
DYNAMIC REPLICATION AND HEDGING: A REINFORCEMENT

LEARNING APPROACH

PETTER N. KOLM AND GORDON RITTER

Petter N. Kolm is Clinical Professor and Director of the Mathematics in Finance Master’s
Program at NYU’s Courant Institute of Mathematical Sciences, New York, NY

petter.kolm@nyu.edu

Gordon Ritter is Adjunct Professor at NYU’s Courant Institute of Mathematical Sciences,
New York, NY

ritter@post.harvard.edu

Abstract. The authors of this article address the problem of how to optimally hedge an
options book in a practical setting, where trading decisions are discrete and trading costs can
be nonlinear and difficult to model. Based on reinforcement learning (RL), a well-established
machine learning technique, the authors propose a model that is flexible, accurate and very
promising for real-world applications. A key strength of the RL approach is that it does
not make any assumptions about the form of trading cost. RL learns the minimum variance
hedge subject to whatever transaction cost function one provides. All that it needs is a good
simulator, in which transaction costs and options prices are simulated accurately.

The problem of replicating and hedging an option position is fundamental in finance.

Since the publication of the seminal work of black1973pricing and merton1973theory

on option pricing and dynamic hedging (jointly referred to as BSM), a substantial number

of articles have addressed the problem of optimal replication and hedging. The core idea of

BSM is that in a complete and frictionless market there is a continuously rebalanced dynamic

trading strategy in the stock and riskless security that perfectly replicates the option.

However, in practice continuous trading of arbitrarily small amounts of stock is infinitely

costly. Instead, the portfolio replicating the option is adjusted at discrete times to minimize

trading costs. Consequently, perfect replication is impossible and an optimal hedging strategy

will depend on the desired trade-off between replication error and trading costs. In other

words, the hedging strategy chosen by an agent depends on their risk aversion.

While a number of articles have considered discrete time hedging or transaction costs alone,

leland1985option was first to address discrete hedging under transaction costs. His work

. Key words and phrases. Finance; Hedging; Investment analysis; Machine learning; Optimal control;
Options; Portfolio optimization; Reinforcement learning.

1

2 DYNAMIC REPLICATION AND HEDGING: A REINFORCEMENT LEARNING APPROACH

was subsequently followed by others.1 The majority of these studies treat proportionate trans-

action costs. More recently, several studies have considered option pricing and hedging sub-

ject to both permanent and temporary market impact in the spirit of almgren1999value, in-

cluding rogers2010cost; almgren2016option; bank2017hedging; saito2017derivatives.

In this article, we show how to build a system which can learn how to optimally hedge

an option (or other derivative security) in a fully realistic setting. Our method applies to

the real-world engineering problem faced daily by trading and risk management desks at

investment banks. In such situations, continuous-time theory is only a guide. Portfolio

rebalance decisions must be made in discrete time, and in markets with frictions, where

liquidity is not guaranteed and the market impact of the hedge could be substantial if not

managed carefully. almgren1999value showed that executing a large trade in a single stock

is a multi-period planning problem which can be solved by mean-variance optimization. The

option hedging problem is similar, but more complex. In most cases, the hedge itself is not

static, but needs to be continuously readjusted. Nonetheless, both problems are related in

the sense that one wishes to minimize (1) all forms of cost, and (2) the deviation from the

optimal hedge.

This article contributes to the literature in several ways. First, our method is quite general.

In particular, given any derivative security that we know how to price (even if that pricing is

done by Monte Carlo), our method will quickly produce an autonomous agent who knows how

to optimally trade off trading costs versus hedging variance for that security. The relative

importance of cost versus variance is determined by the agent’s risk-aversion parameter.

Second, our method is based on reinforcement learning (RL). While reinforcement learning

is well-known in its own right, to the best of our knowledge this form of machine learning

technique has previously not been applied to discrete replication and hedging subject to

nonlinear transaction costs. It is worthwhile to note that with the flexibility of the tech-

nique presented in this article, it is straightforward to extend the model with additional

features and constraints such as round-lotting and position-level constraints. Although

halperin2017qlbs applies reinforcement learning to options, the methods therein appear

very specific to the BSM model, whereas our method allows the user to “plug-in” any op-

tion pricing and simulation library, and then train the system with no further modifications.

