

Lappeenranta University of Technology

School of Business and Management

Degree Program in Computer Science

Naeem Ahmad Sattar

SELECTION OF LOW-CODE PLATFORMS BASED ON

ORGANIZATION AND APPLICATION TYPE

Examiners: Paula Savolainen

Professor Ajantha Dahanayake

Supervisor: Paula Savolainen

ii

ABSTRACT

Lappeenranta University of Technology

School of Business and Management

Degree Program in Computer Science

Naeem Ahmad Sattar

Selection of Low-Code Platforms Based on Organization and Application Type

Master’s Thesis

86 pages, 7 figures, 30 tables

Examiners: Paula Savolainen

Professor Ajantha Dahanayake

Keywords: Low-Code Platform, Assessment Criteria, Programming Languages

The demand of applications is increasing rapidly, however, world is not producing the

developers in that ratio. Moreover, the development companies are facing numerous

challenges to meet the requirements of the clients, who demand the applications with no

time. To overcome this gap of developers, there are numerous Low-Code Platforms

available who not only enables the developers (technical employees) to develop the

applications in a faster way, but also enables the citizen developers (non-technical

employees) to develop the applications. Low-Code Platforms provides built in tools to

develop the applications with minimum code or without code.

Now the problem is to find out which Low-Code Platform will be selected for which type

of organization and which type of application. The thesis provides the decision tree to

select the suitable Low-Code Platform based on organization and application type.

iii

Moreover, the thesis also concentrates on assessment criteria for the Low-Code Platforms

to show the standings of Low-Code Platform vendors.

iv

ACKNOWLEDGEMENTS

I would like to express my sincere gratitude to my supervisor Paula Savolainen for giving

me freedom to work independently and providing me innovative topic for the thesis work.

Her guidance kept me on the right track. I am gratefully indebted to her for her very

valuable comments on this thesis.

I would also like to express my deep appreciation and respect to Prof. Ajantha Dahanayake

for her support.

I would also like to thank “Forrester” for providing me couple of reports as the academic

contribution.

I would also like to thank my mother for everthing she did for me.

Last but not the least, a highly special thanks to my dear wife for pushing me to complete

my thesis in time.

Special thanks to my sweet children.

1

TABLE OF CONTENTS

1 INTRODUCTION .. 4

1.1 BACKGROUND.. 4

1.1.1 What is Platform? .. 4

1.1.2 Why Low-Code Platform? ... 4
1.1.3 What is Low-Code Platform? .. 5
1.1.4 Low-Code Users .. 6

1.2 AIMS AND OBJECTIVES .. 6

1.3 RESEARCH QUESTIONS .. 7

1.4 STRUCTURE OF THE THESIS .. 7

2 LITERATURE REVIEW ... 8

2.1 PROGRAMMING LANGUAGES BACKGROUND.. 9

2.2 SEGMENTATION OF PROGRAMMING LANGUAGES .. 10

2.2.1 Notations .. 12
2.2.2 Syntax ... 12

2.2.3 Semantics ... 12
2.3 LOW-LEVEL CODING VS HIGH-LEVEL CODING .. 13

2.4 GENERATIONS AN OVERVIEW ... 14

2.4.1 First Generation Languages (1GL) ... 14
2.4.2 Second Generation Programming Languages (2GL) 16

2.4.3 Third Generation Programming Languages (3GL)... 16
2.4.4 Fourth Generation Programming Languages (4GL) 17
2.4.5 Fifth Generation Programming Language (5GL) ... 18

2.4.6 Next Generations of Programming Languages ... 19
2.5 PROGRAMMING LANGUAGES ... 19

2.5.1 FORTRAN .. 19

2.5.2 Assembler / Compiler ... 20
2.5.3 Assembly Language ... 21
2.5.4 C Language .. 22
2.5.5 JAVA Language ... 23
2.5.6 PYTHON .. 24

2.6 RAPID APPLICATION DEVELOPMENT AND LOW-CODE PLATFORM ... 25

2.6.1 Rapid Application Development .. 26
2.6.2 Low-Code Programming ... 27

2.7 ASSESSMENT CRITERIA FOR PROGRAMMING LANGUAGE / PLATFORM 28

2.7.1 Assessment Criteria ... 31

3 WHY PLATFORM SELECTION IS IMPORTANT? 34

2

3.1 SUCCESS / FAILURE STORIES .. 34

3.1.1 Success Stories ... 34

3.1.2 Failure Stories ... 35
3.1.3 Lesson Learnt from Success / Failure Stories ... 36

3.2 STRATEGY DECISIONS.. 36

3.2.1 Strategy Decisions ... 37
3.2.2 Execution Decisions ... 38

4 ASSESSING VENDORS AND LOW-CODE PLATFORM SELECTION 40

4.1 ASSESSMENT CRITERIA .. 40

4.1.1 Quick Base ... 41
4.1.2 MatsSoft ... 42

4.1.3 Caspio .. 43
4.1.4 Microsoft .. 44
4.1.5 Nintex ... 45
4.1.6 FlowForma .. 46

4.1.7 FileMake .. 46
4.1.8 KiSSFLOW ... 47

4.1.9 Zudy ... 48
4.1.10 Pulpstream ... 49

4.1.11 Kintone ... 50
4.1.12 Vizru ... 51
4.1.13 Intellect .. 52

4.2 DECISION TREE FOR SELECTION OF LOW-CODE PLATFORM 52

4.2.1 Organization .. 54

4.2.2 Application ... 54
4.3 CASES .. 56

4.3.1 Case 1 .. 56

4.3.2 Case 2 .. 57
4.3.3 Case 3 .. 59
4.3.4 Case 4 .. 60
4.3.5 Case 5 .. 62

4.3.6 Case 6 .. 62
4.3.7 Case 7 .. 63
4.3.8 Case 8 .. 65
4.3.9 Case 9 .. 65
4.3.10 Case 10 .. 67

4.3.11 Case 11 .. 68

4.3.12 Case 12 .. 69

4.4 LOW-CODE PLATFORMS AND THEIR VENDORS .. 70

5 CONCLUSIONS ... 72

REFERENCES .. 74

3

LIST OF SYMBOLS AND ABBREVIATIONS

1GL First Generation Languages

2GL Second Generation Programming Languages

3GL Third Generation Programming Languages

4GL Fourth Generation Programming Languages

AD&D Application Design & Development

CPU Central Processing Unit

CRUD Create Read Update Delete

DPA Digital Process Automation

ENIAC Electronic Numerical Integrator and Computer

IOS Internetwork Operating System

LPL Logical Programming Languages

PAAS Platform as a Service

PL Programming Languages

UI User Interface

UX User Experience

4

1 INTRODUCTION

1.1 Background

Applications development demand is increasing rapidly, however, the world is not

producing IT developers with that pace. Till 2021, the application development demand in

the market will be at least five times than the development capacity to meet the demand

[1]. To meet the shortfall of IT developers we need alternatives that no only help us to

create applications in a quick way, also enables the citizen developers to develop their own

applications. In the current era, we have solution of the problem which is Low-Code

Platforms that enables the IT developers to create the applications quickly. Moreover, these

platforms enable the citizen developers to create their own applications. Low-Code

application development term is new and few years ago no one has the idea about Low-

Code [6].

Low-Code is an approach where applications design and develop is performed in a Digital

Speed with less coding. This approach provides the opportunity to the skilled developers to

develop more reliable applications with fast speed. It enables the developers to skip all

basic steps which can stall them so that they can straight forward get the 10 % unique of

the application [7].

1.1.1 What is Platform?

To understand Low-Code platform, first we need to look into couple of definitions of

platform.

“A platform is a group of technologies that are used as a base upon which other

applications, processes or technologies are developed” [2].

“In IT, a platform is any hardware or software used to host an application or service” [3].

1.1.2 Why Low-Code Platform?

In the current era, Business and IT works together. For any application and business, time

to market is a critical issue. Businessmen almost always pushing the technical teams to

provide their business solutions with no time. To take the advantage of time to market,

5

business and IT should work on Digital Speed. Low-Code can be the option to meet up the

Digital Speed development.

1.1.3 What is Low-Code Platform?

“Platforms that enable rapid delivery of business applications with minimum hand-coding

and minimal upfront investment in setup, training, and deployment” [4].

“For a growing number of business concerns, Low-Code is the way forward. It’s a

streamlined development process faster than any that’s come before it. Businesses need to

change at a rate that can keep up with competitors, vendors, and the modern consumer’s

fleeting stream of impatient desires” [5].

Low-Code development / programming platforms are mostly used in sense of developing

the applications with minimal human effort required which caters of the view that

applications that are developed in a rapid method. The Low-Code Development Platforms

(LCDP) are based on graphical user interface in designing the application as opposed to the

hard-coded programming techniques. The feature of LCDP focuses in the development of

the Databases, Business processes, and User interface [8]

Low-Code Programming technique is basically derived from fourth generation

programming ideology along with the concepts of RAD kept in sight. The Low-Code

Programming enables the programmer to think less on the syntax of the code and put more

emphasis in designing the esthetics and functionality of the application allowing lesser

time required on troubleshooting and implementing. allowing to develop entirely

operational applications [9].

Low-Code is generally referred to as novel and much new concept in the field

programming with the idea being pitched in 2011 alone. The concept has changed into

reality, but it has also come with a cost of criticism by the programmer community which

believe that such platforms will reduce the functional concepts of programming and the

field will no longer be suitable for professionals. Model driven software development

approach, rapid application development, automatic code generation and visual

6

programming are the approaches that became the foundation of Low-Code Programming

[10]. All these techniques have all been merged together to achieve the Low-Code

Programming technology that is in front of us. Mendix, Salesforce, Appian, and

PowerApps are some of the Low-Code Programming Languages.

Globally the Low-Code Programming is getting famous and lot of new developers have

found their interest in this programming technique. The reason for this evolution in

programming is that the tedious task of writing down the syntax and then troubleshooting it

was more laborious and time consuming. Ultimately the ideas that were in mind were

mostly bounded by the coding techniques. Therefore, stopping the functionality of the apps

being developed to a certain bound, but with the Low-Code Programming now in the

horizon new avenues have been opened. Especially with IOS and Android becoming the

major operating systems. The need of smartphone apps increasing day by day, we are

going to see the advent of the Low-Code Programming finding its way into the niche

market at a rapid pace as of today.

1.1.4 Low-Code Users

Low-Code users are divided into two categories i.e. Citizen Developers and IT Developers.

“A developer is an individual that builds and create software and applications. He or she

writes, debugs and executes the source code of a software application [108].”

A developer is also known as a software developer, computer programmer, programmer,

software coder or software engineer.

Citizen Developers: According to Gartner “A citizen developer is a user who creates new

business applications for consumption by others using development and runtime

environments sanctioned by corporate IT” [11].

1.2 Aims and Objectives

The aim and objective of this study is to provide vendors assessment criteria, and selection

of the suitable Low-Code Platforms based on the application type and organization type.

7

1.3 Research Questions

Table 1. Research Questions

Research Questions Expected Outcome

RQ1: What is the contribution of the

literature in Low-Code Platforms

assessment and selection?

EO1: Provide Contribution of literature in

Low-Code Platform assessment and selection

RQ2: Which is the suitable Low-

Code Platform for which application

and organization type?

EO2: Provide the suitable Low-Code

Platform based on application organization

type

RQ3: Which Low-Code Platform’s

vendor stands at which place in the

assessment?

EO3: Provide the standings of Low-Code

Platform’s vendor.

1.4 Structure of the thesis

The Section 2 contains the Literature Review. In Section 3, the discussion is about why the

selection of Low-Code Platform is important, and assessment criteria for Low-Code

Platforms. The Section 4 contains Assessment Criteria for Low-Code Platforms and

Decision Tree for selection of Low-Code Platform based on organization and application

types. Section 5 contains Conclusions.

8

2 LITERATURE REVIEW

Low-Code is a new development approach, so the relevant literature review is limited.

However, Low-Code Platform literature review can be seen in context of how the

Programming Languages were evolved. To have the better understanding of Low-Code

development, we will go in deep the way Programming Languages were developed and

how they were evolved.

The focus of this literature review is the understanding of how Low-Code Programming

has its origin of inception and how the Low-Code Platforms has been in the process of

evolution. This literature review is aimed at the evolution of Low-Code Programming

Languages. What journey did the Programming Languages take to reach this milestone?

We will establish the fact, that the weaknesses of one generation was resolved in the next

generation and the fact that most of the languages had retained their existence due to the

flexibility to accept the changes.

The evolution of mankind has been subject to changes and ease of doing task. From the

beginning Homo Sapiens have sought to increase the efficiency of task with minimum

effort required. The invention of wheel to steam engine are the example of easing up

human effort as much as possible. Computer as machine is also designed by human race to

minimize the computations which may take week if done manually. From Electronic

Numerical Integrator and Computer (ENIAC) to present day computers all are designed

and run by the computer programs which are tasked for doing the specific jobs [12].

Designing computer programs is a tedious and time-consuming job. With the present-day

demand of providing projects within small deadline the burden has fallen greatly, on the

programmers. The evolution of Programming Languages has evolved them to the level of

Low-Code Programming. Low-Code Programming is as such designed to reduce the

human effort by minimizing the stress of programming syntax and structures [9].

Moreover, with add drop mechanism the designer can develop programs which are more

designed based, and less syntax based, with less errors and redundant the programmer is

able to deliver project on time. The evolution of Programming Languages to the Low-Code

Platforms and how this platform will define the future is going to be the agenda of this

9

literature review.

2.1 Programming Languages Background

Programming finds the roots when Electronic Numerical Integrator and Computer

(ENIAC) was created, which was the first ever computer system. The machine code was

written in the form of batch files to run the ENIAC. This was the foundation of

Programming Languages. The machine code and machine (ENIAC) both were dependent

on each other, as code is nothing without machine and machine is nothing without code.

The computer architecture is based on a Central Processing Unit (CPU). The main purpose

of CPU is to execute instruction generated from programmed codes [13]. The basic

languages are series of binary digits and they form the backbone of basic programming as

the machine system only understands with the binary digits [13]. Through the years many

different Programming Languages had been designed and implemented in the market,

which were categorized in the form of the generations and through these generations we

can traverse how the programming language has evolved to its present different forms

especially the Low-Code Programming techniques.

The evolution of programming language can be distributed between generations with each

generation having its own set of specific programming trends that dictated the overall

development scheme of that generation. In a collective manner there are five generations

till date which are categorized over their functional trends and overall processing virtues.

This specific literature review shall be focusing upon these generations and how each

generation set as precursor for the successive generations to come and how each generation

with its specific Programming Language had an impact on society and innovation [14].

These will be the focus of the discussion in this literature review altogether.

The fact remains that the Low-Code Programming has evolved as the Programming

Languages have evolved. Therefore, it is imperative that we discuss these generation as

well. A tabular notation of the generation with the years of introduction and related

programing languages are shown in Table 2 below.

