figure 11b
approximately follows the standard normal distribution and thereby circumvents
the issue of not being able to generate the heavy tail of the original distribution.

Step 5: Rolling window

When considering a discriminator with receptive field size T (d), we apply a
rolling window of corresponding length and stride 1 to the preprocessed log

return sequence r
(ρ)
t . Hence, for t ∈ {1, . . . , T−T (d)} we define the sub-sequences

r
(t)

1:T (d) := r
(ρ)

t:(T (d)+t−1)
∈ X T

(d)

. (4)

Note that sliding a rolling window introduces a bias, since log returns at the
beginning and end of the time series are under-sampled when training the Quant
GAN. This bias can be corrected by using a (non-uniform) weighted sampling
scheme when sampling batches from the training set.

9 Numerical Results

In this section we test the generative capabilities of Quant QANs by modeling the
log returns of the S&P 500 index. For comparison we will apply the well-known
GARCH(1,1) model to the same data. Our numerical results highlight that
Quant GANs can learn a neural process that matches the empirical distribution
and dependence properties far better than the presented GARCH model.

9.1 Setting and Implementation

The implementation was written with the programming language python. Neural
network architectures were implemented by employing the python package
pytorch [33], an automatic differentiation library primarily used for neural
network computations and optimization. The training time of neural networks
was decreased by using the CUDA-backend of pytorch in combination with
a CUDA-enabled graphics processing unit (GPU). We used the GPU RTX
2070 from NVIDIA in order to train larger models. During preprocessing and
evaluation we used the packages numpy and scipy [23].

Quant GANs were trained by using the GAN stability algorithm proposed
by Mescheder, Geiger, and Nowozin [29]. Furthermore, we used the TCN
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setup proposed in [1] for both the generator and the discriminator and made use
of skip connections as in [31] (see also Definition 5.16).

9.2 Models

For modeling the log returns of the S&P 500, we will have a look at three different
model architectures: a pure TCN model, a constrained log return Neural Process
and for comparison a simple GARCH model.

Pure TCN

To check the capabilites of a pure TCN model, we model the log returns directly
using a TCN with receptive field size T (g) as generator, i.e. the return process is
given by

Rt,θ = gθ(Zt−(T (g)−1):t)

for the noise prior Zt
iid∼ N (0, 1).

Constrained log return Neural Process

Assume a constrained log return NP (see Definition 7.2 and Section 7.4)

Rt,θ = σt,θ · εt,θ + µt,θ

with volatility NP σt,θ, drift NP µt,θ and an innovations NP εt,θ constrained to
being i.i.d. N (0, 1)-distributed.

GARCH(1,1) with constant drift

Assume a GARCH(1,1) model with constant drift, where

Rt,θ = ξt + µ

ξt = σtεt

σ2
t = ω + αξ2

t−1 + βσ2
t−1

εt
iid∼ N (0, 1)

for µ ∈ R, ω > 0, α, β ∈ [0, 1] such that α + β < 1 and the parameter vector
θ = (ω, α, β, µ). For more details on GARCH-processes see [4].

9.3 Metrics and Scores

To compare the three different models with the S&P 500, we propose the use of
the following metrics and scores.
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Distributional Metrics

Earth Mover Distance Let Ph denote the historical and Pg the generated
distribution of the (possibly lagged) log returns. The Earth Mover Distance (or
Wasserstein-1 distance) is defined as

EMD
(
Ph,Pg

)
= inf
π∈Π(Ph,Pg)

E(X,Y )∼π[||X − Y ||]

where Π(Ph,Pg) denotes the set of all joint probability distributions with
marginals Ph and Pg. Loosely speaking the earth mover distance describes
how much probability mass has to be moved to transform Ph into Pg. For more
details, see [39].

DY Metric Additionally we compute the DY metric proposed by Drǎgulescu
and Yakovenko in [11]. The DY metric is for t ∈ N defined by

DY(t) =
∑
x

∣∣logPht (At,x)− logP gt (At,x)
∣∣ ,

where Pht and P gt denote the empirical density function of the historical and
generated t-differenced log path. Further, (At,x)x denotes a partitioning of the
real number line such that for fixed t and all x we (approximately) have

logP ∗t (At,x) = 5/T

for T the number of historical log returns. During evaluation we consider the
time lags t ∈ {1, 5, 20, 100} which represent a comparison of the daily, weekly,
monthly and 100-day log returns.

