
Table of Contents
Chapter 1: Deep Learning 1

Deep learning and AI 2
The challenges of high-dimensional data 3

DL as representation learning 4
How DL extracts hierarchical features from data 4
Universal function approximation 5
DL and manifold learning 6
How DL relates to ML and AI 7

How to design a neural network 8
How neural networks work 9

A simple feedforward network architecture 9
Key design choices 11

Cost functions 12
Output units 12
Hidden units 12

How to regularize deep neural networks 13
Parameter norm penalties 14
Early stopping 14
Dropout 14

Optimization for DL 15
SGD 15
Momentum 16
Adaptive learning rates 16

AdaGrad 17
RMSProp 17
Adam 17

How to build a neural network using Python 17
The input layer 18
The hidden layer 18
The output layer 19
Forward propagation 20
The cross-entropy cost function 21

How to train a neural network 21
How to implement backprop using Python 22

How to compute the gradient 22
The loss function gradient 23
The output layer gradients 23
The hidden layer gradients 24
Putting it all together 24

Testing the gradients 25
Implementing momentum updates using Python 25

Training the network 26



Table of Contents

[ ii ]

How to use DL libraries 27
How to use Keras 28
How to use TensorBoard 30
How to use PyTorch 1.0 32

How to create a PyTorch DataLoader 32
How to define the neural network architecture 33
How to train the model 34
How to evaluate the model predictions 35

How to use TensorFlow 2.0 35
How to optimize neural network architectures 36

Creating a stock return series to predict asset price movement 36
Defining a neural network architecture with placeholders 37
Defining a custom loss metric for early stopping 38
Running GridSearchCV to tune the neural network architecture 39
How to further improve the results 40

Summary 41

Index 42



1
Deep Learning

This chapter kicks off part four, which covers several deep learning techniques and how
they can be useful for investment and trading. The unprecedented breakthroughs that deep
learning (DL) has achieved in many domains, from image and speech recognition to
robotics and intelligent agents, have drawn widespread attention and revived large-scale
research into Artificial Intelligence (AI). The expectations are high that the rapid
development will continue and many more solutions to difficult practical problems will
emerge.

The enormous DL progress over the last five to ten years builds on ideas that date back
decades. However, to realize their potential, these ideas needed to operate at scale, which in
turn required complementary advances in the availability of computational resources and
large datasets.

In this chapter, we will present feedforward neural networks to introduce central elements
of neural network architectures, demonstrate how to efficiently train large models using the
backpropagation algorithm, and manage the risks of overfitting. We will also show how to
use the popular Keras, TensorFlow 2.0, and PyTorch frameworks, which we will leverage
throughout part four.

In the following chapters, we will build on this foundation to design and train a variety of
architectures suitable for different investment applications with a particular focus on
alternative data sources. These include recurrent neural networks (RNNs) tailored to
sequential data such as time series or natural language, and Convolutional Neural
Networks (CNNs), which are particularly well suited to image data. We will also cover
deep unsupervised learning, including Generative Adversarial Networks (GANs), to
create synthetic data and reinforcement learning to train agents that interactively learn
from their environment.



Deep Learning Chapter 1

[ 2 ]

In particular, this chapter will cover the following topics:

How DL solves AI challenges in complex domains
How key innovations have propelled DL to its current popularity
How feedforward networks learn representations from data
How to design and train deep neural networks in Python
How to implement deep neural networks using Keras, TensorFlow, and PyTorch
How to build and tune a deep neural network to predict asset price movement

The code samples and references are in this chapter's directory of the GitHub repository
at https://github. com/ PacktPublishing/ Hands- On- Machine- Learning- for-
Algorithmic-Trading.

Deep learning and AI
The machine learning (ML) algorithms covered in part two work well on a wide variety of 
important problems, including- on text data, as demonstrated in part three. We have also
seen how they can provide critical input to a trading strategy. They have been less
successful, however, in solving central problems in AI such as recognizing speech or
classifying objects in images. The limitations of traditional algorithms to generalize well on
such tasks have contributed to the motivation for developing DL, and the numerous
breakthroughs by DL have greatly contributed to a resurgence of interest in AI.

In this section, we outline how DL overcomes many of the limitations of other ML
algorithms on AI tasks to clarify the assumptions DL makes about data and its relationship
with the outcome. These limitations particularly constrain performance on high-
dimensional and unstructured data that requires sophisticated efforts to extract informative
features.

We also saw that the ML techniques in part two and part three are best suited for
processing structured data with well-defined features. We saw, for example, how to
convert text data into tabular data using the document-text matrix in Chapter 13, Working
with Text Data. DL also overcomes the challenge of designing effective features by learning
a representation of the data that more efficiently captures its characteristics.

https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading


Deep Learning Chapter 1

[ 3 ]

More specifically, we will see how DL is a specific approach to AI and ML that focuses on
learning a hierarchical representation of the data, and why this approach works
particularly well when applied to high-dimensional, unstructured data, including many
popular alternative data sources. We will describe how deep neural networks discover an
intricate, hierarchical structure by composing a set of nested functions that compute a new
representation in each layer from the representation in the previous layer, and how the
backpropagation algorithm adjusts the internal network parameters to enable the learning
of these representations from data.

We will also briefly outline how DL broadly fits into the evolution of AI and the diverse set
of approaches that aim to achieve the current goals of AI, which focus on solving problems
that are easy for humans but difficult to describe using a set of rules, in contrast to tasks
that involve straightforward rules such as playing chess.

The challenges of high-dimensional data
We have seen how the key challenge of supervised learning is to generalize from training
data to new samples. Generalization becomes exponentially more difficult as the
dimensionality of the data increases. We encountered the root causes of these difficulties
when we covered the curse of dimensionality in Chapter 12, Unsupervised Learning.

One aspect of this curse is that volume grows exponentially with the number of
dimensions: the volume of a hypercube with edge length 10 increases from 103 to 104 as the
number of dimensions goes from three to four. Consequently, the number of data points
required to maintain a given density of observations also grows exponentially.

Moreover, functional relationships may become more complex when they can exhibit
distinct behavior in each of a larger number of dimensions. Traditional ML techniques
struggle to learn and generalize complicated functions in high-dimensional spaces. We
explained in Chapter 6, The Machine Learning Process, that many ML problems are
intractable if we expect the algorithm to learn functions that vary arbitrarily across all
dimensions, simply because there are too many candidates. Instead, algorithms
hypothesize that the target function belongs to a certain class to impose constraints that
enable a successful search for the optimal solution to the prediction problem at hand.

Furthermore, algorithms typically assume that the output at a new point should be similar
to the output at nearby training points. This prior assumption of smoothness or local
constancy posits that the learned function will not change much in a small region, most
clearly illustrated by the k-nearest neighbor algorithm (see Chapter 6, The Machine Learning
Process).



Deep Learning Chapter 1

[ 4 ]

In high-dimensional space, the data density drops exponentially, so that unless we add a
corresponding number of observations, the training samples will be further and further
apart. Hence, the notion of nearby training examples becomes less meaningful as the
potential complexity of the target function increases.

For traditional ML algorithms, the number of parameters and required training samples is
generally proportional to the number of regions in the input space that the algorithm is able
to distinguish. DL is designed to overcome the challenges of learning an exponential
number of regions from a limited number of training points by assuming that a hierarchy of
features generates the data.

DL as representation learning
Many ordinary tasks require knowledge about the world. One of the key challenges is to
encode this knowledge so a computer can utilize it. For decades, the development of ML
systems required considerable domain expertise to transform the raw data (such as image
pixels) into an internal representation that a learning algorithm could use to detect or
classify patterns.

Similarly, we saw that how much value an ML algorithm adds to a trading strategy
depends to a great extent on our ability to engineer features that represent the predictive
information in the source data so that the algorithm can process it. Ideally, the
representation captures independent drivers of the outcome, as we discussed in Chapter 4,
Alpha Factor Research, and throughout part two and part three when investigating factors
that capture trading signals.

Representation learning allows an ML algorithm to automatically discover the
representation of the raw data that is most useful for detecting or classifying patterns. DL
combines this technique with specific assumptions about the nature of the features.