10

Table 2. Programming Languages and the generations over the year [15]

Sr # Generation Year Popular languages

1 First Generation (1GL) Early 1950 Flow-Matic

2 Second Generation (2GL) Early 1950 Assembly languages

3 Third Generation (3GL) 1964 COBOL, FORTRAN,

LISP

4 Fourth Generation (4GL) 1970 Pearl, php,

Python ruby

5 Fifth Generation (5GL) 1980 Prolog, OSPS5

Low-Code Programming is the eventual evolved form of the Programming Languages. The

main focus of the Low-Code Programming was to make sure that ease of coding be there.

The Low-Code Programming Language was designed to make the programmer focus on

the logic rather than notations and semantics. Let the programing language take care of the

things. However, still the presence of Low-Code Programming and its evolution in

becoming a high-end application development language is one of the follow ups of this

literature review.

2.2 Segmentation of Programming Languages

Languages which are designed artificially for the communication with computer or passing

instruction to computer are known as Programming Languages. There are some programs

in Programming Languages (PL) which control the behavior of the computer and express

the algorithms which are being used in the instructions. Programming Languages are

divided into two main categories which are Imperative PL and Declarative PL [16] [17].

Imperative PL is also known as procedural programming. Imperative PL as commonly

known the program is constructed with the help of one or more procedures, these

procedures can be functions or the subroutines. Object oriented programming encompasses

the approach where structured programming has been used to promote for the

improvement of the maintainability and quality of the imperative programs. In imperative

programming, assignment statements are used for storage of information in memory to use

11

it later after some time when it is required. Using the looping statements allows sequences

of statements execution at one time. The Important characteristics of Imperative PL are

absorbing changes, common data structures, user friendliness and global variables.

Because of these points, Imperative PL are always preferred to work. The Imperative

Programming Languages includes FORTRON, C++, JAVA, MATLAB, PHP [18].

Declarative PL is opposite to the Imperative PL. This allows the programmer to declare

what should be done. Development of this style implies discussion of the logic of data

processing but not its control flow. Developers describe the required results without the

explicit description of the steps required to application. In Dclarative PL there are further

two subclasses which are

1) Logical Programming Language

2) Functional Programming Language

“Logic programming is a computer programming paradigm in

which program statements express facts and rules about problems within a system of

formal logic” [19]. Programming Languages classes and subclasses of the Declarative PL,

that is based on the use of logical formulas. Logical Rules of the programs are written as

clauses with a proper head and a complete body. PROLOG and LISP are the main Logical

Programming Languages (LPL) which are categorized in the Logical Programming

Language (LPL) with their different dialects as well. The dialects of LISP are EuLISP,

NewLISP, ISLISP, Common LISP. Functional Programming Languages are particularly

designed for symbolic computation handling and the list processing applications. That

language is relying on mathematical functions some of the well-known Programming

Languages in this category are Python, Haskell, Erlang. Functional Programming

Languages are further categorized into two main sub groups these are 1) Pure Functional

Languages 2) Impure Functional Languages [20].

• Pure Functional Languages – These functional languages support functional

paradigms individually like Haskell.

• Impure Functional Languages – These functional languages support the

functional paradigm and support imperative style programming as well like LISP

https://www.computerhope.com/jargon/p/progming.htm
https://www.computerhope.com/jargon/p/program.htm
https://www.computerhope.com/jargon/s/statemen.htm
https://www.encyclopedia.com/computing/dictionaries-thesauruses-pictures-and-press-releases/declarative-languages

12

2.2.1 Notations

Notations are used for writing programs in computer language which are specified in

computational levels and have the importance of being followed upon and being used as.

Along with these, the Programming Language also hold the specifications and

implementations of how these languages are being used as per the need [21].

2.2.2 Syntax

The reason of discussing the semantics and syntax was to make the reader appreciate the

fact that these two main parameters were responsible in the defining the next generations

of Programming Languages and the reason of how the advanced forms of application

development Programming Languages were designs such as the Low-Code Programming

Language.

Syntax of any language defines how it is being narrated and understood by the reader [19].

In the computer Programming Language dimensions, the syntax of Programming

Language is usually defined by using a combination of consistent expressions (for lexical

structure). For the understanding of the grammar, syntax practices are used and are helpful

for using the grammar in the code. For instance, the syntax in assembly language will be

different from what we see in the web-based Programming Language although the

conventions of using the mathematical formulas and other related aspect shall be the same.

2.2.3 Semantics

Semantics are basically the program building blocks. Such blocks maybe the examples of

operational algebraic, axiomatic, denotational. Specifications means to determine the

behavior of the program and its level of accuracy according to its source code file. whereas

Implementations means execution of a program on one or more than one configurations of

software and hardware. For implementation two different approaches are used for the

configuration of hardware and software which are Interpretation and Compilation. Any

language can be implemented using one of the configuration.

13

2.3 Low-level coding vs High-level coding

Before moving on the later stages of paradigms of the Programming Languages, this part

has a very important part to play in the understanding of this literature review as what is

the difference between the low-level coding and high-level coding and why are these two

terms used. The evolution of the Programming Language and their history had been

influenced by the need of the literature in the language as well. Since the developers are

humans, it was seen imperative that the languages that were being used to design the

applications must also be written in the human understandable languages so that the

troubleshooting can be made easy and understandable for the other developers to continue

with the work.

Fig. 1. An impression of the high-level vs low-level Programming Languages. [22]

The high-level programming is implemented for the code to be easier. Making the

language understandable for the novice programmers. The high-level programming is

portable as compared with the low-level programming. The reason of designing the high-

level Programming Language was that the machines were becoming more versatile in the

early 80’s and the need for Programming Language was seen which were implementable

on cross platform architectures was available with any machine running [23]. Since the

designers were coming up with hardware’s which used totally different sets of registers.

The low-level programs were defined to only a particular system. So, the need was felt to

design apps and operating system that could run on different platforms and perform the

same tasks uniformly [24].

14

Comparatively, Low-Code Programming is platform dependent. This is the main

disadvantage as the implementation on cross platform is not possible. Since they are used

to write different driver signatures and ASICS also the firmware Languages are still being

implemented using the low-level Languages. Secondly, an important factor that must be

understood about the low-level code is that they are basically machine codes and thus, are

very fast as the computations speeds are faster as no compiler is involved in between the

kernel and the code [25]. After establishing the difference between the low-level and high-

level programming, now let’s proceed to the later topics of our literature review.

Table 3. Examples of Low and High-Level Programming Languages [20].

Sr # Type of language Example

1. Low-level Programming Language Assembly languages

2. High-level Programming Languages COBOL, FORTRAN,

ALGOL, C, JAVA, PHP

2.4 Generations an overview

First ever Programming Language was developed by Alain Colmerauer when he designed

Prolog [26]. Until today, almost five computer Programming Languages generations are

introduced. To achieve the different demands of application programs, thousands of

Programming Languages are introduced. These generations are based on the level of

interaction with the computer hardware. Many languages are developed for research

exploration and some of these were designed only for programming perspective. In

scientific computation, FORTRAN was the first high-level language which were

introduced at the time of low-level languages were being used. That is still known as the

most influential Programming Languages in the history of Programming Languages.

2.4.1 First Generation Languages (1GL)

The first ever Programming Language existed well before the ancient history was recorded

as the ancient Egyptians had used different mathematical programs to construct their

architectures [16], the recorded program could be traced back into the past when

15

the main programming was placed only for some simple uses as we see them today.

However, our scope of discussion is based on the existing Programming Languages and

how they have evolved into what they are now as shown in the Table 2. The first ever

computer program that was introduced was the FORTRAN that was designed by IBM and

is considered as the oldest Programming Language.

The early Programming Language generation as the 1GL is considered to be low-level

programming, before moving further into the details of the first-generation language let me

first oversee what the low-level programming actually is and how it differs from others and

what imperative does it follows. Basically, the low-level programming is defined as to be

machine specific Programming Language, as we have understood that a computer system

only understands binary language in the form of one’s and zero’s i.e. a code had to be

written in such a way that the machine could understand it and then perform the tasks

imbedded into the code that was written in the low-level programming technique.

FORTRAN is multi-dimensional as it was first introduced it was simple Low-Code

Platform [48]. With the applicability of FORTRAN being seen as more important, it has

evolved as High-level Programming Language as we still see in later generations.

FORTRAN is one of those low-level Programming Languages and ever since its inception

in early 50’s it is still used by many space and research-oriented facilities all over the

world. One more thing about the low-level programming was its level of complexity for

human understanding as the syntax of the language was hard to even understand [25].

Fig. 2. A set of vacuum tubes that were used in the first ever designed computer systems

and the program were hard coded through these vacuum tubes [27] [28]

16

The above figure shows the first ever vacuum tubes that were used in the computer

machines and their main task was to run the code in the form of binary numbers, basically

the programmer had to physically code each of the vacuum tube to form the basis of the

main computer program [27].

The main attractions of the first generations of Programming Language was the absence of

any kind of assembler or compiler which would turn the written code into machine level

syntax [29] thus the first generation of Programming Language was all but very complex

of binary instructions that were hard to learn and implement.

2.4.2 Second Generation Programming Languages (2GL)

The second generation of Programming Language also referred as the assembly language.

It had the same origins as the first generation of the Programming Language had in the

sense that the both the languages were based on low-level programing platform. However,

the real difference that enhanced the second generation language from the first generation

languages was the provision of the assembler or the compiler. The assembler or compiler

which converted the program into machine level understandable language that was zeroes

and ones [30]. The assembler helped in making the programming the code much easier as

it used the mnemonics codes for interpretation of the code. These codes had a single word

instruction that could be used to send in a command to the system. Thus, providing an ease

to the developer whose major overhead was resolved using the second generation

Programming Language assembler. Features of assembler also came with its own

assembler thus, becoming a second-generation Programming Language [31].

2.4.3 Third Generation Programming Languages (3GL)

As we have earlier established the difference between the high and low-level Programming

Languages and why the need was felt for high-level language. The needs brought the

situation which moved us to the third generation of Programming Languages 3GL which is

based solely on the high-level language narratives.

As a preliminary introduction, the third-generation Programming Language was introduced

in 1964-1971. The third generations languages are termed as high-level Programming

17

Languages, as the languages in the cadre are more machine independent and user friendly

[32]. The new and advanced generation of Programming Language made the programming

as platform independent meaning that code content was not dependent on the hardware

which was being used.

Another more important feature of the third generation of Programming Languages was its

ability to form the higher level of abstraction that the third generation of Programming

Languages had to offer [33]. The level of abstraction provides the code to be more

redundant to the network related threats since the hardware and system networks had

evolved in the same era as well. The formation of the abstraction created the advantage of

third generation Programming Languages over the first and second generation of

Programming Languages altogether.

However, this also saw the evolution of many first and second generations of Programming

Languages to evolve as well as the example FORTRAN 77 is the evolved form that has

seen its implementation in the second-generation Programming Language and uses the

norms of the high-level coding criterion [34]. The earlier third generation Programming

Language constituted of the COBOL, ALGO, and Fortran. Later after some duration C,

C++, C#, JAVA basically was added in this generation. Some third-generation languages

support structured programming and some of these support Object oriented programming.

The advantage of that higher-level language is its user friendliness, feasibility in reading

and writing.

2.4.4 Fourth Generation Programming Languages (4GL)

The era of 1970-90 saw the boom in the evolution of Programming Languages. The

researchers had changed their focus from designing languages from the platform-based

architecture, towards designing an overall Programming Language that could be used as

the platform. The platform could be used to design and implement the commercial

softwares. The fourth-generation Programming Language had been an evolved form in the

implementation of abstraction as that the third-generation Programming Languages had

been doing. The fact remains that the 4GL had been a step up in the form abstraction than

18

its predecessor 3GL. However, this does not change the overall matrix of C and JAVA

languages going into the background as their importance was still there and the 4GL with

their advance features held their own domains.

The era that persisted in the development of the fourth-generation Programming

Languages were more of application development based. Which emphasized on the rapid

development of software’s as niche market of software development. Since developing

applications in third generation Programming Language saw delays and were error prone

therefore a new methodology was needed in this regard.

To create new application designers came up with idea of using higher level Programming

Language and methodology, thus the fourth-generation Programming Language came to

the horizon. The results showed that the generated codes were complex in nature as that

created in the 3GL environment but were easier to implement and much easier to

troubleshoot and more importantly were more reliable in creating. In general, the 3GL was

closer to developing only whereas the 4GL and later generation that followed were more

focused on speed of delivery and error resolutions. Examples of the fourth-generation

Programming Languages are Ruby and Python.

2.4.5 Fifth Generation Programming Language (5GL)

The 4GL was followed by efforts to define and use a 5GL. The natural-language, block-

structured mode of the third-generation Programming Languages improved the process of

software development. The period of this generations starts from 1980’s till onward.

Moreover, after 1990 improvements in this generation were seen, systems were designed

based on fuzzy logics, neural networks and in the field of artificial intelligence. The

language involved parallel programming and artificial intelligence. That makes the

computer thinking more like human being. Databases were programmed in a specialized

manner to reduce the efforts of programmers and increase the involvement of system for

that build in and enhanced libraries were introduced which minimize programmer effort to

generate new applications. All the updated versions of high-level languages like C, C++,

JAVA, .Net were also included in this version as well. Modern languages, especially the

newly designed high-level Programming Languages are constructed to resolve the domain-

19

specific issues and requirements [35].

As a matter of fact, the fifth generation of Programming Languages are not Programming

Languages at all but are in general algorithms designed to be problem specific and in a

wider scope more generic in nature which learn from the data they are being exposed to

and then design a methodology to resolve the issues. This has taken the program out of the

hand of the programmer and the computer algorithms is now in command of resolving the

issues. Today we are looking an intelligent system that are designed to minimize the

human effort in problem solving and allowing the computer to be more real time-oriented

system, some of the applications that the 5GL have found its roots into are the internet of

things IoT, machine learning, data mining and artificial intelligence.

Some of the algorithms that are being used for this purpose are deep learning algorithms,

which include Neural networks along with other algorithms such as the Naïve Bayes

algorithms, decision trees, principal component analysis PSO, Markov chains.

2.4.6 Next Generations of Programming Languages

With the above-mentioned generations being discussed, the avenue of evolution of

Programming Languages is still open with self-learning algorithms. These self-learning

algorithms getting enhancements. The robotics geeing new technological edges, the

options of evolution in Programming Language is bright.

2.5 Programming Languages

Number of Programming Languages were introduced in different eras. However, we are

only focusing some of the commonly known languages.

2.5.1 FORTRAN

FORTRAN can be considered as the survivor of Programming Languages, when

introduced for the first time the FORTRAN was considered as the Low-Code Platform.

With the constant evolution and the changes made to it, FORTRAN has moved from 1GL

to more advanced generations. Now we see that FORTRAN is in the forefront of

Programming Languages. Fortran was introduced in the early 50’s and is still being used

since many new derivatives of this Programming Language have come into exitance. The

20

developers tend to use them, as seen for the assembly language that shall be discussed in

the later parts. The Fortran was envisioned as the machine level language. However, the

later years have shown many iterations with many new version follow-ups have made this

Programming Language still a market share holder [21] [36]. Since the syntax and their

semantics have played a vital role in the development of the Programming Language, as

seen in the development of Fortran, thus before we move on to the higher generations and

discuss them let us first go through these points as well.

