
!"#$% &#& '()*+

$,-./01-23/4/ *) 56
789: +)'(

;9<=2:45.:> 42-?:0< 182@/:99-0>/

A?/04:BC:0< ?/@:-4:0< 3/5-@:=2 D:45 80186/2@:1/?

-0=.-9C ?/4/>4:=0

E2-01 F-211=0

Teknisk- naturvetenskaplig fakultet
UTH-enheten

Besöksadress:
Ångströmlaboratoriet
Lägerhyddsvägen 1
Hus 4, Plan 0

Postadress:
Box 536
751 21 Uppsala

Telefon:
018 – 471 30 03

Telefax:
018 – 471 30 00

Hemsida:
http://www.teknat.uu.se/student

Abstract

Algorithmic trading surveillance

Frans Larsson

The financial markets are no longer what they used to be and one reason for this is
the breakthrough of algorithmic trading. Although this has had several positive effects,
there have been recorded incidents where algorithms have been involved. It is
therefore of interest to find effective methods to monitor algorithmic trading. The
purpose of this thesis was therefore to contribute to this research area by
investigating if machine learning can be used for detecting deviating behavior.

Since the real world data set used in this study lacked labels, an unsupervised anomaly
detection approach was chosen. Two models, isolation forest and deep denoising
autoencoder, were selected and evaluated. Because the data set lacked labels, artificial
anomalies were injected into the data set to make evaluation of the models possible.
These synthetic anomalies were generated by two different approaches, one based on
a downsampling strategy and one based on manual construction and modification of
real data.

The evaluation of the anomaly detection models shows that both isolation forest and
deep denoising autoencoder outperform a trivial baseline model, and have the ability
to detect deviating behavior. Furthermore, it is shown that a deep denoising
autoencoder outperforms isolation forest, with respect to both area under the
receiver operating characteristics curve and area under the precision-recall curve. A
deep denoising autoencoder is therefore recommended for the purpose of
algorithmic trading surveillance.

ISSN: 1650-8319, UPTEC STS19 032
Examinator: Elísabet Andrésdóttir
Ämnesgranskare: Kaj Nyström
Handledare: Patric af Ekenstam

Populärvetenskaplig sammanfattning

Teknikutvecklingen har de senaste decennierna bidragit till en fundamental
förändring av hur de finansiella marknaderna fungerar. Från att ha varit ett
område som kännetecknats av manuellt arbete, har genombrottet av algo-
ritmhandel resulterat i bl.a. högre konkurrens och lägre transaktionskost-
nader.

Trots att algoritmhandel har haft flera positiva effekter, har det före-
kommit att algoritmer varit inblandade i incidenter på de finansiella mark-
naderna. Det är därför viktigt för aktörer som deltar i algoritmhandel att
implementera effektiva verktyg och kontrollsystem som kan användas för att
upptäcka avvikande beteenden hos handelsalgoritmer.

Eftersom den datamängd som användes i studien inte var märkt med
etiketter formulerades problemet som ett oövervakat anomalidetektionsprob-
lem. Efter en översiktlig genomgång av populära metoder inom oövervakad
anomalidetektion valdes två modeller: isolation forest och deep denoising au-
toencoder (DDAE). Isolation forest är en algoritm som har utvecklats speci-
fikt för att upptäcka anomalier och bygger på antagandet att anomalier är
ovanliga och annorlunda. Därför bör det vara lättare att isolera anomalier
jämfört med normala observationer. DDAE är en typ av neuralt nätverk vars
syfte är att komprimera en given datamängd för att sedan rekonstruera den
till den ursprungliga strukturen. Eftersom anomalier per definition är ovan-
liga bör modellen således inte vara lika bra på att rekonstruera anomalier
jämfört med normala observationer. Därför kan rekonstruktionsfelet, d.v.s.
skillnaden mellan indata och rekonstruerad data, användas som ett mått på
avvikelse.

I och med att datamängden inte var märkt med etiketter var en utmaning
med oövervakad anomalidetektion hur utvärderingen av modellerna skulle
genomföras. För att kunna jämföra modellerna med varandra konstruerades
därför syntetiska anomalier som kombinerades med verklig data.

Utvärderingen av modellerna visar att både isolation forest och DDAE
har förmågan att identifiera avvikande beteenden. Vidare var DDAE överl-
ägsen isolation forest med avseende på båda prestationsmåtten som användes

i studien. Därför förefaller DDAE vara en lovande modell att använda för
övervakning av algoritmhandel.

I och med att utvärderingen av modellerna enbart grundar sig på syn-
tetiska anomalier vore det intressant för vidare forskning att undersöka om
resultatet står sig när modellerna appliceras på verkliga anomalier. I och
med att DDAE var överlägsen isolation forest vore det även intressant att
jämföra DDAE med andra modeller som ligger i framkant.

Acknowledgements

This master’s thesis is the result of the final project in the Master’s Pro-
gramme in Sociotechnical Systems Engineering at Uppsala University.

First of all, I would like to express my gratitude to my supervisor at SEB,
Patric af Ekenstam, for constant support and encouragement throughout the
project. Also, thanks to everyone at SEB that have contributed to this thesis
by sharing your expertise.

I would also like to thank my subject reader Kaj Nyström, professor at the
Department of Mathematics at Uppsala University, for interesting discussions
and valuable input during the spring. A special thank you to Kristiaan
Pelckmans at the Department of Information Technology, Division of Systems
and Control at Uppsala University for sharing your expertise on anomaly
detection.

Finally, I would like to thank Malin Örnberg for your patience and constant
support during my university studies.

Frans Larsson
Uppsala, June 2019

Contents

1 Introduction 1
1.1 Purpose . 2
1.2 Contributions . 2
1.3 Structure . 3

2 Background 4
2.1 Market microstructure . 4

2.1.1 Limit order book . 4
2.1.2 Exchanges . 6

2.2 Algorithmic trading . 6
2.2.1 Types of algorithms . 6
2.2.2 Algorithmic trade execution 7

3 Anomaly detection 8
3.1 Anomalies . 8
3.2 Modes of learning . 8

4 Data and preprocessing 11
4.1 Data description . 11
4.2 Data transformation . 12
4.3 Feature engineering . 15
4.4 Normalization . 15

5 Modeling 17
5.1 Overview . 17
5.2 Isolation forest . 18
5.3 Autoencoder . 20
5.4 Scoring approach . 24

6 Evaluation 26
6.1 Generation of artificial anomalies 26
6.2 Evaluation metrics . 29
6.3 Experimental design . 30

7 Results and analysis 33
7.1 Model architecture . 33

7.1.1 Isolation forest . 33
7.1.2 Deep denoising autoencoder 33

7.2 Performance . 34
7.2.1 Anomaly score distribution 34
7.2.2 Receiver operating characteristics 35
7.2.3 Precision-recall . 36
7.2.4 Different anomaly types 38
7.2.5 Final evaluation . 39

7.3 Reflections . 40

8 Conclusions and future research 42
8.1 Conclusions . 42
8.2 Future research . 42

References 44

List of Tables

1 Representation of sequences as feature vectors using time spa-
tialization. 12

2 Representation of sequences using a window-based technique. 14
3 Statistics for area under the receiver operating characteristics

curves for isolation forest and two deep denoising autoencoders
with ReLU and Swish activation functions. 36

4 Statistics for area under the precision-recall curves for isolation
forest and two deep denoising autoencoders with ReLU and
Swish activation functions. 38

5 Average ROC AUC and PR AUC for isolation forest and two
deep denoising autoencoders grouped by the type of artificial
anomalies. 39

6 ROC AUC and PR AUC for the two deep denoising autoen-
coders applied to unseen test data. The metrics are given for
the test set with both types of artificial anomalies, AA and for
a test set with synthetic anomalies sampled from AS only. . . 39

List of Figures

1 Illustrative example of a limit order book. 5
2 Illustrates the difference between z-score normalization and

min-max normalization. 16
3 Illustration of isolation forest showing the idea that isolating

an anomaly requires fewer random partitions than isolating a
normal record. 19

4 An illustrative example of the structure of a three layered au-
toencoder with sigmoid activation functions. 21

5 An illustrative example that shows the potential drawbacks
when using records from other strategies as artificial anoma-
lies. Both strategy A and strategy B have been sampled from a
bivariate Gaussian distribution with standard deviation equal
to 0.5 but with a mean equal to zero and five respectively. The
red dashed line illustrates a hypothetical decision boundary. . 27

6 Illustration of the experimental design used in the study, from
the retrieval of data to the final evaluation. 31

7 The anomaly score distributions for the training set X and the
validation set VN . 35

8 ROC curves for isolation forest, two deep denoising autoen-
coders and a random classifier. 36

9 Precision-recall curves for isolation forest, two deep denoising
autoencoders and a random classifier. Figure 9b is identical to
figure 9a except that a log scale is used for precision in figure
9b. 37

Nomenclature

X A training set.

VN A validation set without injected artificial anomalies.

Vi A validation set with injected artificial anomalies.

TN A test set without injected artificial anomalies.

Ti A test set with injected artificial anomalies.

A A set of all anomalous records.

N A set of all normal records.

A(t) A set of all predicted anomalies at threshold t.

N(t) A set of all predicted normal records at threshold t.

F A set of all features in the data set.

x(i) The ith record in the data set.

x(i)j The value of the feature Fj ∈ F for the ith record.