How DL extracts hierarchical features from data
The core idea behind DL is that a composition of factors, or features, potentially organized
in a hierarchy of multiple levels, has generated the data. Hence, a deep model encodes the
prior belief that the target function is composed of simpler functions. This assumption
allows an exponential gain in the number of regions that can be distinguished for a given
number of training samples.



Deep Learning Chapter 1

[ 5 ]

In other words, DL is a representation learning method that extracts a hierarchy of concepts
from the data. It learns this hierarchical representation using neural network architectures
that compose simple but non-linear functions and successively transform the representation
from one level (starting with the raw input) into a new representation at a higher, slightly
more abstract level. These successive transformations can also be interpreted as learning a
computer program that takes multiple, sequential steps. By combining enough of these
transformations, DL is able to learn very complex functions.

Applied to a classification task, for example, higher representation levels tend to amplify
the aspects of the data most helpful for discriminating different objects while suppressing
irrelevant sources of variation. As we will see in more detail in Chapter 18, Convolutional
Neural Networks, raw image data is just a two-or three-dimensional array of pixel values.
The first representation layer typically learns features that focus on the presence or absence
of edges at particular orientations and locations. The second layer often learns motifs that
depend on particular edge arrangements, regardless of small variations in their positions.
The following layer may assemble motifs to represent parts of relevant objects, and
subsequent layers would detect objects as combinations of these parts.

The key breakthrough of DL is that a general-purpose learning algorithm can extract
hierarchical features suitable for modeling high-dimensional, unstructured data in a way
that is infinitely more scalable than human engineering.

Consequently, it is no surprise that the rise of DL parallels the large-scale availability of
unstructured data. The superior ability of DL to model the types of data associated with AI
tasks has enabled a variety of new use cases. To the extent that these data sources also
figure prominently among alternative data, DL has become similarly relevant for
algorithmic trading.

Universal function approximation
The Universal Approximation Theorem formalizes the powerful ability of neural networks
to capture arbitrary relationships between input and output data. In 1989, George Cybenko
showed that neural networks with a single layer of neurons connecting input and output
using nonlinear, sigmoid activation functions are generally able to represent any
continuous function on a closed and bounded subset of Rn.

Kurt Hornik showed in 1991 that it is not the specific shape of the activation function but
rather the multi-layered architecture that enables the hierarchical feature representation
that allows neural networks to approximate universal functions.

https://www.packtpub.com/sites/default/files/downloads/Convolutions_Neural_Networks.pdf


Deep Learning Chapter 1

[ 6 ]

However, the theorem also does not specify the network architecture required to actually
represent the target function. We will see later in the section on neural network architecture
that there are numerous choices, from the width and depth of the networks to the
connections between neurons and the type of activation functions to use.

Furthermore, the ability to represent arbitrary functions does not imply that a network can
actually learn the parameter's function. It took over two decades for backpropagation, the
most popular learning algorithm for neural networks today, which had been discovered
independently in different contexts by 1986, to become effective at scale, as we will see in
the corresponding section later in this chapter.

DL and manifold learning
There is an important conceptual reason why DL works is the manifold hypothesis, which
we encountered in Chapter 12, Unsupervised Learning. The idea is that high-dimensional
phenomena can often be represented well in lower dimensions, and if we can find this
representation, then we can reduce or even avoid the challenges posed by the curse of
dimensionality.

A manifold refers to a connected set of points, typically in high-dimensional space, that can
be approximated well using only a much smaller number of dimensions. In other words,
the lower-dimensional manifold is embedded in a higher-dimensional space. The example
of a street as a one-dimensional manifold in a three-dimensional space illustrates how
house numbers are much simpler descriptors than three-dimensional coordinates.

There are strong arguments to support the manifold hypothesis. Out of the very large
number of potential images, text strings, or sounds, only a very small number is
meaningful. In other words, the probability distribution over these data sources is highly
concentrated on specific feature configurations rather than uniform.

Moreover, there are often small variations of the input that maintain the validity of the
input. For image data, for instance, adjustments to brightness, luminance, changes to colors,
rotations, and so on could be considered movements on the manifold for a given object.

The hierarchical representations learned by DL may approximate the underlying
manifolds, and we will see in more detail in Chapter 19, Unsupervised Deep Learning, how
autoencoders accomplish this.



Deep Learning Chapter 1

[ 7 ]

How DL relates to ML and AI
The current level of public attention and debate warrants a brief outline of how DL relates
to AI and ML (see references on GitHub for more detail: https:/ / github. com/
PacktPublishing/Hands- On- Machine- Learning- for-Algorithmic- Trading). 

AI has a long history, going back at least to the 1950s as an academic field and much longer
as a subject of human inquiry, but has experienced several waves of ebbing and flowing
enthusiasm since. ML is an important subfield that also has a long history in related
disciplines, such as statistics, and became prominent in the 1980s. As discussed in the
previous section, DL is a form of representation learning, itself a subfield of ML.

The initial goal of AI was to achieve General AI, conceived as the ability to solve problems
considered to require human-level intelligence, and to reason and draw logical conclusions
about the world and automatically improve itself. AI applications that do not involve ML
include knowledge bases that encode information about the world, combined with
languages for logical operations. Historically, much effort went into developing rule-based
systems that aimed to capture expert knowledge and decision-making rules, but hard
coding these rules frequently failed due to excessive complexity.

ML implies a probabilistic approach that learns rules from data and aims at circumventing
the limitations of human-designed rule-based systems. It also involves a shift to narrower,
task-specific objectives and includes most of the material covered in the book so far.

The previous section introduced representation learning as a technique to automatically
extract features from data that are suitable for a given ML task. We covered fundamental
techniques such as Principal Component Analysis (PCA) and Independent Component
Analysis (ICA) in Chapter 12, Unsupervised Learning. Another example is the Word2vec
word embedding algorithm, which we introduced in Chapter 15, Word Embeddings.

Finally, DL extracts a hierarchical representation that is often capable of improving its
performance by adding layers as the training data grows. The composition of multiple
processing layers that learn multiple levels of abstraction to represent the data has
dramatically improved the state of the art in speech recognition, visual object recognition,
and detection, and many other domains, such as drug discovery and genomics.

https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading


Deep Learning Chapter 1

[ 8 ]

The following figures shows these relationships and emphasizes the key strength of DL: the
ability to improve its predictive performance by adding more layers as more data becomes
available:

In the next section, we will see how to actually build a neural network.

How to design a neural network
DL relies on neural networks, which consist of a few key building blocks, which in turn can
be configured in a multitude of ways. In this section, we will introduce how neural
networks work and illustrate the most important components used to design different
architectures, including types of hidden and output units, cost functions, and various
options to connect these components.

Neural networks, also called artificial neural networks, were inspired by biological models of
learning as represented by the human brain, either in an attempt to mimic how it works
and achieve similar success, or to gain a better understanding through simulation. Current
neural network research draws less on neuroscience, not least since our understanding of
the brain has not yet reached a sufficient level of granularity. Another constraint is overall
size: while the number of neurons used in neural network has more than doubled since the
1950s, they will only reach the scale of the human brain around 2050.



Deep Learning Chapter 1

[ 9 ]

We will also explain how backpropagation uses gradient information to adjust all neural
network parameters based on training errors. The composition of various non-linear
modules implies that the optimization of the objective function using backpropagation can
be quite challenging. We also introduce various algorithms that aim to accelerate the
learning process.

How neural networks work
In this section, we will introduce a fundamental class of (artificial) neural networks that is
based on the Multilayer Perceptron (MLP) and consists of one or more hidden layers that 
connect the input to the output layer.

This class of neural networks is also called feedforward neural networks because
information only flows in one direction, from input to output. Hence, they can be
represented as directed acyclic graphs. In contrast, in the next chapter, we cover
RNNs, which include loops from the output back to the input to enable the neural
network to keep track of or memorize past patterns and events.

We will first describe the architecture and how to implement it using NumPy. Then we will
describe backpropagation and implement this learning algorithm in Python to train a
simple network and demonstrate how it is capable of binary classification where the classes
are not linearly separable. See the build_and_train_feedforward_nn notebook for
implementation details.

A simple feedforward network architecture
A feedforward neural network consists of several layers, each of which receives input data
and produces an output. The chain of transformations starts with the input layer, that
passes the source data to one or several internal or hidden layers, and the output layer that
computes a result that can be compared to the outcome or label of the ML problem.