Dependence Scores

ACF Score The next score is proposed to compare the dependence properties
of the historical and generated time series. Let r1:T denote the historical log

return series and {r(1)
1:T,θ, . . . , r

(M)
1:T,θ} a set of generated series. The autocorrelation

is defined as a function of time lag τ and the series r1:T and measures the
correlation of the lagged time series and the series itself

C(τ ; r) = Corr(rt+τ , rt).

Denoting by C : RT → [−1, 1]S : r1:T 7→ (C(1; r), . . . , C(S; r)) the autocorrelation
function up to lag S, the ACF(f) score is computed for a function f : R→ R as

ACF(f) :=

∥∥∥∥∥C(f(r1:T ))− 1

M

M∑
i=1

C
(
f
(
r

(i)
1:T,θ

))∥∥∥∥∥
2

where the function f is applied element-wise to the series. Motivated by the
non-linear dependence structure of financial time series, we compute the ACF
score for the functions f(x) = x, f(x) = x2 and f(x) = |x| and constants
S = 250, M = 500.
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Leverage Effect Score Similar to the ACF score the leverage effect score
provides a comparison of historical and generated time dependence. The leverage
effect will be measured using the correlation of the lagged, squared log returns
and the log returns themselves, i.e. we consider

L(τ ; r) = Corr
(
r2
t+τ , rt

)
for lag τ . Denoting by L : RT → [−1, 1]S : r1:T 7→ (L(1; r), ...,L(S; r)) the
leverage effect function up to lag S ≤ T − 1, the leverage effect score is defined
as ∥∥∥∥∥L(r1:T )− 1

M

M∑
i=1

L
(
r

(i)
1:T,θ

)∥∥∥∥∥
2

In our numerical results we compute the leverage effect score for S = 250 and
M = 500, i.e. the same as for the ACF score.

9.4 Generating the S&P 500 Index

We consider daily spot-prices of the S&P-500 from Mai 2009 until December
2018. For each of the three described models, we present in the appendix

– histograms of the real and generated log returns on a daily, weekly, monthly
and 100-day basis,

– mean-autocorrelation functions of the serial, squared and absolute log
returns,

– the correlations between the squared, lagged and the non-squared log
returns as a proxy for the leverage effect,

– 5 plus additionally 50 exemplary generated log paths.

Further, Table 2 shows the values of the evaluated metrics for each of the models.

time series time span # of observations
S&P 500 Mai 2009 - December 2018 2413

Table 1: Considered financial time series.

9.4.1 Pure TCN

The displayed graphics show that the TCN model is capable of precisely modeling
distributional and dependence properties present in the real S&P.

As can be seen in Figure A.3, the generated log returns closely match the
histogram of the real returns on each of the presented time scales. Even for
100-day lagged returns, the fit is quite good.

The same holds true for the ACFs and the leverage effect plot, which deal
with the dependence structure inherent in the data (see Figure A.4). The TCN
accurately models the sharp drop in the ACF of the serial returns as well as the
slowly decaying ACF of the squared and absolute log returns. Moreover, the
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leverage effect is captured by a negative correlation between the squared and
non-squared log returns for small time lags.

Recall that the displayed ACFs corresponding to the generated returns are
mean ACFs and thereby much smoother than the ACF of the real returns.

Furthermore, the exemplary log paths shown in Figure A.1 and Figure A.2
exhibit reasonable patterns and demonstrate the structural diversity possible in
the TCN model.

For all except two metrics evaluated in Table 2, the TCN performs best. In
particular, the TCN clearly outperforms the GARCH(1,1) model in each metric,
often by a factor 2-10.

9.4.2 Constrained SVNN

The results of the C-SVNN are very similar to the TCN. This is expectable as
the C-SVNN is constructed using a TCN and uses only a slight modification to
decompose the log return process into its volatility, drift and innovation.

