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Abstract

We construct realistic equity option market simulators based on generative ad-
versarial networks (GANs). We consider recurrent and temporal convolutional
architectures, and assess the impact of state compression. Option market simu-
lators are highly relevant because they allow us to extend the limited real-world
data sets available for the training and evaluation of option trading strategies. We
show that network-based generators outperform classical methods on a range of
benchmark metrics, and adversarial training achieves the best performance. Our
work demonstrates for the first time that GANs can be successfully applied to the
task of generating multivariate financial time series.

1 Introduction

There is growing interest in applying reinforcement learning techniques to the problem of managing
a portfolio of derivatives [4, 19]. This involves buying and selling not only the relevant underlying
assets, but also the available exchange-traded options. In order to train an option trading model, we
therefore require time-series data that includes option prices.

Unfortunately, the amount of useful real-life data available is limited; if we take a sampling interval
of one day, ten years of option prices translates into only a few thousand samples. This motivates
the need for a realistic simulator: we can generate much larger volumes of data for training and
evaluation while preserving the key distributional properties of the real samples, thus helping to avoid
overfitting.

In this article, we build and test a collection of simulators based on neural networks (NNs). We
begin by transforming the option prices to an equivalent representation in the form of discrete local
volatilities (DLVs) [5, 24] with less complicated no-arbitrage constraints; we then formalize the
role of the simulator as a mapping from a state and input noise to a new set of (transformed) option
prices. Next, we define a series of benchmark scores based on the key distributional features of
the transformed prices. We construct a set of generative models, varying the network architecture,
training method, and state compression scheme. Finally, we evaluate these models against our
proposed benchmark scores, and compare with a classical baseline.

2 Financial time series simulation

There is a wide range of existing literature on the generation of synthetic time series for asset prices
(see, e.g., [9]). Classical derivative pricing models (e.g., [2, 7, 13]) also require path generators, but
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these are not designed to be realistic; they describe diffusion in the risk-neutral measure Q, rather
than the real-world measure P, and are typically limited to a small number of driving factors, for ease
of computation.

Recently, generative adversarial networks (GANs) [11] have been successfully used to create realistic
synthetic time series for asset prices [15, 22, 23, 25, 26]. Zhang et al. [25] and Zhou et al. [26]
reported on using the objective function of GANs to predict spot prices. Koshiyama et al. [15]
trained a conditional GAN to generate spot log-returns and provided a study of using generated
paths to fine-tune trading strategies, and showed that the autocorrelation function (ACF) and partial
autocorrelation function (PACF) could be generated accurately by using a two-layer perceptron.
Takahashi et al. [22] also reported on being able generate various stylised facts [6] found in the
historical series, but did not provide a detailed description of the methodology used. An unconditional
approach to the generation of spot price log-returns, using Temporal Convolutional Networks (TCNs)
[18], was first presented by Wiese et al. [23]; they also reproduce the relevant stylised facts, including
volatility clustering and the leverage effect.

In contrast, generative models for time series of option prices are much less common: Cont [6]
performs a principal component analysis (PCA) on implied volatility data; Wissel [24] provides a
scheme to build a risk-neutral market model, focusing on ensuring the martingale property rather
than realism. As far as we are aware, neural networks have not previously been applied to option
market generation.

Our work extends the conditional modelling framework of [15] to the multivariate setting by using
GANs and other calibration techniques.

3 Option prices

Our aim in this article is to simulate the prices of standard “vanilla” equity index options, of the type
commonly traded on exchanges in large volumes3. An option is characterized by: the underlying
index; the type (call or put); the strike, K; and the maturity, T . The maturity is the expiry date of
the option; on that date, the option holder receives an amount max

(
0, s(IT −K)

)
, where IT is the

prevailing level of the underlying index, and s = 1 for a call and −1 for a put.