The hidden and output layers consist of nodes or neurons, each of which connects to some
or all nodes of the previous layer, where the latter is called a fully-connected or dense
layer. The network architecture can be summarized by the depth of the neural network,
measured by the number of hidden layers (hence deep learning), and the width, or the
number of nodes of each layer.



Deep Learning Chapter 1

[ 10 ]

Each connection has a weight, which is used to compute a linear combination of the input
values. A layer may also have a bias node without any inputs that always outputs a 1 and is
used by the nodes in the subsequent layers like a constant in linear regression. The result is
called an affine transformation. The weights and biases are the parameters that determine
the network output and predictive performance, and learning optimal values for these
parameters is the goal of the training phase.

The hidden layers usually also perform a non-linear transformation of the result, for
example, based on the sigmoid function used for logistic regression (see Chapter 7, Linear
Models) to produce an activation that becomes the input to the subsequent layer. The output
layer will process the linear combination of the inputs from the last hidden layer according
to the type of ML problem, such as regression, binary, or multi-class classification.

The computation of the network output from the inputs thus flows through a chain of
nested functions and is called forward propagation. The following diagram illustrates a
single-layer feedforward neural network with a two-dimensional input vector, a hidden
layer of width three, and two nodes in the output layer. This architecture is simple enough
that we can still easily graph it, yet it still illustrates many of the key concepts:

The network graph shows that each of the three hidden layer nodes (not counting the bias)
has three weights, one for the input layer bias and two for each of the two input variables.
Similarly, each output layer node has four weights to compute the product sum or dot
product of the hidden layer bias and activations. In total, there are 17 parameters to be
learned.



Deep Learning Chapter 1

[ 11 ]

The forward propagation panel on the right of the diagram lists the computations for an
example node at the hidden and output layers, h and o, respectively. The first node in the
hidden layer applies the sigmoid function to the linear combination, z, of its inputs, so that
it performs a logistic regression with output h1. Hence, the hidden layer runs three logistic
regressions in parallel that generally will produce different parameters or weights as to best
inform subsequent layers.

The output layer uses a softmax activation function (see Chapter 6, The Machine Learning
Process) that generalizes the logistic sigmoid functions to multiple classes and squashes the
hidden layer values so they represent probabilities for the classes (only two in this case);
that is, it forces the outputs to be non-negative and sum to 1. We could represent the output
using a single binary variable, but neural networks are often used for multi-class problems
and this representation allows us to demonstrate the softmax output function.

Forward propagation computed by chained non-linear transformations can also be
expressed as nested functions, where h again represents the hidden layer and o represents
the output layer, to produce the neural network estimate of the output, as follows:

Key design choices
The design choices for neural networks are similar to other supervised learning models in
some regards. For example, the neural network model output is usually dictated by the
nature of the training labels and the type of ML problem they represent, such as regression,
classification, or ranking. Based on the output, we need to select a cost function and an
optimization algorithm to minimize this objective represented by the cost function.

Neural network-specific choices include the overall architecture, that is, the neural
network's depth in terms of number of layers, and their relspective widths or number of
nodes, as well as the design of connections between nodes of different layers. A key
concern is how efficiently the backpropagation algorithm translates training errors into
adequate parameter adjustments based on the information provided by the gradient. The
functional forms of nonlinear elements in hidden and output layers, for example, can
facilitate or hinder the flow of this information. Functions with flat regions for large input
value ranges have a very low gradient and can impede training progress when parameter
values get stuck in such a range.



Deep Learning Chapter 1

[ 12 ]

Some architectures add skip connections that establish direct links beyond neighboring
layers to facilitate the flow of gradient information. On the other hand, the deliberate
omission of connections can reduce the number of parameters to reduce the network's
capacity and possibly reduce the generalization error, while also reducing the
computational cost. Finally, each hidden layer requires a choice of the activation function.

Cost functions
The cost functions for neural networks do not differ significantly from those for other
models. The choice can, however, impact the ability to train the model because it interacts
with the nature of the gradient of the output.

Historically, the mean squared error (MSE) was a common choice, but slowed down
training with binary sigmoid or multi-class softmax outputs. The gradients for these output
functions can be very low (for example, for the flat region of the sigmoid function, called
saturation) so that backpropagation can take a long time to achieve significant parameter
updates, which in turn slows down training. The use of the cross-entropy family of loss
functions greatly improved the performance of these models by reducing saturation.

Output units
Neural networks are applied to common supervised learning problems and, hence, use
familiar output representations of the final hidden layer activations:

Linear output units compute an affine transformation from the hidden layer
activations and are common for regression problems in conjunction with MSE
cost.
Sigmoid output units model a Bernoulli distribution, just like logistic regression,
with hidden activations as input.
Softmax units generalize the logistic sigmoid and model a discrete distribution
over more than two classes as demonstrated precedingly.

Hidden units
Hidden units are unique to the design of neural networks, and several non-linear activation
functions have been used successfully. The design of hidden activation functions remains
an area of research because it has a critical impact on the training process.



Deep Learning Chapter 1

[ 13 ]

A very popular class of activation functions are piece-wise linear units, such as the
Rectified Linear Unit (ReLU). The functional form is similar to the payoff for a call option
and the activation is computed as g(z) = max(0, z) for a given activation, z. As a result, the
derivative is constant whenever the unit is active. ReLUs are usually combined with an
affine transformation of the inputs. They are often used instead of sigmoid units and their
discovery has greatly improved the performance of feedforward networks. They are often
recommended as the default.

There are several ReLU extensions that aim to address the limitations of ReLU to learn
using gradient descent when they are not active and their gradient is zero. See the
references on GitHub for details at https:/ /github. com/ PacktPublishing/ Hands- On-
Machine-Learning- for- Algorithmic- Trading.

An alternative to the logistic sigmoid activation function, σ, is the hyperbolic tangent, tanh,
which produces output values in the ranges [-1, 1]. They are closely related because tanh(z)
= 2σ(2z)-1. Both functions suffer from saturation because their gradient becomes very small
for very low and high input values. However, tanh often performs better because it more
closely resembles the identify function, so that for small activation values, the network
behaves more like a linear model, which in turn facilitates training.

How to regularize deep neural networks
The large capacity of neural networks to approximate arbitrary functions greatly increases
the risk of overfitting. We have seen for all models so far that there is some form of
regularization that modifies the learning algorithm to reduce its generalization error
without negatively affecting its training error. Examples include the penalties added to the
ridge and lasso regression objectives and the split constraints used with decision trees and
tree-based ensemble models.

Frequently, regularization takes the form of a soft constraint on parameter values that
trades off some additional bias for lower variance. Sometimes the constraints and penalties
are designed to encode prior knowledge. Other times, these constraints and penalties are
designed to express a general preference for a simpler model class. A common practical
finding is that the model with the lowest generalization error is not the model with the
exact right size of parameters, but rather a larger model that has been well regularized.

The best protection against overfitting is to train the model on a larger dataset. Data
augmentation, for example, by creating slightly modified versions of images, is a powerful
alternative approach. Popular regularization techniques for neural networks that we will
apply throughout part four, and that can also be used in combination, include parameter
norm penalties, early stopping, and dropout.

https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading


Deep Learning Chapter 1

[ 14 ]

Parameter norm penalties
We have encountered parameter norm penalties as L1 regularization and the
corresponding lasso regression as L2 regularization and Ridge regression in Chapter 7,
Linear Models.

In the context of DL, parameter norm penalties similarly modify the objective function by
adding a term that represents the L1 or L2 norm of the parameters, weighted by a
hyperparameter that requires tuning. For neural networks, the bias parameters are usually
not constrained, only the weights. Sometimes different penalties or hyperparameter values
are used for different layers, but the added tuning complexity quickly becomes prohibitive.

L2 regularization preserves directions along which the parameters contribute significantly
to reduce the objective function. L1 regularization, in contrast, has the ability to produce
sparse parameter estimates by reducing weights all the way to zero. We have seen how
lasso regression can be used for linear feature selection as a result.

Early stopping
We encountered early stopping as a regularization technique in Chapter 10, Decision Trees
and Random Forests. It is probably the most commonly used form of regularization in DL
and is popular because it is both effective and simple to use.