1 Introduction

The financial markets have changed dramatically the last decades and are no
longer what they used to be. Developments in technology and new innova-
tions have changed how financial markets operate and have contributed to
more global and complex financial markets [1]. From being a labor-intensive
field with high transaction costs, the breakthrough of algorithmic and high-
frequency trading has resulted in both lower transaction costs and lower
volatility in the financial markets [2]. Today, brokers need to use at least
some kind of electronic system in order to execute an order. A part of this
revolution is the introduction of algorithmic trading which has contributed
to a more competitive market as well as cheaper execution [3]. The speed
of execution has also become faster, ranging from 0.5 to 1 millisecond for a
market order. Thus, high speed of execution is today not only limited to
high frequency trading [4].

However, despite that algorithmic trading has had several positive effects
on financial markets, there have been recorded incidents of algorithms run-
ning amok. One example is the Flash Crash of May 6, 2010 when the Dow
Jones Industrial Average dropped close to 1000 points and recovered 600
points within 20 minutes [5]. It has been argued that the main cause was
high-frequency algorithms that aggressively sold positions which resulted in
a rapid decrease in prices [6]. It is therefore of interest for actors involved in
algorithmic trading to implement effective control systems which can detect
deviating behavior and flag rogue algorithms. Also, the increase in algorith-
mic participation in financial markets have attracted interest from regulators
and several new regulations have been introduced to deal with the new land-
scape. One such major regulation is the Markets in Financial Instruments
Directive II (MiFID II) which covers algorithmic trading within the EU [7].
Thus, finding effective ways to identify algorithms that do not behave or
function as expected are of interest for participants in the financial markets,
as well as for regulators.

1

1.1 Purpose

The purpose of this thesis is to investigate if machine learning can be used to
monitor algorithmic trading by detecting deviating behavior. More specific,
this thesis aims to evaluate and compare different machine learning models
which have been chosen after a review of the machine learning literature.
To limit the scope of the thesis, only algorithms that are active on equity
markets are taken into consideration. The main reason for choosing equity
and not any other financial instrument is that equity is the most traded
asset class when it comes to algorithmic execution [2]. Furthermore, only
execution algorithms1, i.e. algorithms that are responsible for executing an
order, are studied.

1.2 Contributions

The problem of how to identify behavior and strategies in algorithmic trad-
ing has attracted some interest in the machine learning literature. Previous
studies have for instance found ways to identify if a trade has been executed
by a high-frequency trading algorithm and to distinguish between human
and algorithmic execution [8]. For example Yang et al. [8] use inverse rein-
forcement learning based on Gaussian processes to classify trading strategies
and Hayes, Beling & Scherer [9] apply a supervised learning approach with
recursive partitioning. Although there exist a few studies on how algorithmic
behavior can be identified, none has yet, to the best of my knowledge studied
specifically how deviating behavior can be detected using machine learning.
This thesis will therefore focus on how deviating behavior can be detected
rather than how certain behavior or strategies can be identified.

In order to see if machine learning techniques can be used to monitor al-
gorithmic trading, an unsupervised anomaly detection approach was chosen.
The problem of detecting anomalies is a difficult task, especially when it is
not guaranteed that the data set used for training only consists of normal
records [10]. Furthermore, every data set contains some kind of noise [11]
1The reader is referred to section 2.2 for a more thorough discussion regarding the definition
of execution algorithms.

2

which also pose a challenge since noise and anomalies can overlap [12]. Since
real world data sets, often to some degree, are contaminated, this study con-
tributes to the existing machine learning literature by showing the effective-
ness of the chosen algorithms isolation forest and deep denoising autoencoders
when applied to real world data. Furthermore, Ahmed et al. [11], which re-
view anomaly detection for financial fraud detection, note that obtaining real
world data sets can be very difficult and that studies therefore often have to
rely on synthetic data sets. A problem with this is that the performance of
anomaly detection algorithms may be overestimated. Hence, it is of interest
to see how anomaly detection models perform on real world data. Although
the evaluation of the models in this thesis is based on artificial anomalies,
the majority of the data set consists of real world data.

1.3 Structure

The structure of the thesis is as follows. Section 2 introduces the reader to
some important concepts within the market microstructure literature and
discusses how algorithmic trading works. Section 3 introduces the differ-
ent kinds of anomalies often mentioned in the machine learning literature
followed by a discussion on three different modes of anomaly detection meth-
ods: supervised, semi-supervised and unsupervised. Furthermore, the chosen
approach, unsupervised anomaly detection will be argued for. Section 4 be-
gins with a short description of the data set used in this thesis followed by
a discussion of how the data was processed before being used in the models.
In section 5, methods based on unsupervised learning are introduced briefly
and the chosen methods isolation forest and deep denoising autoencoder are
discussed. Also, the anomaly scoring approach used in this thesis is intro-
duced. Section 6 discusses how the models can be evaluated when the nature
of anomalies are not known beforehand, i.e. when the ground truth is miss-
ing. Finally, the thesis ends with presenting the results and conclusions in
section 7 and section 8 respectively.

3

2 Background

The purpose of this section is to provide the reader with a fundamental
understanding of financial concepts relevant for algorithmic trading. The
section introduces parts of the market microstructure literature in section
2.1 followed by an overview of algorithmic trading in section 2.2.

2.1 Market microstructure

Market microstructure is a research area which focuses on trading of financial
assets and the structure of markets and trading venues. Since these topics are
relevant in order to understand algorithmic trading, some important concepts
are summarized in this section. More specific, section 2.1.1 will give the
reader a brief understanding of the limit order book and section 2.1.2 will
discuss how exchanges are structured.

2.1.1 Limit order book

Before defining a limit order book, which is a central concept for algorithmic
trading, let’s define a limit order as in definition 2.1.

Definition 2.1. A limit order is an order where the price to sell or buy an
asset is specified by the trader.

In other words a limit order is a way for a trader to get control over the
execution price of a security. For example if a trader wants to buy asset A
with a limit price of $10, the trader will only buy the asset if the price is less
than or equal to $10. Similarly if a trader wants to sell the same asset with
a limit price of $10, the trader will only sell asset A if the price is greater
than or equal to $10.

One common way to organize exchanges today is to use limit order books
in which all limit orders received by the exchange are recorded [2]. Figure 1
illustrates the structure of a hypothetical limit order book with the security
price on the x-axis and the order quantity on the y-axis. All the buy orders
are on the left side of the price of $10 and all the sell orders are on the right

4

side of the price of $10. The limit buy orders with the highest price are
commonly known as the best bid and similarly the limit sell orders with the
lowest price are commonly referred to as the best ask [2].

Figure 1: Illustrative example of a limit order book.

With an understanding of how the limit order book is structured, a market
order can be defined as in definition 2.2.

Definition 2.2. A market order is an order to buy or sell a security at the
best available price, i.e. at the best ask price or the best bid price respectively.

In the order book example in figure 1, a market buy order will be executed
at a price of $10.25, as long as the quantity of the order is less than or equal
to 300. However, if the size of the market order is larger than the size of the
limit orders at the best ask price, the market order will sweep through the
order book at other prices as well [2]. For example if the size of the market
order is 500, only the first 300 will be executed at a price of $10.25 since
that is all the liquidity available at that price. The remaining 200 will be
executed at the next best ask price, i.e. at $10.50.

5

2.1.2 Exchanges

The structural change in how trading operates has had large effects on the
structure of exchanges and has created opportunities for new types of ex-
changes to emerge. New trading venues have for example entered the market
and offer services that are of interest for specific needs. Speed and access are
two competitive advantages that trading venues try to achieve but they also
compete in what kind of order types they accept [4].

To fully understand the behavior of execution algorithms it is also nec-
essary to make a distinction between lit venues and dark pools. Unlike lit
venues, dark pools are trading venues which do not reveal their limit order
book [2]. This characteristic of dark pools appeals to some investors since
it allows trading a large quantity of financial assets without displaying their
intentions to other market participants [1].

2.2 Algorithmic trading

There is no consensus regarding the definition of algorithmic trading [13]
and some definitions are quite general. For instance, algorithmic trading
can according to Treleaven et al. [14] refer to "[...] any form of trading using
sophisticated algorithms [...] to automate all or some part of the trade cycle."
(p. 76) [14]. However, trading algorithms can be divided into two different
categories depending on their objective. This is discussed in section 2.2.1
followed by a more thorough introduction to execution algorithms in section
2.2.2.

2.2.1 Types of algorithms

The objectives of algorithmic trading can be divided into two main categories,
proprietary trading and agency trading [15]. Proprietary trading covers trad-
ing where firms or financial institutions trade financial instruments on their
own account [1]. Agency algorithms aims to optimize the execution of trades,
often by minimizing execution costs given some kind of benchmark [15]. The
focus of this study will as mentioned in the introduction be on agency trading.

6

Thus, proprietary trading will not be considered and trading algorithms will
from now on refer to algorithms designed for agency trading, i.e. execution
trading algorithms.

2.2.2 Algorithmic trade execution

When an execution algorithm with a given strategy receives an order, it
has to consider several variables in order to decide how the order should be
executed. One variable with significant importance is the size of the order.
If the order is large it has to be sliced into smaller orders, hereafter referred
to as order slices or child orders, to minimize market impact. Thus, the
algorithm has to, given input from the market, decide if the order should be
sliced and how large each of the child orders should be [1]. This is a very
important decision, since for example Cont & Kukanov [16], find that the
choice of how to slice an order has a large effect on the optimal mix between
market orders and limit orders when solving an optimal execution problem.

Another aspect an algorithm has to consider is the pace of the order
execution, i.e. how fast the child orders should be submitted to the market.
If the order should be executed as fast as possible it may be preferable to
use market orders, which are executed at the best available price at that
time. However, if time is not as important the algorithm may achieve better
prices by submitting limit orders and wait for them to be filled. The risk of
submitting limit orders however, is that there may be price movements which
leads to a worse price resulting in an unfilled order [1]. Thus, execution risk
has to be considered when placing a limit order [16].