Note also that halperin2017qlbs does not consider transaction costs. Our article is also

related to buehler2018deep, who evaluate neural network based hedging under convex risk

measures subject to proportional transaction costs.

Third, our method is based on a continuous state space, and the training neither uses finite-

state-space methods, nor does it use or require a (necessarily arbitrary) selection of basis

functions (as semi-gradient methods sutton2018reinforcement would require). Rather,

we introduce a training method which has not been applied to derivatives hedging problems

1. See, for example, figlewski1989options; boyle1992option; henrotte1993transaction;
grannan1996minimizing; toft1996mean; whalley1997asymptotic; martellini2000efficient.

DYNAMIC REPLICATION AND HEDGING: A REINFORCEMENT LEARNING APPROACH 3

previously. Our training method relies on applying nonlinear regression techniques to the

“sarsa targets” (6) derived from the Bellman equation.

Methods which require finite state spaces fail for larger problems, due to curse of dimen-

sionality. The state vector must contain all variables that are relevant to making a decision.

For example, suppose there are k such variables, and each variable is allowed to have 10

possible values, then the resulting state space has 10k elements. Of course, this leads to

insurmountable problems, such as (a) the fact that the training process can never visit most

of the states, (b) there is no guarantee that the value function will be continuous, let alone

smooth, (c) a vector containing all such states cannot fit in computer memory, and (d) one

must estimate millions of independent parameters from relatively fewer data points. By using

a continuous state space, we avoid the curse of dimensionality and are able to extend our

method to higher-dimensional problems.

Fourth, the method extends in a straightforward way to arbitrary portfolios of derivative

securities. For example, envision a trader who has inherited a derivative security that they

must hold to expiration due to some exogenous constraint. The trader has no directional

view on the derivative or its underlier. With the method proposed in this article, the trader

can essentially “press a button” to train an algorithm to hedge the position. The algorithm

can then handle the hedging trades until expiration with no further human intervention.

Reinforcement Learning

Reinforcement learning (RL)2 has been developed largely independently from classical

utility theory in finance. It provides a way to train artificial agents which learn through

positive reinforcement to interact with an environment, with the goal of optimizing a reward

over time. The learning agent does this through simple “trial and error” by receiving feedback

on the amount of reward that a particular action yields. In contrast to supervised learning,

a RL agent is not trained on labelled examples to optimize its actions. In addition, RL is not

trying to find a hidden structure in unlabelled data, and hence is different from unsupervised

learning.

Mathematically speaking, RL is a way to solve multi-period optimal control problems.

The agent’s policy typically consists in explicitly maximizing the action-value function for

the current state. This value function is an approximation of the true value function of the

multi-period optimal control problem. Training refers to the process of improving on the

approximation of the value functions as more training examples are made available.

Following the notation of sutton2018reinforcement, the sequence of rewards received

after time step t is denoted Rt+1, Rt+2, Rt+3, The agent’s goal is to maximize the expected

cumulative reward, denoted by

Gt = Rt+1 + γRt+2 + γ2Rt+3 + . . . (1)

2. See, sutton2018reinforcement; kaelbling1996reinforcement for an introduction to RL.

4 DYNAMIC REPLICATION AND HEDGING: A REINFORCEMENT LEARNING APPROACH

The agent then searches for policies which maximize E[Gt]. The sum in (1) can be either finite

or infinite. The constant γ ∈ [0, 1] is known as the discount rate; if rewards are bounded,

then γ < 1 ensures convergence of the infinite sum (1).

A policy, denoted π is a way of choosing an action at, conditional on the current state st.

A policy is allowed to be stochastic; eg. choosing a random action is also a policy.

There are principally two kinds of value functions; at optimality, one is a maximization

of the other. The action-value function expresses the value of starting in state s, taking an

arbitrary action a, and then following policy π thereafter

qπ(s, a) := Eπ[Gt |St = s,At = a] (2)

where Eπ denotes the expectation under the assumption that policy π is followed. The state-

value function is the action-value function, where the first action also comes from the policy

π

vπ(s) = Eπ[Gt |St = s] = qπ(s,π(s))

Action-value functions are, for most practical purposes, more useful than state-value func-

tions because any action-value function immediately gives rise to a natural policy: if q̂ is

any action-value function, the q̂-greedy policy is to choose the action a, in state s, which

maximizes q̂(s, a).