2.5.2 Assembler / Compiler

Assembly language is the basis of the second generation of Programming Language. The

second generation were based on assembler and compilers to make the code much easier to

write and understand by the programmer. Therefore, many of the assembly languages

found their main stand in the practical fields of the embedded system design in which a

microcontroller was designed using the second-generation Programming Languages. What

is important to note in this regard is the introduction of transistors over the vacuum tubes

this increased the programming and computation speeds of the system [37]. The overall

impact was that the assembler had an influence in the market and the related Programming

Languages were the game changers in this regard. Some of the codes that were also

referred as the instructions that assembly languages used and were translated by the

assembler are discussed in the Table 4, which is as follows.

Table 4. The assembly language instructions and their translated machine level code [34]

Sr

Instruction in

Assembly Language

Instruction meaning Assembler

converted

Instruction

1. ADD Add values 3210

2. ADDU Add unassigned values 3310

3. SUB Subtract values 3410

4 AND Logical AND operation 3610

5. OR Logical OR operation 3710

21

6. XOR Logical exclusive OR

operations

3810

7. NOR Logical negated OR

operation

3910

8. SLT Set on less than 4210

9. MUL Multiply 2410

10. DIV Divide 2610

In terms of embedded systems programming, the first language which echoes is the

assembly language. The assembly language is still one of the sought-after Programming

Language in the market. The importance of assembly language and its potential has caused

different languages such as C language and JAVA to comply with the assembly language-

based compilers as well.

2.5.3 Assembly Language

Introduced with second generations of Programming Languages the assembly language has

made in routes in the programming fertility. The assembly language is a Low-Code

Programming Language and with the advanced versions showing flavor of high-level

Programming Language. The assembly language is used in a conditional manner in an

environment which is mostly dependent of the platform. In case, if 8086 microcontrollers

can be programmed by any assembly language, which shows the platform dependency of

the assembly languages [38][39]. When designing a code on the assembly code it is a

common practice to follow the flowchart in which the after designing the logical

framework the second phase is to write a pseudocode which is same as the algorithm

which shows the overall flow of data and how it is used to design the actual code.

22

Fig. 3. Example of Assembly Language [34]

Therefore, to cover it, the assembly language is used for the purpose of making the ease in

the low-level programming becoming much easier and reliable in designing as the

troubleshooting becomes easier with the introduction of the assembler [39]. The above

shown example describes the classical example of the low-level code. In the low-level

code the instructions are being used such as move and repeat. These instructions are human

understandable and they are allowed to be used with registers such as the A , B which are

referred as the registers. The registers hold the data used for computations and then their

predefined instructions like END and BEGIN. They have their own predesigned

instructions hardcoded in the assembler, along with all of this the assembler transforms.

This complete code and narrates it into machine specific code also called as the gray code

or the opcode.

 Fig. 4. Flowchart showing the steps undertaken to design the assembly code from start to

finish [34]

2.5.4 C Language

The C language is one of the most used Programming Language. C language is used for

23

the development of application for industries ranging from defense to economic, from

petrochemical to control systems. C language has shown it splat form independence and is

also one of the most sought-after Programming Language which is used as assembly

language program to be a platform independent high-level Programming Language as well.

The C language is in general terms a more general-purpose Programming Language due to

its vast portfolio. C language is used in personal computers, super computers and now in

IoT. [40][41][42].

The inventor of C language was Dennis Ritchie at Bell Labs and its first major role was to

implement the UNIX operating system. The facts that the C language was platform

independent which is the main feature of the third-generation Programming Language also

the backward retractability of C also employs it to be used as the assembly language

program used for programming microcontrollers and supercomputers as well. In many

ways, the concept of language going obsolete cannot be predicted in the far and near

future.

2.5.5 JAVA Language

In terms of third generation languages, JAVA is one of those languages that were

presented in this generation. Moreover, JAVA language is also popular in latest

generations due to it’s object-oriented approach. By the term object-oriented approach, it

refers to the concept of how the code can be used to define a certain object in a class and

how that object can be rephrased and defined to work for the nested objects to provide a

functionality that can be optimized and is redundant to any kind of errors. Also, as being

the third-generation Programming Language, the JAVA is also one of the Programming

Languages which has the feature of abstraction in its compilers as predefined product

[43][44]. Along with that, the main concept of the platform independent platform is also a

critical feature of JAVA and thus it is also one of the used Programming Language as of C

and C++. It is also worth mentioning that the syntax of JAVA is much same as that of C

and C++[45].

Along with that, the discussion of functionality of JAVA is also very interesting. The fact

that JAVA uses the compilers that are referred as JAVA Virtual Machine. The JAVA code

24

is compiled as bytecode and this code is then run on any machine without any need of

compiler. Therefore, once a bytecode is created the need of using a compiler is not there.

Most of the games based in the 90’s was made in JAVA as the developers found its free

ware architecture and compilers as easy going and imaginative base for designing new

dimensions in gaming.

Fig 2.2. Atari console courtesy [Atari Japan co] was the platform that used JAVA as the

source code for its games [46]

As of today, JAVA is being used as the web-based client-server-based Programming

Language which is being used by millions of developers worldwide since, it is one of the

most developed Programming Language in sense of controlling the developed codes [47].

JAVA was originally developed by James Gosling under the Sun microsystems-based labs

which was later dissolved in to Oracle corporation. Although the syntax of JAVA is

derived mainly form c language but unlike the C language the JAVA did not had any

proper functional control for the low-level programming.

2.5.6 PYTHON

One of the most advanced Programming Language of the fourth-generation Programming

Language is Python whose latest release was scheduled in 2, May 2018 according to the

official website [55]. Python is based in interpreted high-level language which finds its use

as general-purpose Programming Language [45][47]. Python is one of those language that

is being used as the next generation of Programming Language as well [48]. With the

machine learning trends coming into play and most of the application today being

25

developed are more business oriented and are intelligent therefore Python has find its

application s in this field as well.

Fig. 5. Python code that can read and detect human hand-written text and then convert it

into a word format [49]

The features that are introduced in Python are as follows [50]

• Open source

• Dynamic type system

• Standardized library

• Automatic memory management system

• Supports multiple programming paradigms such as

o Object oriented

o Imperative

o Functional

o Procedural

2.6 RAPID APPLICATION DEVELOPMENT AND LOW-CODE
PLATFORM

As the applications demand was increasing dramatically, so to meet that demand Rapid

Application Development (RAD) was introduced. RAD is used with the need of achieving

26

the development in minimum time possible [51][52][53]. Latterly, Low-Code Platforms

where introduced to meet the massive demand of applications. The concept of Low-Code

Platform is to develop the applications with minimal human effort and maximum speed.

2.6.1 Rapid Application Development

The RAD development usually consists of a team of 5 to 8 members who are mostly

developers and business managers who have the sound knowledge of the development and

have the authority to make design decisions [53][54][55][56]. There are number of RAD

implementation methods and they all constitute in the latest trends in application

developments. Windows XP is one of the examples of RAD development as well.

Fig. 6. Rapid Application development workflow [57]

Rapid application development has many advantages one such is the flexibility of

programming and changing the programmability as the coding process continues. Also

referred as the “Try it before you buy it” approach, is one of the latest approaches in the

development of Programming Languages. The main advantage of RAD is to analyze and

build the prototype model test it and change it within no time. The advantage that RAD

brings is the speed [9] [58].

With many advantages of RAD there are many issues that need to be seen as well. The

critics of RAD programming point out its lack of object oriented approach which has made

its usability scarce [8][59]. The RAD had been the most emphasized design approach as it

was the foundation on which the Low-Code Programming approach had been created and

27

designed as well.

2.6.2 Low-Code Programming

Low-Code development / programming platforms are mostly used in sense of developing

the applications with minimal human effort required which caters of the view that

applications that are developed in a rapid method. Low-Code Development Platforms

(LCDP) are based on graphical user interface in designing the application as opposed to the

hard-coded programming techniques. The feature of LCDP focuses in the development of

the following [9],

• Databases

• Business processes

• User interface (web-based applications)

Low-Code Programming technique is basically derived from fourth generation

programming ideology along with the concepts of RAD kept in sight. The Low-Code

Programming enables the programmer to think less on the syntax of the code and put more

emphasis in designing the esthetics and functionality of the application allowing lesser

time required on troubleshooting and implementing. allowing to develop entirely

operational applications [10].

Low-Code is generally referred to as novel and much new concept in the field of

programming with the idea being pitched in 2011 alone. The Low-Code Programming is

the next big thing and most of applications today developed through Low-Code

Programming Languages.

The approaches that have created the Low-Code Programming are as follows

• Model driven software development approach

• Rapid application development

• Automatic code generation

• Visual programming

In a way, the above-mentioned techniques have all been merged together to achieve the

Low-Code Programming technology that is in front of us. Some of the Low-Code

Programming Languages are as follows.

28

• Salesforce

• Microsoft PowerApps

• Mendix

• Google App Maker

• TrackVia

• Appian

Globally the Low-Code Programming is getting famous and lot of new developers have

found their interest in this programming technique. The reason for this evolution in

programming is that the tedious task of writing down the syntax and then troubleshooting it

was more laborious and time consuming.

2.7 Assessment criteria for Programming Language / Platform

Software or Platform evaluation criteria are not clearly defined and elaborated in the

literature. The criteria meanings are open to the authors and they make their own

interpretation. The exact meaning of a criterion is open to the evaluator’s own

interpretation. Sometimes, the terminology introduced for criteria by one author is different

from the other author [62].

Before selecting any Programming Language or Platform, the main and the most important

thing to understand is software life cycle. It depends on specifications, design,

implementation and the maintenance. To select any Programming Language or Platform,

these points should be considered as compulsory.

 There are four important assessments by using them a Language can be considered as

trusted if it has readability, write ability, reliability and better cost. Readability is the level

of ease how easily a language can be understood and written in a well-mannered format.

Writability is that how easily a language can be written efficiently in the given platform. A

program of a language is considered as a reliable if it performs all the specific

requirements under all the conditions. The cost is more important fundamental while

choosing a language that how much expenses will come to train a programmer for that

29

language and fulfill all the requirements. At that point calls attention to that numerous

components should be well-thought-out while choosing a Programming Language or

platform, formal criteria can be considered even before. While a portion of variables will

be incorporated into the given rule, these rules may likewise be utilized according to a pre-

assessment device to limit the decisions field. One of the researchers demonstrates that

although there are exceptionally solid sentiments regarding the matter of first

Programming Languages[60] . Moreover, there may have any hard-observational tests

schemes looking at changed Programming Languages or platforms. Another researcher

[60] concurs regarding discussions finished with the relative benefits of various

Programming Languages were very normal, there are moderately couple of test

correlations of the ease of use of various Programming Language. The examination led, a

one-to-one correlation for the effect for the achievement of two languages understudies in

the very start of programming class is played out. Although the requirement of the given

approach is an educator capable in the two languages and is not effectively stretched out to

more than two languages at any given moment [60][61].

Nonetheless, it calls attention to that while episodic proof from early on programming

courses is broadly accessible and singular language highlights have been contemplated

from an intellectual perspective, the assurance of which language ought to be utilized for

training starting programming remains a combative issue. One clarification offered for the

shortage of studies is that the inconstancy among software engineers would render any

examination useless. Another is that the contrasts between spaces are excessively

awesome, making it impossible to play out a significant report that cannot help

contradicting the commence that such investigations are impractical however does not

offer any arrangements. Looking at languages is a troublesome errand, particularly when

the languages do not have a similar worldview. Building up legitimate criteria for the

examination is troublesome not just because an issue of what to quantify exists, yet in

addition claiming the criteria may support one language over another attention is called to

that in instructive settings the requests of different courses and educational module make it

problematical, if certainly feasible, to look at changed languages. Further, extraordinary

courses for the most part have adequately unique targets to make language correlations

basically futile [61].

30

The factors which are to be considered as are noted before, numerous components must

have been considered preceding starting any language process determination. Although

these components in the end might be incorporated into the assessment criteria, they may

likewise be utilized to limit the field of decisions. For instance, the determination will more

likely than not properly guided by approach or worldview becoming educated and the

quantity of languages should be utilized all through the arrangement of programming

courses. Another choice is whether the office wishes to utilize a genuine Programming

Language or an altered educating language. At last, changing cost Programming

Languages should be considered [63].

The Methodology or the worldview the choice of Programming Language or platform

worldview, which figures out what ought should have instructed, must go before the choice

of the principal of Programming Language or the platform, which impacts how to show it.

The worldview characterizes the structure inside which the understudies are educated.

Programming ideal models are separated by the ideas that they underscore. Basic

programming accentuates strategies working on (exemplified) factors; protest arranged

programming underscores techniques working on (embodied) objects; practical

programming underlines capacities working on changeless qualities; rationale

programming stresses predicates working on permanent qualities; simultaneous

programming accentuates forms trading messages fights that the focal thought while

assessing initial courses of programming, ought not to be the languages yet rather the

choice of a hypothesis or strategy of programming to instruct Attention on language is

misinformed in light of the fact that it powers an accentuation on the mechanics of

communicating key thoughts as opposed to concentrating on the key thoughts themselves.

Extra contemplations incorporate whether language develops ought to be gained

independently from or simultaneously with program configuration, how to decide the

suitable harmony in between the programming within the vast and short-term

programming, and whether a solitary language ought to be instructed all through the

programming course grouping rather than numerous languages. The related issue of a

solitary language versus numerous languages is another basic choice. The quantity of

languages to cover in a course or educational modules includes an exchange off amongst

broadness and profundity. A few instructors like to accommodate less languages in more

31

depth, learning enough about the languages in accepting understudies to have the capacity

to utilize. Criteria for the determination of a Programming Language or the platform for

nontrivial programs, while different teachers endeavor to indicate understudies the

broadness of the programming field by presenting the understudy to however many

languages as would be prudent. [64].

Selection to a language to perform all the specific requirements is too technical task. A

decision must be made between proficient review and modified languages. An expert

review language is one utilized as a part of industry and is instructed completely (except

for extremely propelled highlights), by means of an economically accessible condition. An

expert review language like Java or C++ furnishes understudies with involvement with a

genuine situation. Any issues experienced are those that will be experienced, all things

considered, getting ready understudies better for their expert lives. Tweaked languages, for

example, Eiffel researcher and skill researcher isolate taking in programming from taking

in the points of interest of a specific language, limiting the specialized issues that may

divert from the learning procedure. When understudies take in the essentials, they can

apply their programming learning to any language. [65]

Changing cost of a few instructors innocently imagine there is little change in cost in the

Programming Languages because not having genuine or reliable outcomes if a choice turns

on. In any case, that extensive overhead happens in receiving a specific language,

including readiness of address materials, creating tasks and understudy works out,

assessing and learning improvement situations and introducing the picked language, asking

for and assessing course readings, and preparing faculty. Such overheads show that care

ought to be taken while picking a language since that decision is probably going to affect

the instructor for quite a long while.