Because a security can be listed on several different markets it is not
enough to focus on when to execute an order and how the order should be
sliced in order to minimize market impact. One must also consider where
an order slice should be executed. Therefore, smart order routing (SOR) is
used to decide on which market a child order should be executed at. Thus,
the purpose of smart order routing is to achieve the best possible price for a
given order slice and time [17].

7

3 Anomaly detection

Anomaly detection is a special problem in the machine learning and data
mining domain and can be defined as "[...] the problem of finding patterns in
data that do not conform to expected behavior." (p. 15:1) [18]. This section
is introduced with an overview of different types of anomalies in section 3.1
followed by a discussion of the different modes of learning in section 3.2.

3.1 Anomalies

Three different types of anomalies can be identified in the machine learn-
ing literature: point anomalies, contextual anomalies and collective anoma-
lies [18]. A point anomaly is a record which deviates from the rest of the
data. This is, according to Chandola et al. [18], the simplest type of anoma-
lies. A contextual anomaly is a record that should only be defined as an
anomaly in a particular context. For example a record might be considered
to be an anomaly during a specific time, but should be classified as normal
at a different time [18]. According to Goldstein & Uchida [19] the majority
of the anomaly detection algorithms are designed for detecting point anoma-
lies. However, these models may be able to detect contextual anomalies as
well if the context is included as additional features [19]. The third type of
anomalies are collective anomalies which can be described as sets of records
which are behaving differently compared to other records and should there-
fore be defined as anomalies. For example a subsequence of events may be
considered to be a collective anomaly, although the individual events should
be considered normal when occurring in other parts of the sequence [18].

3.2 Modes of learning

Methods for anomaly detection can be divided into three different modes:
supervised learning, semi-supervised learning and unsupervised learning [18].
Supervised learning aims to predict some kind of outcome measure given a
number of input variables. A crucial underlying assumption of the supervised
learning mode is the availability of labels for each class, i.e. the value of the

8

outcome variable is known for all the records in the training data. The
supervised anomaly detection approach may at first sight be no different
than an ordinary binary classification problem. However, the nature of an
anomaly problem raises two issues for a supervised classifier when used for
anomaly detection. First, since anomalies by definition are rare the data will
be very imbalanced which in itself is a difficult challenge. Secondly, labeling
data is a very manual process which requires the knowledge of a domain
expert and is thus both time consuming and expensive. This is especially
true for anomalies since what is considered abnormal today may change in
the future, making the labeling process even more complicated. Obtaining
labels which is required in order to train a supervised model is therefore often
not feasible [18].

An alternative approach to supervised learning which requires less labeled
data is semi-supervised learning. Using semi-supervised learning methods to
detect anomalies does not, unlike supervised learning, require that the data
includes records that have been labeled anomalous. Instead the methods
assume that only records from the normal class2 are available in the data
set [18].

As noted above, both supervised learning and semi-supervised learning
require labeled data, although the latter is more flexible since it only de-
mands data from one class. This was a critical issue for this study since the
available data set was unlabeled. Also, due to costs and time associated with
labeling data it was not realistic to manually label each record. Therefore un-
supervised learning was chosen which, unlike previously mentioned methods,
does not require a labeled data set. Instead, unsupervised learning models
often function under the assumption that anomalies are very rare in the data
set [18]. Also, as mentioned above, one challenge with anomaly detection
is that what is considered normal may change with time. Thus, the fact
that unsupervised learning does not use any labels could be considered an
advantage.

Even though unsupervised learning was the best alternative for the ap-
2It should be noted that there are methods which assume that the data set consists of
only anomalies, although such methods are quite uncommon [18].

9

plication considered in this thesis, there were some challenges that had to be
dealt with. When the training data set in unsupervised learning has no labels
there is no clear way to measure how successful an unsupervised approach is
and how its performance compares to other unsupervised methods. This is
a difference compared to supervised learning for which relative straightfor-
ward approaches are available to measure how successful an algorithm is for
a given problem and data set [20]. How this issue was dealt with is discussed
in section 6.

10

4 Data and preprocessing

This section provides a general description of the data used in this thesis,
followed by a discussion of how the data was processed before it was used as
input to the models.

4.1 Data description

The data used in this study consisted of audit trail data on order and trans-
action level. Since the focus of this thesis was on algorithmic order execution
the main part of the data set consisted of messages received and sent by
the algorithms. These messages contained information, such as the size of a
child order, type of order, price, time stamp and event type, e.g. insertion
or cancellation of a child order. This information can be used to reconstruct
how an order was executed. However, this data, hereafter referred to as raw
data, was not appropriate to use as input for anomaly detection algorithms.
Therefore, extensive preprocessing of the data, such as data transformation
and feature engineering was required before the machine learning models in-
troduced in section 5 could be trained. During the data transformation of
the raw data, further discussed in section 4.2, more than ten million audit
trail messages were processed and analyzed. After preprocessing, data trans-
formation and feature engineering almost one million records were used to
train the models, around 160,000 records were used for validation and about
60,000 records were used for the final test. In addition to the audit trail mes-
sages, the data set was enriched with market data, e.g. market prices and
market volume, with the purpose of adding more context and thus making
contextual anomalies possible to detect.

Based on the characteristics of features they can be categorized into two
main categories: static features and sequential features. Static features are
variables which do not change over time for a given observation while se-
quential features are variables that do change over time [21]. Sequential data
can further be divided into two additional categories, time series and event
data, with the difference that, unlike time series, event data has an uneven

11

time period between two events [18]. The majority of the raw data used in
this study can be characterized as event data since the time between two
messages is not constant. However, since some information does not change
over time for an order execution, some of the data can be described as static.

4.2 Data transformation

Many of the existing methods for anomaly detection require the data to be
structured as feature vectors. Sequential data must therefore be transformed
into feature vectors if such methods are to be used [22]. When considering
data transformations there are different approaches available that may be
more or less suitable depending on the application and domain.

One approach, referred to as time spatialization, is to first restructure
every observation with sequential features into a data matrix. Let nd denote
the number of sequential features for each observation and ld the length of
each sequence. The corresponding data matrix for each observation can then
be flattened and transformed to a vector in Rnd⋅ld [21].

Table 1: Representation of sequences as feature vectors using time spatialization.

Temporal���
t1�� . . .

tnT��� Static��
F(1)1 . . . F(1)mT . . . F(nT)

1 . . . F(nT)
mT F1 . . . FmS�������������������

x(1)
x(2)
⋮

x(n)

To transform the raw data using time spatialization consider the follow-
ing. Let �t be the length of each interval or time window and let T be the
whole time period for the longest sequence in the data set. Furthermore,
let nT be the number of time windows, i.e. nT = T

�t and denote each time
window by t1, t2, ..., tnT . For each time window, mT different features can be

12

extracted and the sequences can be represented as feature vectors with length
equal to nT ⋅mT . Each of these features is denoted by F (t)j where t specifies
from which time window the feature is extracted from and j is the type of
feature extracted from the sequences. Because the data set also contained
static features the final representation of the data resulted in mT ⋅ nT +mS

features, where mS is the number of static features for each record. The final
feature representation of the data set is illustrated in table 1. However, since
the duration of an order execution can vary dramatically, the transformed
data became very sparse. After experimenting with this approach it was
therefore concluded that it was not suitable for the data set.

An alternative approach which does not have the data sparsity problem
is to use a window-based technique and assign an anomaly score to each
window [23]. This means that T anomaly scores can be estimated for an
order execution spanning over T time windows. The idea is illustrated in
table 2 where the notations are the same as in table 1 with the addition that
ni is the number of records during time window ti. An advantage with this
approach is that the data set becomes non-sparse. However, this approach
has the disadvantage that the relationship between different time windows for
the same order execution is lost. To make this information loss less severe,
some of the features considered included historical information about the
order executions.

13

Table 2: Representation of sequences using a window-based technique.

Temporal�� Static��
F1 . . . FmT FmT+1 . . . FmT+mS

t1

�������������������

x(1)
x(2)
⋮

x(n1)

t2

�������������������

x(n1+1)
x(n1+2)
⋮

x(n1+n2)
⋮

tT

�������������������

x(n−nT+1)
x(n−nT+2)
⋮

x(n)
An important parameter for the window-based approach is the size of

the window �t [23]. For example if the time window is too small a model
may have difficulties detecting anomalous patterns that occur over time. The
window size used in this study was decided upon after consulting with domain
experts to make sure that the window size was reasonable.

When using a window-based technique, an anomaly score is only assigned
to a specific time window for a specific order execution. Therefore, in order
to classify a whole order execution as normal or anomalous an approach for
aggregating the anomaly scores over all time windows is needed [23]. This is
discussed in section 5.4.

From now on, to avoid confusion, records will be referring to a vector
with features for a specific order execution and time window denoted by
x(i). Furthermore, the set of all the records belonging to the ith execution is
denoted by Ei and the set of all records belonging to the ith time window is
denoted by Wi.

14

4.3 Feature engineering

The feature engineering process is crucial for the performance of a machine
learning model. However, when the ground truth in the data set is not known
beforehand it is challenging to identify which features that have explanatory
power. The features used in this thesis have been selected after consulting
with domain experts and by trial and error. The choice of features has
therefore been an iterative process which has evolved over time. The final
set of features consisted of 16 different variables and included for example the
number of messages for each event type, e.g. the number of new, canceled
and traded child orders.