At any given time, not all strike/maturity/type combinations are tradable; market makers quote bid
and/or offer prices for only the most relevant combinations, which broadly means those with strike
closest to the current index level, and maturity closest to today. We will work with a representative
grid of strikes and maturities.
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Figure 1: Implied volatilities of the EURO STOXX 50.

Market participants commonly express option prices in terms of implied volatilities. The implied
volatility is the number one must use in the standard Black-Scholes formula [2] to obtain the option
price. The other inputs to the formula are the discount factor and the index forward price. All three

3Eurex [8] reports an average of more than one million option contracts traded daily on EURO STOXX 50 in
August 2019, corresponding to almost e 650MM in premiums paid.
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inputs to the price are stochastic, but the short-term price dynamics are primarily driven by changes
in the implied volatility; in this paper, we focus on this contribution.

Option prices are subject to strict ordering constraints because of no-arbitrage considerations. For
example, since the call option payoff is a non-increasing function of strike, the option price must also
be non-increasing; violation of this rule would constitute an arbitrage opportunity4, i.e. the possibility
of making a profit while guaranteeing no loss. True arbitrage opportunities are rare, fleeting, and
small; an option price simulator is more useful if it does not generate arbitrageable market states.

For this reason, it is not convenient to work with option prices directly; the ordering constraints are
too complicated. The equivalent constraints on implied volatilities are even more awkward. Instead,
we transform the prices to DLVs [5, 24], for which the absence of arbitrage corresponds to a simple
requirement of positivity. In the absence of arbitrage, this mapping is bijective; an NK ×NM grid of
option prices is converted into an NK ×NM grid of DLVs.

In this article we will focus on one of the largest option markets, namely options on the EURO
STOXX 50 index. An overview of the distributional and dependence properties of DLVs is provided
in Appendix B. The implied volatilities of the EURO STOXX 50 for the relevant sets of strikes and
maturities are displayed in Figure 1.

4 Problem formulation

Throughout this paper N0 is the time set, (Ω, (Ft)t∈N0 ,P) the filtered probability space and L2(RN )
denotes the space of RN -valued measurable functions for which the Euclidean norm ‖·‖2 is Lebesgue
integrable.

We assume a set of NK equispaced strikes

K = {K1,K1 + ∆K, . . . ,K1 + (NK − 1)∆K}
and a set of NM maturities

M = {M1, . . . ,MNM }
for which we obtain the (NK ·NM )-dimensional process of DLVs

σt := [σt(K,M)](K,M)∈K×M, for t ∈ N0.

Furthermore, we assume that the historical process (σt, t ∈ N0) evolves through a conditional model
which can be constructed by feeding in a state St, which we would like to condition on, and noise
Zt+1 which drives the process. Particularly, we describe the evolution of (σt, t ∈ N0) by a unkown
mapping g : L2(RNZ )× L2(RNS )→ L2(RNK ·NM ) which relates noise and state to the next time
step, such that our process takes the form

σt+1 = g(Zt+1, St), for t ∈ N0 (1)

where Zt+1 ∼ N (0, I) isNZ -dimensional Gaussian noise and the state St a function of the processes
history, i.e. St = f(σt, . . . , σ0). An example of f is a projection onto the most current component,
i.e. St = σt, the last L realisations, St = [σt, . . . , σt−L] or an exponentially weighted moving
average.

The objective is to approximate the mapping (Zt+1, St) 7→ σt+1 which ideally allows us to generate
more data from a given state St. In this paper our approach is to represent this mapping through a
deep neural network

g : L2
(
RNZ

)
× L2

(
RNS

)
×Θ→ L2

(
RNK ·NM

)
which is defined as a function of noise, state and its parameters θ ∈ Θ. For a given parameter vector
θ ∈ Θ the generated process (σ̃t,θ, t ∈ N0) is defined as

σ̃t+1,θ = gθ(Zt+1, S̃t,θ) (2)

where S̃t,θ = f(σ̃t,θ, . . . , σ̃0,θ). The optimal outcome is to approximate a parameter vector θML ∈ Θ
such that (σt, t ∈ N0) and (σ̃t,θML , t ∈ N0) inherit the same dynamics in terms of distributional and
dependence properties.