2.7.1 Assessment Criteria

In the assessment criteria, 10 criteria were selected, and those criteria were StartUp

experience, User Interface Development (UI), Data management, Digital Process

Automation, Reporting and Analysis, Application Design & Development (AD&D)

Support and Governance tools, Cloud Platform attributes, Vision, Road map, and Market

Approach [72]. To evaluate vendors based on these criteria’s, business developers and

32

power user were targeted.

Table 5. Criteria for Low-Code Platform assessment [72].

Criteria Platform Evaluation Details

Startup Experience Is there support from the platform for business developers to develop

simple, single and straightforward application? Is the helping

material or training easily available and accessible?

User Interface

development

Is there any tool to create UX without coding? Is the UX including

devices and screen resolution and layouts possible without coding?

Data Management Are there data modeling tools available in the platform? Is the

platform providing CRUD operations support?

Digital Process

Automation

Is there declarative workflow development experience in the

product? Does the product also address events and notifications in

the workflow experience?

Reporting and

Analysis

Is there support for dynamics reports in the platform? Does the

platform provide dashboards and OOTB reports?

AD&D support and

governance tools

Is there any tool provided by vendor to provide support and

governance?

Cloud Platform

Attributes.

Is there self-service public cloud provided by vendor? Is there any

public cloud security certificate which covers PCI Level 1, SOC2

Type II’ annually updated, FedRAMP, EU Privacy Shield, and

HIPPA

Vision Does the vendor vision meet the needs of the client, to become

customer, serve and remain customer?

33

Road Map How much stable, vendor has execution road map?

How vendor achieve milestone, frameworks and bench makers

which are defined in their strategy?

Does the vendor have enough skills and resources to meet up their

road map?

Market Approach Is there any success-story go-to-market approach?

Can vendor provide evidence of Revenue growth, vertical market

strategy, Account momentum, and commercial model?

The Table 5 shows the ten criteria, where each criteria has its own evaluation details. The

evaluation details have multiple questions to form the assessment of the Low-Code

Platform.

34

3 WHY PLATFORM SELECTION IS IMPORTANT?

Decision making is a highly critical issue as it is directly associated with the origination’s

future. In the past we can be seen the success and failure stories while selection of right

decision / technology or wrong decision / technology.

3.1 Success / Failure Stories

Since the genesis of man and since man has stepped on earth he has either succeeded of

failed in accomplishing his goals. He succeeded in clothing himself for his protection

against climate, discovered fire to warm him, build houses to shelter him, and with the

advancement in science during recent years have enabled civilized man to developed

sophisticated equipment without which life seems to be impossible, it is all because he has

learnt from his failures. A very wise man and inventor Thomas Edison said, “I start where

the last man left off”. This shows the importance of not giving up after failure.

3.1.1 Success Stories

3.1.1.1 The success of Cell Phone

In the April of 1973, inventor, Mr. Martin Cooper, took the mobile phone technology to

new level he took his machine to New York, held a demonstration to news reporters and

the audience where a phone call was made while standing on Sixth Avenue [66]. Telecom

has become a billion-dollar industry and its success is quite evident.

3.1.1.2 Success of the Xerox

The xerographic procedure, which was changed into invention by Chester Carlson in year

1938 was evolved and commercialized by using the Xerox business enterprise, is

extensively used to supply fantastic textual content and image photos on paper. Carlson at

the start referred to as the system electrophotography. It is primarily inspired from herbal

phenomena: that substance of contrary electric quantization attracts MR Chester also

concluded that some things are better conductors of current when comes in contact of light.

Carlson came up with six-step technique to transfer pictures and images between surfaces

to any other the use of these phenomena.

35

3.1.1.3 Success of touch screen

In 1971, a "touch sensor" became advanced by way of health practitioner Sam Hurst

(founding father of electrographic) whilst he was a teacher at the college of Kentucky. This

sensor known as the electrograph turned into patented via the university of Kentucky

studies foundation.

The "electrographic” become no longer obvious like contemporary contact screens,

however, it became a huge milestone in contact display era. The electrographic became

decided as an industrial research as one of the 100 most vast new technical merchandise of

the 12 months 1973 [67].

In 1974, the first proper contact display incorporating a transparent floor got here at the

scene developed with the aid of Sam Hurst and Elographics. In 1977, electrographic

advanced and patented a resistive touch screen era, the most popular contact screen

technology in use nowadays.

In 1977, Siemens business enterprise financed an attempt by means of electrographic to

produce the first curved glass contact sensor interface, which became the first device to

have the call "touch screen" connected to it. On February 24, 1994, the organization

formally modified its call from electrographic to Elo touch systems.

Touch screen is a product of programmable sensors. The sensors are made in such a way

that they detect slightest of weight and make movement according to the weight.

3.1.2 Failure Stories

3.1.2.1 Failure of hydrogen Air ship

On the eve of 6th May 1937, the sky over New Jersey saw a tremendous fire, people

shouted for help from a height of more than 100 feet’s? It was fire everywhere. The era of

the hydrogen air ship had come to an end. The accident was a great failure in aviation

history. Man power could not do any good to avoid such a catastrophic event [68]. Great

human loss was recorded 97 lost their life including both the passengers of the flight as

well as crew members. The world watched in complete shock as millions of dollars and

human lives lay ruined in ashes. From that very moment till this day, this technology has

36

been completely neglected by the masses as it turned out to be a major failure causing a

very high death toll.

3.1.2.2 Failure of jet pack

Throughout the 1950s American defense forces wanted a jet pack for their solders to move

easily around the war zone. A very talented scientist MR Wendell F. Moore of the famous

Bell Aero System technology decided to peruse this dream of theirs [69]. After years of

research and working, they concluded that they could not sustain a flight for more than 20

seconds and the cost of both developing a full-fledged jet system and fuel was very high.

The other major disadvantage of this system was exposure of the solder to the enemy. All

the reasons pointed towards the fact that this project must be stopped. A whopping 20

million dollars were utilized in the process. American defense forces also closed the

project because of its badly failing. Pentagon opened its files and enabled Hollywood to

use the system for its James Bond movies.

3.1.3 Lesson Learnt from Success / Failure Stories

Technology and its purposeful products are visible all around us. They form an integral

part of our life. The impact of technology on society is both positive and negative with

making life easier it has also helped in the creation of modern weaponry and defense

systems. Not all are that lucky some technologies lead to a complete disaster and result in

the loss of both money and precious lives. A technology such as hydrogen Air ships in the

early part of twentieth century was a complete failure resulting in great amount of man

loss. Many other technologies were also great failures, which resulted in great economic

loss. So, taking the right decision is very important while selecting the technology.

3.2 Strategy Decisions

There are mainly two types of decisions, strategic decision and executive decision. Three

main questions come under the umbrella of strategic decision and exactly three questions

come under executive decision [70].

37

3.2.1 Strategy Decisions

1. How much should we spend on IT?

This is very first and critical question. To answer this question the IT goal needs to be

crystal clear. A slight deviation from the goal can leads to major damage to the

organization. There are always doubts that either executives are putting too much on IT or

they are spending below the bar on IT.

The IT goals differ from organization to organization. In The successful organization, the

senior management figure out the IT strategic role in the organization and according to that

they decide how much spend on IT to achieve the objectives.

2. Which business processes should receive our IT dollars?

In this question, organization needs to pin point the business departments which needs IT

services. Instead of putting the burden of all organization on IT department. There is

always a need to avoid over burdening the IT department by assigning the irrelative

projects.

The senior management avoid taking decision to prioritize the projects and leaves the

decision in the hands of IT managers to decide the prioritizes. This thing will over burden

the IT department as every department will claim that their project is more important. This

will create the backlog at IT department end which eventually leads to the disaster.

Sometimes, organizations prefer to hire third party IT companies as they do not trust their

own IT department. However, they are responsible themselves as their lack of

involvement.

3. Which IT capabilities should be firmwide?

Now, most of the executives have recognized the strategic and cost saving benefits that are

because of centralizing the IT capabilities and introducing the standardize IT structure

throughout the organization. Because of this thing, the executives are given the leverage to

the IT managers to take decisions about what will be standardized and centralized, and

what will not be standardized and centralized. Normally, IT managers take any of two

approaches, depending on the culture of the organization. One approach is that they

38

standardized everything as it will save cost. The second approach is that the importance to

the autonomous of the departments and give them exceptions in the standardizing. The

second approach is expensive as compare to the first one [70].

3.2.2 Execution Decisions

1. How good do our IT services need to be?

It is totally depending on the executives, how much IT services they want to incorporate in

their system. Different organizations required different characteristics, some demand

reliability where as some demand accuracy. Some organizations demand top of the line

services, for example, banks can not compromise on their data. They can not afford to lose

date if the stock system crashed. They need hundred percent recovery [71].

2. What security and privacy risks will we accept?

Security and privacy is one of the main services of IT systems. However, spending too

much on security will end up with great inconvenience. So moderate approach needs to be

adopted for security and privacy. However, it is the senior executes duty to decide up to

what level they need security.

3. Whom do we blame if an IT initiative fails?

Generally, it is observed that people think that the failure is just because of IT department.

However, there are multiple factors involved. It is the business executives how changes the

business structure.

It is therefore required that senior managers need to assign business executives to take

responsibility for realizing the business benefits of an IT initiative. During the IT

infrastructure development, they should keep in contact with the IT department. They also

need to arrange trainings and orientations for the users. They should monitor that either

they are getting business values from the new IT system. Only blaming the IT department

will demoralized them and limit their capabilities. On the other hand, IT department needs

continuous commitment from the managers and users who will use and get benefits from

the system.

39

As for the responsibility is concerned, IT department should take responsibility to deliver

the system on time and well within the budget. The delivered system should be capable

enough to meet the organization’s business requirements. However, the business

executives should be held responsible for making changes in the organization to generate

the business revenue by using the new system.

40

4 ASSESSING VENDORS AND LOW-CODE PLATFORM

SELECTION

Low-Code Platforms are popular in Business Developers and

Application Design & Development (AD&D). Initially, there was a perception that Low-

Code Platforms are used only by the business developers. However, it is the surprising

element that AD&D developers are also using Low-Code Platforms to develop and deliver

the applications [72]. Low-Code Platforms for Business Developers are often used by IT

Developers [72].

4.1 Assessing Vendors

Keeping in value the popularity of Low-Code Platforms in business developers as well as

in AD&D, the assessment is carried out in this research for Low-Code Platforms for

business developers and AD&D separately based on the available literature.

For the assessment process, 13 Low-Code Platform providers were selected [72]. These are

the providers, Microsoft, Quick Base, Caspio, Zudy, FlowForma, KissFLOW, Filemaker,

Zudy, Matssoft, Vizru, Intellect, Kintone, and Nintex.

The Table 5 shows the ten criteria, where each criteria has its own evaluation details. The

evaluation details have multiple questions to form the assessment of the Low-Code

Platform. Based on the assessment, which is made in section 2.7, the Table 6 is formed

which shows overview of the 13 Low-Code vendors.

Table 6. Quick overviw of vendor assessment [72]

S
ta

rt
u
p
 E

x
p
er

ie
n
ce

U
se

r
in

te
rf

ac
e

d
ev

el
o
p
m

en
t

 D
at

a
M

an
ag

em
en

t

D
ig

it
al

 P
ro

ce
ss

 A
u
to

m
at

io
n

R
ep

o
rt

in
g
 a

n
d
 A

n
al

y
si

s

S
u
p
p
o
rt

 a
n
d
 G

o
v
er

n
an

ce

C
lo

u
d
 P

la
tf

o
rm

 A
tt

ri
b
u
te

s

M
ar

k
et

 A
p
p
ro

ac
h

V
is

io
n

R
o
ad

 M
ap

Company

41

Quick Base .
MatsSoft .
Caspio .
Microsoft .
Nintex .
FlowForma .
FileMaker .
KiSSFLOW .
Zudy .
Pulpstream .
Kintone .
Vizru .
Intellect .
 . . . Differentiated . . . On Par . . . Needs Improvement

Table 6 shows the quick overview of 13 vendors’ standings for 10 assessment criteria. The

possible grades are, from highest to lowest, “Differentiated”, “On Par” and “Needs

Improvement”. “Differentiated” is the highest grade and “Needs Improvement” is the

lowest grade. The standings of the vendors can be seen in three standards “Differentiated”,

“On Par” and “Needs Improvement”.

4.1.1 Quick Base

Quick Base Platform is very good in startup experience, data management. Quick Base’s

market approach and vision is highly supportive. However, Quick Base needs to improve

the User Interface (UI) as still UI of Quick Base is not responsive. Moreover, Quick Base

needs to improve in Digital Process Automation (DPA) [72]. In the assessment, Forrester

named Quick Base as “Leader” [72].

Over all Quick Base performance is highly satisfactory as it allows the users to create

42

application within a day. The assessment of all the features can be seen in the table below.

Table 7. Quick Base Low-Code Platform vendor assessment [72]

. . . Startup Experience . . . Support and Governance

. . . User interface development . . . Cloud Platform Attributes

. . . Data management . . . Market Approach

. . . Digital Process Automation . . . Vision

. . . Reporting and Analysis . . . Road Map

. . . Differentiated . . . On Par . . . Needs Improvement

The Table 7 illustrates that the Startup Experience, Support and Governance, Cloud

Platform Attributes, Data management, Market Approach, Vision, Reporting and Analysis,

and Road Map criteria for Quick Base are in “Differentiated” position. However, the User

Interface development, and Digital Process Automation criteria for Quick Base are in “On

Par” and “Needs Improvement” positions respectively.

4.1.2 MatsSoft

MatsSoft Low-Code Platform is good in UX, Reporting and Analysis. However, in the

areas of startup experience and data management, MatsSoft performance is average. In the

assessment, Forrester named MatsSoft as “Leader”. The assessment of all the ten features

can be found in the table below.

Table 8. MatsSoft Low-Code Platform vendor assessment [72]

. . . Startup Experience . . . Support and Governance

43

. . . User interface development . . . Cloud Platform Attributes

. . . Data management . . . Market Approach

. . . Digital Process Automation . . . Vision

. . . Reporting and Analysis . . . Road Map

. . . Differentiated . . . On Par . . . Needs Improvement

The Table 8 depicts that the User interface development, Reporting and Analysis, Support

and Governance, Cloud Platform Attributes, Vision, and Road Map criteria for MatsSoft

Low-Code Platform are in “Differentiated” position. Conversely, Data management,

Startup Experience, Digital Process Automation, and Market Approach criteria are in ”On

Par” position.

4.1.3 Caspio

Caspio Low-Code Platform provides strong UI, data management and Reporting features.

However, Caspio does not have process designer. Lacks in support, and vision [72]. In the

assessment, Forrester named Caspio as “Leader” [72]. The assessment of Caspio features

can be found in the table below.