To make it possible for the anomaly detection models to detect contextual
anomalies, the context was as suggested by Goldstein & Uchida [19] added
as additional features. One straightforward way to add context to the data
set was to add the time to the set of features. Another contextual feature
used was the total volume of the order.

One of the drawbacks with transforming the data using a window-based
technique is that the relation between time windows is lost. Therefore, in
order to make this information loss less severe, some of the features included
in the final data set did not only include information about the current time
window but also information extracted from all preceding time windows. One
such example was the cumulative traded volume up until the end of the time
window divided by the total volume of the order.

4.4 Normalization

The performance of machine learning techniques are often affected by the
magnitude of the features. For example if the magnitude of one feature is very
large compared to the rest of the features it may dominate. It is therefore
often recommended to normalize the features so that they have the same
magnitude. Two popular approaches to perform normalization are min-max
normalization and z-score normalization. A min-max normalization which
maps each value to the interval [0,1] is defined in (1) where x(i)j is the value
for the ith observation for feature Fj and x̃(i)j is the corresponding normalized

15

value. Furthermore, min
1≤k≤nx

(k)
j and max

1≤k≤nx
(k)
j are the minimum and maximum

values respectively among all observations for feature Fj ∈ F [24].

x̃(i)j =
x(i)j − min

1≤k≤nx
(k)
j

max
1≤k≤nx

(k)
j − min

1≤k≤nx
(k)
j

(1)

Z-score normalization is defined in (2) where µj is the mean of all the
values for feature Fj, µj = 1

n

n∑
i=1x

(i)
j and �j is the standard deviation for the

same feature, �2
j = 1

n

n∑
i=1(x(i)j − µj)2 [24].

x̃(i)j = x(i)j − µj

�j
(2)

Figure 2 illustrates the behavior of the two normalization methods. Since
the choice of normalization often depends on the application, both of the
normalization techniques have been tested throughout the study.

Figure 2: Illustrates the difference between z-score normalization and min-max

normalization.

16

5 Modeling

This section is introduced with an overview of different categories of methods
that can be used for unsupervised anomaly detection. The overview is not
meant to be comprehensive, but rather meant to illustrate the focus of the
literature study that was conducted at an early stage of this thesis. The cho-
sen algorithms, isolation forest and deep denoising autoencoder, are discussed
in more detail in section 5.2 and in section 5.3. Given the vectorization of
the data as discussed in section 4.2, the algorithms was only able to assign
an anomaly score to a specific time window for a specific order execution.
Therefore, an approach for aggregating the anomaly scores for each order
execution is defined in section 5.4.

5.1 Overview

There are several classes of methods that can be used for unsupervised
anomaly detection. Clustering-based methods is one popular category of
algorithms which is based on the idea that anomalies can be identified by
dividing the records into clusters based on some similarity measure. The
records which do not belong to any cluster, are furthest away from the cen-
ter of a cluster or belong to small or sparse clusters can then be defined
as anomalies. A drawback with these methods is that their main aim is to
identify clusters and therefore their ability to find anomalies may not be op-
timal [18]. Also, it is found in [19] that cluster based techniques often don’t
perform as well as nearest neighbor-based algorithms and therefore the latter
methods are recommended if computation time is not an issue. The methods
based on the nearest neighbor-based approach are instead of focusing on clus-
ters, concentrating on the local neighborhood of each record. These methods
can for example either assign an anomaly score for each record by computing
the distance to its kth nearest neighbor or they can define a record to be
anomalous if the density of its neighborhood is low. To classify a new unseen
record as normal or anomalous the distances or densities for each record in
the training set or test set have to be reevaluated. Thus, the computational

17

complexity of nearest-neighbor based algorithms is a major drawback. Due
to this, nearest-neighbor based algorithms were disregarded in this study [18].

The methods discussed so far are in general trying to model normal be-
havior in order to identify records which deviates from a normal profile. How-
ever, some methods referred to as isolation-based, e.g. isolation forest, are in
contrary trying to isolate anomalies rather than explicitly model normal be-
havior [25]. The isolation forest algorithm proposed by Liu et al. [26] has the
advantage of being designed for the purpose of identifying anomalies and has
been shown to perform well in terms of computational complexity for large
data sets. It has also been shown in previous studies, e.g. [10] and [26], that
the algorithm performs very well when compared to other state-of-the-art
anomaly detection algorithms such as the density-based local outlier factor
algorithm. Although isolation forest may perform poorly when applied to
high-dimensional data [12], it was not assessed to be an issue for this study
since the final data set, containing 16 features, was not considered to be high
dimensional. Because of the advantages with isolation forest and that the
performance of the algorithm has been shown to be very competitive, it was
selected as one of the models for evaluation.

Another approach that recently has shown promising performance when
applied to anomaly detection problems is to use deep learning. One such
method is referred to as autoencoder. Although autoencoders have commonly
been used for dimensionality reduction, they have also proved to perform
well in an unsupervised anomaly detection setting, see e.g. [27], [28], [29].
Furthermore, previous studies have shown that they perform well even when
the training data is contaminated [28].

5.2 Isolation forest

As mentioned in the overview in section 5.1, the isolation forest algorithm
differs from many other models for anomaly detection in the sense that it
is directly trying to identify anomalies rather than model normal behavior.
The idea is that anomalies are easier to isolate compared to normal records
since they are assumed to be both rare and different. As a consequence, fewer

18

partitions should be required to isolate an anomaly compared to a normal
record. The path of the resulting binary tree, referred to as an iTree should
therefore become shorter for abnormal records [25].

The idea of isolation forest is illustrated in figure 3 where 100 normal
records have been sampled from a bivariate Gaussian distribution with zero
mean and standard deviation equal to one and one anomaly has been sampled
from a bivariate Gaussian distribution with mean equal to three and standard
deviation equal to one. As can be seen in figure 3a the anomaly is isolated
with only two partitions while isolating the normal record in 3b requires five
partitions. Thus, isolating the anomaly requires fewer partitions compared
to isolating a normal record.

(a) Isolation of an anomaly. (b) Isolation of a normal record.

Figure 3: Illustration of isolation forest showing the idea that isolating an anomaly

requires fewer random partitions than isolating a normal record.

The algorithm can be divided into two stages: one training stage and
one evaluation stage. During training a set of t iTrees are grown which is
referred to as an iForest. To grow an iTree consider the following. First
let X = {x(1),x(2), ...,x(n)} be a training set where x(i) is the ith record and
consists of �F � features. Furthermore, let XS ⊂ X be a set of sub-samples
drawn from the training set. XS is partitioned recursively by randomly se-
lecting a feature, Fj ∈ F , and then performing a binary split at the value p

which is randomly chosen such that minFj < p <maxFj. The partitions are
performed recursively until the remaining data only consists of one record,
all the records in the remaining data have the same values or the height of

19

the resulting tree is equal to a given height limit [26].
During the training stage there are two parameters that have to be set.

The sub-sampling size, denoted by , defines the size of the subset drawn
from the original data set when growing an iTree. According to Liu et al. [26]
the sub-sampling of the data helps avoid two common problems in anomaly
detection. The first problem is referred to as swamping and means that
normal records are wrongly classified since they are too close to anomalies.
The second problem referred to as masking means that if the anomalies are
too many, they may form their own clusters and thus be difficult to isolate.
Both of these problems are, according to Liu et al. [26], a result of using a
too large data set. It is found in [26] that setting the sub-sampling size to
256 is a good starting point. The second parameter is how many trees the
ensemble or the iForest should consist of, where t = 100 has shown to be a
good value [26].

During the evaluation stage an anomaly score is estimated for each of the
records x(i), i = 1,2, ..., n. Before introducing the formula for the anomaly
score let’s first introduce some new notations. Let h(x(i)) be the number of
edges, starting from the root and ending at the terminating node for record
x(i). Furthermore, let c() be an adjustment 3. The formula for the anomaly
score for a record x(i) can with these notations in mind be defined as in (3)

s(x(i),) = 2−E[h(x(i))]
c() (3)

where E[⋅] is the expected value [26].

5.3 Autoencoder

The basic autoencoder can be described as a three-layered neural network
and consists of an encoder and a decoder as illustrated in figure 4. Each
layer is fully connected which means that each neuron or unit in each layer
is connected with all the neurons in the next layer. Let W ∈ Rn×�F � be
3For a more formal definition and discussion regarding h(x) and c(), the reader is referred
to [26].

20

a weight matrix and let b be a bias4 vector. The encoder h = f✓(X) =
�(WX + b) transforms the input data to a hidden unit while the decoder
function X̂ = g✓′(h) = �(W′h+b′) aims to reconstruct the input X from the
latent space [30].

Since an autoencoder aims to reconstruct a given input it can be used for
unsupervised anomaly detection. The underlying assumption is that since
anomalies are rare, the autoencoder should not be able to reconstruct these
as well as normal records. Thus, the reconstruction errors can be used as
anomaly scores. In this study the average reconstruction error defined as
1�F � ��x(i) − x̂(i)��2 was used as anomaly score for a record x(i).

Figure 4: An illustrative example of the structure of a three layered autoencoder

with sigmoid activation functions.

In order to learn an alternative representation and find the parameters ✓ =
{W,b} and ✓′ = {W′,b′} the reconstruction error is minimized in the form
of a loss function as in (4) [30]. Two popular loss functions in the literature,
which were considered in this study, are the squared error and the binary cross
entropy. The loss function used to train the final models in this study was the
4Note that the bias is omitted in figure 4.