Policy π is defined to be at least as good as π′ if vπ(s) ≥ vπ′(s) for all states s. An optimal

policy is defined to be one which is at least as good as any other policy. There needs not

to be a unique optimal policy, but all optimal policies share the same optimal state-value

function v∗(s) = supπ vπ(s) and optimal action-value function q∗(s, a) = supπ qπ(s, a). Also

note that v∗ is the supremum over a of q∗. In particular, v∗(s) is the expected gain (under

any optimal policy), given that one started from state s. Colloquially, one might then refer

to v∗(s) as “the value of being in state s.”

The search for an optimal policy reduces to the search for the optimal action-value function

q∗, because the q∗-greedy policy is optimal. The typical way of searching for q∗ is to produce

a sequence of iterates which approximate q∗ with increasing accuracy. Methods for producing

those iterates are based on the Bellman equations, which we now recall.

Let p(s′, r | s, a) denote the probability that the process transitions to state s′ and the agent

receives reward r, conditional on the event that the process was previously in state s and;

in that state, the agent chose action a. The optimal state-value function and action-value

function satisfy the Bellman equation:

v∗(s) = max
a

󰁛

s′,r

p(s′, r | s, a)[r + γ v∗(s
′)] (3)

q∗(s, a) =
󰁛

s′,r

p(s′, r | s, a)[r + γ max
a′

q∗(s
′, a′)] (4)

where the sum over s′, r denotes a sum over all states s′ and all rewards r.

DYNAMIC REPLICATION AND HEDGING: A REINFORCEMENT LEARNING APPROACH 5

The intuition for equation (3) is that “the value of being in state s equals the average,

over all possible next-states s′, of the value of being in s′ plus the reward associated with

making the transition s → s′”. The intuitive interpretation for (4) is very similar; indeed

maxa′ q∗(s
′, a′) = v∗(s

′), so the bracketed quantities are the same in both equations.

The state-value function v∗(s) has a natural interpretation in derivatives pricing the-

ory. Specifically, in continuous time and frictionless markets, the optimal value function

of the dynamic replicating strategy is obviously equal to the no-arbitrage price of the op-

tion. This is the value function which solves the Hamilton-Jacobi-Bellman PDE, as shown in

merton1992continuous. Thus it is natural that RL, in which value functions organize the

search for optimal policies, should apply to pricing and, by extension, hedging of derivatives.

Training via simulation and batch learning

Although the state of the art is still evolving, the vast majority of the most successful

applications of RL in recent years utilize a simulation of the environment to generate training

data (as opposed to, say, training on historical data).

In a famous example due to mnih2013playing; mnih2015human, a deep RL system

learned to play video games on a super-human level. According to the authors, the network

was not provided with any game-specific information or hand-designed features, and was not

privy to the internal state of the emulator. It simply learned from nothing but the video

input, the reward and terminal signals, and the set of possible actions.

In another famous example, silver2017mastering created the best Go player in the

world “based solely on RL, without human data, guidance, or domain knowledge beyond

game rules.” The associated system, termed AlphaGo Zero “is trained solely by self-play RL,

starting from random play, without any supervision or use of human data.”

In these cases (and many simpler ones; see sutton2018reinforcement for examples), the

agents are trained in a simulated environment, as opposed to being trained on historical data.

This has the advantage that millions of training examples can be generated, limited only by

computer hardware capabilities. The examples in the present article follow the same pattern:

the system is trained by interacting with a simulator.

We now provide more details about how the training procedure works. We start with an

estimate q̂ of the optimal action-value function. This estimate is often initialized to be the

zero function, and is refined as the algorithm continues.