As is displayed in the graphics, the C-SVNN is able to capture the same
properties as the TCN (see Figure A.7 and Figure A.8). Merely the ACF of the
squared and absolute log returns is better modeled by the TCN.

The evaluated metrics of the C-SVNN in Table 2 are comparable to the
results of the TCN, but for most of the metrics slightly worse. Furthermore, the
C-SVNN also outperforms GARCH(1,1) model significantly.

Recall again that compared to the pure TCN, the SVNN has the structural
advantages that the volatility can be directly modeled and a transition to its
martingale distribution is known.

9.4.3 GARCH(1,1) with constant drift

The GARCH model is clearly outperformed by the previously considered GAN-
approaches two presented models in modeling distributional as well as dependence
properties.

As indicated by the stylized facts of asset returns (see Section 4), the assumed
normal distribution of the GARCH model places too less probability mass at the
peak and the tails of the log return distribution as displayed by the histograms
in Figure A.11.

In contrast, the autocorrelation function is captured quite well. This should
not come as a surprise, as the GARCH structure was designed to capture this
dependence. The main characteristics of the ACF plots in Figure A.12 are
modeled, but the GARCH approach fails in exactness compared to the TCN
and C-SVNN model. Note further that the leverage effect is not captured at all.

Table 2 supports this graphical assessment as the GARCH model performs
worst in each of the evaluated metrics. For the ACF scores, the GARCH model
is quite comparable to the other models as was already pointed out looking at
the graphics. In contrast, in terms of the EMD and DY metric which focus on
the return distribution, the GARCH model is clearly outperformed by the other
two models.
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TCN C-SVNN with drift GARCH(1,1)
EMD(1) 0.0039 0.0040 0.0199
EMD(5) 0.0039 0.0040 0.0145
EMD(20) 0.0040 0.0069 0.0276
EMD(100) 0.0154 0.0464 0.0935

DY(1) 19.1199 19.8523 32.7090
DY(5) 21.1167 21.2445 27.4760
DY(20) 26.3294 25.0464 39.3796
DY(100) 28.1315 25.8081 46.4779
ACF(id) 0.0212 0.0220 0.0223
ACF(|·|) 0.0248 0.0287 0.0291

ACF((·)2
) 0.0214 0.0245 0.0253

Leverage Effect 0.3291 0.3351 0.4636

Table 2: Evaluated metrics for the three models applied. For each row, the best
value is printed bold.

10 Conclusion and Future Work

In this paper we showed that recently developed neural network architectures
can be used in an adversarial modeling framework to approximate stochastic
processes. Although these methods have been notoriously hard to train, advances
in GANs showed that they can deliver competitive results and - as GAN training
algorithms progress - promise even better performance in future.

For Quant GANs to flourish in the future there are two fundamental challenges
that need to be addressed. The first is an exact modeling and extrapolation of the
generated tail by incorporating prior knowledge such as the estimated tail-index.
Second, a single metric needs to be developed which unifies distributional metrics
with dependence scores we used in this paper and allows to benchmark different
generator architectures. Once these points are sufficiently studied Quant GANs
offer a data-driven method that surpasses the performance of other conventional
models from mathematical finance.
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A Numerical Results

A.1 Pure TCN
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Figure A.1: 5 generated log paths
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Figure A.2: 50 generated log paths
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Figure A.3: Comparison of generated and historical densities of the S&P500.
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Figure A.4: Mean autocorrelation function of the absolute, squared and identical
log returns and leverage effect.
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A.2 Constrained SVNN
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Figure A.5: 5 generated log paths

0 500 1000 1500 2000

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

T (number of days)

Lo
g 
pa
th

Figure A.6: 50 generated log paths
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Figure A.7: Comparison of generated and historical densities of the S&P500.
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Figure A.8: Mean autocorrelation function of the absolute, squared and identical
log returns and leverage effect.
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A.3 GARCH(1,1) with constant drift
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Figure A.9: 5 generated log paths
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Figure A.10: 50 generated log paths
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Figure A.11: Comparison of generated and historical densities of the S&P500.
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Figure A.12: Mean autocorrelation function of the absolute, squared and identical
log returns and leverage effect.
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