21

mean of the squared error for each record, i.e. L(x(i), x̂(i)) = 1�F � ��x(i) − x̂(i)��2.
This loss function can be interpreted as the average reconstruction error for
each record. To optimize the expression in (4) a stochastic gradient descent
algorithm is often used [30]. For this study the Adam optimization algorithm
[31] was used to minimize the loss function.

✓, ✓′ = argmin
✓,✓′

1

n

n�
i=1
L(x(i), x̂(i)) (4)

Figure 4 illustrates a basic autoencoder, sometimes referred to as a vanilla
autoencoder. However, several extensions have been used in the literature.
One natural extension is to use a deep autoencoder 5 which means that more
hidden layers are added to the encoder and the decoder. The purpose of
adding more layers is that it can lead to a better feature representation [29].
Another extension, referred to as a denoising autoencoder [30], aims to learn
the original input data from a corrupted version. These two extensions can
be combined into a deep denoising autoencoder (DDAE) which has shown
to perform well at detecting anomalies in event logs, even when the training
data set is contaminated [28].

One way to convert a basic autoencoder into a denoising autoencoder is
to randomly forcing a fraction of the neurons in the input layer to zero [30].
This approach is in [32] referred to as masking noise. Another approach is
to add so called salt-and-pepper noise which means that a fraction of the
units in the input layer is replaced by either the minimum or the maximum
value with probability 0.5 respectively. Finally, the last approach, which
after several experiments yielded the best performance in this study, is to
use additive Gaussian noise, i.e. to add Gaussian noise directly to the input
5The terms deep autoencoders and stacked autoencoders are sometimes used interchange-
ably. However, stacked autoencoders are often referring to autoencoders which have been
trained in a specific way. Therefore, to avoid confusion only the term deep autoencoder
will be used in this thesis when referring to an autoencoder with more than one hidden
layer, regardless of how it is trained.

22

data [32]. In order to define this approach more formally let ✏(i) be a vector
of size �F � where each element is an independent and identical distributed
random variable drawn from the normal distribution with zero mean and
standard deviation equal to �, i.e. ✏(i)j ∼ N (0,�2). The corrupted input
data used in this study can then be defined as x̃(i) = x(i) + ✏(i) for each
record and the resulting loss function used during training can be defined as
L(x(i), x̂(i)) = 1�F � ��x(i) − x̂(i)��2.

In the illustration in figure 4 the sigmoid function, ↵�(x) = �(x) = 1
1+e−x ,

↵� ∶ R � [0,1], is used as activation function. However, there are more can-
didates that should be considered. Two other popular choices are the tanh

function, ↵t(x) = ex−e−x
ex+e−x , where ↵t ∶ R � [−1,1] and the rectified linear unit

(ReLU), ↵r(x) = max(x,0), where ↵r ∶ R � R+ [33]. An advantage with
ReLU is that it is a non-saturated activation function which means that it
converges faster and that it can solve the vanishing gradient problem [34].
After experimentation it was found that ReLU outperformed both sigmoid
and tanh when used as activation function in the hidden layers. An alterna-
tive to ReLU, called Swish has been proposed by Ramachandran et al. [35].
Swish is defined as ↵s(x) = x�(�x), where � is the sigmoid function and
� is a constant. According to the authors this activation function outper-
formed ReLU even though it was used in networks that were optimized for
ReLU [35]. Thus, it is a quite simple procedure to try both activation func-
tions and therefore both architectures were considered as candidates for the
final model.

After experimenting with both of the normalization techniques, intro-
duced in section 4.4, min-max normalization was chosen, simply because it
consistently yielded higher performance. Since the input data was scaled
using min-max transformation and thus mapped to the interval [0,1]6, a sig-
moid function was initially thought to be an appropriate activation function
for the output layer. However, after experiments with different architectures
a linear activation function, ↵l(x) = x, was used for the output layer as well
6Note that since the scaling was estimated for the training set only, it is possible for
the validation data to be outside the interval [0,1] if there exist a record x(k) for which
x(k)j < min

1≤i≤n x(i)j ∨ x(k)j > max
1≤i≤n x(i)j , x(k) ∉ X .

23

as for the bottleneck layer7.
One approach that can be used to allow for higher learning rates during

training and for making the network less sensitive to the choice of initial-
ization is to use batch normalization as suggested by Ioffe & Szegedy [36].
During experiments with different structures of the neural network it was ob-
served that by adding batch normalization the performance of the network
increased.

5.4 Scoring approach

Both isolation forest and autoencoders can be characterized as scoring algo-
rithms, i.e. neither of them are directly categorizing if a record is an anomaly
but rather assigns a degree of deviating behavior. Let’s denote the anomaly
score for the ith record by �i = �(x(i)) where � is a scoring function. As pre-
viously mentioned the scoring function � depends on the anomaly algorithm.

For isolation forest the scoring function was defined as �(x(i)) = 2−E[h(x(i))]
c()

and for the autoencoders the scoring function was defined as the average
reconstruction error �(x(i)) = 1�F � ��x(i) − x̂(i)��2 8.

To classify a record as an anomaly one has to first decide on a threshold
t for which all records in {x(i) ∶ �(x(i)) > t} should be classified as anomalies.
However, this approach only assigns an anomaly score to an individual record,
i.e. to a specific order execution and time window. This might be of interest
when looking for point anomalies which occur within the same time window
but it may not be the best approach when identifying if an order execution
as a whole should be considered to be normal or abnormal. One intuitive and
simple approach, which was used in this study, is to aggregate the anomaly
scores for each order execution. Four simple aggregation functions are the
sum, the maximum, the median and the mean. After experimentation the
mean of the anomaly scores for each order execution seemed to give the best
7The bottleneck layer is referring to the layer with the lowest dimensionality within the
network.

8It should be noted that the anomaly scoring function for the DDAE used the original
data as input and not the corrupted version. The corrupted version was only used during
training.

24

performance. Let � be the aggregated scoring function. The anomaly score
for each order execution, Ek can then be defined as in (5).

�(Ek) = 1�Ek� �x(i)∈Ek�(x
(i)) (5)

One advantage with this approach is that the scoring function � is not limited
to scoring order executions but can also be used, as in (6), when it is of
interest to find certain time windows Wi that are abnormal.

�(Wk) = 1�Wk� �x(i)∈Wk

�(x(i)) (6)

25

6 Evaluation

In order to evaluate the models some kind of performance measure is required.
For supervised methods this problem is quite straightforward since labels are
available, although the class imbalance can be a challenge in itself. However,
for the unsupervised setting the problem becomes more complicated and
challenging [12]. One solution is to generate artificial anomalies and perform
the evaluation based on these. Such approaches are discussed in section 6.1
followed by a discussion of relevant metrics that can be used to evaluate and
compare different models in section 6.2. The section ends with a description
of the experimental design.

6.1 Generation of artificial anomalies

A challenge with unsupervised learning is how the performance of different
models should be evaluated and compared to each other when the ground
truth is missing. One intuitive and straightforward approach is to sample
anomalous records uniformly across the domain space spanned by the fea-
tures [37]. Another approach used in [38] is to add random noise to existing
records and label these as anomalous. A distribution-based artificial anomaly
generation is proposed by Fan et al. [37] where the idea is to generate anoma-
lous records which are close to actual data. These types of methods have not
been used in this study since it is difficult to evaluate how realistic and rele-
vant the generated anomalies are.

Another common approach to evaluate the performance of anomaly de-
tection algorithms when the ground truth is unavailable is to use a data set
with different known classes. This approach is known as a downsampling
strategy. The idea is to select a small subset of records from some of the
classes and treat these as anomalies while using the remaining classes as nor-
mal data [39]. This approach was applicable in this study since data was
available for several execution strategies. Let S = {S1,S2, ...,SNs} be a set
consisting of available strategies where Si is a set containing all records be-
longing to the ith execution strategy. The downsampling strategy could be

26

applied so that samples are drawn from AS = S�SI where SI is the strategy
of interest. This set of samples could then act as artificial anomalies in order
to evaluate how good an anomaly detection algorithm is when applied to
strategy SI . One problem with this approach is that the behavior of other
strategies might be very different from the behavior of the anomalies which
the model should be able to detect. This problem is illustrated in figure 5
where the orange records represent injected anomalies, while the two records
at point (1.0,2.5) and (2.5,1.5) could be considered as real anomalies. In this
scenario, a model that uses the red dashed line as a decision boundary can
easily detect the injected artificial anomalies but will not be able to identify
real anomalies since the nature of these is dramatically different. To make
this problem less severe, records from other strategies have, to the extent it
was possible, only been included if they shared the same order characteristics
with an order execution Ek ⊂ SI belonging to the strategy of interest. The
idea is that the difference between records in SI and AS should be limited to
how each order was executed.

Figure 5: An illustrative example that shows the potential drawbacks when using

records from other strategies as artificial anomalies. Both strategy A and strategy B

have been sampled from a bivariate Gaussian distribution with standard deviation

equal to 0.5 but with a mean equal to zero and five respectively. The red dashed line

illustrates a hypothetical decision boundary.

In addition to the downsampling technique described above, a small set

27

of artificial anomalies have been manually constructed after consulting with
domain experts. The advantage with this approach compared to the down-
sampling technique is that by manually constructing anomalies the nature
of these might be more similar to the nature of the anomalies that are of in-
terest. These manually constructed anomalies were created by manipulating
real data to make sure that they were as realistic as possible. However, it
might still be argued that anomalies constructed by hand may be too extreme
or unrealistic and thus easier to detect.