All RL systems must balance exploration and exploitation in the training process. They

must sometimes take random actions, in order to explore new areas of state space and action

space – this is exploration. However, ultimately they must use their experience to concentrate

the search around strategies that are likely to be optimal and refine the estimate of the

value function on those areas of state space. We follow standard practice, which is to force

6 DYNAMIC REPLICATION AND HEDGING: A REINFORCEMENT LEARNING APPROACH

exploration during training by using an 󰂃-greedy policy relative to q̂

π󰂃-greedy(s) =

󰀻
󰀿

󰀽
ã u < 󰂃

argmaxa q̂(s, a) u ≥ 󰂃
(5)

where 󰂃 is a real number between 0 and 1, u is a uniformly distributed random variable on

(0, 1), and ã is sampled uniformly from the action space. As is standard in RL and necessary

to ensure convergence, we decrease the value of 󰂃 as training progresses.

Let st be the state at the t-th step in the simulation, and let at = π󰂃-greedy(s) be the

associated 󰂃-greedy action. Let

Xt := (st, at)

be the resulting state-action pair. The update target Yt is defined to be any valid approx-

imation of qπ(st, at). In this article we use the “one-step sarsa target” which approximates

qπ(st, at) as follows

Yt = rt+1 + γ q̂(st+1, at+1) . (6)

Intuitively, (6) resembles part of the Bellman equation

q∗(s, a) =
󰁛

s′,r

p(s′, r | s, a)[r + γ max
a′

q∗(s
′, a′)] (7)

Indeed, if at+1 = argmaxa′ q∗(s
′, a′), then (6) would be a sample of the random variable in

brackets in (7). This is why (6) may be viewed as an approximation of qπ(st, at).

We shall define a batch to be a collection of pairs of the form (Xt, Yt) where Xt := (st, at)

is a state-action pair and Yt is the corresponding update target (6). A batch is typically

obtained by running the simulator for the required number of time steps and choosing the

actions via some policy π that is being evaluated.

Suppose we are going to run B different batches, indexed by b = 1, . . . , B. We assume

there is a nonlinear regression learner available which can learn a function of the form Y =

q̂(b)(X) using all of the samples in the batch. Suitable nonlinear regression learners are a

topic of frequent study in the statistical learning literature; see friedman2001elements

for an overview. They include random forests, Gaussian Process regression, support vector

regression, and artificial neural networks.

The fitted model q̂(b) will then be used to improve the model current q̂ by model averaging.

We then generate batch b+ 1, using the updated/improved q̂ to calculate the Yt, and repeat

until we have B batches and q̂ has been updated B times. Alternating between generation

of batches and fitting models continues until some convergence criterion is reached. The

simulations in this article used B = 5 batches each consisting of 750,000 (X,Y)-pairs.

Automatic hedging in theory

We define automatic hedging to be the practice of using trained RL agents to handle the

hedging of certain derivative positions. The agent has a long option position which cannot

DYNAMIC REPLICATION AND HEDGING: A REINFORCEMENT LEARNING APPROACH 7

be traded. The agent is only allowed to trade any other non-option positions which would

be used for replication. In a world with no trading frictions and where continuous trading

is possible, there may be a dynamic replicating portfolio which hedges the option position

perfectly; meaning that the overall portfolio (option minus replication) has zero variance.

In our setting in this article, we will consider frictions and where only discrete trading is

possible. Here the goal becomes to minimize variance and cost.

We will derive the precise form of the reward function assuming our agent has a quadratic

utility.3 In particular, the agent’s optimal portfolio is given by the solution to a mean-variance

optimization problem with risk-aversion κ

max
󰀃
E[wT]−

κ

2
V[wT]

󰀄
(8)

where the final wealth wT is the sum of individual wealth increments δwt,

wT = w0 +

T󰁛

t=1

δwt

and so E[wT] = w0 +
󰁓

t E[δwt]. The variance term involves cross-covariances of the form

cov(δwt, δws) for s ∕= t, but if we are willing to assume independence of wealth increments

across time, i.e.

cov(δwt, δws) = 0 for s ∕= t

then V[wT] =
󰁓

tV[δwt].
4

In complete markets, options are redundant instruments. They can be exactly replicated

(with zero variance) by a continuous-time dynamic trading strategy which trades infinitely

often, in infinitesimal increments. In the real world, the P&L variance of an option minus

its offsetting replicating portfolio is not zero. In the spirit of almgren2001optimal, our

hedging agent would like to solve a simplified version of (8), namely

min
strategies

T󰁛

t=0

󰀃
E[−δwt] +

κ

2
V[δwt]

󰀄
(9)

where the minimum is computed across all permissible trading strategies. What is different

here as compared to almgren2001optimal is that a machine will learn the optimal strategy

by simulating a financial market and applying RL to the simulation results.