Table 9. Caspio Low-Code Platform vendor assessment [72]

. . . Startup Experience . . . Support and Governance

. . . User interface development . . . Cloud Platform Attributes

. . . Data management . . . Market Approach

. . . Digital Process Automation . . . Vision

44

. . . Reporting and Analysis . . . Road Map

. . . Differentiated . . . On Par . . . Needs Improvement

The Table 9 demostrates that the User interface development, Data management,

Reporting and Analysis, Cloud Platform Attributes, Road Map, and Market Approach

criteria for Caspio Low-Code Platform are in “Differentiated” position. Moreover, Startup

Experience, and Vision criteria are in ”On Par” position. However, Digital Process

Automation is on ”Need Improvement” position.

4.1.4 Microsoft

Microsoft’s Low-Code Platform, PowerApps has strong features of UX, cloud, and DPA.

However, PowerApps Low-Code Platform is less effective reporting, startup, and support

[72]. In the assessment, Forrester named Microsoft as “Strong Performer”. Assessment of

PowerApps’s all features can be seen in the table below.

 Table 10. Microsoft Low-Code Platform vendor assessment [72]

. . . Startup Experience . . . Support and Governance

. . . User interface development . . . Cloud Platform Attributes

. . . Data management . . . Market Approach

. . . Digital Process Automation . . . Vision

. . . Reporting and Analysis . . . Road Map

. . . Differentiated . . . On Par . . . Needs Improvement

45

The Table 10 shows that the User interface development, Digital Process Automation,

Cloud Platform Attributes, Market Approach, and Vision criteria for Microsoft Low-Code

Platform are on “Differentiated” position. Moreover, Data management, and Support and

Governance criteria are on ”On Par” position. On the other hand, Reporting and Analysis

criteria is on ”Need Improvement” position.

4.1.5 Nintex

Nintex Low-Code Platform has strong features of startup experience, DPA, and support.

However, it needs to improve UI and cloud features. Moreover, Nintex does not have

strong data management feature to its users [72]. In the assessment, Forrester named

Nintex as “Strong Performer” [72]. The assessment of Nintex’s features can be seen in the

table below.

Table 11. Nintex Low-Code Platform vendor assessment [72]

. . . Startup Experience . . . Support and Governance

. . . User interface development . . . Cloud Platform Attributes

. . . Data management . . . Market Approach

. . . Digital Process Automation . . . Vision

. . . Reporting and Analysis . . . Road Map

. . . Differentiated . . . On Par . . . Needs Improvement

The Table 11 demostrates that Startup Experience, Digital Process Automation, Support

and Governance, and Market Approach criteria for Nintex Low-Code Platform is in

“Differentiated” position. Moreover, User interface development, Cloud Platform

Attributes, Reporting and Analysis, and Road Map criteria are on ”On Par” position. On

the other hand, Data management criteria is on ”Need Improvement” position.

46

4.1.6 FlowForma

FlowForma Low-Code Platform has strong startup experience, DPA, and UX features.

However, data management, and cloud features are not very strong, these features are just

average features of FlowForma. Moreover, FlowForma needs more improvement in

reporting, and support features [72]. In the assessment, Forrester named FlowForma as

“Strong Performer” [72]. The assessment of all the feature of FlowForma can be found in

the table below.

Table 12. FlowForma Low-Code Platform vendor assessment [72]

. . . Startup Experience . . . Support and Governance

. . . User interface development . . . Cloud Platform Attributes

. . . Data management . . . Market Approach

. . . Digital Process Automation . . . Vision

. . . Reporting and Analysis . . . Road Map

. . . Differentiated . . . On Par . . . Needs Improvement

The Table 12 illustrates that the Startup Experience, User interface development, Digital

Process Automation, and Road Map criteria for FlowForma Low-Code Platform are in

“Differentiated” position. Moreover, Data management, Cloud Platform Attributes, Market

Approach, and Vision criteria are in ”On Par” position. However, Reporting and Analysis

is on ”Need Improvement” position.

4.1.7 FileMake

Data management, reporting, and support are the strong features of FileMaker Low-Code

Platform. FileMaker just has average startup experience. Moreover, FileMaker needs to

47

improve its UX, and DPA features [72]. In the assessment, Forrester named FileMaker as

“Contender”. The assessment of FileMaker features can be found in the table below.

Table 13. FileMaker Low-Code Platform vendor assessment [72]

. . . Startup Experience . . . Support and Governance

. . . User interface development . . . Cloud Platform Attributes

. . . Data management . . . Market Approach

. . . Digital Process Automation . . . Vision

. . . Reporting and Analysis . . . Road Map

. . . Differentiated . . . On Par . . . Needs Improvement

The Table 13 shows that the Data management, Reporting and Analysis, and Support and

Governance criteria for FileMaker Low-Code Platform are in “Differentiated” position.

Moreover, Startup Experience, Market Approach, and Vision criteria are in ”On Par”

position. However, User interface development, Digital Process Automation, and Cloud

Platform Attributes are on ”Need Improvement” position.

4.1.8 KiSSFLOW

KiSSFLOW Low-Code Platform has excellent feature of startup experience. The

assessment shows that UI, and cloud features of KiSSFLOW are average. Data

management and reporting features of KiSSFLOW needs improvements [72]. In the

assessment, Forrester named KiSSFLOW as “Contender” [72]. The assessment of all the

features of KiSSFLOW can be found in the table below.

Table 14. KiSSFLOW Low-Code Platform vendor assessment [72]

48

. . . Startup Experience . . . Support and Governance

. . . User interface development . . . Cloud Platform Attributes

. . . Data management . . . Market Approach

. . . Digital Process Automation . . . Vision

. . . Reporting and Analysis . . . Road Map

. . . Differentiated . . . On Par . . . Needs Improvement

The Table 14 depits that the Startup Experience criteria for KiSSFLOW Low-Code

Platform is in “Differentiated” position. Moreover, User interface development, Digital

Process Automation, Support and Governance, Cloud Platform Attributes, and Market

Approach criteria are in ”On Par” position. However, Data management , Reporting and

Analysis, Vision, and Road Map are on ”Need Improvement” position.

4.1.9 Zudy

Data management and Vision features of Zudy Low-Code Platform are excellent.

However, DPA, and reporting features of Zudy are just average. Moreover, UI, cloud, and

road map features need improvement [72]. In the assessment, Forrester named Zudy as

“Challenger”. The assessment of Zudy’s features can be found in the table below.

Table 15. Zudy Low-Code Platform vendor assessment [72]

. . . Startup Experience . . . Support and Governance

. . . User interface development . . . Cloud Platform Attributes

. . . Data management . . . Market Approach

49

. . . Digital Process Automation . . . Vision

. . . Reporting and Analysis . . . Road Map

. . . Differentiated . . . On Par . . . Needs Improvement

The Table 15 illustrates that the Data management, and Vision criteria for Zudy Low-Code

Platform are in “Differentiated” position. Moreover, Digital Process Automation,

Reporting and Analysis, and Support and Governance are in ”On Par” position. However,

Startup Experience, User interface development, Cloud Platform Attributes, Market

Approach, and Road Map Data management are on ”Need Improvement” position.

4.1.10 Pulpstream

Pulpstream Low-Code Platform’s UX, data management, and cloud features are average

features. Moreover, startup experience and reporting features need improvement. In the

assessment, Forrester positioned Pulpstream Low-Code Platform as “Challenger” [72]. In

the assessment, Forrester named Pulpstream as “Challenger” [72]. The assessment features

of Pulpstream can be found in the table below.

Table 16. Pulpstream Low-Code Platform vendor assessment [72]

. . . Startup Experience . . . Support and Governance

. . . User interface development . . . Cloud Platform Attributes

. . . Data management . . . Market Approach

. . . Digital Process Automation . . . Vision

. . . Reporting and Analysis . . . Road Map

50

. . . Differentiated . . . On Par . . . Needs Improvement

The Table 16 shows that no criteria for Pulpstream Low-Code Platform is in

“Differentiated” position. However, User interface development, Data management,

Digital Process Automation, Cloud Platform Attributes, Market Approach, and Vision are

in ”On Par” position. Moreover, Startup Experience, Reporting and Analysis, Support and

Governance, and Road Map are on ”Need Improvement” position.

4.1.11 Kintone

Kintone Low-Code Platform startup experience and data management features are average.

Moreover, UI and vision features need improvement. Forrester positioned Kintone as

“Challenger” in the assessment [72]. The assessment features of Kintone can be found in

the table below.

Table 17. Kintone Low-Code Platform vendor assessment [72]

. . . Startup Experience . . . Support and Governance

. . . User interface development . . . Cloud Platform Attributes

. . . Data management . . . Market Approach

. . . Digital Process Automation . . . Vision

. . . Reporting and Analysis . . . Road Map

. . . Differentiated . . . On Par . . . Needs Improvement

The Table 17 demonstrates that no criteria for Kintone Low-Code Platform is in

“Differentiated” position. However, Startup Experience, Data management, User interface

51

development, Data management, Digital Process Automation, Digital Process Automation,

Reporting and Analysis, Support and Governance, Cloud Platform Attributes, Road Map

are in ”On Par” position. Moreover, User interface development, Market Approach, and

Vision are on ”Need Improvement” position.

4.1.12 Vizru

Vizru Low-Code Platform’s DPA feature is strong for the user. However, UI, cloud and

startup experience features need improvement. In the assessment, Forrester named

“Challenger”. The assessment features of Vizru can be found in the table below.

Table 18. Vizru Low-Code Platform vendor assessment [72]

. . . Startup Experience . . . Support and Governance

. . . User interface development . . . Cloud Platform Attributes

. . . Data management . . . Market Approach

. . . Digital Process Automation . . . Vision

. . . Reporting and Analysis . . . Road Map

. . . Differentiated . . . On Par . . . Needs Improvement

The Table 18 shows that Digital Process Automation criteria for Vizru Low-Code Platform

is in “Differentiated” position. However, Reporting and Analysis, and Road Map are in

”On Par” position. Moreover, Startup Experience, Data management, Support and

Governance, Cloud Platform Attributes, Market Approach, and Vision are on ”Need

Improvement” position.

52

4.1.13 Intellect

Intellect Low-Code Platform has good UI, UX features. However, most of its features need

more improvement such as data management, cloud, and DPA. In the assessment, Forrester

named Intellect as “Challenger” [72]. The assessment features of Intellect can be found in

the table below.

Table 19. Intellect Low-Code Platform vendor assessment [72]

. . . Startup Experience . . . Support and Governance

. . . User interface development . . . Cloud Platform Attributes

. . . Data management . . . Market Approach

. . . Digital Process Automation . . . Vision

. . . Reporting and Analysis . . . Road Map

. . . Differentiated . . . On Par . . . Needs Improvement

The Table 19 illustrates that no criteria for Intellect Low-Code Platform is in

“Differentiated” position. However, User interface development is in ”On Par” position.

Moreover, Startup Experience, Data management, Digital Process Automation, Reporting

and Analysis, Support and Governance, Cloud Platform Attributes, Market Approach,

Vision and Road Map are on ”Need Improvement” position.

4.2 Decision Tree for Selection of Low-Code Platform

In the Low-Code Platforms industry, there are number of Low-Code Platforms are

available, however, all platforms do not have equal features. Some platforms have flexible

architecture; however, some have full featured packages but have inflexible architecture.

Some companies need Low-Code Platforms that can be customized to fulfill their business

53

needs. Some companies need Low-Code Platforms that have fully features packages that

perfectly matches the needs of the company’s businesses. Some companies have Technical

employees and some companies have Non-Technical employees. So, they need right Low-

Code Platform for their employees, who will use the platform to meet their business needs.

Different companies have different type of employees as well as they are working on

different type of applications. The decision tree will help the companies to find out the

most suitable Low-Code Platform for their company. This decision tree is constructed

based on the data found in the literature review [4][72][73][74][75][76][77].

Fig. 7. Decision tree for selection of Low-Code Platforms

54

In the decision tree, the researcher discussed about two main terminologies, the first one is

the organization and the second one is the application. To understand the structure of the

decision tree, the definitions of these terminologies need to be defined.

4.2.1 Organization

“An organized group of people with a particular purpose, such as a business or government

department” [78].

In the thesis, the researcher discussed the following two types of the organizations

4.2.1.1 Entrepreneur

“An entrepreneur is an individual who founds and runs a small business and assumes all

the risk and reward of the venture” [79].

“A person who sets up a business or businesses, taking on financial risks in the hope of

profit” [80].

“An entrepreneur is an individual who, rather than working as an employee, founds and

runs a small business, assuming all the risks and rewards of the venture. The entrepreneur

is commonly seen as an innovator, a source of new ideas, goods, services and business/or

procedures” [81].

4.2.1.2 Enterprise

“A company organized for commercial purposes; business firm” [81].

“The activity of providing goods and services involving financial and commercial and

industrial aspects” [82].

4.2.2 Application

“An application is any program, or group of programs, that is designed for the end user.

https://www.investopedia.com/university/small-business/
https://www.investopedia.com/terms/r/risk.asp
https://www.webopedia.com/TERM/P/program.html
https://www.webopedia.com/TERM/E/end_user.html

55

Applications software (also called end-user programs) include such things

as database programs, word processors, Web browsers and spreadsheets” [83].

“Application software is a type of computer program that performs a specific personal,

educational, and business function. Each program is designed to assist the user with a

particular process, which may be related to productivity, creativity, and/or communication”

[84].

“Application software is a program or group of programs designed for end users” [85].

In the thesis, the researcher focused three types of applications i.e. Mobile App, Web App,

and Desktop App.

4.2.2.1 Mobile App

“A mobile app is a software application developed specifically for use on small, wireless

computing devices, such as smartphones and tablets, rather than desktop or laptop

computers” [86].

“A mobile application, most commonly referred to as an app, is a type of application

software designed to run on a mobile device, such as a smartphone or tablet computer”

[87].

4.2.2.2 Web App

”A web application is a computer program that utilizes web browsers and web technology

to perform tasks over the Internet” [88].

“A Web application (Web app) is an application program that is stored on a remote server

and delivered over the Internet through a browser interface” [89].

4.2.2.3 Desktop App

“An application that runs stand-alone in adesktop or laptop computer” [90].

https://www.webopedia.com/TERM/D/database.html
https://www.webopedia.com/TERM/W/word_processor.html
https://www.webopedia.com/TERM/B/browser.html
https://www.webopedia.com/TERM/S/spreadsheet.html
https://searchmobilecomputing.techtarget.com/definition/smartphone
https://searchmobilecomputing.techtarget.com/definition/tablet-PC
https://searchsoftwarequality.techtarget.com/definition/application-program

56

The term "desktop software" refers to software that Runs on a Mac, Windows or Linux

desktop computer that is set up for use in one place such as a desk [91].