It works as a regularization mechanism by monitoring the model's performance on a
validation set during training. When the performance ceases to improve for a certain
number of observations, the algorithm stops to prevent overfitting.

Early stopping can be viewed as a very efficient hyperparameter selection algorithm that
automatically determines the correct amount of regularization, whereas parameter
penalties require hyperparameter tuning to identify the ideal weight decay.

Dropout
Dropout refers to the randomized omission of individual units during forward or
backward propagation with a given probability. As a result, the omitted units do not
contribute to the training error or receive updates.

Dropout is a very popular regularization technique because it is computationally very
inexpensive and does not significantly constrain the type of model or training procedure
that can be used. A downside is that more iterations are necessary to achieve the same
amount of learning, but on the plus side, each iteration is faster due to lower computational
cost.



Deep Learning Chapter 1

[ 15 ]

It works as a regularization technique because it prevents units from co-adapting to or
compensating for mistakes made by other units during the learning process, thereby
increasing the risk of overfitting. One of the key insights of dropout is that training a
network with stochastic behavior and making predictions by averaging over multiple
stochastic decisions implements a form of bagging with parameter sharing.

Optimization for DL
Training a deep neural network is very challenging and time-consuming due to the non-
convex objective function. Several challenges can significantly delay convergence, find a
poor optimum, or cause oscillations or divergence from the target:

Local minima can prevent convergence to a global optimum and cause poor
performance.
Flat regions with low gradients that are not a local minimum can also prevent
convergence while most likely being distant from the global optimum.
Steep regions with high gradients, which can result from multiplying several
large weights, can cause excessive adjustments.
Deep architectures or the modeling of long-term dependencies in RNNs (see the
next chapter) can require the multiplication of many weights, leading to
vanishing gradients, so that at least parts of the neural network receive few or no
updates.

Several algorithms have been developed to address some of these challenges, such as
variations of Stochastic Gradient Descent (SGD) and approaches that use adaptive
learning rates. There is no single best algorithm, though, although adaptive learning rates
have shown some promise.

SGD
Gradient descent iteratively adjusts the neural network parameter using the information by
the gradient. For a given parameter, θ, the basic gradient descent rule adjusts the value by
the negative gradient of the loss function with respect to this parameter, multiplied by a
learning rate, η, as follows:



Deep Learning Chapter 1

[ 16 ]

The gradient can be evaluated for all training data, a randomized batch of data, or
individual observations (called online learning). Random samples imply SGD, which often
leads to faster convergence if random samples provide an unbiased estimate of the gradient
direction at any point in the iterative process.

There are numerous challenges because the objective function is not convex. It can be
difficult to define a learning rate or a rate schedule ex-ante that facilitates efficient
convergence—too low a rate prolongs the process, and too high a rate can lead to repeated
overshooting and oscillation around, or even divergence from, a minimum. Furthermore,
the same learning rate may not be adequate for all parameters, that is, in all directions of
change.

Momentum
A popular refinement of basic gradient descent adds momentum to accelerate the
convergence to a local minimum.

While, in practice, the dimensionality would be much higher, the image of a local optimum
at the center of an elongated ravine is often used. It implies a minimum inside a deep and
narrow gorge or canyon with very steep walls that have a large gradient but a much gentler
slope toward a local minimum at the bottom of this region. Gradient descent naturally
follows the steep gradient and will make repeated adjustments up and downs the walls of
the canyons with much slower movements toward the minimum.

Momentum aims to address such situation by tracking past directions and adjusting the
parameters by a weighted average of the most recent gradient and the currently computed
value. It uses a momentum term, γ, to weigh the contribution of the latest adjustment to this
iteration's update, vt, as follows:

Adaptive learning rates
The choice of appropriate learning rates is very challenging as highlighted in the preceding
subsection on SGD. At the same time, it is one of the most important parameters and
strongly impacts training time and generalization performance. While momentum
addresses some of the issues with learning rates, it does so at the expense of introducing the
momentum rate, another hyperparameter.



Deep Learning Chapter 1

[ 17 ]

Several algorithms aim to adapt the learning rate throughout the training process based on
gradient information (see references on GitHb for more detail).

AdaGrad
AdaGrad accumulates all historical, parameter-specific gradient information and continues
to rescale the learning rate inversely proportional to the squared cumulate gradient for a
given parameter. The goal is to slow down changes for parameters that have changed a lot
and to encourage adjustments for those that don't.

AdaGrad is designed to perform well on convex functions and has had mixed performance
in a DL contexts because it can reduce the learning rate too fast based on early gradient
information.

RMSProp
RMSProp modifies AdaGrad to use an exponentially-weighted average of the cumulative
gradient information. The goal is to put more emphasis on recent gradients. It also
introduces a new hyperparameter that controls the length of the moving average.

RMSProp is a popular algorithm that often performs well, provided by the various libraries
that we will introduce later and routinely use in practice.

Adam
Adam stands for Adaptive Moments. It combines aspects of RMSProp with momentum. It
is considered fairly robust and is often used as default.

How to build a neural network using Python
To gain a better understanding of how neural networks work, we will formulate the
preceding architecture and forward propagation computations using matrix algebra and
implement it using NumPy, the Python counterpart of linear algebra.



Deep Learning Chapter 1

[ 18 ]

The input layer
The preceding architecture is designed for two-dimensional input data, X, which represent
two different classes, Y. In matrix form, both X and Y are of shape N x 2, as follows:

We will generate 50,000 random samples in the form of two concentric circles with different
radii using scikit-learn's make_circles function so that the classes are not linearly
separable, as follows:

N = 50000
factor = 0.1
noise = 0.1
X, y = make_circles(n_samples=N, shuffle=True,
                    factor=factor, noise=noise)

We then convert the one-dimensional output into a two-dimensional array, as follows:

Y = np.zeros((N, 2))
for c in [0, 1]:
    Y[y == c, c] = 1
'Shape of: X: (50000, 2) | Y: (50000, 2) | y: (50000,)'

See the notebook for a visualization of the result.

The hidden layer
The hidden layer, h, projects the two-dimensional input into a three-dimensional space
using the weights, Wh, and translates the result by the bias vector, bh. To perform this affine
transformation, the hidden layer weights are represented by a 2 x 3 matrix, Wh, and the
hidden layer bias vector by a three-dimensional vector, as follows:



Deep Learning Chapter 1

[ 19 ]

The hidden layer activations, h, result from the application of the sigmoid function to the
dot product of the input data and the weights after adding the bias vector, as follows:

To implement the hidden layer using NumPy, we first define the logistic sigmoid function,
as follows:

def logistic(z):
    """Logistic function."""
    return 1 / (1 + np.exp(-z))

We then define a function that computes the hidden layer activations as a function of the
relevant inputs, weights and bias values, as follows:

def hidden_layer(input_data, weights, bias):
    """Compute hidden activations"""
    return logistic(input_data @ weights + bias)

The output layer
The output layer compresses the three-dimensional hidden layer activations, H, back to two
dimensions using a 3 x 2 weight matrix, Wo, and a two-dimensional bias vector, bo, as
follows:

The linear combination of the hidden layer outputs results in an N x 2 matrix, Zo, as follows:



Deep Learning Chapter 1

[ 20 ]

The output layer activations are computed by the softmax function, ς, which normalizes the
Zo to conform to the conventions used for discrete probability distributions, as follows:

We define a softmax function in Python as follows:

def softmax(z):
    """Softmax function"""
    return np.exp(z) / np.sum(np.exp(z), axis=1, keepdims=True)

As defined earlier, the output layer activations depend on the hidden layer activations and
the output layer weights and biases, as follows:

def output_layer(hidden_activations, weights, bias):
    """Compute the output y_hat"""
    return softmax(hidden_activations @ weights + bias)

Now we have all the components to integrate the layers and compute the neural network
output directly from the input.