If the log price process is a random walk, then wealth increments can be decomposed as

δwt = qt − ct

where qt is random walk term, and ct is the total trading cost paid in period t (including

commissions, bid-offer spread cost, market impact cost, and other sources of slippage). In

3. See ritter2017machine for a discussion of how the mean-variance assumption fits in within a general
utility framework.

4. The independence assumption will be violated in a number of interesting examples, such as assets with
long-lived transient market impact.

8 DYNAMIC REPLICATION AND HEDGING: A REINFORCEMENT LEARNING APPROACH

the random walk case, the expected wealth increment is therefore just −1 times the expected

cost

E[−δwt] = E[ct] .

In other words, in this case the problem (9) becomes a tradeoff of cost versus variance.

The agent can hedge more frequently to reduce the variance of the hedged position, but at

increased trading costs.

As shown in ritter2017machine, with an appropriate choice of the reward function the

problem of maximizing E[u(wT)] can be recast as a RL problem. The reward in each period

corresponding to (9) is approximately

Rt := δwt −
κ

2
(δwt)

2 (10)

By plugging each one-period reward into the cumulative reward (1), we obtain an approxi-

mation of the mean-variance objective. Thus, training reinforcement learners with this kind

of reward function amounts to training expected-utility-maximizers. In the context of option

hedging, it amounts to training automatic hedgers who are prepared to optimize the tradeoff

of costs versus variance from being out of hedge.

In the next section, we shall show that automatic hedging is indeed possible using the

training methods described in Section 2.

Automatic hedging in practice

We look at the simplest possible example: A European call option with strike price K

and expiry T on a non-dividend-paying stock. We take the strike and maturity as fixed,

exogenously-given constants. For simplicity, we assume the risk-free rate is zero. The agent

we train will learn to hedge this specific option with this strike and maturity. It is not being

trained to hedge any option with any possible strike/maturity.5

The agent comes into the current period with a fixed option position of L contracts. We

assume for simplicity that this option position will stay the same until either the option is

exercised or expires – we are training an agent to be an optimal hedger of a given contract,

not an agent who can decide not to hold the contract at all.

Each period, the agent observes a new state, and then can decide on an action. Available

actions always include trading shares of the underlying, with bounds dictated by the eco-

nomics of the problem. For example, with L contracts, each for 100 shares, one would not

want to trade more than 100 ·L shares. If the option is American, then there is an additional

action, which is to exercise the option and hence buy or sell shares at the strike price K.

In any successful application of RL, the state must contain all of the information that is

relevant for making the optimal decision. Information that is not relevant to the task at

hand, or which can be derived directly from other variables of the state, does not need to be

included.

5. However, we note that this is possible on an extended state space.

DYNAMIC REPLICATION AND HEDGING: A REINFORCEMENT LEARNING APPROACH 9

For European options, the state must minimally contain the current price St of the under-

lying, and the time τ := T − t > 0 still remaining to expiry, as well as our current position

of n shares. The state is thus naturally an element of

S := R2
+ × Z = {(S, τ, n) | S > 0, τ > 0, n ∈ Z}.

If the option is American, then it may be optimal to exercise early just before an ex-dividend

date. In this situation, the state must be augmented with one additional variable: The size

of the anticipated dividend in period t+ 1.

The state does not need to contain the option Greeks, because they are (nonlinear) func-

tions of the variables the agent has access to via the state. We expect agents, given enough

simulations, to learn such nonlinear functions on their own as needed. This has the advantage

of not requiring any special, model-specific calculations that may not extend beyond BSM

models.

Practitioners, often compute the delta of an option position, for hedging purposes, using

the BSM formula

∆ =
∂C

∂S
= N(d1), (11)

d1 =
ln St

K + τσ2

2

σ
√
τ

,

τ := T − t > 0

but with σ replaced by the implied volatility. This is referred to as practitioner delta by

hull2017optimal. Note that parameters such as K and σ2 are not be provided to the agent,

although they are used in constructing the simulation under which the agent is trained.