4Strictly, there is an arbitrage opportunity when the bid price of the higher-strike call option exceeds the offer
price of the lower-strike option.
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5 Models

We now turn to the problem of modeling the process of DLV levels (σt, t ∈ N0) and consider from
now on log-DLV levels Xt := log(σt) for t ∈ N0 to ensure non-negativity of the generated time
series.

The first (naive) approach to model log-DLVs is to approximate (2) directly and generate all DLVs
yielding the generated time-series

X̃t+1,θ = gθ(Zt+1, S̃t,θ) (3)

where S̃t,θ = [X̃t,θ, . . . , X̃t−L,θ] includes current and past log-DLV levels for tuneable L ∈ N.
However, this approach suffers from having to model an arbitrarily high-dimensional process when it
is necessary to generate a fine grid of DLVs yielding NX � 1 for NX := NK ·NM . Consequently,
we also explore a compressed version of our generator.

M20-K80%
M20-K85%
M20-K90%
M20-K95%

M20-K100%
M20-K105%
M20-K110%
M20-K115%
M40-K80%
M40-K85%
M40-K90%
M40-K95%

M40-K100%
M40-K105%
M40-K110%
M40-K115%
M60-K80%
M60-K85%
M60-K90%
M60-K95%

M60-K100%
M60-K105%
M60-K110%
M60-K115%
M120-K80%
M120-K85%
M120-K90%
M120-K95%

M120-K100%
M120-K105%
M120-K110%
M120-K115%

M20-K80%
M20-K85%
M20-K90%
M20-K95%

M20-K100%
M20-K105%
M20-K110%
M20-K115%
M40-K80%
M40-K85%
M40-K90%
M40-K95%

M40-K100%
M40-K105%
M40-K110%
M40-K115%
M60-K80%
M60-K85%
M60-K90%
M60-K95%

M60-K100%
M60-K105%
M60-K110%
M60-K115%
M120-K80%
M120-K85%
M120-K90%
M120-K95%

M120-K100%
M120-K105%
M120-K110%
M120-K115%

0.5

0.6

0.7

0.8

0.9

1.0

Figure 2: Cross-correlation matrix of log-
DLV levels (left) and DLV log-returns (right).
Labels on the y-axis indicate the maturity (M )
and relative strike (K) of each row.
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Figure 3: Cumulative sum of variance ex-
plained by the first 10 principal components.

The compressed version is motivated from the observation that log-DLV levels have high cross-
correlations indicating that log-DLVs live on a lower-dimensional manifold. Figure 2 illustrates
the cross-correlation matrix of log-DLVs and DLV log-returns for the set of relative strikes
K̄ := {0.80, 0.85, 0.90, 0.95, 1.00, 1.05, 1.10, 1.15} and maturities M̄ := {20, 40, 60, 120}. Both
cross-correlation matrices show high cross-correlations between groups of different maturities as
well as within a specific maturity.

We therefore apply PCA to the set of log-DLV levels (Xt, t ∈ N0) and compress theNX -dimensional
process into an NP -dimensional one. The compressed process is defined for t ∈ N0 as Pt = WXt,
where W ∈ RNP×NX denotes the compression matrix obtained through PCA. The generated process
now takes the form

P̃t+1,θ = gθ(Zt+1, S̃t,θ)

X̃t+1,θ = W†P̃t+1,θ

where S̃t,θ = [P̃t,θ, . . . , P̃t−L,θ] is the state of current and past compressed log-DLVs - again for
tuneable L ∈ N.

We also explored compressing DLV log-returns Rt := Xt −Xt−1, t ∈ N0 as they are also highly
correlated (see Figure 2). However, we discarded this approach since it involves taking the cumulative
sum of the compressed DLV log-returns which causes a lossy compression for a small number of
principle components.