Forward propagation
The forward_prop function combines the previous operations to yield the output
activations from the input data as a function of weights and biases, as follows:

def forward_prop(data, hidden_weights, hidden_bias, output_weights,
           output_bias):
    """Neural network as function."""
    hidden_activations = hidden_layer(data, hidden_weights, hidden_bias)
    return output_layer(hidden_activations, output_weights, output_bias)

The predict function produces the binary class predictions given weights, biases, and input
data, as follows:

def predict(data, hidden_weights, hidden_bias, output_weights,
output_bias):
    """Predicts class 0 or 1"""
    y_pred_proba = forward_prop(data,
        q                        hidden_weights,
                                hidden_bias,



Deep Learning Chapter 1

[ 21 ]

                                output_weights,
                                output_bias)
    return np.around(y_pred_proba)

The cross-entropy cost function
The final piece is the cost function to evaluate the neural network output based on the
given label. The cost function, J, uses the cross-entropy loss, ξ, which sums the deviations
of the predictions for each class, C, from the actual outcome, as follows:

It takes the following form in Python:

def loss(y_hat, y_true):
     """Cross-entropy"""
     return - (y_true * np.log(y_hat)).sum()

How to train a neural network
The goal of neural network training is to adjust the hidden and output layer parameters to
best predict new data based on training samples. Backpropagation, often simply called
backprop, ensures that the information about the performance of the current parameter
values gleaned from the evaluation of the cost function for one or several samples flows
back to parameters and facilitates optimal updates.

Backpropagation refers to the computation of the gradient of the function that relates the
internal parameters that we wish to update to the cost function. The gradient is useful
because it indicates the direction of parameter change, which causes the maximal increase
in the cost function. Hence, adjusting the parameters in the direction of the negative
gradient should produce an optimal cost reduction for the observed samples, as we saw in
Chapter 6, Linear Models.

However, gradient descent optimization algorithms do not offer guarantees of convergence
when applied to non-convex functions such as neural network gradients with non-linear
activation and cost functions. The gradient is only valid for an infinitely small step, and a
key challenge for the optimization algorithm is to define a discrete step size that
measurably changes the parameters while avoiding an adverse change in the cost function.



Deep Learning Chapter 1

[ 22 ]

We usually define this step size as the learning rate. Moreover, the optimization result is
sensitive to the starting values, which has given rise to various weight initialization
strategies.

The next section on design choices introduces several optimization algorithms tailored to
non-convex optimization, including approaches that automatically adapt the learning rate.

How to implement backprop using Python
To update the neural network weights and bias values using backprop, we need to
compute the gradient of the cost function. The gradient represents the partial derivative of
the cost function with respect to the target parameter.

How to compute the gradient
The neural network comprises a set of nested functions as highlighted precedingly. Hence,
the gradient of the loss function with respect to internal, hidden parameters is computed
using the chain rule of calculus.

For scalar values, given the functions z = h(x) and y = o(h(x)) = o (z), we compute the
derivative of y with respect to x using the chain rule, as follows:

For vectors, with z ∈ Rm and x ∈ Rn so that the hidden layer, h, maps from Rn to Rm and z =
h(x) and y = o (z), we get the following:

We can express this more concisely using matrix notation using the m x n Jacobian matrix of
h, as follows:



Deep Learning Chapter 1

[ 23 ]

That contains the partial derivatives for each of the m components of z with respect to each
of the n inputs, x. The gradient ∇ of y with respect to x that contains all partial derivatives
can thus be written as follows:

The loss function gradient
The derivative of the cross-entropy loss function, J, with respect to each output layer
activation, i = 1, ..., N, is a very simple expression (see notebook for details), on the left for
scalar values and on the right in matrix notation, as follows: 

We define the loss_gradient function accordingly, as follows:

def loss_gradient(y_hat, y_true):
    """output layer gradient"""
    return y_hat - y_true

The output layer gradients
To propagate the update back to the output layer weights, we use the gradient of the loss
function the J, with respect to the weight matrix, as follows:

We can now define output_weight_gradient and output_bias_gradient
accordingly, both taking the loss gradient, δo, as input:

def output_weight_gradient(H, loss_grad):
    """Gradients for the output layer weights"""
    return H.T @ loss_grad

def output_bias_gradient(loss_grad):
    """Gradients for the output layer bias"""
    return np.sum(loss_grad, axis=0, keepdims=True)



Deep Learning Chapter 1

[ 24 ]

The hidden layer gradients
The gradient of the loss function with respect to the hidden layer values computes as
follows, where º refers to the element-wise matrix product:

We define a hidden_layer_gradient function to encode this result, as follows:

def hidden_layer_gradient(H, out_weights, loss_grad):
    """Error at the hidden layer.
    H * (1-H) * (E . Wo^T)"""
    return H * (1 - H) * (loss_grad @ out_weights.T)

The gradients for hidden layer weights and biases are as follows:

The corresponding functions are as follows:

def hidden_weight_gradient(X, hidden_layer_grad):
    """Gradient for the weight parameters at the hidden layer"""
    return X.T @ hidden_layer_grad

def hidden_bias_gradient(hidden_layer_grad):
    """Gradient for the bias parameters at the output layer"""
    return np.sum(hidden_layer_grad, axis=0, keepdims=True)

Putting it all together
To prepare for the training of our network, we create a function that combines the
preceding gradient definition and computes the relevant weight and bias updates from the
training data and labels, and the current weight and bias values, as follows:

def compute_gradients(X, y_true, w_h, b_h, w_o, b_o):
    """Evaluate gradients for parameter updates"""
    # Compute hidden and output layer activations
    hidden_activations = hidden_layer(X, w_h, b_h)
    y_hat = output_layer(hidden_activations, w_o, b_o)

    # Compute the output layer gradients



Deep Learning Chapter 1

[ 25 ]

    loss_grad = loss_gradient(y_hat, y_true)
    out_weight_grad = output_weight_gradient(hidden_activations, loss_grad)
    out_bias_grad = output_bias_gradient(loss_grad)

    # Compute the hidden layer gradients
    hidden_layer_grad = hidden_layer_gradient(hidden_activations, w_o,
                                              loss_grad)
    hidden_weight_grad = hidden_weight_gradient(X, hidden_layer_grad)
    hidden_bias_grad = hidden_bias_gradient(hidden_layer_grad)
    return [hidden_weight_grad, hidden_bias_grad, out_weight_grad,
            out_bias_grad]

Testing the gradients
The notebook contains a test function that compares the numerical to the analytical
gradient derived precedingly. It does so by slightly perturbing individual parameters and
validates that the change in output value is similar to the change estimated by the analytical
gradient.

Implementing momentum updates using Python
To incorporate momentum into the parameter updates, define an update_momentum
function that combines the results of the preceding compute_gradients function with the
most recent momentum updates as follows for each parameter matrix:

def update_momentum(X, y_true, param_list, Ms, momentum_term, eta):
    """Compute updates with momentum."""
    gradients = compute_gradients(X, y_true, *param_list)
    return [momentum_term * momentum - eta * grads
            for momentum, grads in zip(Ms, gradients)]

The update_params function performs the actual updates:

def update_params(param_list, Ms):
    """Update the parameters."""
    return [P + M for P, M in zip(param_list, Ms)]



Deep Learning Chapter 1

[ 26 ]

Training the network
To train the network, we first randomly initialize all network parameters using a standard
normal distribution (see notebook). For a given number of iterations or epochs, we run
momentum updates and compute the training loss, as follows:

def train_network(iterations=1000, lr=.01, mf=.1):
    # Initialize weights and biases
    param_list = list(initialize_weights())

    # Momentum Matrices = [MWh, Mbh, MWo, Mbo]
    Ms = [np.zeros_like(M) for M in param_list]

    train_loss = [loss(forward_prop(X, *param_list), Y)]
    for i in range(iterations):
        # Update the moments and the parameters
        Ms = update_momentum(X, Y, param_list, Ms, mf, lr)

        param_list = update_params(param_list, Ms)
        train_loss.append(loss(forward_prop(X, *param_list), Y))

    return param_list, train_loss

The notebook plots the training loss over 50,000 iterations for 50,000 training samples with
a momentum term of 0.5 and a learning rate of 1e-4. It shows that it takes over 5,000
iterations for the loss to start to decline but then does so very quickly. We have not used
SGD, which would have likely significantly accelerated convergence.

The following plots show the function learned by the neural network with a three-
dimensional hidden layer from two-dimensional data with two classes that are not linearly
separable, as shown on the left. The decision boundary misclassifies very few data points
and would further improve with continued training.