The agent will learn the properties of the stochastic world it inhabits by means of a large

number of simulations of such world, as described previously in Section 2. Nonlinear functions

such as ∆(S) as given by (11), insofar as they affect the optimal strategy, will become part

of the agent’s learned action-value function (2).

We simulate a BSM world, but modified to reflect the realities of trading: Discrete time

and space. We consider a stock whose price process is a geometric Brownian motion (GBM)

with initial price S0 and daily lognormal volatility of σ/day. We consider an initially at-the-

money European call option (struck at K = S0) with T days to maturity. We discretize time

with D periods per day, hence each “episode” has T · D total periods. We require trades

(hence also holdings) to be integer numbers of shares. We assume that our agent’s job is

to hedge one contract of this option. In the specific examples below, the parameters are

σ = 0.01, S0 = 100, T = 10, and D = 5. In addition, we set the risk-aversion, κ = 0.1.

We first consider a “frictionless” world without trading costs and answer the question of

whether it is possible for a machine to learn what we teach students in their first semester of

business school: Formation of the dynamic replicating portfolio strategy. Unlike our students,

10 DYNAMIC REPLICATION AND HEDGING: A REINFORCEMENT LEARNING APPROACH

the machine can only learn by observing and interacting with simulations. The results are

depicted in Exhibit 1.

The RL agent is at a disadvantage, initially. Recall that it does not know any of the

following pertinent pieces of information: (1) the strike price K, (2) the fact that the stock

price process is a GBM, (3) the volatilty of the price process, (4) the BSM formula, (5) the

payoff function (S − K)+ at maturity, (6) any of the Greeks. It must infer the relevant

information from these variables, insofar as it affects the value function, by interacting with

a simulated environment.6

Each out-of-sample simulation of the GBM is different, but we show a typical example of

the trained agent’s performance in Exhibit 1.

graphs/reinf-multiplier0-example1.eps

Exhibit 1. Out-of-sample simulation of a trained agent. We depict cu-
mulative stock, option, and total P&L; RL agent’s position in shares
(stock.pos.shares), and −100 ·∆ (delta.hedge.shares). Observe that (a) cumu-
lative stock and options P&L roughly cancel one another to give the (relatively
low variance) total P&L, and (b) the RL agent’s position tracks the delta po-
sition even though they were not provided with it.

6. One could try to “help” the algorithm by providing the BSM delta as part of the state variable, hence
allowing the reinforcement learner to use that directly, but we deliberately chose not to include any of the option
greeks as state variables. Giving the system access to the option greeks is sure to improve its performance,
since then the function being learned is closer to linear. We chose not to do this in order to make the problem
“as hard as possible” and to see if RL is up to the challenge. However, in a real-world production scenario,
we recommend making the problem as easy as possible by including certain of the option greeks in the state
variable, unless they are prohibitively hard to calculate.

DYNAMIC REPLICATION AND HEDGING: A REINFORCEMENT LEARNING APPROACH 11

As the examples of Exhibit 1 were generated in a frictionless simulation, why is the total

P&L not exactly zero? This is due to discretization error. Time is discretized (to five periods

per day), so continuous hedging is not possible. Moreover, the simulation requires trading

an integer number of shares, which introduces further discretization error.

Any complex model should be tested against a simpler model as a baseline. To justify

its additional complexity, the more complex model should be able to do something that the

simpler model cannot. Along these lines, let us define a simple policy, πDH as a baseline for

the more complex policy learned by RL methods.

As in eq. (11), let ∆(pt, τ) denote the delta as computed from the price pt at time t, and

the time-to-expiry τ = T − t. The full state variable is then st = (pt, τ, nt) where nt denotes

the agent’s current holding, in shares, at time t. Our simple baseline policy must output an

action, which is just a number of shares to trade, given this state vector. Define

πDH(st) = πDH(pt, τ, nt) := −100 · round(∆(pt, τ))− nt (12)

where the round function returns the closest integer to the argument.

The policy πDH , without rounding, is optimal in a hypothetical trading-cost-free world,

where the number of timesteps goes to infinity and where one can trade fractional numbers of

shares. There is, however, no reason to expect that πDH would solve the utility-maximization

problem (9) in a simulation with nontrivial trading costs, or for that matter in the real world

(where we know trading costs are nontrivial).