Figure 3 illustrates the cumulative sum of variance explained as a function of the number of principle
components for the grid K̄ × M̄. In section 8 we report our results for NP = 5 principle components
which explain ≈ 96% of the variance yielding a good trade-off between dimensionality reduction
and preserving information.

6 Optimization

The next step is to obtain a close approximation of θML. Various training procedures exist ranging
from conventional parametric methods such as quasi maximum likelihood estimation (qMLE) to
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novel non-parametric ones such as GANs and the mean maximum discrepancy (MMD) [21]. In
this paper, we explore the performance of qMLE, GANs and Wasserstein GANs (WGAN-GP) [12].
Following, we provide a brief explaination of the qMLE and GANs in the context of our explicit
conditional model (3).

In qMLE we assume that the distribution of Xt+1|(Zt+1, St) can be described by a family of
distributions P = {Pγ | γ ∈ Γ} for some parameter space Γ. The objective is to maximize
the likelihood of our generated data under our family P [10, Chapter 5]. Here, we assume that
Xt+1|(Zt+1, St) follows a Gaussian distribution where we constrain our covariance matrix to be
diagonal. Our parametric family thus takes the form

P = {N (µ,Σ) | µ ∈ RNX ,Σ ∈ D}.

where D := {diag(a1, . . . , aNX ) | a1, . . . , aNX ∈ R≥0} is the set of (NX × NX)-dimensional
diagional matrices with non-negative components.

A challenge in qMLE is the correct specification of P and the intractability of likelihood functions.
GANs try to address this issue by introducing a min-max two-player game between the generator gθ
and the discriminator dη . The discriminator aims to discriminate between real samples from the data
distribution and synthetic ones generated by the generator. The objective function proposed by the
original paper from Goodfellow [11] adapted to our setting is of the form

L(θ, η) = E (log(dη([St, Xt+1]))) + E
(

log(1− dη([S̃t,θ, X̃t+1,θ]))
)

where X̃t+1,θ is defined as in (3).

A drawback of GANs is that they are notoriously hard to train which lead to the introduction of
various regularization techniques to stabilize training [1, 3, 12, 16, 17, 20]. In our numerical results,
we grid search over spectral normalization [17] imposed on the discriminator and generator [3] and
gradient penalities proposed by Mescheder [16]. Furthermore, we also train our generative model by
using WGAN-GP proposed by [12] and report on these results separately in section 8.

7 Evaluating the generated paths

In GANs the objective function cannot be used to evaluate the performance of the generator. Equally,
using the likelihood of a qMLE-trained model can give a distorted image. To measure the goodness
and performance of a generative model we define and introduce various metrics and scores. These
scores allow us to capture whether the generator is able to generate dynamics that are similar to those
found in the historical DLV series such as highly cross-correlated log-DLVs and DLV log-returns,
bimodal distributions or persistence in the autocorrelation.

During training we intentionally evaluate log-DLVs instead of implied volatilities due two reasons.
First, a close approximation of the generating mechanism of DLVs yields a close approximation of
the generating mechanism of implied volatilities. Second, transforming DLVs to implied volatilities
is costly. Once a close approximation of θML is obtained we transform the generated DLVs to implied
volatilities and compute metrics and scores for the generated implied volatilities and report on those.

We denote the historical dataset of log-DLVs by Dh = {[x0, . . . , xT ]} and likewise the generated
dataset containing M ∈ N paths of length T through

Dg =
{

[x̃
(i)
0,θ, . . . , x̃

(i)
T,θ]
}M
i=1

where [x̃
(i)
0,θ, . . . , x̃

(i)
T,θ] denotes for any i ∈ {1, . . . ,M} a time series obtained through recursive

sampling from an initial state sampled from the historical dataset Dh.

We begin by introducing a distributional metric and distributional scores, then define dependence
scores and at last two scores that take into account the cross-correlation structure.