An evaluation based on the artificial anomalies generated by a downsam-
pling strategy and by construction will give a lower threshold of an acceptable
model since an anomaly detection algorithm should at least be able to de-
tect such anomalies. However, despite the precautions taken, the evaluation
of a model based on the injected synthetic anomalies should be carefully
interpreted.

In conclusion two types of anomalies were injected into the data set, one
based on the downsampling technique denoted by AS and one based on man-
ual construction denoted by AC . Because the frequency of anomalies should
be very low it was not appropriate to use all available observations from
other strategies since this would make the data set unrealistically balanced
and thus overestimating the performance. Therefore, 100 different subsets,
ASi were sampled from the set AS such that the following conditions held:

(i)
100�
i=1ASi ⊂ AS

(ii) �ASi �� �AS � i = 1,2, ...,100
(iii) �ASi � = �ASj � i, j = 1,2, ...,100.

Because the manually constructed anomalies were few in numbers all of these
were combined with each subset ASi . Let’s denote the collection of these
combined sets by AA = {AA1 ,AA2 , ...,AA100} where AAi = ASi �AC for i =
1,2, ...,100. The final ratio between the number of records in the original
data set and the number of artificial anomalies was about 0.2%, making the
data set extremely imbalanced.

28

6.2 Evaluation metrics

Before introducing the metrics that have been used for evaluation the follow-
ing notations need to be introduced. Let A be the set of all true anoma-
lies and let N be the set of all normal records in the data set. Also,
let �i = �(x(i)) be the estimated anomaly score for the ith record and let
t ∈ [min

1≤i≤n�i,max
1≤i≤n�i] be a threshold. Furthermore, let A(t) and N(t) be the

set of predicted anomalies and normal records at the threshold t respectively,
i.e. A(t) = {x(i) ∶ �(x(i)) > t} and N(t) = {x(i) ∶ �(x(i)) ≤ t}.

Accuracy, as defined in (7), is an evaluation metric which is often used in
the machine learning literature. This metric may be tempting to use since it
is measuring the proportion of the predictions that are correct. However, in
anomaly detection problems accuracy is not appropriate since anomalies are
often extremely rare. Thus, a model that predicts that all the records are
normal will have a very high accuracy even though it would be worthless at
classifying abnormal behavior. Instead the two metrics precision and recall
as defined in (8) and (9) respectively are often used [12].

Accuracy(t) = �A ∩A(t)� + �N ∩N(t)��A� + �N � (7)

P (t) = �A(t) ∩A��A(t)� (8)

R(t) = �A(t) ∩A��A� (9)

Precision can be interpreted as the proportion of the predicted anomalies
that is classified correctly. Recall can be interpreted as the proportion of cor-
rect classified anomalies compared to the total number of abnormal records
in the data set. By varying the threshold at which a record is considered to
be an anomaly a precision-recall curve (PR curve) can be estimated [12].

Another common metric to use in anomaly detection is the so called re-
ceiver operating characteristic (ROC) curve [12]. The ROC curve is obtained
by calculating the true positive rate versus the false positive rate, as defined
in (10) and (11) respectively, for each threshold t. According to Campos et

29

al. [39] this measure is adjusting for the class imbalance since the false pos-
itive rate and true positive rate are normalized. Another popular measure
that can be derived from the ROC curve is the ROC AUC which is defined as
the area under the ROC curve and ranges from zero to one [39]. Similarly the
area under the curve can also be calculated for the precision-recall curve (PR
AUC) which similarly to ROC AUC can be used to express the performance
of an algorithm as a number between zero and one [40].

TPR = �A(t)�A��A� (10)

FPR = �A(t)�Ac��N � (11)

When deciding between ROC and PR as evaluation measures it is impor-
tant to take the class imbalance into consideration. ROC may not be appro-
priate for data sets for which the class imbalance problem is severe since the
performance of the algorithms may be overestimated. Furthermore, the per-
formance of anomaly detectors that seem to be comparable when looking at
the ROC curves may be vastly different when comparing the PR curves [40].

Since the ground truth was not available for the data set, the evaluation
was performed after injecting the synthetic anomalies. Thus, the evaluation
metrics in this thesis are only estimates of the real metrics and should not
in any way be interpreted as the true measures. To see this, consider that
since the ground truth is not available it is not possible to know A and N .
However, the labels for the synthetic anomalies AAi ⊂ A are known. Thus, if
precision is estimated based on AAi it will only be equal to the true value if
there are no anomalies in the original data set.

6.3 Experimental design

The experimental design in this study is illustrated in figure 6. Most of
the different stages, represented by blocks, have already been discussed and
should be familiar to the reader. However, the overall approach used to
evaluate the models deserves a more detailed presentation. First, the whole

30

data set was split up into three parts: a training set X , a validation set VN and
a test set TN , all without artificial anomalies. The models were trained only
on the training set which did not include any of the synthetic anomalies, i.e.
X ∩AA = �. The reason for not injecting artificial anomalies into the training
set was to avoid adding bias to the data. The risk with doing so would be that
the resulting model would be outstanding at separating injected strategies
from the true strategy, as illustrated in figure 5, but worthless at detecting
any other anomalies that are of interest. Furthermore, to avoid information
leakage between the training, validation and test sets the parameters for
normalization were estimated using the training set only.

Each model was then evaluated using the validation set VN which only
contained records from the same strategy as the training set. The purpose
of this was to see if the model suffered from overfitting or underfitting. The
idea was that the distribution of the anomaly scores should be very similar
for the training set X and the validation set VN .

In order to evaluate the models’ ability to detect anomalies each of the
sets AAi ∈ AA was injected into the validation set one at a time, resulting
in 100 different sets for evaluation. Let’s denote these sets by V1,V2, ...,V100,
where Vi = VN ∪ AAi . The different models were then compared using the
evaluation metrics discussed in section 6.2.

Figure 6: Illustration of the experimental design used in the study, from the re-

trieval of data to the final evaluation.

The model with highest performance was applied to a new unseen data set
T = {T1,T2, ...,T100}, where Ti = TN ∪AA100+i and (100�

i=1AA100+i)�(100�
i=1AAi) = �.

The purpose of this was to analyze the performance of the models on a data
set which had not in any way influenced the design choice of the models or

31

feature engineering. The test set, T , consisted, similarly to the validation set,
of 100 subsets of order executions from the strategy of interest and artificial
anomalies.

32

7 Results and analysis

This section presents the results for isolation forest and deep denoising au-
toencoder (DDAE). Two different architectures are presented for the DDAE,
one with ReLU and one with Swish activation functions. The final archi-
tectures for the models are described in section 7.1. The outcome of the
validation and evaluation of the models is presented in section 7.2. All mod-
els presented in this section are models that showed the best performance for
each architecture.

7.1 Model architecture

7.1.1 Isolation forest

Only two parameters were necessary to tune for isolation forest. The num-
ber of trees was initially chosen to 100, as suggested by Liu et al. [26]. It
was noted that increasing the number of trees led to larger computational
complexity while only having a small effect on the performance. The final
number of trees was set to 200. For the sub-sampling size it was found that a
considerable larger size than 256 yielded a notable increase in performance.
The final sub-sampling size was set to 10,000.

7.1.2 Deep denoising autoencoder

Two different deep denoising autoencoders (DDAEs) were considered for the
final evaluation. The only difference between them was that one used ReLU
and the other used Swish as activation functions for the hidden layers. To
make notations easier, the deep denoising auto encoder with ReLU activation
functions and the deep denoising autoencoder with Swish activation functions
are referred to as DDAE ReLU and DDAE Swish respectively. Both autoen-
coders consisted of five hidden layers, including one bottleneck layer. The
hidden layers had twelve, eight, four, eight and twelve neurons each. For the
additive Gaussian noise the mean was set to zero and the standard deviation
was set to 0.01. ReLU or Swish activation functions were used for all layers

33

except for the bottleneck and output layers for which linear activation func-
tions were used. Batch normalization was implemented between all layers
except for between the bottleneck layer and the first decoder layer. Follow-
ing Ioffe & Szegedy [36] the batch normalization was applied before each
non-linear activation function. The average reconstruction error was used as
loss function and the parameters were optimized using the Adam optimizer
proposed by Kingma & Ba [31]. The learning rate was initially set to 0.01,
but was decreased by a factor of two if the loss function did not decrease
during five consecutive epochs. Although 100 epochs were used to train the
models, the training was stopped if the loss function did not decrease with
at least 10−5 during ten consecutive epochs. The batch size was set to 32. To
be able to monitor if the model started to overfit, 20% of the training data
was held out during training and used to compare the training loss with the
validation loss.

7.2 Performance

7.2.1 Anomaly score distribution

Figure 7 shows the anomaly score distributions for the training set X and the
validation set without injected anomalies VN . The idea is that the distribu-
tions should be similar for both sets, otherwise the model might suffer from
overfitting or underfitting. The distributions for isolation forest and the two
DDAEs seem to be quite similar and therefore neither overfitting nor under-
fitting seems to be a problem for any of the models. It can be noted that
the magnitude of the anomaly scores is larger for isolation forest compared
to the DDAE models. However, this difference can be explained by the fact
that isolation forest uses a different scoring function � compared to the two
DDAE models which both uses the average reconstruction error.

34

(a) Isolation forest. (b) DDAE ReLU.

(c) DDAE Swish.

Figure 7: The anomaly score distributions for the training set X and the validation

set VN .