For a trade size of n shares we define

cost(n) = multiplier× TickSize× (|n|+ 0.01n2); (13)

where we take TickSize = 0.1. With multiplier = 1, the term TickSize× |n| represents a cost,

relative to the midpoint, of crossing a bid-offer spread that is two ticks wide. The quadratic

term in (13) is a simplistic model for market impact. Exhibit 1 has multiplier = 0.

A key strength of the RL approach is that it does not make any assumptions about the

form of the cost function (13); it will learn to optimize expected utility, under whatever cost

function you provide.

In Exhibit 1 we had taken multipler = 0 in the function cost(n) representing no frictions.

We now take multipler = 5, representing a high level of friction. Our intuition is that in

high-trading-cost environments (which would always be the case if the position being hedged

were a very large position relative to the typical volume in the market), then the simple

policy πDH trades too much. One could perhaps save a great deal of cost in exchange for a

slight increase in variance.

Given the mean-variance utility function in (9), we expect RL to learn the trade-off between

variance and cost. In other words, we expect it to realize lower cost than πDH , possibly

coming at the expense of higher variance, when averaged across a sufficiently large number

of out-of-sample simulations (i.e. simulations that were not used during the training phase

in any way).

12 DYNAMIC REPLICATION AND HEDGING: A REINFORCEMENT LEARNING APPROACH

We trained the agent using five batches with 15,000 episodes per batch, each episode having

D ·T = 50 time steps as before. This means that each call to the nonlinear regression learner

involves 750,000 (Xt, Yt) pairs. The training procedure took one hour on a single CPU. After

training we ran N = 10, 000 out of sample simulations. Using the out-of-sample simulations

we ran a horse race between the baseline agent who just uses delta-hedging and ignores cost,

and the RL trained agent who trades cost for realized volatility.

Exhibit 2 shows one representative out-of-sample path of the baseline agent. We see that

the baseline agent is over-trading and paying too much cost. Exhibit 3 shows the RL agent

on the same path. We see that, while maintaining a hedge, the agent is trading in a cost-

conscious way. The curves in Exhibit 2, representing the agent’s position (stock.pos.shares),

are much smoother than the value of −100 ·∆ (called delta.hedge.shares in Exhibit 2), which

naturally fluctuates along with the GBM process.

graphs/delta-multiplier5-example1.eps

Exhibit 2. Out-of-sample simulation of a baseline agent who uses policy
“delta” or πDH , defined in (12). We show cumulative stock P&L and option
P&L, which roughly cancel one another to give the (relatively low variance)
total P&L. We show the position, in shares, of the agent (stock.pos.shares).
The agent trades so that the position in the next period will be the quantity
−100 ·∆ rounded to shares.

DYNAMIC REPLICATION AND HEDGING: A REINFORCEMENT LEARNING APPROACH 13

graphs/reinf-multiplier5-example1.eps

Exhibit 3. Out-of-sample simulation of our trained RL agent. The curve
representing the agent’s position (stock.pos.shares), controls trading costs and
is hence much smoother than the value of −100 ·∆ (called delta.hedge.shares),
which naturally fluctuates along with the GBM process.

Exhibit 3 only consists of one representative run from an out-of-sample set of N = 10, 000

paths. To summarize the results from all runs, we computed the total cost and standard

deviation of total P&L of each path. Exhibit 4 shows kernel density estimates (basically,

smoothed histograms) of total costs and volatility of total P&L of all paths. In each case, we

performed a Welch two-sample t-test to see if the difference in means was significant. The

difference in average cost is highly statistically significant, with a t-statistic of −143.22. The

difference in vols, on the other hand, was not statistically significant at the 99% level.

14 DYNAMIC REPLICATION AND HEDGING: A REINFORCEMENT LEARNING APPROACH

graphs/total-cost-histogram.eps graphs/realized-vol-histogram.eps

Exhibit 4. Kernel density estimates for total cost (left panel) and volatility
of total P&L (right panel) from N = 10, 000 out-of-sample simulations. Policy
“delta” is πDH , while policy “reinf” is the greedy policy of an action-value
function trained by RL. The “reinf” policy achieves much lower cost (t-statistic
= −143.22) with no significant difference in volatility of total P&L.