7.1 Distributional metric

Naturally, we want the unconditional distribution of the generated and historical to match closely.
For this purpose, let Bh = {B1, . . . , BK} be a binning such that approximately 20 elements of
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the historical series x ∈ Dh fall into each bin; # {t ∈ {0, . . . , T} : xt ∈ B} ≈ 20 for any B ∈
Bh. With respect to the binning the empirical probability density function (epdf) of the historical
f̂h : Bh → R≥0 and the generated f̂g : Bh → R≥0 can be defined. During training we track the
absolute difference of the epdf ∑

B∈Bh

|f̂h(B)− f̂g(B)|.

7.2 Distributional scores

In financial applications higher order moments such as the skewness and kurtosis are of interest as
they determine the propensity to generate extremal values. We therefore define the skewness score

1

NX

NX∑
j=1

∥∥∥skew(x:,j)− skew
(

[x̃
(1)
:,θ,j , . . . , x̃

(M)
:,θ,j ]

)∥∥∥
2

where x̃(i):,θ,j for i ∈ {1, . . . ,M} denotes the j-th dimension of the i-th generated time series and
likewise the kurtosis score

1

NX

NX∑
j=1

∥∥∥kurtosis(x:,j)− kurtosis
(

[x̃
(1)
:,θ,j , . . . , x̃

(M)
:,θ,j ]

)∥∥∥
2
.

7.3 Dependence scores

Since DLVs are persistent we adopted ACF score proposed in [23]. It is defined by taking the
Euclidean norm of the difference of the historical and the mean generated autocorrelation function

ACFX := ‖ACF(x)− 1

|Dg|
∑

x̃:,θ∈Dg

ACF(x̃:,θ)‖2.

Similarly, we define the ACF score for the log-return process rt = xt − xt−1, t ∈ {1, . . . , T}

ACFR := ‖ACF(r)− 1

|Dg|
∑

r̃:,θ∈Dg

ACF(r̃:,θ)‖2.

In section 8 we report the ACFX score for the first 32 lags and the ACFR score for the first lag.

7.4 Cross-correlation scores

To capture whether the generator generates cross-correlated log-DLVs and DLV log-returns we
introduce two more scores. The cross-correlation score of log-DLVs is defined by taking the
Euclidean norm of the cross-correlation matrix of log-DLVs ‖Σ̂Xh − Σ̂Xg ‖2 where Σ̂Xh , Σ̂

X
g denote the

cross-correlation matrix of the historical and generated respectively. Likewise, the cross-correlation
score of DLV log-returns is defined ‖Σ̂Rh − Σ̂Rg ‖2 where Σ̂Rh , Σ̂

R
g denote the cross-correlation matrix

of the historical and generated DLV log-returns respectively.

8 Numerical results

In this section we evaluate the performance of qMLE-, GAN- and WGAN-GP-trained models for the
compressed and explicit version.

8.1 Dataset

We use call option prices of the EURO STOXX 50 from 2011-01-03 to 2019-08-30 and consider the
set of relative strikes and maturities

K̄ := {0.80, 0.85, 0.90, 0.95, 1.00, 1.05, 1.10, 1.15} ,
M̄ := {20, 40, 60, 120} .

For those option prices we compute the path of DLVs which we use for training (see Figure B.1).
The total length of the time series is T̄ := 2257.
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8.2 Benchmarks

For comparison we apply the vector autoregressive model VAR(p) [14] and GAN-trained TCNs [23]
to the same data. VAR(p) is a standard model for multivariate time series and assumes that Xt+1 is
an affine function of the past p observations and some Gaussian noise Zt+1 ∼ N (0,Σ):

Xt+1 = A1Xt + · · ·+ ApXt−p + b + Zt+1.

TCNs model log-DLVs unconditionally. Here, the generated process takes the form

X̃t+1,θ = gθ(Zt+1, . . . , Zt+1−L)

where (Zt, t ∈ Z) is an i.i.d. Gaussian process and L ∈ N0 denotes the TCN’s receptive field size
(see [23]).