7.2.2 Receiver operating characteristics

Figure 8 shows the ROC curves for the three models with an additional curve
for a random classifier. All three models perform considerably better than
the random classifier which can be assumed to be a minimum requirement
for an anomaly detection algorithm. Both the DDAE models have consider-
able higher true positive rate compared to isolation forest for almost every
threshold t. The only exception is at one point where the ROC curves for
DDAE Swish and isolation forest overlap. However, the ROC curve for iso-
lation forest is never above. It should be noted that the curves in figure 8
only represent one of the validation subsets, Vi, and thus the figure does not
give the whole picture. Therefore statistics for the ROC AUC values are
given in table 3. The ROC AUC values confirm that both the DDAE models

35

outperform isolation forest on average. Furthermore, DDAE Swish performs
slightly better than DDAE ReLU with an average ROC AUC value of 0.9332
compared to 0.9143.

Figure 8: ROC curves for isolation forest, two deep denoising autoencoders and

a random classifier.

Table 3: Statistics for area under the receiver operating characteristics curves

for isolation forest and two deep denoising autoencoders with ReLU and Swish

activation functions.

Mean Median Min Max STD
Isolation forest 0.8428 0.8464 0.7837 0.8740 0.0199
DDAE ReLU 0.9143 0.9209 0.8638 0.9535 0.0240
DDAE Swish 0.9332 0.9336 0.8990 0.9576 0.0144

7.2.3 Precision-recall

As discussed in section 6.2, ROC may not be appropriate when evaluating the
performance of anomaly detection models when the data set is very imbal-
anced. Therefore, this section evaluates the models based on precision-recall
curves (PR curves) and the area under the precision recall curves (PR AUC).
The PR curves for one of the validation subsets, Vi, are presented in figure

36

9a. The graph clearly shows that the two DDAE models are superior to
isolation forest for recall values less than 0.5. Both DDAE models can detect
around 20% of the injected artificial anomalies with 100% precision. Thus,
the DDAE models can detect 20% of the synthetic anomalies without making
a single mistake. This can be compared to isolation forest which at most has
a precision around 20% at a recall value less than 20%.

(a)

(b)

Figure 9: Precision-recall curves for isolation forest, two deep denoising autoen-

coders and a random classifier. Figure 9b is identical to figure 9a except that a log

scale is used for precision in figure 9b.

To make it easier to compare the difference for higher recall values the PR
curves are plotted for the methods in figure 9b where a logarithmic scale is

37

used for the y-axis. It can be noted that all the models outperform a random
classifier, especially for lower recall levels. Although the difference between
isolation forest and the DDAE models becomes smaller when recall increases,
it is apparent that the DDAE models are better suited for all recall values
for this validation subset.

As with the evaluation based on ROC, the curves in figure 9 are only valid
for one of the validation subsets. Thus, to be able to draw any conclusion
regarding the difference in performance on average, the PR AUC values are
presented in table 4. These values confirm that DDAE is better suited for
detecting artificial anomalies. The DDAE models have PR AUC values that,
on average, are more than eight times as high compared to isolation forest.
For comparison it can also be noted that a random classifier has an average
PR AUC of about 0.002 and thus the PR AUC values for isolation forest and
the DDAE models are about 25 respectively 200 times higher. Finally, it can
be concluded that DDAE Swish performs slightly better than DDAE ReLU
with an average PR AUC value of 0.4380 compared to 0.4246.

Table 4: Statistics for area under the precision-recall curves for isolation forest

and two deep denoising autoencoders with ReLU and Swish activation functions.

Mean Median Min Max STD
Isolation forest 0.0520 0.0431 0.0253 0.1242 0.0245
DDAE ReLU 0.4246 0.4250 0.3724 0.5010 0.0328
DDAE Swish 0.4380 0.4369 0.3919 0.5105 0.0319

7.2.4 Different anomaly types

The nature of the two types of artificial anomalies, AS and AC , might be
rather different. It is therefore interesting to see how each model performs
when only applied to a data set with one type of anomalies. From the results
presented in table 5 it can be concluded that the constructed anomalies are
considerably easier to detect for the two DDAE models, both in terms of
average ROC AUC and PR AUC. In contrast, isolation forest seems to be
better at detecting artificial anomalies drawn from AS compared to manually
constructed anomalies. An interesting observation is that the dominance of

38

the DDAE models can be explained by their impressive ability to detect
constructed anomalies. Although the difference in performance measured by
PR AUC is much smaller when only considering anomalies drawn from AS,
the DDAEs still perform better compared to isolation forest. Isolation forest
reaches a PR AUC of 0.1031 on average compared to 0.1462 for DDAE ReLU.

Table 5: Average ROC AUC and PR AUC for isolation forest and two deep

denoising autoencoders grouped by the type of artificial anomalies.

AS AC

ROC AUC PR AUC ROC AUC PR AUC
Isolation forest 0.8650 0.1031 0.8341 0.0275
DDAE ReLU 0.8396 0.1462 0.9451 0.5051
DDAE Swish 0.8643 0.1160 0.9595 0.5329

7.2.5 Final evaluation

So far, it has been shown that both DDAE models perform better compared
to isolation forest. However, it is difficult to say which of the DDAE models is
the best since they seem to be better at detecting different types of anomalies.
Therefore, both of the architectures were applied to the final test set in order
to confirm the performance of the models.

Table 6: ROC AUC and PR AUC for the two deep denoising autoencoders applied

to unseen test data. The metrics are given for the test set with both types of artificial

anomalies, AA and for a test set with synthetic anomalies sampled from AS only.

AA AS

ROC AUC PR AUC ROC AUC PR AUC
DDAE ReLU 0.8956 0.2864 0.8579 0.1277
DDAE Swish 0.9064 0.3424 0.8781 0.0963

In table 6 it is shown that both the ROC AUC and PR AUC values
are lower for the test set compared to the validation set. However, the PR
AUC values of 0.3424 for DDAE Swish and 0.2864 for DDAE ReLU in table
6 are still considerably higher than the PR AUC value for isolation forest
in table 4. Comparing the models’ ability to detect anomalies drawn from

39

AC may however not be accurate since it is difficult to guarantee that the
nature of the constructed anomalies is the same. Thus, it is difficult to say
if the difference is due to the model or due to the construction of anomalies.
Therefore, to provide a better comparison, ROC AUC and PR AUC are also
given in table 5 for anomalies drawn only from AS. DDAE Swish performs
slightly better with respect to ROC AUC and DDAE ReLU performs slightly
better with respect to PR AUC. The PR AUC values have decreased with
about the same amount, 0.02, for both models compared to the validation
set. It should be noted that the fraction of artificial anomalies was slightly
lower for the test set since it was impossible to get the same imbalance. This
might have contributed to lower PR AUC values for the test set. Despite
not performing as well for the test set, the DDAE models still outperform
isolation forest when all artificial anomalies are injected and show promising
ability to detect deviating behavior for algorithmic trading.

7.3 Reflections

First of all it can be concluded that all of the models considered in this study
have shown to perform considerably better than a random classifier. Hence,
in this regard, all the models can be claimed to be acceptable. However, the
DDAE models showed superior ability at detecting the constructed anoma-
lies, were slightly better at detecting artificial anomalies drawn from AS and
showed to perform similar when applied to the test sets as when applied to
the validation sets. The results in this thesis therefore suggest that isolation
forest should be disregarded in favor of DDAEs for the purpose of monitoring
algorithmic trading. The choice between the two DDAE models considered
is not obvious since they have been shown to be good at detecting different
types of artificial anomalies. However, the difference between the models is
small and further work has to be performed in order to confirm the difference
between them.

The magnitude of the difference in performance between DDAE and iso-
lation forest was surprising since isolation forest has shown to outperform
other state-of-the-art models, see e.g. [25], [10]. Also, Domingues et al. [10]

40

show that isolation forest perform well both for large data sets and for data
sets that contain noise. However, one explanation may be that the algorithm
only splits the data set with respect to one feature at a time which may
increase the false positives for complex data sets [41]. Thus, the complexity
of the data set used in this thesis may not be well suited for isolation forest.

An interesting observation in this study was that the sub-sampling size for
isolation forest had to be considerable larger compared to what is suggested
by Liu et al [26] in order to achieve acceptable performance. In line with the
findings in this study, Karev et al. [42] also finds that a considerable larger
sub-sampling size of 8,192 is required for the AUC to converge. Thus, as
suggested in [42], more work on what affects the optimal size of the sub-
samples has to be performed.

Since the evaluation of the models is based on artificial anomalies, it
is not certain that the results presented would hold for real anomalies. In
contrary, the performance would probably decrease for all models since real
data is often more challenging. Although the results in this thesis should
be carefully interpreted, they provide a guideline when choosing an anomaly
detection model for monitoring algorithmic trading.

41

8 Conclusions and future research

8.1 Conclusions

The purpose of this thesis was to investigate if machine learning can be used
to monitor algorithmic trading by detecting deviating behavior. Two models
were chosen, isolation forest and deep denoising autoencoder. Due to lack
of labels, artificial anomalies were generated, using two different approaches:
a downsampling strategy and manual construction and manipulation of real
data. The results show that a deep denoising autoencoder performs consid-
erably better compared to isolation forest, achieving eight times higher PR
AUC score on average for the validation set. Thus, a deep denoising autoen-
coder, either with ReLU or Swish activation functions, has been shown to
be a good candidate for algorithmic trading surveillance. It should be noted
that the DDAE models’ ability to detect artificial anomalies were consider-
ably higher for the constructed anomalies compared to the anomalies that
was drawn from other strategies. Therefore, more work needs to focus on the
feature engineering and the anomaly score aggregation in order to increase
the detection rate for all types of artificial anomalies.