The center plot shows the representation of the input data learned by the hidden layer. The
network learns hidden layer weights so that the projection of the input from two to three
dimensions enables the linear separation of the two classes. The right plot shows how the
output layer implements the linear separation in the form of a cutoff value of 0.5 in the
output dimension:



Deep Learning Chapter 1

[ 27 ]

To sum up, we have seen how a very simple network with a single hidden layer with three
nodes and a total of 17 parameters is able to learn how to solve a non-linear classification
problem using backprop and gradient descent with momentum.

We will next review key design choices useful to design and train more complex
architectures before we turn to popular DL libraries that facilitate the process by providing
many of these building blocks and automating the differentiation process to compute the
gradients and implement backpropagation.

How to use DL libraries
Currently, the most popular DL libraries are TensorFlow (supported by Google), Keras (led
by Francois Chollet, now at Google), and PyTorch (supported by Facebook). Development
is very active, with PyTorch just having released version 1.0 and TensorFlow 2.0 expected
in early Spring 2019, when it is expected to adopt Keras as its main interface.

All libraries provide the building blocks we discussed previously under Design choices,
regularization and optimization algorithms, and facilitate fast training on Graphics Processing
Units (GPUs). The libraries differ a bit in their focus with TensorFlow, which was originally
designed for deployment in production, and Keras, which is more tailored for fast
prototyping, although the interfaces are gradually converging.

We will illustrate the use of these libraries using the same network architecture and dataset
as in the previous example.



Deep Learning Chapter 1

[ 28 ]

How to use Keras
Keras was designed as a high-level or meta API to accelerate the iterative workflow when
designing and training deep neural networks with computational backends, such as
TensorFlow, Theano, or CNTK. It has been integrated into TensorFlow in 2017 and is set to
become the principal TensorFlow interface with the 2.0 release. You can also combine code
from both libraries to leverage Keras' high-level abstractions as well as customized
TensorFlow graph operations.

Keras supports both a slightly simpler sequential and more flexible Functional API. We will
introduce the former at this point and use the Functional API in more complex examples in
the following chapters.

To create a model, we just need to instantiate a sequential object and provide a list with the
sequence of standard layers and their configurations, including the number of units, type of
activation function, or name.

The first hidden layer needs information about the number of features in the matrix it
receives from the input layer using the input_shape argument. In our simple case, there
are just two. Keras infers the number of rows it needs to process during training through
the batch_size argument that we will pass to the following fit method.

Keras infers the sizes of the inputs received by other layers from the previous layer's units
argument, as follows:

from keras.models import Sequential
from keras.layers import Dense, Activation
model = Sequential([
             Dense(units=3, input_shape=(2,), name='hidden'),
             Activation('sigmoid', name='logistic'),
             Dense(2, name='output'),
             Activation('softmax', name='softmax'),
])



Deep Learning Chapter 1

[ 29 ]

Keras provides numerous standard building blocks, including recurrent and convolutional
layers, various options for regularization, a range of loss functions and optimizers, and also
preprocessing, visualization, and logging (see documentation on GitHub for reference). It is
also extensible.

The model's summary method produces a concise description of the network architecture,
including a list of the layer types and shapes, and the number of parameters:

Layer (type)                 Output Shape              Param #
=================================================================
hidden (Dense)               (None, 3)                 9
_________________________________________________________________
logistic (Activation)        (None, 3)                 0
_________________________________________________________________
output (Dense)               (None, 2)                 8
_________________________________________________________________
softmax (Activation)         (None, 2)                 0
=================================================================
Total params: 17
Trainable params: 17
Non-trainable params: 0
_________________________________________________________________

Next, we compile the sequential model to configure the learning process. To this end, we 
define the optimizer, the loss function, and one or several performance metrics to monitor
during training:

model.compile(optimizer='rmsprop',
              loss='binary_crossentropy',
              metrics=['accuracy'])

Keras uses callbacks to enable certain functionality during training, such as logging
information for interactive display in TensorBoard (see next section), as follows:

tb_callback = TensorBoard(log_dir='./tensorboard',
                          histogram_freq=1,
                          write_graph=True,
                          write_images=True)



Deep Learning Chapter 1

[ 30 ]

To train the model, we call its fit method and pass several parameters in addition to the
training data, as follows:

model.fit(X, Y,
          epochs=25,
          validation_split=.2,
          batch_size=128,
          verbose=1,
          callbacks=[tb_callback])

See the notebook for a visualization of the decision boundary that resembles the result from
our manual network implementation. The training with Keras runs a multiple faster,
though.

How to use TensorBoard
TensorBoard is a great visualization tool that comes with TensorFlow. It includes a suite of
visualization tools to simplify the understanding, debugging, and optimization of neural
networks.

You can use it to visualize the computational graph, plot various execution and
performance metrics, and even visualize image data processed by the network. It also
permits comparisons of different training runs.

When you run the how_to_use_keras notebook with TensorFlow installed, you can
launch TensorBoard from the command line, as follows:

tensorboard --logdir=/full_path_to_your_logs ## e.g. ./tensorboard

For starters, the visualizations include train and validation metrics (see the left panel of the
following diagram).

In addition, you can view histograms of the weights and biases over various epochs (in the
right panel, epochs evolve from back to front). This is useful because it allows you to
monitor whether backpropagation succeeds in adjusting the weights as learning progresses
and whether they are converging. The values of weights should change from their
initialization values over the course of several epochs and eventually stabilize:



Deep Learning Chapter 1

[ 31 ]

Computational graphs can become fairly complicated with thousands or millions of
parameters. The visualization for our simple example architecture already includes
numerous components. These visualizations are very useful when debugging, and Keras
and TensorFlow offer numerous tools to organize your network using named scopes. See
the links to more detailed tutorials on GitHub (https:/ /github. com/PacktPublishing/
Hands-On-Machine- Learning- for- Algorithmic- Trading) for further reference:

https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading
https://github.com/PacktPublishing/Hands-On-Machine-Learning-for-Algorithmic-Trading


Deep Learning Chapter 1

[ 32 ]

How to use PyTorch 1.0
PyTorch has been developed at the Facebook AI research group led by Yann LeCunn and
the first alpha version was released in September 2016. It provides deep integration with
Python libraries such as NumPy that can be used to extend its functionality, strong GPU
acceleration, and automatic differentiation using its autograd system. It provides more
granular control than Keras through a lower-level API and is mainly used as a deep
learning research platform but can also replace NumPy while enabling GPU computation.

It employs eager execution, in contrast to the static computation graphs used by, for
example, Theano or TensorFlow. Rather than initially defining and compiling a network for
fast but static execution, it relies on its autograd package for automatic differentiation of
Tensor operations, for example, it computes gradients on the fly so that network structures
can be partially modified more easily. This is called define-by-run, meaning that
backpropagation is defined by how your code runs, which in turn implies that every single
iteration can be different. The PyTorch documentation provides a detailed tutorial on this
(https://pytorch. org/ docs/ stable/ index. html).

The resulting flexibility combined with an intuitive Python-first interface and speed of
execution have contributed to its rapid rise in popularity and led to the development of
numerous supporting libraries that extend its functionality.

Let's see how PyTorch and autograd work by implementing our simple network
architecture (see the how_to_use_pytorch notebook for details).

How to create a PyTorch DataLoader
We begin by converting the NumPy or pandas input data to Torch tensors. Conversion
from and to NumPy is very straightforward:

import torch
X_tensor = torch.from_numpy(X)
y_tensor = torch.from_numpy(y)

X_tensor.shape, y_tensor.shape
(torch.Size([50000, 2]), torch.Size([50000]))

https://pytorch.org/docs/stable/index.html
https://pytorch.org/docs/stable/index.html
https://pytorch.org/docs/stable/index.html
https://pytorch.org/docs/stable/index.html
https://pytorch.org/docs/stable/index.html
https://pytorch.org/docs/stable/index.html
https://pytorch.org/docs/stable/index.html
https://pytorch.org/docs/stable/index.html
https://pytorch.org/docs/stable/index.html
https://pytorch.org/docs/stable/index.html
https://pytorch.org/docs/stable/index.html
https://pytorch.org/docs/stable/index.html
https://pytorch.org/docs/stable/index.html
https://pytorch.org/docs/stable/index.html
https://pytorch.org/docs/stable/index.html


Deep Learning Chapter 1

[ 33 ]

We can use these PyTorch tensors to instantiate first a TensorDataset instance and, in a
second step, a DataLoader that includes information about batch_size:

import torch.utils.data as utils
dataset = utils.TensorDataset(X_tensor,y_tensor)
dataloader = utils.DataLoader(dataset,
                              batch_size=batch_size,
                              shuffle=True)

How to define the neural network architecture
PyTorch defines a neural network architecture using the Net() class. The central element is
the forward function. autograd automatically defines the corresponding backward
function that computes the gradients.