8.3 Training and evaluation time

We split the the historical series into a training and validation set through random sampling. The
training set holds 85% of the data and is used to calibrate the parameters of the model. During training
we compute the scores for M̄ := 40 generated paths of length T̄ . GAN- and WGAN-GP-trained
models are evaluated every 100 generator gradient updates. qMLE-trained models are trained through
early stopping and are only evaluated once after the criterion has been reached. The VAR model is
also only evaluated once after the parameters are obtained through regression.

8.4 Results

Table 1 summarises the best scores obtained for each of the generative models for a fixed parameter
vector. For all except the ACFX score the explicit GAN-trained model achieves to generate the best
paths.

Table 1: Scores obtained from historical implied volatilities and generated paths.
Distributional Dependence Cross-Correlation

Models |f̂h(B)− f̂r(B)| skew kurtosis ACFX ACFR ‖Σ̂Xh − Σ̂Xg ‖2 ‖Σ̂Rh − Σ̂Rg ‖2
GAN 0.044 0.063 0.097 0.186 0.011 0.137 0.771
GAN - PCA(5) 0.047 0.082 0.276 0.468 0.021 0.977 3.125
WGAN-GP 0.046 0.296 1.023 0.296 0.027 0.457 0.843
WGAN-GP - PCA(5) 0.055 0.115 0.139 0.172 0.021 0.230 1.747
qMLE 0.124 0.636 0.585 0.765 0.073 2.264 11.567
qMLE - PCA(5) 0.075 0.427 0.463 1.048 0.020 2.434 3.599
VAR(2) 0.088 0.415 0.447 0.834 0.013 1.113 2.770
VAR(2) - PCA(5) 0.223 0.328 2.302 0.914 0.025 0.477 1.982
TCN(256)5 0.048 0.105 0.295 0.330 0.372 0.335 1.501

The model that performs worst in terms of distributional properties is the VAR(2) - PCA(5) model.
There the the fit of density and kurtosis is widely off. Notably, the ACFX scores fit least for the
VAR(2) and qMLE-trained models, independent whether they were trained on all or the compressed
log-DLVs. Overall, we can also conclude from Table 1 that GAN- and WGAN-GP-calibrated models
give the best fit. For TCNs we do not report on a compressed version as no good approximation could
be obtained.

Although GAN-trained TCNs give a fairly good approximation in terms of distributional and cross-
correlation scores the ACFR score is far off. This makes the generated paths look very noisy. From
this observation we concluded that TCNs have difficulties generating time series with high persistence
from a pure i.i.d. noise process.

8.5 Explicit GAN-trained model

We presented numerical results for a wide range of models and optimization algorithms. Now, we
will take a look at the properties of the explicit GAN-trained model since it performed best across
most benchmark scores.

5The number in brackets specifies the receptive field size that was used; here 256.
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As can be seen in Figure 4 the epdfs of the historical and generated log-implied volatilities match
closely for most maturities and relative strikes. Arguably, the fit of the bimodal distribution for
long-dated (M = 120 days) out of the money implied volatilies could be better. Taking a look at the
historical and generated kurtosis in Figure 5 we can conclude that for most implied volatilities the
approximation is accurate.

1.4 1.2 1.0 0.8 0.6
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0 M20-K80%

generated

1.4 1.2 1.0 0.8 0.6
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5 M20-K85%
generated

1.6 1.4 1.2 1.0 0.8 0.6
0.0

0.5

1.0

1.5

2.0

2.5
M20-K90%
generated

2.00 1.75 1.50 1.25 1.00 0.75
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
M20-K95%
generated

2.5 2.0 1.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6 M20-K100%
generated

2.5 2.0 1.5 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4
M20-K105%
generated

2.5 2.0 1.5 1.0
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6 M20-K110%

generated

2.25 2.00 1.75 1.50 1.25
0.0

0.5

1.0

1.5

2.0
M20-K115%
generated

1.4 1.2 1.0 0.8
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5 M40-K80%
generated