4.3 Cases

In this section, the discussion is about the decision tree and how the 12 cases are

formulated based on the application and company types. This is the most critical part of the

thesis where the researcher is discussing about how these 12 cases are made. These cases

are based on the organization types and application types. For these cases two organization

types are selected i.e. Entrepreneur and Enterprise and three applications types i.e. Mobile

App, Web App, and Desktop App. Now, the question is that why the researcher made

exactly 12 cases. The answer is fairly simple as the researcher selected most common

organization types as well as most common application types. So, with the combination of

organization types and application types these 12 cases are formulated which will be

discusses one by one.

4.3.1 Case 1

In the Case 1, a company is an Entrepreneur and has Non-Technical Employees who

requires Mobile App. For the case 1, Appain Low-Code Platform is most suitable.

4.3.1.1 Appian

Appian is one of the leading Low-Code Platforms for digital transformations. Appian is

equally suitable for entrepreneur as well as enterprises. Appian has features of easy to

change, secure and unified processes [77]. The world’s leading innovative companies are

using Appian to implement their business applications. Different sectors of the industry

using Appian Low-Code Platform such as Automotive and Manufacturing, Energy,

Financial services, Banking and Capital Markets, Healthcare Players and Providers,

Insurance, Life Sciences and Pharma, Public Sector, Retail, Telecom and Media,

Transportation.

57

Table 20. Price structure of Appian Low-Code Platform [92].

Trial Edition Application Edition Enterprise Edition

Free (Trial) 90 $ (Per user/ Per

month)

 180 $ (Per user/ Per

month)

Test drive Appian’s

leading Low-Code app

development platform

Business users quickly

create and collaborate

on a single application

 Harness the power and

speed of Appian across

all your enterprise

applications

Separate and secure

cloud instance

All

platform functionality

is available

 Unleash digital

transformation

throughout your

organization without

artificial limits

All

platform functionality is

available

 All

platform functionality

is available

The Table 20 shows the price structure of Appian Low-Code Platform. The price structure

contains three types of prices i.e. Trail Edition which is free, Application Edition which is

US$ 90 per user per month, and Enterprise Edition which is US$ 180 per user per month.

4.3.2 Case 2

In the Case 2, a company is an Entrepreneur and has Technical Employees who requires

Mobile App. In this case, Outsystems and Appains both are suitable. Appian is already

discussed in the above section.

4.3.2.1 OutSystems
OutSystems provides the Platform as a Service (Paas). OutSystems provides the visual

development interface to develop entire application. Outsystems provides the facility to

integrate newly built application to the existing application. OutSystems created

https://www.appian.com/platform/
https://www.appian.com/platform/
https://www.appian.com/platform/

58

application can also be customized by using our own code [93].

As OutSystem is a Paas products that’s runs in cloud, so the hardware requirements for the

machines are low, however a high-speed connection of internet is required.

Outsystems is the number one Low-Code platform [94]. Outsystesms has thousands of

worldwide customers. It is equally good for entrepreneurs as well as enterprises.

Outsystems can be a good choice for entrepreneurs as it allows to build free app for up to

100 users.

The big giants of industry are using OutSystems. A few of them are Honda Motor Co.,

AXZ, ING Group, Intel Corporation, Mercedes-Benz, Siemens AG, Vodafone,

Volkswagen and many more. Not only industry using OutSystems, educational institutions

are also using OutSystems such as Kent State University, Bob Jones University, and

University of Georgia. As for educational institutions, Bob Jones University, Georgia

Institute of Technology, Kent State University and University of Georgia are already using

this software.

Table 21. Price structure of OutSystems Low-Code Platform [95].

Free Enterprise Universal

Free Forever Starting at

US$5,400/month

(Billed Annually)

Starting at

US$12,250/month

(Billed Annually)

Application Capacity:

Limited

Application Capacity:

Scaled to needs with

additional capacity

available

Application Capacity:

Scaled to needs

with additional capacity

available

End User Capacity: Up-to

100

End-User Capacity:

Starts at 100

End-User Capacity:

Unlimited

Dev Environments: 1

Dev Environments: 3+

Environments (Dev /

Test / Prod)

Dev Environment: 3+

Environments (Dev / Test

/ Prod)

OutSystems Cloud:

Shared

OutSystems Cloud :

Dedicated

OutSystems Cloud :

Dedicated

59

Community Support: Yes

On-premises and Private

/ Public / Hybrid Cloud

deployment options

On-premises and Private /

Public / Hybrid Cloud

Deployment Options

 8x5 Support (24x7

available)

8x5 Support (24x7

available)

 Standard Customer

Success Program

included

Standard Customer

Success Program included

The Table 21 illustrates the price structure of OutSystems Low-Code Platform. The price

structure contains three types of prices i.e. Free which is free forever, Enterprise which is

starting at US$ 5,400/month, and Universal which is Starting at US$ 12,250/month.

4.3.3 Case 3

In the Case 3, a company is an Entrepreneur and has Non-Technical Employees who

requires Web App. For Case 3, Caspio is the most suitable Low-Code Platform.

4.3.3.1 Caspio

Caspio is a Low-Code Platform for non-technical developers to develop web applications.

It’s is completely non-coding Low-Code Platform with the basic fee 59$ per month. So, it

is eventually the most suitable choice for entrepreneurs who have non-technical

developers. However, caspio offers corporate level pricing packages, so that can be the

choice of enterprises who have non-technical developers.

Table 22. Price structure of Caspio Low-Code Platform [96].

Basic Professional Performance Corporate

59$

per month

(Free Trial)

249$

per month

(Free Trial)

249$

per month

(Free Trial)

1,699$

per month

(Free Trial)

Starter plan with live

customer support

Features and services

for most scenarios

More apps, more

capabilities, more

productivity

More apps, more

capabilities, more

productivity

60

Users: Unlimited Users: Unlimited Users: Unlimited Users: Unlimited

DataPages: 5

DataPages: 50

DataPages: 150

DataPages: 400

Data Transfer: 500

MB

Data Transfer:

Unlimited

Data Transfer:

Unlimited

Data Transfer:

Unlimited

Live Support:

Limited

Live Support:

Business Support

Live Support:

Business Support

Live Support:

Premium Support

and SLA

Features: Core

Features

Features: Standard

Features

Additional Features:

Yes

Premium

Features: Yes

Expert Session

 Expert Sessions: 2

Hours

Expert Sessions: 5

Hours

Expert Sessions:

10 Hours

 Sub-Accounts:

Yes

The Table 22 depicts the price structure of Caspio Low-Code Platform. The price structure

contains four types of prices i.e. Basic, Professional, Performance, and Corporate. All these

types have different prices. However, they have free trail all the types.

4.3.4 Case 4

In the Case 4, a company is an Entrepreneur and has Technical Employees who requires

Web App. For this case, Agile Point Low-Code Platform is most suitable.

4.3.4.1 AGILE POINT

AgilePoint is a Low-Code platform, which exists with the slogan of “Low-Code. No

limits”. AgilePoint is an innovative Low-Code platform for making automation and digital

apps in a quick and easy way.

Forrester Research placed AgilePoint among top five Low-Code platform in all Low-Code

segments. Moreover, Forrester Research placed AgilePoint in one of the top five Low-

Code platform, which provides the integration of the apps with Microsoft tools [76].

61

In the Business Process Management (BPM), AgilePoint NX is the leading Low-Code

platform, which is used in cloud deployment in more than 25 countries.

AgilePoint provides its services to different sectors such as energy, finance, manufacturing,

insurance, government, and healthcare. The main clients of the AgilePoint are CKW, Ex

Arte, GRENKE, Katoen Natie, Nyasys, RICOH and TRES60. All these are well known

companies, which shows the strength of AgilePoint Low-Code platform.

For enterprise applications, AgilePoint NX makes it easy by connection system, content

and the people. This ease is handy, as AgilePoint can run on any known tools such as

Salesforce, Dropbox, One Drive, Google Drive, Office 365, and SharePoint. Moreover,

AgilePoint Apps can be easily integrated with any legacy enterprise systems. In this way,

the customer can build their applications in half of the time as compare to the time they

will take to make their application in the traditional way.

Table 23. Price structure of AgilePoint Low-Code Platform [97].

 Named Seat

(minimum 50 seats)

Concurrent Seat

(minimum 20 seats)

Unlimited Seat

(minimum 2

Cores -

production)

 Per Seat(Monthly) Per Seat(Monthly) Per CPU

Core(Monthly)

AgilePoint NX

Editions

Sharepoint |

Enterprise

Sharepoint |

Enterprise

Sharepoint |

Enterprise

Apps 1-10 10$ | 25$ 65$ | 85$ 2,950$ | 3,950$

Apps 11-100 12$ | 29$ 75$ | 125$ 3,950$ | 5,950$

Apps 101-Unlimited 18 | 35$ 95 | 165$ 5,950$ | 7,950$

The Table 23 illustrates the price structure of AgilePoint Low-Code Platform. The price

structure contains three types of prices i.e. Named Seat, Concurrent Seat, and Unlimited

Seat. All these types have different prices with minimum number of seats.

62

4.3.5 Case 5

In the Case 4, a company is an Entrepreneur and has Non-Technical Employees who

requires Desktop App. For this case, KiSSFLOW Low-Code Platform is the most suitable.

4.3.5.1 KiSSFLOW

KiSSFLOW is suitable for non-technical employees to develop desktop applications as it’

is easy to use platform. To develop desktop applications in KiSSFLOW, no coding is

required. KissFLOW is equally good for entrepreneurs as well enterprises.

KiSSFLOW has more than 10,000 clients. MOTOROLA, The Telegraph, Domino’s,

MAERKS, Pepsi, AIRBUS, British Council, The University of Chicago, CASIO,

MECHELIN and HubSpot are potential customers of KiSSFLOW.

Table 24. Price structure of KiSSFLOW Low-Code Platform [98].

Standard Edition Bulk Pricing Non-Profit Pricing

Per Seat(Monthly) Per Seat(Monthly) Per CPU Core(Monthly)

9 $

user/month

Users > 100

Price: Custom

Special pricing for

education and not-for-

profit organizations

The Table 24 shows the price structure of KiSSFLOW Low-Code Platform. The price

structure contains three types of prices i.e. Standard Edition, Bulk Pricing, and Non-Profit

Pricing. All these types have different prices.

4.3.6 Case 6

In Case 6, a company is an Entrepreneur and has Technical Employees who requires

Desktop App. For this case, LANSA Low-Code Platform is the most suitable.

4.3.6.1 LANSA

LANSA Low-Code platform is suitable for both entrepreneur and enterprises for Desktop

applications. Moreover, LANSA also provides mobile and web apps development.

LANSA offers its one tool for Windows, Web and Mobile application development with

63

only one price.

LANSA provides services to different sectors, Allianz, ADVANCE, AHC, Actinver,

ABCS Loan Systems, Alpura, Beacon Insurance, Bidfood, Blackmaker, CGA,

DAIHATSU, Eagle Systems, HONDA, Kawasaki, Porsche, VISA Card, Kellogg’s,

MoMA, and High Liner are the main clients.

Table 25. Price structure of LANSA Low-Code Platform [99].

EC2 Instance type Software / Year EC2 / hr

t2.micro $2,813 $0.016

t2.small $2,813 $0.032

t2.medium $2,813 $0.064

t2.large $2,813 $0.121

m4.large $2,813 0.192

m4.xlarge $2,813 0.384

m4.2xlarge $2,813 0.768

m4.4xlarge $2,813 1.536

m4.10xlarge $2,813 3.84

m4.16xlarge $2,813 6.144

The Table 25 show the price structure of LANSA Low-Code Platform. The price structure

contains two types i.e. Software per year, and Elastic Compute Cloud (EC2) per hour.

4.3.7 Case 7

In Case 7, a company is an Enterprise and has Non-Technical Employees who requires

Mobile App. In this case, both Mendix and Appians are suitable. Appian is already

64

discussed in the above section.

4.3.7.1 Mendix
Mendix is one of the most popular Low-Code development platforms. Mendix provides

support in three type of applications i-e Event Driven Applications, Data Driven

Applications and Process Oriented Applications. Over 3,400 worldwide organizations

using Mendix. Mendix provides the 10 times faster development as compare to the

traditional development [100].

Mendix Low-Code Platform provides the visual modeling tools that helps non-technical

developers to develop mobile apps in a fast way. Mendix powered by IBM to bring Low-

Code Platform development on the cloud.

ING, KLM, MERCK, Action for children, Arch, bam, Dsi, Eurail, GAPLESS, iss Facility

Services, Saga, ProRail, Springer Healthcare, TNT, and CHUBB are few of the Mendix’s

customers.

Table 26. Price structure of Mendix Low-Code Platform [101].

 Community Single App Pro Enterprise

 Free Starting at

€1.875/month

Starting at

€5.375/month

Starting at

€7.825/month

No. of Applications 1 Unlimited Unlimited

Public Mendix Cloud ✓ ✓ ✓ ✓

On-premises ✓

Private Cloud ✓

Uptime Guarantee 99.50% 99.50% 99.50%

Support Community Gold Gold Platinum

Automated Backup ✓ ✓ ✓

Horizontal Scaling Sub-

Accounts:

Yes

Fail Over ✓

65

Support for Continuous

Integration &

Development

 ✓

The Table 26 shows the price structure of Mendix Low-Code Platform. The price structure

contains four types of prices i.e. Community, Single App, Pro, and Enterprise. Moreover,

Community price is free.

4.3.8 Case 8

A company is an Enterprise and has Non-Technical Employees who requires Mobile App.

In this case, Kony and Appians are suitable. Appians is already discussed in the above

section.

4.3.8.1 Kony

Kony is a “Leader” In Mobile Low-Code Development Platforms [102]. Moreover, Kony

was named as commanding position in the market with the products as are accepted as best

of breed [103]. Kony has the slogan, “Transforming your. Today and Tomorrow”.

Kony is the high demanding among the customers in all over the world. Kony, has more

than 350 protentional successful customers in 45 countries. The major ABN-AMRO, aenta,

ALFA insurance, ally, CIBC bank, Nationwide, TOYOTA, Shred-it, KPMG, and SGN.

Unfortunately, the pricing structure of Kony is not available.

4.3.9 Case 9

In Case 9, a company is an Enterprise and has Non-Technical Employees who requires

Web App. For this case, PowerApps Low-Code Platform is the most suitable.

4.3.9.1 PowerApps

PowerApps is a Low-Code platform provided by Microsoft, which enables the citizen and

IT developers to create business apps for browser as well as for phone or table. In

PowerApps, no coding experience is required [104]. Microsoft`s PowerApps is a

66

combination of PowerPoint and Excel, where PowerPoint provides drag and drop features

and Excel provides logical expressions.

Table 27. Price structure of PowerApps Low-Code Platform [105].