An important limitation of this study is that the evaluation was not based
on ground truth anomalies. Even though generating artificial anomalies was
considered to be the best approach given the absence of labels, the results
should be carefully interpreted. However, since the DDAE showed promis-
ing performance, its ability to detect real anomalies should be investigated
further.

8.2 Future research

A disadvantage with the approach in this study is that the temporal in-
formation that order executions contain is lost when using the time window
approach and vectorizing the data. It would therefore be interesting to apply
anomaly detection techniques that can use sequential data as input. One nat-
ural alternative to the deep denoising autoencoder used in this thesis would
be to implement a long short-term memory (LSTM) autoencoder which al-

42

lows the input data to be of varying length.
Only two models, isolation forest and deep denoising autoencoder, have

been evaluated on the data set. It would therefore be desirable to apply
other state-of-the-art models in order to see if a deep denoising autoencoder
outperforms those models as well.

There are a few parameters that have not been explored that would be
interesting to analyze more thoroughly. The size of the time window is one
such parameter. Furthermore, since the time windows used in this study do
not overlap, it would be interesting to see if overlapping sliding windows can
increase the performance. Also, the aggregated scoring functions considered
in this study are quite simple. Therefore, it would be interesting to see if
other types of aggregations can increase the performance.

Finally, only one type of execution algorithm for one type of financial
asset has been considered in this study. It would therefore be desirable
to investigate if the approach used in this study can be extended to other
execution strategies and financial assets.

43

References

[1] G. Nuti, M. Mirghaemi, P. Treleaven, and C. Yingsaeree, “Algorithmic
trading,” Computer, vol. 44, no. 11, pp. 61–69, 2011.

[2] I. Aldridge, High-frequency trading: A practical guide to algorithmic
strategies and trading systems. New York: John Wiley & Sons, Incor-
porated, 2 ed., 2013.

[3] K. Kim, Electronic and algorithmic trading technology: The complete
guide. San Diego: Elsevier Science & Technology, 2007.

[4] M. O’Hara, “High frequency market microstructure,” Journal of Finan-
cial Economics, vol. 116, no. 2, pp. 257–270, 2015.

[5] A. Madhavan, “Exchange-traded funds, market structure, and the flash
crash,” Financial Analysts Journal, vol. 68, no. 4, pp. 20–35, 2012.

[6] C. Borch, “High-frequency trading, algorithmic finance and the flash
crash: Reflections on eventalization,” Economy and Society, vol. 45,
no. 3-4, pp. 350–378, 2016.

[7] W. L. Currie and J. J. M. Seddon, “The regulatory, technology and
market ’dark arts trilogy’ of high frequency trading: A research agenda,”
Journal of Information Technology, vol. 32, no. 2, pp. 111–126, 2017.

[8] S. Y. Yang, Q. Qiao, P. A. Beling, W. T. Scherer, and A. A. Kir-
ilenko, “Gaussian process-based algorithmic trading strategy identifica-
tion,” Quantitative Finance, vol. 15, no. 10, pp. 1683–1703, 2015.

[9] R. L. Hayes, P. A. Beling, and W. T. Scherer, “Action-based feature
representation for reverse engineering trading strategies,” Environment
Systems and Decisions, vol. 33, no. 3, pp. 413–426, 2013.

[10] R. Domingues, M. Filippone, P. Michiardi, and J. Zouaoui, “A com-
parative evaluation of outlier detection algorithms: Experiments and
analyses,” Pattern Recognition, vol. 74, pp. 406–421, 2018.

44

[11] M. Ahmed, A. N. Mahmood, and M. R. Islam, “A survey of anomaly
detection techniques in financial domain,” Future Generation Computer
Systems, vol. 55, pp. 278–288, 2016.

[12] C. C. Aggarwal, Outlier Analysis. New York: Springer, 2013.

[13] R. Cesari, M. Marzo, and P. Zagaglia, “Effective trade execution,” in
Portfolio theory and management (H. K. Baker and G. Filbeck, eds.),
New York: Oxford University Press, 2013.

[14] P. Treleaven, M. Galas, and V. Lalchand, “Algorithmic trading review,”
Communications of the ACM, vol. 56, no. 11, pp. 76–85, 2013.

[15] J. Hasbrouck and G. Saar, “Low-latency trading,” Journal of Financial
Markets, vol. 16, no. 4, pp. 646–679, 2013.

[16] R. Cont and A. Kukanov, “Optimal order placement in limit order mar-
kets,” Quantitative Finance, vol. 17, no. 1, pp. 21–39, 2017.

[17] B. Ende, P. Gomber, and M. Lutat, “Smart order routing technology in
the new European equity trading landscape,” IFIP Advances in Infor-
mation and Communication Technology, vol. 305, pp. 197–209, 2009.

[18] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A sur-
vey,” ACM Computing Surveys (CSUR), vol. 41, no. 3, pp. 15:1–15:58,
2009.

[19] M. Goldstein and S. Uchida, “A comparative evaluation of unsupervised
anomaly detection algorithms for multivariate data,” PloS One, vol. 11,
no. 4, p. e0152173, 2016.

[20] T. Hastie, R. Tibshirani, and J. H. Friedman, The elements of statistical
learning: Data mining, inference and prediction. New York: Springer,
2 ed., 2009.

[21] A. Leontjeva and I. Kuzovkin, “Combining static and dynamic features
for multivariate sequence classification,” in 2016 IEEE International

45

Conference on Data Science and Advanced Analytics (DSAA), pp. 21–
30, 2016.

[22] Z. Xing, J. Pei, and E. Keogh, “A brief survey on sequence classification,”
ACM SIGKDD Explorations Newsletter, vol. 12, no. 1, pp. 40–48, 2010.

[23] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection for dis-
crete sequences: A survey,” IEEE Transactions on Knowledge and Data
Engineering, vol. 24, no. 5, pp. 823–839, 2012.

[24] J. Han, M. Kamber, and J. Pei, Data mining: Concepts and techniques.
Saint Louis: Elsevier Science & Technology, 3 ed., 2011.

[25] F. T. Liu, K. M. Ting, and Z.-H. Zhou, “Isolation-based anomaly de-
tection,” ACM Transactions on Knowledge Discovery from Data, vol. 6,
no. 1, pp. 1–39, 2012.

[26] F. T. Liu, K. M. Ting, and Z. Zhou, “Isolation forest,” in 2008 Eighth
IEEE International Conference on Data Mining, pp. 413–422, 2008.

[27] M. Sakurada and T. Yairi, “Anomaly detection using autoencoders
with nonlinear dimensionality reduction,” in Proceedings of the MLSDA
2014 2nd Workshop on Machine Learning for Sensory Data Analysis,
MLSDA’14, pp. 4:4–4:11, 2014.

[28] T. Nolle, S. Luettgen, A. Seeliger, and M. Mühlhäuser", “Analyzing busi-
ness process anomalies using autoencoders,” Machine Learning, vol. 107,
no. 11, pp. 1875–1893, 2018.

[29] L. Liu, O. De Vel, C. Chen, J. Zhang, and Y. Xiang, “Anomaly-based
insider threat detection using deep autoencoders,” in 2018 IEEE Inter-
national Conference on Data Mining Workshops (ICDMW), pp. 39–48,
2018.

[30] P. Vincent, H. Larochelle, Y. Bengio, and P.-A. Manzagol, “Extracting
and composing robust features with denoising autoencoders,” in Proceed-
ings of the 25th International Conference on Machine Learning, ICML
’08, pp. 1096–1103, 2008.

46

[31] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv preprint arXiv:1412.6980, 2014.

[32] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P.-A. Manzagol,
“Stacked denoising autoencoders: Learning useful representations in
a deep network with a local denoising criterion,” Journal of Machine
Learning Research, vol. 11, pp. 3371–3408, 2010.

[33] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436–444, 2015.

[34] B. Xu, N. Wang, T. Chen, and M. Li, “Empirical evaluation of rectified
activations in convolutional network,” arXiv preprint arXiv:1505.00853,
2015.

[35] P. Ramachandran, B. Zoph, and Q. V. Le, “Searching for activation
functions,” arXiv preprint arXiv:1710.05941, 2017.

[36] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep net-
work training by reducing internal covariate shift,” arXiv preprint
arXiv:1502.03167, 2015.

[37] W. Fan, M. Miller, S. Stolfo, W. Lee, and P. Chan, “Using artificial
anomalies to detect unknown and known network intrusions,” Knowledge
and Information Systems, vol. 6, no. 5, pp. 507–527, 2004.

[38] E. Habler and A. Shabtai, “Using LSTM encoder-decoder algo-
rithm for detecting anomalous ADS-B messages,” arXiv preprint
arXiv:1711.10192, 2017.

[39] G. O. Campos, A. Zimek, J. Sander, R. J. G. B. Campello, B. Mi-
cenková, E. Schubert, I. Assent, and M. E. Houle, “On the evaluation
of unsupervised outlier detection: measures, datasets, and an empirical
study,” Data Mining and Knowledge Discovery, vol. 30, no. 4, pp. 891 –
927, 2016.

47

[40] J. Davis and M. Goadrich, “The relationship between precision-recall
and ROC curves,” in Proceedings of the 23rd International Conference
on Machine Learning, ICML ’06, pp. 233–240, 2006.

[41] S. Hariri, M. C. Kind, and R. J. Brunner, “Extended isolation forest,”
arXiv preprint arXiv:1811.02141, 2018.

[42] D. Karev, C. McCubbin, and R. Vaulin, “Cyber threat hunting through
the use of an isolation forest,” in Proceedings of the 18th International
Conference on Computer Systems and Technologies, CompSysTech’17,
pp. 163–170, 2017.

48