1.6 1.4 1.2 1.0 0.8
0.0

0.5

1.0

1.5

2.0

2.5

3.0 M40-K85%
generated

1.8 1.6 1.4 1.2 1.0 0.8
0.0

0.5

1.0

1.5

2.0

2.5 M40-K90%
generated

2.00 1.75 1.50 1.25 1.00
0.0

0.5

1.0

1.5

2.0
M40-K95%
generated

2.0 1.5 1.0
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
M40-K100%
generated

2.5 2.0 1.5 1.0
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75 M40-K105%
generated

2.5 2.0 1.5
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75
M40-K110%
generated

2.50 2.25 2.00 1.75 1.50 1.25
0.0

0.5

1.0

1.5

2.0
M40-K115%
generated

1.4 1.2 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
M60-K80%
generated

1.6 1.4 1.2 1.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0 M60-K85%
generated

1.8 1.6 1.4 1.2 1.0
0.0

0.5

1.0

1.5

2.0

2.5 M60-K90%
generated

2.0 1.8 1.6 1.4 1.2 1.0
0.0

0.5

1.0

1.5

2.0

2.5
M60-K95%
generated

2.25 2.00 1.75 1.50 1.25 1.00
0.0

0.5

1.0

1.5

2.0
M60-K100%
generated

2.25 2.00 1.75 1.50 1.25
0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

M60-K105%
generated

2.50 2.25 2.00 1.75 1.50 1.25
0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00

M60-K110%
generated

2.50 2.25 2.00 1.75 1.50
0.0

0.5

1.0

1.5

2.0

2.5
M60-K115%
generated

1.5 1.4 1.3 1.2
0

1

2

3

4

5
M120-K80%
generated

1.6 1.5 1.4 1.3 1.2
0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5
M120-K85%
generated

1.8 1.6 1.4 1.2
0.0

0.5

1.0

1.5

2.0

2.5

3.0 M120-K90%
generated

1.8 1.6 1.4 1.2
0.0

0.5

1.0

1.5

2.0

2.5

M120-K95%
generated

2.0 1.8 1.6 1.4
0.0

0.5

1.0

1.5

2.0

2.5
M120-K100%
generated

2.2 2.0 1.8 1.6 1.4
0.0

0.5

1.0

1.5

2.0

2.5
M120-K105%
generated

2.2 2.0 1.8 1.6 1.4
0.0

0.5

1.0

1.5

2.0

2.5
M120-K110%
generated

2.4 2.2 2.0 1.8 1.6
0.0

0.5

1.0

1.5

2.0

2.5

3.0
M120-K115%
generated

Figure 4: Empircal densities of the histori-
cal (blue) and generated (orange) log-implied
volatilities.
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Figure 5: Kurtosis of historical (blue) and
generated (orange) log-implied volatilities.

Figure 6 and Figure 7 illustrate the generated and historical cross-correlation matrices for log-implied
volatilities and implied volatility log-returns. In both cases the historical is approximated accurately
confirming the scores in Table 1.
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Figure 6: Cross-correlation matrix of histor-
ical (left) and generated (right) log-implied
volatilities.
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ity log-returns.

Last viewing the dependence properties Figure A.1 shows that for short lags the approximation of
the ACF is very good. However, for longer lags the ACF of the historical decays slower than the
generated. Figure A.2 displays the ACF of implied volatility log-returns and shows that the explicit
GAN-trained model is able to approximate short dependencies quiet well. However, to model longer
lags a larger history is necessary.

Figure A.3 and Figure A.4 display two synthetic paths generated by the explicit GAN-trained model.
Notably, the model is able to generate long-lasting periods of low volatility and periods of stress and
high volatility phases. When comparing visually the synthetic paths to the historical (see Figure 1) it
is difficult to discriminate them from being synthetic.