PowerApps for

Office 365

PowerApps

Plan 1

PowerApps

Plan 2

PowerApps for

Dynamics 365

Included in select

Office 365 Plans

$7 per user

per month

$40 per user

per month

Included in select

Apps and

Dynamics 365

Plans

Extend the

capabilities of

Office 365

(SharePoint Online,

Teams, Excel and

more)

Everything included

with PowerApps for

Office 365

Everything included

with PowerApps Plan

1

Everything

included with

PowerApps Plan 2

Create and run

canvas apps learn

more

Create and run

canvas apps that

connect to a wide

range of data sources

using premium

connectors

Create and run model

driven apps learn

more

Extend Dynamics

365 or create

custom model-

driven and canvas

apps with the full

functionality of

PowerApps Plan 2

Create automated

workflows with

Microsoft Flow

Create and run

canvas apps built on

the Common Data

Service for Apps

Create and manage

instances of Common

Data Service for

Apps

Access restricted

Dynamics 365

entities and

APIs learn

The Table 27 depicts the price structure of PowerApps Low-Code Platform. The price

structure contains four types of prices i.e. PowerApps for Office 365, PowerApps Plan 1,

PowerApps Plan 2, and PowerApps for Dynamics 365. PowerApps. All these types have

different prices.

https://docs.microsoft.com/powerapps/maker/canvas-apps/getting-started
https://docs.microsoft.com/powerapps/maker/canvas-apps/getting-started
https://docs.microsoft.com/powerapps/maker/model-driven-apps/model-driven-app-overview
https://docs.microsoft.com/powerapps/maker/model-driven-apps/model-driven-app-overview

67

4.3.10 Case 10

In Case 10, a company is an Enterprise and has Technical Employees who requires Web

App. For this case, Salesforce Low-Code Platform is the most suitable.

4.3.10.1 Salesforce

Salesforce App Cloud is designed to extend company's Customer Relationship

Management (CRM). Salesforce is offering a full-fledged app and component marketplace

and a veritable arsenal of visual app development environments and tools for average

business users and developers alike. Salesforce has the largest app marketplace and most

extensive set of tools.

Table 28. Price structure of Salesforce Low-Code Platform [106].

Employee Apps Starter Employee Apps Plus Heroku Enterprise

Starter

€ 25

user/month

(billed annually)

€ 100

user/month

(billed annually)

Starting at

€ 4,000

company/month

(billed annually)

✓ Custom app development with

access to 10 objects per user

✓ Custom app

development with

access to 110 objects

per user

✓ Support for modern

open-source languages

✓ Point-and-click app

development with Lightning

✓ Point-and-click app

development with

Lightning

✓ Smart containers and

elastic runtime

✓ Community for employees ✓ Community for

employees

✓ Simple horizontal and

vertical scalability

68

✓ Account and contact

management

✓ Account and

contact management

✓ Services add-on

ecosystem

✓ Task and event tracking ✓ Task and event

tracking

✓ Fine-grained access

controls

✓ Employee cases ✓ Employee cases ✓ Shared application

portfolio

✓ Workflow and approvals ✓ Workflow and

approvals

✓ Enterprise account team

✓ Knowledge base ✓ Knowledge base ✓ Salesforce Identity

federation

✓ Native collaboration (Chatter) ✓ Native

collaboration

(Chatter)

✓ Team and user

administration

✓ Salesforce Identity ✓ Salesforce Identity ✓ Resource utilization

management

✓ Customizable reports and

dashboards

✓ Customizable

reports and

dashboards

✓ Trusted application

operations

✓ Mobile development kit ✓ Mobile

development kit

✓ Salesforce data

synchronization

✓ Integration via real-time APIs ✓ Integration via real-

time APIs

✓ Cloud database ✓ Cloud database

✓ Assets and work orders ✓ Assets and work

orders

The Table 28 shows the price structure of Salesforce Low-Code Platform. The price

structure contains three types of prices i.e. Employee Apps Starter, Employee Apps Plus,

and Heroku Enterprise Starter. All these types have different prices.

4.3.11 Case 11

69

In Case 11, a company is an Enterprise and has Non-Technical Employees who requires

Desktop App. For this scenario, KissFLOW Low-Code Platform is most suitable.

4.3.11.1 KiSSFLOW

KiSSFLOW is an ideal choice for enterprises who have non-technical employees and they

want to develop desktop applications. To develop desktop applications in KiSSFLOW, no

coding is required. KissFLOW is equally good for entrepreneurs as well enterprises.

KiSSFLOW has more than 10,000 clients. MOTOROLA, The Telegraph, Domino’s,

MAERKS, Pepsi, AIRBUS, British Council, The University of Chicago, CASIO,

MECHELIN and HubSpot are potential customers of KiSSFLOW.

The price structure of KiSSFLOW can been seen in Table 25.

4.3.12 Case 12

In Case 12, a company is an Enterprise and has Technical Employees who requires

Desktop App. For this scenario, XOJO is the most suitable Low-Code Platform.

4.3.12.1 XOJO

XOJO is suitable for technical employees to develop desktop applications. Desktop

applications can be developed for Windows, Mac and Linux. XOJO provides drag and

drop facility to design user interface. XOJO provides its code editor to write your business

logic. XOJO also provides Aps to create applications for cross platforms.

XOJO is not only for desktop applications for Windows, Mac and Linux. XOJO can be

used to create mobile and web applications.

Google, AT&T, CISCO, CNN, DELL, hp, NASA, Adobe, Apple and intel are the users of

XOJO [107].

Table 29. Price structure of XOJO Low-Code Platform.

Desktop Pro Enterprise

299 $ / Per Year 699 $/ Per Year 1,999 $ / Per year

70

All Desktop platforms:

• Windows

• Mac

• Linux

• Database Access

Everything in

Desktop, plus:

• Web

• iOS

• Console /

Service Apps

• Consulting

Leads

Everything in Pro,

plus:

• Kickoff

Meeting

• Code

Reviews

• XOJO

Advisory

Board

• Priority

Support

The Table 29 illustrates the price structure of XOJO Low-Code Platform. The price

structure contains three types of prices i.e. Desktop, Pro, and Enterprise. Desktop price is

US$ 299/Year. Pro price is US$ 699/Year and Enterprise price is US$ 1,999/Year.

4.4 Low-Code Platforms and Their Vendors

In the decision tree, the researcher used different Low-Code Platform’s Vendors than the

vendors used in assessment criteria. These vendors are different because of limited

literature availability to find out which Low-Code Platform is suitable for which type of

organization and application type. The researcher created the decision tree on the best

knowledge available in the literature till today. The selection is made on the market

approach, experience, price, and vision towards the organization and application type.

Table 30. Low-Code Platforms and their Vendors

Platform Vendor Address

Appian Appian
11955 Democracy Drive , Suite 1700

Reston, VA 20190, USA

OutSystems OutSystems, Inc. 374 Congress St, 2nd Floor

Boston, MA 02210, USA

Caspio Caspio 2953 Bunker Hill Lane, Suite 201 Santa Clara,

California, USA

Agilepoint Agilepoint, Inc

1916B Old Middlefield Way

Mountain View, CA 94043, USA

https://www.google.com.pk/search?q=Santa+Clara+California&stick=H4sIAAAAAAAAAOPgE-LSz9U3MKkqLyyMV-IAsYvMkiu0NDLKrfST83NyUpNLMvPz9POL0hPzMqsSQZxiq_TEoqLMYqBwRiEAEmNJPEIAAAA&sa=X&ved=2ahUKEwiz-MidpMbcAhWkyKYKHQ_RB_AQmxMoATAdegQICBAh
https://www.google.com.pk/search?q=Santa+Clara+California&stick=H4sIAAAAAAAAAOPgE-LSz9U3MKkqLyyMV-IAsYvMkiu0NDLKrfST83NyUpNLMvPz9POL0hPzMqsSQZxiq_TEoqLMYqBwRiEAEmNJPEIAAAA&sa=X&ved=2ahUKEwiz-MidpMbcAhWkyKYKHQ_RB_AQmxMoATAdegQICBAh

71

KiSSFLOW

Orange Space 800 West El Camino Real,

Mountain View, CA 94040, USA

LANSA LANSA Inc

2001 Butterfield Road, Suite 102

Downers Grove, IL, 60515, USA

Mendix IBM 268 Summer Street Boston, MA 02210, USA

Kony Kony 9225 Bee Cave Road, Building A, Suite 300,

Austin, Texas 78733, USA

PowerApps Microsoft Microsoft Corporation One Microsoft Way

Redmond, WA 98052-6399, USA

Salesforce Salesforce One Market Suite 300. San Francisco, CA

94105, USA

XOJO

XOJO, Inc 12600 Hill Country Blvd., Suite R-275

Austin, Texas 78738, USA

The Table 30 shows the Low-Code Platform and its vendor. Moreoever, addresses of

vendors are also provided.

72

5 CONCLUSIONS

The decision tree in the chapter 4 is a comprehensive structure, which provides the facility

to the organizations to select the most suitable Low-Code Platform based on their

organization type as well as based on the application type. The decision tree is simple and

compact to select the suitable Low-Code Platform. The decision tree is formed the 12 cases

and these cases are formed based on the organization and application types. Now, it is easy

for an organization to use this decision tree to select the most suitable Low-Code Platform.

The assessment criteria in the chapter 4 provides the standings of the Low-Code Platform’s

vendor. In the assessment criteria, standings of 13 different Low-Code vendors can be seen

which is calculated based on the 10 criteria.

In general, the literature about Low-Code Platforms specially the academic literature is

rarely available. However, the available literature provided an idea about Low-Code

Platform selection. The most authentic and comprehensive reports on Low-Code Platforms

are of the Forrester reports, however these reports are not publicly free of cost available.

This issue is due to the fact, that Low-Code Platform term is relatively new in the

academics.

In the thesis, the researcher found the answers of the research questions, less research work

is done in this area previously. Selection of Low-Code Paltform is not clearly defined and

elaborated in the literature. However, based on the available literature, the researcher

provided a decision tree to choose the suitable Low-Code Platform based on the

Organization and application type. In addition, assessment criteria are provided to find out

the standings of Low-Code Platforms.

We have seen the failure stories in the chapter 3. So, as a future direction, the same

Decision Tree or the Decision Tree with changes can be used to select the other

technologies to avoid the chances of failure.

The research is not only contributing in the industry to selection to suitable Low-Code

Platform. It is also contributing in the academics by providing the numerous Low-Code

Platforms and their vendors.

73

Furthermore, as future research, the research can be carry out in two ways. Firstly, more

cases in the decision tree can be used by providing more organization types such Small

Medium Enterprise (SME), and Large Enterprise. Secondly, more criteria can be added in

the assessment criteria to provide more refined standings of the Low-Code Platform

vendors.

REFERENCES

1. Information Age. (2018). 4 requirements of a Low-Code development platform.

[online] Available at: http://www.information-age.com/4-requirements-Low-Code-

development-platform-123469520/ [Accessed 12 Mar. 2018].

2. Techopedia.com. (2018). What is a Platform? - Definition from Techopedia.

[online] Available at: https://www.techopedia.com/definition/3411/platform

[Accessed 12 Jun. 2018].

3. SearchServerVirtualization. (2018). What is platform? - Definition from

WhatIs.com. [online] Available at:

https://searchservervirtualization.techtarget.com/definition/platform [Accessed 12

Jun. 2018]

4. RICHARDSON, C. and Rymer, J.R., (2016). The Forrester Wave™: Low-Code

Development Platforms. Available at: https://agilepoint.com/wp-

content/uploads/Q2-2016-Forrester-Low-Code.pdf (Accessed: 10 May 2018).

5. dzone.com. (2018). Why Developers Fear Low-Code - DZone DevOps. [online]

Available at: https://dzone.com/articles/why-developers-fear-Low-Code [Accessed

12 Jun. 2018].

6. UK, P., Looks, F., Projects, Z., Marvin, R. and Marvin, R. (2018). Building an App

With No Coding: Myth or Reality?. [online] PCMag UK. Available at:

http://uk.pcmag.com/zoho-projects/82699/feature/building-an-app-with-no-coding-

myth-or-reality [Accessed 11 Apr. 2018].

7. Low-Code Basics. (2018). Introduction to Low-Code Software | Low-Code Basics.

[online] Available at: https://www.appian.com/Low-Code-basics/introduction

[Accessed 4 Mar. 2018].

8. Yu, D. (2011). Towards the Rapid Application Development Based on Predefined

Frameworks. Journal of Software, 6(9).

9. Van Engelen, R., Whalley, D. and Yuan, X. (2004). Automatic validation of code-

improving transformations on low-level program representations. Science of

Computer Programming, 52(1-3), pp.257-280.

10. Vechev, M. and Yahav, E. (2016). Programming with “Big Code”. Foundations

and Trends® in Programming Languages, 3(4), pp.231-284.

11. AgilePoint. (2018). Gartner and Forrester define “Citizen Development”

differently; here’s how- AgilePoint. [online] Available at:

http://agilepoint.com/gartner-forrester-define-citizen-development-differently-

heres/ [Accessed 28 Apr. 2018].

12. Bergin, T. (2009). Jean Sammet: Programming Language Contributor and

Historian, and ACM President. IEEE Annals of the History of Computing, 31(1),

pp.76-85.

13. Lutz, M. (2002). System Architecture with XML [Book Review]. Computer,

35(10), pp.72-72

14. Broy, M. (2007). Editorial–Science of Computer Programming–25 years. Science

of Computer Programming, 66(2), pp.103-104.

15. HOPL: History of Programming Languages Conference. (1979). IEEE Annals of

the History of Computing, 1(1), pp.68-71.

16. Budd, T. (1991). Blending imperative and relational programming. IEEE Software,

8(1), pp.58-65.

17. Ciancarini, P. (1996). An overview of declarative process modelling using logic

programming. The Knowledge Engineering Review, 11(04), p.303.

18. Haramis, G. (1992). Implementing a feasibility study “a procedural approach”.

Annual Review in Automatic Programming, 16, pp.133-138

19. Wilson, Leslie B, and Robert G Clark., (2001) Comparative Programming

Languages. Harlow, England: Addison-Wesley,. Print.

20. Donaldson, Alastair, and Vasco T. Vasconcelos. (2015). "Selected Papers On

Programming Language Approaches To Concurrency And Communication-Centric

Software (PLACES 2014)". Journal Of Logical And Algebraic Methods In

Programming 84 (5): 683. doi:10.1016/j.jlamp.2015.06.004.

21. Wilkes, M. (1968). The outer and inner syntax of a programming language. The

Computer Journal, 11(3), pp.260-263.

22. Languageexplained.com. (2018). LanguageExplained.com. [online] Available at:

http://languageexplained.com/ [Accessed 9 Mar. 2018].

23. Shurmer, H.V. (1971). "Low-Level Programming For The On-Line Correction Of

Microwave Measurements." Radio and Electronic Engineer 41.8: 357. Web.

24. Loidl, Hans-Wolfgang (2006). Trends In Functional Programming. Bristol, UK:

Intellect. Print.

25. Young, S.J. (1980). "Low-Level-Device Programming With A High-Level

Language." IEE Proceedings E Computers and Digital Techniques 127.2: 37. Web.

26. Horowitz, Ellis. (1984). Fundamentals Of Programming Languages. Berlin,

Heidelberg: Springer Berlin Heidelberg. Print.

27. Melmed, Allan J. (2006). "Electrical Lead Into Vacuum Tubes." Review of

Scientific Instruments 34.3 (1963): 307-308. Web.