Any legal tensor operation is fair game for the forward function, providing a log of design
flexibility. In our simple case, we just link the tensor through functional input-output
relations after initializing their attributes, as follows:

import torch.nn as nn

class Net(nn.Module):
    def __init__(self, input_size, hidden_size, num_classes):
        super(Net, self).__init__()                    # Inherited from the
parent class nn.Module
        self.fc1 = nn.Linear(input_size, hidden_size)
        self.logistic = nn.LogSigmoid()
        self.fc2 = nn.Linear(hidden_size, num_classes)
        self.softmax = nn.Softmax(dim=1)
    def forward(self, x):
        """Forward pass: stacking each layer together"""
        out = self.fc1(x)
        out = self.logistic(out)
        out = self.fc2(out)
        out = self.softmax(out)
        return out



Deep Learning Chapter 1

[ 34 ]

We then instantiate a Net() object and can inspect the architecture, as follows:

net = Net(input_size, hidden_size, num_classes)
net
Net(
  (fc1): Linear(in_features=2, out_features=3, bias=True)
  (logistic): LogSigmoid()
  (fc2): Linear(in_features=3, out_features=2, bias=True)
  (softmax): Softmax()
)

To illustrate eager execution, we can also inspect the initialized parameters in the first Tensor, as follows:
list(net.parameters())[0]
Parameter containing:
     tensor([[ 0.3008, -0.2117],
             [-0.5846, -0.1690],
             [-0.6639, 0.1887]], requires_grad=True)

To enable GPU processing, you can use net.cuda(). See PyTorch documentation for
placing Tensors on CPU and/or one or more GPU units.

We also need to define a loss function and the optimizer, using some of the built-in options,
as follows:

criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(net.parameters(), lr=learning_rate)

How to train the model
Model training consists of an outer loop for each epoch, that is, each pass over the training
data, and an inner loop over the batches produced by the DataLoader. That executes the
forward and backward passes of the learning algorithm. Some care needs to be taken to
adjust data types to the requirements of the various objects and functions; for example,
labels need to be integers and the features should be of type float, as follows:

for epoch in range(num_epochs):
    print(epoch)
    for i, (features, label) in enumerate(dataloader):
        features = Variable(features.float())
        label = Variable(label.long())

        # Initialize the hidden weights
        optimizer.zero_grad()
        # Forward pass: compute output given features
        outputs = net(features)
        # Compute the loss



Deep Learning Chapter 1

[ 35 ]

        loss = criterion(outputs, label)
        # Backward pass: compute the gradients
        loss.backward()
        # Update the weights
        optimizer.step()

The notebook also contains an example that uses the livelossplot package to plot losses
throughout the training process as provided by Keras out of the box.

How to evaluate the model predictions
To obtain predictions from our trained model, we pass it feature data and convert the
prediction to a NumPy array. We get softmax probabilities for each of the two classes, as
follows:

test_value = Variable(torch.from_numpy(X)).float()
prediction = net(test_value).data.numpy()
prediction.shape
(50000, 2)

From here on, we can proceed as before to compute loss metrics or visualize the result that
again reproduces a version of the decision boundary we found.

How to use TensorFlow 2.0
TensorFlow has become the leading deep learning library shortly after its release in
September 2015, one year before PyTorch. TensorFlow 2.0 aims to simplify the API that has
grown increasingly complex over time by making the Keras API, integrated into
TensorFlow as part of the contrib package since 2017, its principal interface, and adopting
eager execution. It will continue to focus on a robust implementation across numerous
platforms but will make it easier to experiment and do research.

The how_to_use_tensorflow notebook illustrates how to use the 2.0 release (updated as
the interface stabilizes).



Deep Learning Chapter 1

[ 36 ]

How to optimize neural network
architectures
In practice, we need to explore variations of the design options outlined previously because
we can rarely be sure from the outset of which network architecture best suits the data.

The GridSearchCV class provided by scikit-learn that we encountered in Chapter 6, The
Machine Learning Process, conveniently automates this process. Just be mindful of the risk of
false discoveries and keep track of how many experiments you are running to adjust the
results accordingly.

In this section, we will explore various options to build a simple feedforward neural
network to predict asset price movement for a one-month horizon. See the
how_to_optimize_a_NN_architecure notebook for details.

Creating a stock return series to predict asset
price movement
We will use the last 24 monthly returns and dummy variables for the month and the year to
predict whether the price will go up or down the following month. We use the daily
Quandl stock price dataset (see GitHub for instructions on how to source the data). Run the
following code:

prices = (pd.read_hdf('../data/assets.h5', 'quandl/wiki/prices')
        .adj_close
        .unstack().loc['2007':])

DatetimeIndex: 4706 entries, 2000-01-03 to 2018-03-27
Columns: 3199 entries, A to ZUMZ
dtypes: float64(3199)

We will work with monthly returns to keep the size of the dataset manageable and remove
some of the noise contained in daily returns, which leaves us with almost 2,500 stocks with
120 monthly returns each, as follows:

returns = (prices
           .resample('M')
           .last()
           .pct_change()
           .loc['2008': '2017']
           .dropna(axis=1)
           .sort_index(ascending=False))



Deep Learning Chapter 1

[ 37 ]

returns.info()
DatetimeIndex: 120 entries, 2017-12-31 to 2008-01-31
Freq: -1M
Columns: 2489 entries, A to ZUMZ

In the next step, we will iteratively select a rolling window of T=25 consecutive returns for
each stock, and transpose the selection so that each row contains the returns for a single
stock. We binarize the latest return, depending on whether it was positive or negative, to
use it as the outcome label. Then we concatenate the result after appending and one-hot
encoding information about the month and year of the target return to obtain over 235,000
return series, as follows:

data = pd.DataFrame()
for i in range(n-T-1):
    df = returns.iloc[i:i+T+1]
    data = pd.concat([data, (df.reset_index(drop=True).T
                             .assign(year=df.index[0].year,
                                     month=df.index[0].month))],
                     ignore_index=True)
data[tcols] = (data[tcols].apply(lambda x: x.clip(lower=x.quantile(.01),
                                                  upper=x.quantile(.99))))
data['label'] = (data[0] > 0).astype(int)
data['date'] = pd.to_datetime(data.assign(day=1)[['year', 'month', 'day']])
data = pd.get_dummies((data.drop(0, axis=1)
                       .set_index('date')
                       .apply(pd.to_numeric)),
                      columns=['year', 'month']).sort_index()
data.shape
(236455, 45)

Defining a neural network architecture with
placeholders
Keras contains a wrapper that we can use with the sklearn GridSearchCV class. It requires
a build_fn instance, which constructs and compiles the model based on arguments that
can later be passed during the GridSearchCV iterations.