9 Conclusion

In this paper, we demonstrated that the generating mechanism of implied volatilities can be closely
approximated by employing adversarial training techniques. To measure the proximity of our
synthetic paths to the historical we introduced a variety of scores that capture different features of
implied volatilities. In section 8 we developed a benchmark and compared the performance of GANs
against a wide range of models, training algorithms and explored the effects of compressing DLVs by
using PCA. There we concluded that adversarial training outperforms conventional approaches such
as the VAR model and qMLE training.

Finally, our work shows for the first time that network-based models can be successfully applied to
the context of generative modelling of multivariate financial time series; opening new avenues for
future research and applications.
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A Explicit GAN-trained model

A.1 Dependence properties
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Figure A.1: ACF of historical (blue) and gen-
erated (orange) log-implied volatilities.
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Figure A.2: ACF of implied volatility log-
returns of the historical (blue) and generated
(orange).

A.2 Generated paths
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Figure A.3: Explicit GAN-generated path exhibiting phases of high and low volatility.
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Figure A.4: Explicit GAN-generated path in a low-volatility regime.
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B Discrete local volatilities

DLVs define an arbitrage-free surface that is globally closest to the surface of implied volatilities.
We work with DLVs instead of implied volatilities in order to satisfy arbitrage constraints. This
eliminates the issue of generating option prices that contain butterfly, calendar or spread arbitrage.
Having synthetic options prices that contain arbitrage is highly undesirable. An algorithm trained on
these prices could potentially learn to exploit these synthetic arbitrage opportunities which do not
occure in reality; yielding an unworldly algorithm that performs well on synthetic but not real data.

In this paper, we consider the option prices of the EURO STOXX 50 from 2011-01-03 to 2019-08-30
and for the sets of relative strikes and maturities

K̄ := {0.80, 0.85, 0.90, 0.95, 1.00, 1.05, 1.10, 1.15} ,
M̄ := {20, 40, 60, 120} .

The historical time series of DLVs is obtained by transforming the EURO STOXX 50 implied
volatilities and displayed in Figure B.1.
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Figure B.1: Discrete local volatilities of the EURO STOXX 50 for the grid K̄ × M̄.

Figure B.2 shows the empirical densities of log-DLVs. Each row represents a specific maturity
and columns the moneyness. Similiar to implied volatilities (see Figure 4) long-dated (M ∈
{60, 120}) out of the money (OTM) (K ∈ {105%, 110%, 115%}) DLVs are characterised by bimodal
distributions. The large buckets in the epdfs of the short-dated OTM DLVs (M = 20, K ∈
{110%, 115%}) represent the floor which is defined at 0.01.
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Figure B.2: Empirical densities of log-DLV
levels.
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Figure B.3: Kurtosis.

The ACFs of log-DLVs and DLV log-returns are displayed in Figure B.4 and Figure B.5. Visually one
can detect in Figure B.4 that the ACFs of short-dated in the money DLVs decay faster than long-dated
OTM ones.
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Figure B.4: ACF of log-DLVs.
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Figure B.5: ACF of DLV log-returns.
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Opinions and estimates constitute our judgement as of the date of this Material, are for informational
purposes only and are subject to change without notice. It is not a research report and is not
intended as such. Past performance is not indicative of future results. This Material is not the
product of J.P. Morgan’s Research Department and therefore, has not been prepared in accordance
with legal requirements to promote the independence of research, including but not limited to,
the prohibition on the dealing ahead of the dissemination of investment research. This Material
is not intended as research, a recommendation, advice, offer or solicitation for the purchase or
sale of any financial product or service, or to be used in any way for evaluating the merits of
participating in any transaction. Please consult your own advisors regarding legal, tax, accounting or
any other aspects including suitability implications for your particular circumstances. J.P. Morgan
disclaims any responsibility or liability whatsoever for the quality, accuracy or completeness of the
information herein, and for any reliance on, or use of this material in any way. Important disclosures
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