28. Crawford, Tim et al. (2018) "Gigaom | The Industry Leader In Emerging

Technology Research." Gigaom.com. N.p. Web. 15 June 2018.

29. Hall, C. and Clayton, R., (1979). Isolation of assembler coding

‘optimizations’. Software: Practice and Experience, 9(3), pp.248-248.

30. Dahl, V. and Saint-Dizier, P., (1985). Natural language understanding and logic

programming.

31. McCurdy, C., (1987). The FORTH Programming Language for Control Systems:

Potential Advantages. Measurement and Control, 20(4), pp.45-48.

32. Clark, T., (2015). XPL: A language for modular homogeneous language

embedding. Science of Computer Programming, 98, pp.589-616.

33. Owlcation. (2018). Types of Computer Languages with Their Advantages and

Disadvantages. [online] Available at: https://owlcation.com/stem/Types-of-

Computer-Languages-with-Advantages-and-Disadvantages [Accessed 23 Jun.

2018].

34. Patton, B., (1993), June. Object-oriented Fortran 77 (a practitioner's view). In ACM

SIGPLAN Fortran Forum (Vol. 12, No. 2, pp. 23-24).

35. High performance Fortran language specification. (1993). ACM SIGPLAN Fortran

Forum, 12(4), pp.1-86.

36. An, T., Zhang, L. Y. Z. B. Z., & Lan, X. (2008). Assembly language programming.

37. Saint-Dizier, P. (1986). An approach to natural-language semantics in logic

programming. The Journal of Logic Programming, 3(4), pp.329-356.

38. Holmes, N. (1997). A tale of assembly. Annals of the History of Computing, IEEE,

19(4), pp. 47-49.

39. Bergin, T. (2007). A history of the programming languages. Communications of the

ACM, 50(5), pp. 69-74.

40. Super assembler. (1977). Microprocessors, 1(3), pp.197-200.

41. Ryan, R. (1985). C programming language and a C compiler. IBM Systems Journal,

24(1), pp. 37-48.

42. Black, A. (2004). Post-Javaism. IEEE Internet Computing, 8(1), pp. 93-95.

43. Danforth, S. and Tomlinson, C. (1988). Type theories and object-oriented

programming. ACM Computing Surveys, 20(1), pp.29-72.

44. Khan, A. (2014). Comparative analysis of JAVA & C++ history, similarities &

differences, syntax and design issues. International Journal of Technology and

Research, 2(4), p. 131.

45. Sanner, M. F. (1999). Python: a programming language for software integration

and development. J Mol Graph Model, 17(1), 57-61

46. Daniels, J. (1996, July). Why RAD is Bad. In Presentation at meeting of RESG.

Imperial College, London.

47. Grand, M., (1997). Java language reference. O'Reilly & Associates, Inc.

48. Kerr J and Hunter R (1994) Inside RAD: how to build fully functional computer

systems in 90 days or less. Mcgraw-Hill, New York.

49. Recognition, P. (2018). Python package for handwriting recognition. [online] Code

Review Stack Exchange. Available at:

https://codereview.stackexchange.com/questions/68527/python-package-for-

handwriting-recognition [Accessed 23 May 2018].

50. Loguidice, B. and Barton, M., (2014). Vintage Game Consoles: an inside look at

Apple, Atari, Commodore, Nintendo, and the greatest gaming platforms of all time.

Focal Press.

51. Madnani, N. (2007). Getting started on natural language processing with Python.

Crossroads, 13(4), pp.5-5.

52. Martin, J. (1992) Rapid Application Development. Prentice-Hall, Englewood Cliffs

53. Reilly, J.P. and Carmel, E., (1995). Does RAD live up to the hype?. IEEE

Software, 12(5), pp.24-26.

54. Boehm, B.W., (1988). A spiral model of software development and

enhancement. Computer, 21(5), pp.61-72.

55. Rizwan, M. (2011). Application of 80/20 rule in software engineering Rapid

Application Development (RAD) model. Communications in Computer and

Information Science, 181(3), pp. 518-532.

56. Daud, N. M. N. (2010). Implementing rapid application development (RAD)

methodology in developing practical training application system. Information

Technology (ITSim), International Symposium, 3, pp. 1664-1667.

57. Ghahrai, A. (2018). Rapid Application Development Model - RAD Model. Testing

Excellence. [online] Available at: https://www.testingexcellence.com/rapid-

application-development-rad/ [Accessed 24 Apr. 2018].

58. Howard, A., (2002). Rapid Application Development: Rough and dirty or value-

for-money engineering? Communications of the ACM, 45(10), pp. 27-29.

59. Lank, E., (2006). User centred rapid application development. Rapid Integration Of

Software Engineering Techniques, 3943, pp. 34-49.

60. Fox, J., (2005). Rethinking second language admission requirements: Problems

with language-residency criteria and the need for language assessment and

support. Language Assessment Quarterly: An International Journal, 2(2), pp.85-

115.

61. Otto, K. and Hölttä-Otto, K., 2007. A multi-criteria assessment tool for screening

preliminary product platform concepts. Journal of Intelligent Manufacturing, 18(1),

pp.59-75.

62. Jadhav, A. S., and Sonar, R. M. (2009). Evaluating and selecting software

packages: A review. Information and software technology, 51(3), pp.555-563.

63. O’Hagan, S., Pill, J. and Zhang, Y., (2016). Extending the scope of speaking

assessment criteria in a specific-purpose language test: Operationalizing a health

professional perspective. Language Testing, 33(2), pp.195-216.

64. Parker, K.R., Ottaway, T.A. and Chao, J.T., (2006). Criteria for the selection of a

programming language for introductory courses. International Journal of

Knowledge and Learning, 2(1-2), pp.119-139.

65. Goldberg, D.W. and Cockburn, M.G., (2010). Improving geocode accuracy with

candidate selection criteria. Transactions in GIS, 14, pp.149-176.

66. Kim Y, Hwang H., (2009). Incremental discount policy of cell-phone carrier with

connection success rate constraint. European Journal of Operational

Research.;196(2):682-687.

67. Interactive Touch Screen Display Technology | Avocor [Internet]. Avocor |

different by design. 2018 [cited 1 July 2018]. Available from:

https://www.avocor.com/

68. Hydrogen Airship Disasters | Airships.net [Internet]. Airships.net. 2018 [cited 1

July 2018]. Available from: http://www.airships.net/hydrogen-airship-accidents/

69. Jet pack fails Fox news broadcast [Internet]. CNET. 2018 [cited 1 July 2018].

Available from: https://www.cnet.com/news/jet-pack-fails-fox-news-broadcast/

70. Ross, J. W., & Weill, P. (2002). Six IT decisions your IT people shouldn't make.

Harvard business review, 80(11), 84-95.

71. March, J.G. and March, J.G., (1988). Decisions and organizations (pp. 335-358).

Oxford: Blackwell.

72. Rymer, J.R., (2017). The Forrester New WaveTM: Low-Code Platforms For

Business Developers. [online] Available at:

https://www.forrester.com/report/The+Forrester+New+Wave+LowCode+Platforms

+For+Business+Developers+Q4+2017/-/E-RES140271 [Accessed 24 May 2018].

73. Stackify. (2018). How to Choose the Best Low-Code Platform For Your Dev Team.

[online] Available at: https://stackify.com/Low-Code-dev-platform/ [Accessed 3

May. 2018].

74. Rymer, J.R., (2018). Customers Illuminate The Benefits And

Challenges Of Low-Code Development Platforms. [online] Available at:

https://www.forrester.com/report/Customers+Illuminate+The+Benefits+And+Chall

enges+Of+LowCode+Development+Platforms/-/E-RES141793 [Accessed 14 May

2018].

75. RICHARDSON, C, Rymer, J.R., (2014). Five Customer-Facing Scenarios Shape

“Low-Code” Platform Choices. [online] Available at:

https://www.forrester.com/report/Five+CustomerFacing+Scenarios+Shape+LowCo

de+Platform+Choices/-/E-RES117606 [Accessed 10 May 2018].

76. RICHARDSON, C, Rymer, J.R., (2016). Vendor Landscape: The Fractured,

Fertile Terrain Of Low-Code Application Platforms. [online] Available at:

https://www.avocor.com/
http://www.airships.net/hydrogen-airship-accidents/
https://www.cnet.com/news/jet-pack-fails-fox-news-broadcast/

https://www.forrester.com/report/Vendor+Landscape+The+Fractured+Fertile+Terr

ain+Of+LowCode+Application+Platforms/-/E-RES122549 [Accessed 2 June

2018].

77. Sarah, M, (2017). Measuring The Total Economic Impact™: The Benefits Of

Appian’s Low-Code Platform. [online] Available at:

https://www.appian.com/resources/measuring-total-economic-impact-benefits-

appians-low-code-platform/ [Accessed 11 May 2018]

78. Oxford Dictionaries | English. (2018). organization | Definition of organization in

English by Oxford Dictionaries. [online] Available at:

https://en.oxforddictionaries.com/definition/organization [Accessed 16 Jul. 2018].

79. Staff, I. (2018). Entrepreneur. [online] Investopedia. Available at:

https://www.investopedia.com/terms/e/entrepreneur.asp [Accessed 16 Jul. 2018]

80. Oxford Dictionaries | English. (2018). entrepreneur | Definition of entrepreneur in

English by Oxford Dictionaries. [online] Available at:

https://en.oxforddictionaries.com/definition/entrepreneur [Accessed 17 Jul. 2018].

81. Company, B. and Hopper, P. (2018). Company, Firm, Enterprise,Business?.

[online] Englishforums.com. Available at:

https://www.englishforums.com/English/CompanyFirmEnterpriseBusiness/gpvbn/p

ost.htm [Accessed 17 Jul. 2018].

82. Vocabulary.com. (2018). business enterprise - Dictionary Definition. [online]

Available at: https://www.vocabulary.com/dictionary/business%20enterprise

[Accessed 17 Jul. 2018].

83. Webopedia.com. (2018). What is an Application (Application Software)?

Webopedia Definition. [online] Available at:

https://www.webopedia.com/TERM/A/application.html [Accessed 18 Jul. 2018]

84. Base, Q. (2018). Application Software 101 | QuickBase. [online] Quickbase.com.

Available at: https://www.quickbase.com/articles/application-software-basics

[Accessed 18 Jul. 2018]

85. Techopedia.com. (2018). What is Application Software? - Definition from

Techopedia. [online] Available at:

https://www.techopedia.com/definition/4224/application-software [Accessed 18

Jul. 2018]

86. WhatIs.com. (2018). What is mobile app? - Definition from WhatIs.com. [online]

Available at: https://whatis.techtarget.com/definition/mobile-app [Accessed 18 Jul.

2018]

87. Techopedia.com. (2018). What is a Mobile Application? - Definition from

Techopedia. [online] Available at:

https://www.techopedia.com/definition/2953/mobile-application-mobile-app

[Accessed 18 Jul. 2018]

88. Maxcdn.com. (2018). What is a Web Application?. [online] Available at:

https://www.maxcdn.com/one/visual-glossary/web-application/ [Accessed 16 Jul.

2018]

89. SearchSoftwareQuality. (2018). What is Web application (Web app)? - Definition

from WhatIs.com. [online] Available at:

https://searchsoftwarequality.techtarget.com/definition/Web-application-Web-app

[Accessed 18 Jul. 2018]

90. Pcmag.com. (2018). Desktop application Definition from PC Magazine

Encyclopedia. [online] Available at:

https://www.pcmag.com/encyclopedia/term/41158/desktop-application [Accessed

18 Jul. 2018]

91. The Balance. (2018). How Is Desktop Software Different From an App. [online]

Available at: https://www.thebalance.com/what-is-desktop-software-1293673

[Accessed 18 Jul. 2018]

92. Appian. (2018). Appian Platform Pricing. [online] Available at:

https://www.appian.com/platform/pricing/ [Accessed 4 May 2018].

93. Outsystems.com. (2018). The #1 Low-Code Platform for Digital Transformation |

OutSystems. [online] Available at: https://www.outsystems.com/ [Accessed 2 Apr.

2018].

94. Golovin, D. (2017). OutSystems as a Rapid Application Development Platform for

Mobile and Web Applications.

95. Outsystems.com. (2018). OutSystems Pricing & Editions. [online] Available at:

https://www.outsystems.com/pricing-and-editions/ [Accessed 4 May 2018].

96. Caspio. (2018). Caspio Cloud Database Pricing | Review and Compare Plans.

[online] Available at: https://www.caspio.com/pricing/ [Accessed 4 May 2018].

97. AgilePoint. (2018). Pricing - AgilePoint. [online] Available at:

http://agilepoint.com/pricing/ [Accessed 4 May 2018].

98. KiSSFLOW. (2018). Pricing - KiSSFLOW. [online] Available at:

https://kissflow.com/pricing/ [Accessed 4 Jul. 2018].

99. Aws.amazon.com. (2018). AWS Marketplace: Visual LANSA Development

Environment Web application framework Win2012. [online] Available at:

https://aws.amazon.com/marketplace/pp/B0153VJXQW/ref=srh_res_product_title?

ie=UTF8&sr=0-3&qid=1448445935571 [Accessed 19 Jun. 2018].

100. Mendix. (2018). Application Platform As A Service - Application

Development Platform. [online] Available at: https://www.mendix.com/application-

platform-as-a-service [Accessed 24 Mar. 2018].

101. Appian. (2018). Appian Platform Pricing. [online] Available at:

https://www.appian.com/platform/pricing/ [Accessed 4 May 2018].

102. Jeffrey, S., (2017). The Forrester Wave™: Mobile Low-Code Development

Platforms. [online] Available at:

https://www.forrester.com/report/The+Forrester+Wave+Mobile+LowCode+Develo

pment+Platforms+Q1+2017/-/E-RES136055 [Accessed 10 Jun. 2018].

103. Kony. (2018). Dedication, flexibility make Kony a Low-Code leader.

[online] Available at: https://www.kony.com/resources/blog/dedication-flexibility-

make-kony-Low-Code-leader [Accessed 8 May 2018].

104. Docs.microsoft.com. (2018). What are canvas apps? - PowerApps. [online]

Available at: https://docs.microsoft.com/en-us/powerapps/getting-started [Accessed

4 Jul. 2018].

105. Powerapps.microsoft.com. (2018). Pricing - PowerApps. [online] Available

at: https://powerapps.microsoft.com/en-us/pricing/ [Accessed 4 Jul. 2018].

106. Salesforce.com. (2018). Pricing. [online] Available at:

https://www.salesforce.com/eu/products/platform/pricing/ [Accessed 4 Jul. 2018].

107. Xojo.com. (2018). Xojo: About Xojo, Inc. [online] Available at:

https://www.xojo.com/company/about.php [Accessed 11 Jun. 2018].

108. Techopedia.com. (2018). What is a Developer? - Definition from

Techopedia. [online] Available at:

https://www.techopedia.com/definition/17095/developer [Accessed 27 Jul. 2018].