One can also gauge the efficacy of an automatic hedging model by how often the total

P&L (including the hedge and all costs) is significantly less than zero. For both policies

(“delta” and “reinf”) we computed the t-statistic of total P&L for each of our out-of-sample

simulation runs and constructed kernel density estimates, see Exhibit 5. The “reinf” method

is seen to outperform as its t-statistic is much more often close to zero and insignificant.

graphs/t-statistic-histogram.eps

Exhibit 5. Kernel density estimates of the t-statistic of total P&L for each
of our out-of-sample simulation runs, and for both policies represented above
(“delta” and “reinf”). The “reinf” method is seen to outperform in the sense
that the t-statistic is much more often close to zero and insignificant.

Conclusions

The main contribution of this article is to show that with reinforcement learning (RL)

one can train a machine-learning algorithm to hedge an option under realistic conditions.

Somewhat remarkably, it accomplishes this without the user providing any of the following

pertinent pieces of information: (1) the strike price K, (2) the fact that the stock price

process, (3) the volatilty of the price process, (4) the Black-Scholes-Merton (BSM) formula,

(5) the payoff function (S−K)+ at maturity, and (6) any of the Greeks. This is the analogue,

DYNAMIC REPLICATION AND HEDGING: A REINFORCEMENT LEARNING APPROACH 15

for financial derivatives, of the examples of mnih2013playing; mnih2015human in which

computers learned to play games without knowing the rules.

A key strength of the RL approach is that it does not make any assumptions about the

form of trading cost. RL learns the minimum variance hedge subject to whatever transaction

cost function one provides. All that it needs is a good simulator, in which transaction costs

and options prices are simulated accurately.

This has the interesting implication that any option which can be priced can also be

hedged, whether or not the pricing is done by explicitly constructing a replicating portfolio

– whether or not a replicating portfolio even exists among the class of tradable assets.

Our approach does not depend on the existence of perfect dynamic replication. It will

learn to optimally trade off variance and cost, as best as possible using whatever assets it is

given as potential candidates for inclusion in a hedging portfolio. In other words, it will find

the minimum-variance dynamic hedging strategy, whether or not the minimum variance is

actually zero (as it typically is in derivatives pricing, where one needs perfect replication in

order to derive a no-arbitrage price). This is important, since in many realistic cases markets

are not complete and hence some of the assets required for perfect replication may not exist.

Another advantage of this approach is that it can deal automatically with position-level

constraints. It is part of the structure of any RL problem that, for each possible state s of

the environment, the agent has a (potentially state-dependent) list of possible actions. In

the examples above, the list of possible actions was taken to be buying or selling up to 100

shares, in integer numbers of shares. We note that other trade or position constraints could

be incorporated in a straightforward way, simply by modifying the state-dependent list of

available actions.

In this article we leave open several avenues for further research. One obvious point of

interest would be to train agents like ours on more sophisticated hardware, and hence to take

advantage of many more simulations and finer discretization of time. silver2017mastering

describe various Go players that were trained on clusters with up to 176 GPUs and/or 48

TPUs, with training times ranging from three days to 40 days. For reference, all of the

examples in this article were trained on a single CPU, and the longest training time allowed

was one hour.

Transaction costs are not static. The intraday term structure of trading volume has a

well-known “smile” shape (documented by chan1995market), with a nontrivial fraction of

US equity trading volume occurring into the close and closing auction. Our RL system should

handle this sort of complication very well. For instance, the simulator could be augmented

with a nuanced cost function that depends on the time of day and add a discrete time-of-day

indicator to the state vector.

Another interesting line of research would be to investigate optimal hedging strategies for

portfolios of options in the presence of trading costs. Obviously, for low-gamma portfolios,

delta-hedging would not be needed so frequently, thus naturally reducing the trading costs

16 DYNAMIC REPLICATION AND HEDGING: A REINFORCEMENT LEARNING APPROACH

for that kind of portfolio. In general, the most cost-effective way to reduce variance is likely

to use other options rather than a replicating portfolio of the underlier.

View publication statsView publication stats

https://www.researchgate.net/publication/329435926