Deep Learning Chapter 1

[ 38 ]

The following make_model function illustrates how to flexibly define various architectural
elements for the search process. The dense_layers argument defines both the depth and
width of the network as a list of integers. We also use dropout for regularization, expressed
as a float in the range [0, 1], to define the probability that a given unit will be excluded from
a training iteration, as follows:

def make_model(dense_layers, activation, dropout):
    '''Creates a multi-layer perceptron model
    dense_layers: List of layer sizes; one number per layer
    '''

    model = Sequential()
    for i, layer_size in enumerate(dense_layers, 1):
        if i == 1:
            model.add(Dense(layer_size, input_dim=input_dim))
            model.add(Activation(activation))
        else:
            model.add(Dense(layer_size))
            model.add(Activation(activation))
    model.add(Dropout(dropout))
    model.add(Dense(1))
    model.add(Activation('sigmoid'))

    model.compile(loss='binary_crossentropy',
                  optimizer='Adam',
                  metrics=['binary_accuracy', auc_roc])
    return model

Defining a custom loss metric for early stopping
For binary classification, Area Under the Curve (AUC) is an excellent metric but is not 
provided by Keras. However, we can define a custom loss metric for use with the early
stopping callback as follows (included in the preceding compile step):

def auc_roc(y_true, y_pred):
    # any tensorflow metric
    value, update_op = tf.metrics.auc(y_true, y_pred)

    # find all variables created for this metric
    metric_vars = [i for i in tf.local_variables() if 'auc_roc' in
i.name.split('/')[1]]

    # Add metric variables to GLOBAL_VARIABLES collection.
    # They will be initialized for new session.
    for v in metric_vars:



Deep Learning Chapter 1

[ 39 ]

        tf.add_to_collection(tf.GraphKeys.GLOBAL_VARIABLES, v)

    # force to update metric values
    with tf.control_dependencies([update_op]):
        value = tf.identity(value)
    return value

Running GridSearchCV to tune the neural
network architecture
We split the data into a training set for cross-validation and a holdout test set using
stratified sampling, as the classes are slightly unbalanced, as follows:

X_train, X_test, y_train, y_test = train_test_split(features, label,
                                                   test_size=.1,
                                                   random_state=42,
                                                   shuffle=True,
                                                   stratify=data.label)

Now we just need to define our Keras classifier using the make_model function, set
stratified cross-validation, and define the parameters that we would like to explore, as
follows:

clf = KerasClassifier(make_model, epochs=10, batch_size=32)
cv = StratifiedKFold(n_splits=5, shuffle=True)
param_grid = {'dense_layers': [[64], [64, 64], [96, 96], [128, 128]],
              'optimizer': ['RMSprop', 'Adam'],
              'activation': ['relu', 'tanh'],
              'dropout': [.25, .5, .75]}

To trigger the parameter search, we instantiate a GridSearchCV object, define the
fit_params that will be passed to the Keras model's fit method, and provide the training
data to the GridSearchCV fit method, as follows:

gs = GridSearchCV(estimator=clf,
                  param_grid=param_grid,
                  scoring='roc_auc',
                  cv=cv)
fit_params = dict(callbacks=[EarlyStopping(monitor='auc_roc',
                                           patience=300,
                                           verbose=1, mode='max')],
                                           verbose=2,
                                           epochs=50)

gs.fit(X=X_train.astype(float), y=y_train, **fit_params)



Deep Learning Chapter 1

[ 40 ]

gs.best_estimator_.model.save('best_model.h5')

The result shows that the network achieves an AUC score of 0.77 using two-layers with 64
units each, rectified linear activation functions, and a dropout rate of 0.5:

print('\nBest Score: {:.2%}'.format(gs.best_score_))
print('Best Params:\n', pd.Series(gs.best_params_))

Best Score: 77.39%
Best Params:
     activation relu
     dense_layers [64, 64]
     dropout 0.5

How to further improve the results
The relatively simple architecture yields some promising results. To further improve
performance, you can do the following:

First and foremost, add new features and more data to the model
Expand the set of architectures to explore, including more or wider layers
Inspect the training progress and train for more epochs if the validation error
continued to improve at 50 epochs

Finally, you can use more sophisticated architectures, including RNNs and CNNs, that are
well suited to sequential data, whereas vanilla feedforward neural networks are not
designed to capture the ordered nature of the features.

We will turn to these specialized architectures in the following chapter.



Deep Learning Chapter 1

[ 41 ]

Summary
In this chapter, we introduced DL as a form of representation learning that extracts
hierarchical features from high-dimensional, unstructured data. We saw how to design,
train, and regularize feedforward neural networks using NumPy. We demonstrated how to
use the popular DL libraries Keras, PyTorch, and TensorFlow, which are suitable for use
cases from rapid prototyping to production deployments.

In the next chapter, we will turn our attention to recurrent neural networks (RNNs), which
are designed specifically for sequential data, such as time-series data, which is central to
investment and trading.



Index

A
affine transformation  10
Area Under the Curve (AUC)  38
Artificial Intelligence (AI)
   about  1, 2, 3

B
backprop  21

C
Convolutional Neural Networks (CNNs)  1

D
deep learning (DL)
   about  1, 2, 3
dense layer  9
design choices, neural networks
   cost functions  12
   hidden units  12
   output units  12
DL libraries
   using  27

F
feedforward neural networks
   about  9
   architecture  9, 10, 11
forward propagation  10
fully-connected  9

G
Generative Adversarial Networks (GANs)  1
Graphics Processing Units (GPUs)  27

H
high-dimensional data, challenges
   DL  6
   DL, relating to AI  7, 8
   DL, relating to ML  7, 8
   DL, used as representation learning  4
   DL, used for extracting hierarchical features from

data  4, 5
   manifold hypothesis  6
   Universal function approximation  5, 6
high-dimensional data
   challenges  3, 4

I
Independent Component Analysis (ICA)  7

K
Keras
   using  28, 29, 30

L
learning rates
   AdaGrad  17
   Adam  17
   RMSProp  17

M
machine learning (ML)  2
mean squared error (MSE)  12
Multilayer Perceptron (MLP)  9

N
neural network architectures
   custom loss metric, defining for early stopping  38
   defining, with placeholders  37, 38



   GridSearchCV, running to tune the  39, 40
   optimizing  36
   performance, improving  40
   stock return series, creating to predict asset price

movement  36
neural network, backprop implementing Python

used
   compute the gradient  22, 23
   gradients, testing  25
   hidden layer gradients  24
   loss function gradient  23
   momentum, implementing Python used  25
   network, training  26
   output layer gradients  23
neural network, building Python used
   cross-entropy cost function  21
   forward propagation  20
   hidden layer  18
   input layer  18
   output layer  19
neural network, optimizing for DL
   learning rates, adapting  16
   momentum  16
   SGD  15, 16
neural network
   backprop, implementing Pyhton used  22
   building, Python used  17
   optimizing, for DL  15
   training  21
neural networks
   design choices  11, 12
   designing  8, 9

   regularizing  13
   working  9

P
Principal Component Analysis (PCA)  7
Python
   used, for building neural network  17
PyTorch 1.0
   model predictions, evaluating  35
   model, training  34
   neural network architecture, defining  33, 34
   PyTorch DataLoader, creating  32
   using  32

R
Rectified Linear Unit (ReLU)  13
recurrent neural networks (RNNs)  1
regularizing, neural networks
   dropout  14, 15
   early stopping  14
   parameter norm penalties  14

S
saturation  12
Stochastic Gradient Descent (SGD)  15

T
TensorBoard
   using  30
TensorFlow 2.0
   using  35


	Table of Contents
	Deep Learning
	Deep learning and AI
	The challenges of high-dimensional data
	DL as representation learning
	How DL extracts hierarchical features from data
	Universal function approximation
	DL and manifold learning
	How DL relates to ML and AI


	How to design a neural network
	How neural networks work
	A simple feedforward network architecture

	Key design choices
	Cost functions
	Output units
	Hidden units

	How to regularize deep neural networks
	Parameter norm penalties
	Early stopping
	Dropout

	Optimization for DL
	SGD
	Momentum
	Adaptive learning rates
	AdaGrad
	RMSProp
	Adam



	How to build a neural network using Python
	The input layer
	The hidden layer
	The output layer
	Forward propagation
	The cross-entropy cost function

	How to train a neural network
	How to implement backprop using Python
	How to compute the gradient
	The loss function gradient
	The output layer gradients
	The hidden layer gradients
	Putting it all together
	Testing the gradients
	Implementing momentum updates using Python

	Training the network


	How to use DL libraries
	How to use Keras
	How to use TensorBoard
	How to use PyTorch 1.0
	How to create a PyTorch DataLoader
	How to define the neural network architecture
	How to train the model
	How to evaluate the model predictions

	How to use TensorFlow 2.0

	How to optimize neural network architectures
	Creating a stock return series to predict asset price movement
	Defining a neural network architecture with placeholders
	Defining a custom loss metric for early stopping
	Running GridSearchCV to tune the neural network architecture
	How to further improve the results

	Summary

	Index

